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TIME-PERIODIC MEASURES, RANDOM PERIODIC ORBITS, AND THE

LINEAR RESPONSE FOR DISSIPATIVE NON-AUTONOMOUS

STOCHASTIC DIFFERENTIAL EQUATIONS

MICHA L BRANICKI AND KENNETH UDA

Department of Mathematics, University of Edinburgh, Scotland, UK

Abstract. We consider a class of dissipative stochastic differential equations (SDE’s) with time-

periodic coefficients in finite dimension, and the response of time-asymptotic probability measures

induced by such SDE’s to sufficiently regular, small perturbations of the underlying dynamics.

Understanding such a response provides a systematic way to study changes of statistical observ-

ables in response to perturbations, and it is often very useful for sensitivity analysis, uncertainty

quantification, and for improving probabilistic predictions of nonlinear dynamical systems, espe-

cially in high dimensions. Here, we are concerned with the linear response to small perturbations

in the case when the time-asymptotic probability measures are time-periodic. First, we establish

sufficient conditions for the existence of stable random time-periodic orbits generated by the

underlying SDE. Ergodicity of time-periodic probability measures supported on these random

periodic orbits is subsequently discussed. Then, we derive the so-called fluctuation-dissipation re-

lations which allow to describe the linear response of statistical observables to small perturbations

away from the time-periodic ergodic regime in a manner which only exploits the unperturbed

dynamics. The results are formulated in an abstract setting but they apply to problems ranging

from aspects of climate modelling, to molecular dynamics, to the study of approximation capacity

of neural networks and robustness of their estimates.
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2 Time-periodic measures, random periodic orbits, and the linear response for dissipative non-autonomous SDE’s

1. Introduction

In many scientific applications a systematic determination of the response of a complex non-

linear dynamical system to time-dependent perturbations is of key importance; topical exam-

ples in high-dimensional, non-autonomous and/or stochastic settings include climate models

(e.g., [1, 58, 61, 33, 35, 17]), statistical physics and non-equilibrium thermodynamics (e.g.,

[49, 83, 84, 45, 74]), and even neural networks (e.g., [19, 75, 23]). The sought response is usually

quantified in terms of a change in an ‘observable’ expressed as a statistical/ensemble average

of some functional defined on the trajectories of the underlying dynamical system. The classi-

cal theory of linear response (e.g., [82, 58]) is concerned with capturing changes in observables

to sufficiently small perturbations of the original dynamics close to its statistical equilibrium.

It turns out that in such a setting the response can be expressed, with some caveats, through

formulas linking the external perturbations to spontaneous fluctuations and dissipation in the

unperturbed time-asymptotic dynamics (e.g., [83, 84, 55]). The classical fluctuation-dissipation

theorem (FDT) is of fundamental importance in statistical physics (e.g., [50, 5, 27]), and it roughly

states that for systems of identical particles in statistical equilibrium, the average response to

small external perturbations can be calculated through the knowledge of suitable correlation

functions of the unperturbed time-asymptotic dynamics; see, for example, [51, 15] for some of

the many applications of the FDT in the statistical physics setting.

The validity of the linear response and fluctuation-dissipation relationships for more general

dynamical systems encountered, for example, in climate modelling (e.g., [58]) is an important

topic which is particularly relevant for uncertainty quantification in reduced-order predictions

and reduced model tuning (e.g., [33, 60, 17, 62]). In an early influential work Leith [54] suggested

that if the climate dynamics satisfied a suitable FDT, the climate response to small external

forcing could be calculated by estimating suitable statistics in the unperturbed climate1. Climate

dynamics is modelled as a forced dissipative chaotic or stochastic dynamical system which is

arguably rather far from the statistical physics’ setting for FDT. Nevertheless, Leith’s conjecture

stimulated a lot of activity in generating new theoretical formulations (e.g., [39, 61]) and in

designing approximate algorithms for FDT to study the climate response (e.g., [1, 2, 3, 58, 61, 33,

35, 36, 37, 38, 63]). However, despite numerous applications in autonomous and non-autonomous

settings, there is little rigorous evidence supporting the validity of the linear response and FDT in

the non-autonomous setting beyond the formal derivation of FDT for time-dependent stochastic

systems [61].

The goal here is to provide a more rigorous justification of the linear response theory for a

class of forced dissipative stochastic differential equations (SDE’s) with time-periodic coefficients

which induce time-periodic probability measures. Our objective is twofold:

(i) Establish sufficient conditions for the existence and ergodicity (in an appropriate sense) of

time-periodic measures associated with time-asymptotic dynamics for a class of ‘dissipative’

SDE’s (defined later in (4.13)) with time-periodic coefficients in finite dimensions.

