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Decoupling Growth and Protein
Production in CHO Cells: A Targeted
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James S. Donaldson* , Matthew P. Dale and Susan J. Rosser
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Fed-batch cultures of Chinese Hamster Ovary cells have been used to produce high
quantities of biotherapeutics, particularly monoclonal antibodies. However, a growing
number of next-generation biotherapeutics, such as bi-specific antibodies and fusion
proteins, are difficult to express using standard fed-batch processes. Decoupling cell
growth and biotherapeutic production is becoming an increasingly desired strategy
for the biomanufacturing industry, especially for difficult-to-express products. Cells
are grown to a high cell density in the absence of recombinant protein production
(the growth phase), then expression of the recombinant protein is induced and cell
proliferation halted (the production phase), usually by combining an inducible gene
expression system with a proliferation control strategy. Separating the growth and
production phases allows cell resources to be more efficiently directed toward either
growth or production, improving growth characteristics and enhancing the production
of difficult to express proteins. However, current mammalian cell proliferation control
methods rely on temperature shifts and chemical agents, which interact with many
non-proliferation pathways, leading to variable impacts on product quality and culture
viability. Synthetic biology offers an alternative approach by strategically targeting
proliferation pathways to arrest cell growth but have largely remained unused in industrial
bioproduction. Due to recent developments in microbial decoupling systems and
advances in available mammalian cell engineering tools, we propose that the synthetic
biology approach to decoupling growth and production needs revisiting.

Keywords: biomanufacturing, synthetic biology, decoupling production from growth, CRISPR/Cas9, CHO cell
culture

INTRODUCTION

Industrial-scale production of many biotherapeutics relies on the culture of Chinese Hamster Ovary
(CHO) cells. In fed-batch cultures, nutrients are added to the culture to prevent nutrient limitation,
prolong culture duration, and maximize product titer. Once culture viability drops below a certain
threshold, the culture is harvested and the product is purified. Advances in cell engineering,
expression vector design, and process development have allowed monoclonal antibody (mAb)
titers to reach 10 g/L. However, high expression of recombinant genes places a large metabolic
burden on the cell, which can result in the downregulation of recombinant gene expression.
To avoid unstable cell lines entering the manufacturing stage, stability studies (which remain a
significant bottleneck in cell line development timelines) are performed to identify cell lines that
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maintain high gene expression over the culture period.
Additionally, a growing range of next-generation biotherapeutics
(such as bi-specific antibodies, fusion proteins, and toxic
proteins) are being produced as a result of recent developments in
protein engineering. These are often difficult to express in CHO
cells at desired quantities. For example, production of hyperactive
human DNase I is particularly challenging with standard culture
processes, because protein expression negatively impacts cell
growth, viability, and stability (Lam et al., 2017).

An increasingly attractive method of production is to decouple
the growth and production phases of the culture process, usually
by combining an inducible gene expression system with a
proliferation control strategy (Misaghi et al., 2014; Lam et al.,
2017; Poulain et al., 2017). Under such a system, cells are initially
grown up to high cell density in the absence of recombinant
protein production (the growth phase). Once the desired cell
density is reached, expression of the recombinant protein is
induced and cell proliferation is halted (the production phase).
Proliferation is usually arrested in the G1 phase of the cell cycle,
which is associated with larger cells and increased ribosomal
protein S6 levels (Carvalhal et al., 2003; Bi et al., 2004). Separating
the growth and production phases allows cell resources to
be more efficiently utilized in each phase, improving growth
characteristics and enhancing production stability (Misaghi et al.,
2014). It also avoids expression of cytotoxic recombinant proteins
during the growth phrase, reducing the negative impact on
cell growth and viability (Lam et al., 2017). Inducing global
downregulation of translation (apart from the product gene)
during the production phase can increase product purity to aid
downstream processing (Bojar et al., 2019).

However, the benefits of decoupling growth and production
in mammalian cells are challenged by suboptimal proliferation
control strategies. Most commonly, cells are arrested by shifting
the culture temperature from 37◦C to 30–35◦C, or through the
addition of chemical agents [such as sodium butyrate (Hong
et al., 2014)] to the culture. Both strategies successfully arrest
cell growth, usually in the G1 phase, while improving specific
productivity and reducing nutrient uptake and waste production
(Marchant et al., 2008). However, both strategies also impact
other non-proliferation pathways. Transcriptomic studies have
shown that temperature shifts cause wide-scale changes in gene
expression in the cell (Bedoya-López et al., 2016) and can impact
certain product quality attributes (e.g., glycosylation profile; Nam
et al., 2008). In addition to negatively impacting product quality
(Hong et al., 2014), chemical agents such as sodium butyrate
also trigger apoptotic pathways (Kim and Lee, 2000). Model-
based approaches have been developed to reduce the number
of experiments required to determine the optimum timing for
the temperature shift, to maximize product titer (Paul et al.,
2019). However, decoupling growth and production usually
requires extensive and time-consuming process development
work to maximize titer, while avoiding negative product quality
consequences (Xu et al., 2019). Lack of a suitable targeted
proliferation control approach hinders rapid development of a
decoupled production process.

Recently, there have been significant advances in decoupling
growth and production in microbial systems using synthetic

biology approaches (Izard et al., 2015; Li et al., 2016; Durante-
Rodríguez et al., 2018; Stargardt et al., 2020). However, it
has been over 20 years since the overexpression of cyclin-
dependent kinase inhibitors (p21Cip1, p27Kip1, and p53) was
first used to decouple growth and production in mammalian
cells (Fussenegger et al., 1997). Implementation of this strategy
was limited by a lack of appropriate inducible gene expression
systems and its weak impact on mammalian cell proliferation
(Weber and Fussenegger, 2007). Since then, there have been
significant advances in synthetic biology tool development,
but their application in decoupling growth and production
in mammalian cells has largely remained unexplored (Guha
et al., 2017; Kallunki et al., 2019; Trauth et al., 2019). Here,
we discuss the benefits of a targeted approach to proliferation
control and discuss how recently developed tools in mammalian
synthetic biology provide a promising solution for decoupling
growth and production.

STRATEGIC PROLIFERATION CONTROL:
TOWARDS A TARGETED APPROACH

A targeted approach to cell proliferation control could hold the
key to arresting cell proliferation at the G1 phase, the phase
associated with larger cells and increased ribosomal protein S6
levels, while maintaining product quality. Progression through
the cell cycle is governed by the regulated activation, degradation,
and synthesis of a series of cell-cycle regulators. During G1,
cells make a decision whether to irreversibly commit to a new
round of cell division or remain in a non-proliferative G0 state
(the restriction point). Progression past the restriction point is
governed by the retinoblastoma (RB) protein, an inhibitor of
G1/S gene transcription (Figure 1). Cyclin D-CDK4/6 and Cyclin
E-CDK2 complexes phosphorylate RB, enabling the expression of
G1/S genes. Cyclin-dependent kinase inhibitors (CKIs) regulate
Cyclin-CDK activity (Alberts et al., 2002; Harper and Brooks,
2004).

The mechanism by which temperature shifts induce cell-cycle
arrest is thought to involve membrane-dependent activation
of the ataxia telangiectasia mutated and Rad3-related kinase
(ATR)–p53–p21 pathway (Roobol et al., 2011). However, as
previously mentioned, temperature shifts also cause wide-scale
changes in gene expression in the cell (Bedoya-López et al.,
2016) which can negatively impact product quality attributes.
By contrast, targeted approaches to proliferation control should
have far fewer off-target effects. Indeed, targeted inhibition of
CDK4/6 activity using a highly selective cancer therapeutic
molecule (PD 0332991) (Fry et al., 2004) increased specific mAb
productivity and prolonged cell culture, while having minimal
impact on product quality (Du et al., 2015). In addition, by
contrast with temperature shift, targeted CDK4/6 inhibition did
not lead to changes in expression of genes involved in the
glycosylation pathway (Du et al., 2015; Bedoya-López et al., 2016).
Thus, targeted inhibition approaches may avoid the negative
impact from off-target effects of current cell proliferation control
strategies for decoupling growth and production in mammalian
cells. However, the high cost and physiological activity of cancer
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FIGURE 1 | Regulation of the progression through G1 phase into S phase (Sunley and Butler, 2010). The progression through G1 into S phase is governed by a
series of cell-cycle regulators, with some regulators promoting progression and others inhibiting progression. CKIs for potential overexpression are shown in red.
Potential targets for gene knockdown/protein degradation are shown in green.

drugs limit their potential to be applied for such purposes
in industrial bioproduction (Weber and Fussenegger, 2007).
Synthetic biology strategies, which selectively target the activity of
cell-cycle regulators through cell engineering approaches, could
provide a less expensive and more industrially viable solution.