(ii) Analyse the linear response of such SDE’s in the time-periodic regime to small perturbations,

and express the change in the statistical observables based on time-periodic ergodic measures

via fluctuation-dissipation type relations.

1 The meaning of the term ‘climate’ used in most theoretical work in atmosphere-ocean science is loosely related
to properties of the probability measure induced by the time-asymptotic dynamics.
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The results derived in the sequel will concern SDE’s whose time-periodic measures are sup-

ported on certain stable random periodic solutions. In principle, the results discussed in the con-

text of the linear response apply to a wider class of dynamical systems generating time-periodic

measures; however, establishing conditions for the existence and ergodicity of such measures in a

more general setting (for SDE’s or otherwise) is not trivial and is beyond the scope of this work.

Time-periodic probability measures associated with the time-asymptotic dynamics are ar-

guably ubiquitous in many mathematical models. In particular, seasonal and diurnal cycles

in climate models due to time-periodic forcing or retarded self-interactions in neural networks

provide some of the obvious candidates, and highlight the need for developing the linear re-

sponse framework in the time-periodic setting. It is worth stressing that the need for rigorous

formulation of the linear response and FDT for dissipative stochastic dynamical systems (in line

with, e.g., [80, 58, 59, 76, 77, 63]) is justified by contemporary approaches to the simulation and

reduced-order modelling of high-dimensional, multi-scale dynamical phenomena. For example,

comprehensive models for climate change prediction or molecular dynamics simulations involve

stochastic components (e.g., [76, 57, 77, 59, 92, 4, 29]) to mimic the effects of unresolved dynam-

ics, while reduced-order models typically involve stochastic noise terms (e.g., [22, 56, 48, 71, 16].

Here, similar to [39, 61], the presence of noise leads to improved regularity of the problem which

simplifies key aspects of the analysis compared to deterministic, dissipative nonlinear systems

(e.g., [81, 11, 12, 10, 34]). As a consequence, we are able to focus on systems that have other

important features of realistic dynamics, namely a lack of ellipticity, non-compactness of state

space, and a lack of global Lipschitz continuity of the coefficients in the underlying SDE. The

results established below apply to a broad class of nonlinear functionals which include common

quantities of interest, such as the mean and covariance of subsets of variables.

2. General setup

Our framework relies on the theory of Markovian2 random dynamical systems (RDS), which

provides a geometric link between stochastic analysis and dynamical systems. This relationship

was established through the discovery (e.g., [53, 8]) that for sufficiently regular coefficients b, σ

the stochastic differential equation (SDE)

dXt = b(t,Xt)dt+ σ(t,Xt)dWt−s, Xs ∈ Rd, (2.1)

generates a stochastic flow {φ(t, s, · , · ) : s, t ∈ I ⊆ R, s 6 t} of homeomorphisms on Rd such that

Xs,x
t (ω) = φ(t, s, ω, x), P - a.s.

for x = Xs(ω), ω ∈ Ω in the Wiener space (Ω,F ,P) with Wt an m-dimensional Brownian motion.

For b = b(x), σ = σ(x), the SDE will be called autonomous, and non-autonomous otherwise. It

turns out (e.g., [8, 7]) that, for an autonomous SDE (in the above sense) with sufficiently regular

coefficients there exists essentially a one-to-one correspondence between the SDE and an RDS; a

rough but convenient interpretation (skipping the filtration) is that in the autonomous case there

exists an RDS generating the SDE, which in turn generates the stochastic flow and vice-versa.

One of the key concepts relevant for the analysis of the long-time behaviour of RDS is the ex-

tension of the notion of ergodicity to the random setting (e.g. [8, 14, 13, 25, 43, 67, 69, 68]). These

2 Here, the notion of a ‘Markovian RDS’ means that there exists a version of the RDS which has the Markov
property w.r.t. the canonical filtration generated on the Wiener space by the Brownian motion discussed later.
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important results are established in the regime of (random) stationary measures and (random)

stationary processes, in the case when the source of time-dependence is only due to the noise pro-

cess (i.e., b = b(x), σ = σ(x) in (2.1) and the SDE is autonomous in the jargon established above).