Previous synthetic biology strategies have focused on the
overexpression of cyclin-dependent kinase inhibitors (CKIs),
with p21Cip1, p53, and P27Kip1 the most studied (Fussenegger
et al., 1997; Mazur et al., 1998; Carvalhal et al., 2003; Bi et al.,
2004). The original approach controlled the expression of the CKI
and product gene, on a dicistronic vector, with a doxycycline-
inducible gene expression system (Fussenegger et al., 1997).
Upon addition of doxycycline, cells were arrested in G1 and
product expression was switched on, decoupling the growth
and production phases of the culture process (Table 1A). Since
then, multiple approaches have been tested, using a variety of
inducible promoters and gene combinations (Mazur et al., 1998;
Carvalhal et al., 2003; Bi et al., 2004). The overexpression of
CKIs caused increases in specific productivity, but the degree
of specific productivity increase was variable (likely due to
the inherent variability in transfection methods available at
the time and the expression systems used). Overexpression of
p21Cip1 led to a fourfold increase in specific productivity in
a stable mAb-producing CHO cell line but not in a stable
secreted embryonic alkaline phosphatase (SEAP)-producing
CHO cell line (Mazur et al., 1998; Bi et al., 2004). However,
the implementation of CKI overexpression for cell proliferation
control has been limited by its weak impact on proliferation.
Combining overexpression of CKIs with a temperature shift
showed that the temperature shift had the dominant impact on
cell proliferation (Kaufmann et al., 2001). This strongly suggests

that novel synthetic biology approaches are required for the
manipulation of proliferation pathways.

NOVEL SYNTHETIC BIOLOGY METHODS
FOR PROLIFERATION CONTROL

Since the original, cell engineering-based proliferation control
studies (Fussenegger et al., 1997; Mazur et al., 1998; Carvalhal
et al., 2003; Bi et al., 2004), multiple synthetic biology tools
have emerged, including inducible gene expression systems
(Kallunki et al., 2019), degradation systems (Trauth et al.,
2019), and gene knockout/repression systems (Guha et al.,
2017). However, the application of such tools in decoupling
growth and production in mammalian cells has largely remained
unexplored. There have been significant advances in synthetic
biology approaches to decoupling growth and production in
microbial systems, based on mRNA interferases (Suzuki et al.,
2005), control of host RNA polymerase activity (Izard et al.,
2015; Stargardt et al., 2020), and regulation of DNA replication
machinery (Li et al., 2016). Recently, a bacteriophage-derived
Escherichia coli RNA polymerase inhibitor was used to arrest
cell growth by inhibiting σ-factor 70-driven host gene expression
(Stargardt et al., 2020). Although mammalian proliferation
control pathways are more complex, similar approaches could
be used to target the mammalian cell cycle. The potential
of synthetic biology in decoupling growth and production
in mammalian cells has been partly realized in “purity by
design” cell lines. Activation of a caffeine-inducible mammalian
protein kinase R switches off non-product protein translation,
while a viral IRES sequence protects recombinant protein

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 June 2021 | Volume 9 | Article 658325

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-09-658325 May 27, 2021 Time: 18:36 # 4

Donaldson et al. Decoupling Growth and Protein Production

TABLE 1 | Mammalian synthetic biology tools which could be used for decoupling growth and production.

Method Concept Advantages Disadvantages Tested in CHO cells?

(A) Overexpression of
CKIs

• Known increase in
specific productivity

• Weak impact on
proliferation

• Yes (Fussenegger et al., 1997;
Mazur et al., 1998;
Carvalhal et al., 2003;
Bi et al., 2004)

(B) Caffeine-inducible
dimerization of protein
kinase R (Bojar et al.,
2019)

• Improved product
purity

• Caffeine as an inducer

• Limited product titer • Yes—system tested in
multiple industrially relevant
cell lines including CHO cells
(Bojar et al., 2019)

(C) Degradation of
cell-cycle regulators
(small-molecule
induction)

• Fast acting cell-cycle
arrest

• Lack of industry
appropriate small
molecules

• Multiple recombinant
genes

• Addition of degron can
impact activity of POI

• Not yet used to target
cell-cycle regulators in CHO
cells

• AID system previously tested
in CHO cells
(Kleinjan et al., 2017)

(D) Degradation of
cell-cycle regulators
(optogenetic approach)

• Fast acting cell-cycle
arrest

• Light is non-toxic and
can be instantly
applied and removed

• Addition of degron can
impact activity of POI

• Not yet used to target
cell-cycle regulators in CHO
cells

• Dual-controlled “Blue-OFF”
system previously tested
in CHO cells
(Baaske et al., 2018)

(E) CRISPRi • No premodification of
target required

• Efficient
downregulation of
gene expression

• Slower acting cell-cycle
arrest due to reliance on
half-life of POI

• Reliant on the position of
gene in the genome for
knockdown efficiency

• Not yet used to target
cell-cycle regulators in CHO
cells

• Previously used to
knockdown endogenous
apoptotic genes in CHO cells
(Xiong et al., 2019)

(F) CRISPRa • Potentially higher fold
increase in CKI gene
expression

• Reliant on the position of
gene in the genome for
activation efficiency

• Not yet used to target
cell-cycle regulators in CHO
cells

• Previously used to upregulate
of endogenous genes in CHO
cells (Karottki et al., 2020)

production (Bojar et al., 2019). However, titer is limited because
translation from IRES sequences does not have access to the full
ribosomal machinery (Table 1B; Bojar et al., 2019). Although
this method could be incredibly valuable for products where
the presence of host cell proteins may be particularly harmful
to product quality, it is inherently limited when improving
product titer is a priority, as is common need for difficult-to-
express proteins.

Degradation systems target endogenous cellular proteins
and could be used to rapidly knock down cell-cycle regulator
activity (Trauth et al., 2019). A degron, added to the
N- or C-terminus of a protein of interest (POI), allows

targeted and rapid protein degradation upon addition of a
small-molecule inducer (Table 1C). An example of such a
system is the Auxin-Inducible Degron (AID) system. AID-
mediated degradation of RAD21-mAC rapidly arrested growth
of human cells (Natsume et al., 2016). However, fusion of
the endogenous POI with the degron tag requires considerable
effort and, with the AID system, implementation of the
strategy requires the expression of additional heterologous
proteins (TIR1). Moreover, a degron-tagged cell-cycle regulator
could negatively impact cell proliferation during the growth
phase if protein activity is reduced. However, a degron-
tagged topoisomerase IIα did not impact proliferation rate
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or culture viability, despite the enzyme’s essential role in the
cell cycle (Farr et al., 2014). Imperative for the application
of degron systems in industrial bioproduction is that the
small-molecule inducer is non-toxic, physiologically inactive,
and inexpensive (Weber and Fussenegger, 2007). However,
metabolic bi-products of auxin have displayed toxicity in
mammalian cell lines (Kim et al., 2004, 2010). Optogenetic
approaches could overcome such limitations, since light is
non-toxic and can be instantly applied and removed during
culture. For example, the dual-controlled “Blue-OFF” system
combines a KRAB-EL222 light-inducible repressor with a B-LID
(blue light-inducible degradation domain) protein degradation
module, to rapidly downregulate target protein levels in
response to blue light (Baaske et al., 2018). By combining
such systems with recently developed light-inducible gene
expression tools (Yamada et al., 2020), blue light could be
used to trigger both cell-cycle regulator degradation (to halt
proliferation) and expression of the product gene (to start the
production phase).

At the forefront of synthetic biology improvements has
been the development of CRISPR/Cas9 as a tool for genetic
manipulation (Boettcher and McManus, 2015). The sgRNA-
guided Cas9 endonuclease generates double-stranded breaks
in target-gene sequences, which are repaired by the error-
prone non-homologous end-joining pathway, generating
a variety of mutations (termed CRISPRn). CRISPR/Cas9
methods have already been extensively used for enhancing
recombinant gene expression in CHO cell bioproduction
(Dangi et al., 2018). A fusion of a catalytically inactive
Cas9 (dCas9) and the Krüppel-associated box (KRAB)
repression domain, targeted to a transcriptional start site
(TSS), can be used to silence expression of a target gene
(termed CRISPR interference or CRISPRi) (Table 1D). An
inducible version of CRISPRi is created by controlling dCas9
or sgRNA expression with an inducible gene expression
system. The application of CRISPRi for decoupling growth
and production has already been realized in bacterial
cells, where knockdown of DNA replication machinery
or nucleotide synthesis was shown to cause cell arrest (Li
et al., 2016). Using RNAi to knock down cyclin E1 and E2
expression, cell proliferation was arrested in the G1 phase
in human hepatocellular carcinoma cell lines (Geng et al.,
2018). This could be repeated with CRISPRi, a method that
gives more consistent and robust gene knockdown than
RNAi, while exhibiting less off-target effects (Boettcher and
McManus, 2015). Alternatively, dCas9 can be used for the
upregulation of target-gene expression (termed CRISPR
activation or CRISPRa). The VPR CRISPRa approach
requires the direct fusion of dCas9 with transcriptional
activators (VP64, p65, and Rta), targeted to the TSS of
endogenous genes with sgRNAs (Table 1E; Chavez et al.,
2015). CRISPRa could be used to arrest proliferation by
upregulating endogenous CKI gene expression (Table 1F).
Although the degree of target-gene upregulation is highly loci
dependent, CRISPRa allows for much higher fold increases
in target-gene expression than what is common for standard
inducible promoter systems (Chavez et al., 2015). This could

overcome the problem of weak cell-cycle arrest in previous
CKI-overexpression studies.