Over the last decade significant progress has been made in the study of the long-time behaviour

of SDE’s generated by time-dependent vector fields (e.g., [30, 31, 32, 87, 88, 89, 91, 21]). Based

on the insight from the latter results, we shall study the ergodicity of SDE’s with time-periodic

coefficients in order to establish fluctuation-dissipation formulas through the linear response in

the random periodic regime. Our strategy is to first prove the existence of a unique time-periodic

measure under certain ‘dissipative’ assumptions on the SDE via a version of Lyapunov second

method and coupling. The standard Lyapunov second method is a well-known and powerful tech-

nique for the investigation of stability of solutions of nonlinear dynamical systems in finite and

infinite dimensions. An extension of this method to an RDS generated by an autonomous SDE

is essentially due to Hasḿinskii (e.g., [43]); subsequent extensions include applications to SDE’s

with random switching (e.g., [66]) and to the case of non-trivial random stationary solutions and

random attractors by Schmalfuss [85]. Importantly, this method involves the study of random

invariant sets (under the considered dynamics) without the need for the explicit knowledge of

solutions of the underlying SDE, and it is based solely on the vector fields encoded in the coeffi-

cients of the SDE even when the drift term, i.e., b in (2.1), is only locally Lipschitz continuous.

However, in the present non-autonomous, time-periodic setup, the lack of stationarity and the

unavoidable skew-product structure of the underlying dynamics pose additional challenges when

dealing with ergodicity of time-asymptotic probability measures. The main issue which prevents

one from using the ‘classical’ methods (e.g., [26, 43]) for proving ergodicity the random periodic

regime stems from the fact that these probability measures are defined on the skew-product fibre

bundle (e.g., [24]) in the space of measures on the time-extended state space and they are not

mixing. Here, this complication is overcome by employing an extension of the classical Krylov-

Bogolyubov procedure (see, e.g., [8, §1.5]) which allows for dealing with ergodicity of probability

measures on appropriate Poincaré sections in the narrow topology generated by the dual of an

appropriate discrete-time transition semigroup, and then ‘linking’ the results via the continuous-

time transition semigroup induced by the SDE dynamics on the space of skew-product probability

measures. In the present case, the properties of the time-periodic measures established with the

help of the Lyapunov’s second method for dissipative SDE’s allow us to dispense with a number

of assumptions on the ergodicity in the Poincaré sections which would be otherwise required.

The rest of the article is organised as follows. In the remainder of this section, we fix the

notation which is frequently used in the sequel. In Section 3, we recap some basic results and

definitions, including the notion of a Random Dynamical System (RDS) generated by an SDE

in finite dimensions, and we outline the notion of a random periodic process. In Section 4, we

first prove the existence of stable random time-periodic solutions for a class of dissipative SDE’s

with time-periodic coefficients, and the existence of the associated time-periodic measures (§4.2);

sufficient conditions for ergodicity of such measures (in an appropriate sense) are established

in §4.3. Section 5 deals with the linear response theory in the above setting. The derivation

of the linear response formula in the time-periodic setting is followed by the derivation of two

classes of fluctuation-dissipation relationships: the first one applies to perturbations of dynamics

with time-periodic ergodic measures reuquired only in the unperturbed dynamics, the second one

involves simpler formulas but it requires persistence of time-periodicity in the perturbed measures.
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2.1. Function spaces. Below, we outline function spaces which are used in the sequel.

Let (X ,d) be a complete separable metric space. We consider either X = Rd or X = R× Rd,
or a flat cylinder X = [0, τ) × Rd, 0 < τ < ∞, [0, τ) ' R mod τ , which arises when ‘lifting’ the

dynamics generated by a non-autonomous SDE; in this section, we use X for all these spaces to

unify the notation. Throughout the paper, we set N0 := {0, 1, 2, . . . } and N1 := {1, 2, . . . }.
• (Ω,F ,P) denotes the Wiener probability space where Ω := C0(R;Rm), m ∈ N1; i.e., the abstract

sample space Ω is identified with a linear subspace of continuous functions C(R;Rm) which vanish

at zero. F is the Borel S-algebra on Ω generated by open subsets in the compact-open topology

defined via

%(ω, ω̂) =
∞∑
n=0

1

2n
‖ω − ω̂‖n

1 + ‖ω − ω̂‖n
, ‖ω − ω̂‖n := sup

t∈[−n,n]
|ω(t)− ω̂(t)|, ω, ω̂ ∈ Ω,

with |·| the Euclidean norm on Rm. Finally, P is the Wiener measure on F . In such a setup the

canonical Wiener process (with two-sided time) on (Ω,F) with values in the Borel-measurable

space (Rm,B(Rm)) is defined as Wt(ω) = ω(t), t ∈ R, via the identification of ω ∈ Ω with

functions ω( · ) ∈ C0(R;Rm); see, e.g., [8, Appendix A.2] and references therein for details.

• Given the probability space (Ω,F ,P) and G ⊆ F , denote Lp(Ω,G,P), 1 6 p <∞, as the space

of G-measurable random variables X : Ω → Rd such that E|X|p :=
∫

Ω |X(ω)|p P(dω) < ∞, and

equipped with the norm ‖X‖p := (E|X|p)1/p .

• Given the (Borel) measurable space
(
X ,B(X )

)
, where B(X ) denotes the Borel S-algebra over X ,

-M(X ) denotes the space of measurable functions on X ,

- C(X ) denotes the space of continuous functions on X ,

-M∞(X ) denotes the space of bounded, measurable, real-valued, scalar functions on X , i.e.,

M∞(X ) :=
{
f : X → R, f ∈M(X ) : ‖f‖∞ <∞

}
, ‖f‖∞ := sup

x∈X
|f(x)|.

- C∞(X ) denotes the space of bounded, real-valued, scalar, continuous functions on X , i.e.,

C∞(X ) :=
{
f : X → R, f ∈ C(X ) : ‖f‖∞ <∞

}
.

• The space Cl(X ) contains l-times continuously differentiable real-valued functions.

• The space Cl∞(X ) contains those functions in Cl(X ) which are bounded.

• The space Cl,k(X1 ×X2) denotes the space of functions which are Cl on X1, and Ck on X2. The

space Cl,k∞ contains bounded functions in Cl,k.
• The space of bounded, real, scalar Lipschitz continuous functions on (X ,d) is denoted by

Lip∞(X ) :=
{
f ∈ C∞(X ) : ‖f‖bl <∞

}
,

‖f‖bl := max
{
‖f‖∞,Lip(f)

}
, and Lip(f) := sup

{
|f(y)− f(z)|

d(y, z)
: y 6= z, y, z ∈ X

}
.

• C̃l,δ(X ), l ∈ N0, 0 < δ 6 1, is the Fréchet space of functions f : X → X , whose l-th derivatives

are δ-Hölder continuous, and which is furnished with the countable family of semi-norms

‖f‖l,0,N := sup
x∈X

|〈f(x), x〉|
1 + |x|2

+
∑

16|β|6l

sup
x∈BN

|Dβf(x)|,

‖f‖l,δ;N := ‖f‖l,0;N +
∑
|β|=l

sup
x,y∈BN ,x 6=y

|Dβf(x)−Dβf(y)|
|x− y|δ

,
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where |·| is the Euclidean norm and 〈·, ·〉 the dot product on X , and BN = {x∈X : |x|6N},
N ∈ N1, is a closed ball in X with radius N , and

Dβf(x) :=
∂|β|f

(∂x1)β1 · · · (∂xd)βn
, |β| := β1 + · · ·+ βn , βi ∈ N0, i = 1, . . . , n, D0 = I,

denotes the Fréchet derivative (e.g. [7, 53]); f ∈ C̃l,δ(X ) if ‖f‖l,δ;N <∞ for all N ∈ N1, C̃l,0 ≡ C̃l.
• C̃l,δb (X ), l ∈ N0, 0 < δ 6 1, is the space of functions f : X → X , whose l-th derivatives are

δ-Hölder continuous with the norm

‖f‖l,0 := sup
x∈X

|f(x)|
1 + |x|

+
∑

16|β|6l

sup
x∈X
|Dβf(x)|,

‖f‖l,δ := ‖f‖l,0 +
∑
|β|=l

sup
x,y∈X ,x 6=y

|Dβf(x)−Dβf(y)|
|x− y|δ

.

Functions f ∈ C̃l,δb (X ) are such that ‖f‖l,δ <∞.

• C̃l,δub (X ), l ∈ N0, 0 < δ 6 1, is the space of functions f : X → X , whose l-th derivatives are

δ-Hölder continuous with the norm

‖f‖l,0 := sup
x∈X
|f(x)|+

∑
16|β|6l

sup
x∈X
|Dβf(x)|,

‖f‖l,δ := ‖f‖l,0 +
∑
|β|=l

sup
x,y∈X ,x 6=y

|Dβf(x)−Dβf(y)|
|x− y|δ

.

Functions f ∈ C̃l,δub (X ) are such that ‖f‖l,δ <∞.

3. Random periodic processes

In order to facilitate subsequent derivations, we recall definitions of random dynamical systems

(RDS) generated by SDE’s (see, e.g., [52, 53, 8, 7]), random periodic processes (see, e.g., [30, 31,

32, 87, 88, 89, 91, 21] and transition evolutions generated by SDE’s (see, e.g., [8, 78, 79, 53]).