SELECTION OF SUITABLE TARGETS

Identification of cell-cycle targets for the purposes of cancer
treatment has shown that the impact of knocking down cell-
cycle regulators is often cell line specific. For example, Cdk2
knockdown had no significant impact on cell proliferation in
certain mammalian cell lines, whereas in other studies, Cdk2
knockdown induced cell-cycle arrest (Tetsu and McCormick,
2003; Liu et al., 2020). Potential targets for knockdown or
overexpression are outlined in Figure 1. Selection of certain
cell-cycle regulators for gene knockdown/protein degradation
may be limited by their interaction with apoptotic pathways.
To minimize the risk of inducing apoptosis after knockdown
of cell-cycle regulators, proliferation control strategies could be
combined with overexpression or knockout of key apoptotic
genes (Kim and Lee, 2000, 2002). Reducing apoptosis could also
help maintain high cell densities during the production phase for
a longer time period, thus improving product titer.

Transcriptional inhibition approaches, such as CRISPRi, are
inherently slower acting than degradation methods, due to
a reliance on the inherent half-life of the protein, meaning
proteins with longer half-lives take longer to remove. Cell-cycle
regulators with short half-lives, such as D-type cyclins (half-life of
30 min) (Donjerkovic and Scott, 2000), are likely to provide more
suitable targets for transcription-based regulation. Challenges
for implementing this strategy will also arise from the genetic
plasticity that CHO cells exhibit, giving rise to modifications
in gene copy number, changes in transcriptional activity, and
substantial chromosome rearrangements (Vcelar et al., 2018).
A mutation in the proliferation control pathway could lead to
cells escaping arrest. Additionally, the gene knockdown strategy
would have to arrest the majority of cells in the culture.
The efficiency of CRISPRi-mediated knockdown is known to
be largely dependent on the genomic context of the target
gene, meaning that high knockdown efficiencies of cell-cycle
regulators may not easily be achieved. If these challenges are
not addressed, populations of fast-growing cells may outcompete
the arrested cells, limiting culture duration and product titer.
Targeting multiple proliferation pathways is a strategy that is
common in cancer therapies and could reduce the number of
cells escaping cell-cycle arrest. To improve CRISPRi efficiency,
cell-cycle regulators could be targeted more easily by knocking
out the endogenous gene and expressing a recombinant version
of the gene at a more easily targeted locus, using a targeted
integration system.

DISCUSSION

With the increasing demands on biomanufacturing facilities
to produce a wider range of protein biotherapeutics at higher
titers and in a shorter period of time, decoupling growth
and production provides a viable alternative to traditional
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constitutive expression strategies. Moving the product expression
window away from the growth phase mitigates the negative
impact that cytotoxic proteins have on cell growth, viability,
and stability. Additionally, there is increasing evidence
that recombinant protein expression places a substantial
metabolic burden on the cell, particularly on its secretory
capacity, resulting in decreased cell line stability and
downregulation of recombinant gene expression (Jones et al.,
2005; Ong et al., 2019; Poulain et al., 2019). For example,
removing the expression of a non-essential recombinant
gene substantially improved the growth characteristics of a
CHO cell line (Kallehauge et al., 2017). This suggests that
decoupling growth and production could have wider application
in the production of biotherapeutics, beyond just those
that are cytotoxic.

The application of decoupling strategies in bioproduction has
been limited by the variable impact of temperature shifts and
chemical agents on product titer, culture viability, and product
quality. This is largely due to the interaction of these strategies
with many other cellular pathways that are not related to cell
proliferation. Although industrially inviable due to their cost,
the use of highly selective cancer drugs for proliferation control
has yielded promising results for targeted approaches (Du et al.,
2015). Synthetic biology offers a potentially more industrially
relevant approach, but its use in proliferation control has

remained largely unexplored. Here, we have discussed synthetic
biology tools that have emerged over the last 20 years that
could be used to arrest cell proliferation. Synthetic biology
approaches to decoupling growth and production in microbial
systems have been developed, but a mammalian cell engineering
approach remains largely unexplored. The implementation of
such strategies in mammalian cells has considerable advantages
over conventional approaches to proliferation control, allowing
the selective targeting of cell-cycle regulators to induce cell-cycle
arrest (with the associated increase in specific productivity), while
avoiding negative impacts on product quality.
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