We also provide an intuitive example of a random periodic solution arising in the stochastic

dynamics of periodically forced FitzHugh–Nagumo model. All definitions below are restricted to

Rd but a number of them are subsequently extended (explicitly or otherwise) to the skew-product

representation in [0, τ)× Rd which is used to deal with the non-autonomous dynamics.

Definition 3.1 (Stochastic flow [52, 53]). Let φ(t, s, ω, x) ∈ Rd, s, t ∈ I ⊆ R, x ∈ Rd, be a ran-

dom field on a probability space (Ω,F ,P). The two-parameter family {φ(t, s, · , · ) : s, t ∈ I ⊆ R}
is called a stochastic flow of homeomorphisms if there exists a null set N ⊂ Ω such that for any

ω /∈N , there exists a family of continuous maps {φ(t, s, ω, · ) : s, t ∈ I} on Rd satisfying

(i) φ(t, s, ω, · ) = φ(t, u, ω, φ(u, s, ω, · )) holds for any s, t, u ∈ I,
(ii) φ(s, s, ω, · ) = idX , for all s ∈ I,

(iii) the map φ(t, s, ω, · ) : Rd → Rd is a homeomorphism for any t, s ∈ I.

The map φ(t, s, ω, · ) is a stochastic flow of Cl-diffeormorphisms, if it is a homeomorphism and

φ(t, s, ω, x) is l-times continuously differentiable with respect to x ∈ Rd for all s, t ∈ I ⊆ R
and the derivatives are continuous in (s, t, x) ∈ I × I × Rd. The stochastic flow is referred to as

‘forward’ for s 6 t, and as ‘backward’ for t 6 s. In the sequel, we will confine the discussion to

(Ω,F ,P) being the Wiener space defined in §2.1.
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Definition 3.2 (Filtration generated by a stochastic flow). Given a probability space

(Ω,F ,P), let F ts ⊆ F be the smallest S-algebra on Ω generated by

∩ε>0 S
(
φ(u, v, · , · ) : s− ε 6 u, v 6 t+ ε

)
,

and containing all null sets of F . The two-parameter filtration {F ts : s 6 t} is the filtration

generated by the forward stochastic flow
{
φ(t, s, · , · ) : s, t ∈ I ⊆ R, s 6 t

}
and the filtered

probability space is denoted by
(
Ω,F , (F ts )s6t,P

)
.

Definition 3.3 (Transition kernel). Consider the stochastic flow
{
φ(t, s, · , · ) : s, t ∈ I; s 6 t

}
induced by the SDE (2.1) for some fixed s ∈ I. Given the Borel-measurable space

(
Rd,B(Rd )

)
,

the transition probability kernel P (s, x; t, · ) induced by solutions of (2.1) is defined by

P (s, x; t, A) = P
(
{ω ∈ Ω : φ(t, s, ω, x) ∈ A}

)
, ∀ s, t ∈ I, s 6 t, A ∈ B

(
Rd
)
. (3.1)

The transition kernel satisfies the Chapman-Kolmogorov equation

P (s, x; t, A) =

∫
Rd
P (u, y; t, A)P (s, x;u, dy), (3.2)

for any s, t, u∈I, s 6 u 6 t, and for all x∈Rd, A ∈ B(Rd).

Definition 3.4 (Transition evolution and its dual). Given the forward stochastic flow{
φ(t, s, · , · ) : s, t ∈ I; s 6 t

}
and the transition kernel (3.1) induced by the solutions of (2.1),

the operator Ps,t : M∞(Rd)→M∞(Rd) called the transition evolution is defined by

Ps,tϕ(x) =

∫
Rd
ϕ(y)P (s, x; t, dy) = E

[
ϕ(φ(t, s, x))

]
, ∀ s, t ∈ I, s 6 t, x ∈ Rd, (3.3)

where we use the shorthand notation E
[
ϕ(φ(t, s, x))

]
:=
∫

Ω ϕ
(
φ(t, s, ω, x)

)
P(dω). The action of

transition evolutions to measurable functions is extended in a standard way.

For any probability measure µs ∈ P(Rd), s ∈ I, on
(
Rd,B(Rd)

)
, the L2(µs) dual P∗s,t of the

transition evolution Ps,t is defined by

(P∗s,tµs)(A) =

∫
Rd
P (s, x; t, A)µs(dx), ∀ s, t ∈ I, s 6 t, A ∈ B

(
Rd
)
. (3.4)

Consequently, with the help of (3.2), we have for any s, u, t∈I, s 6 u 6 t, and for all A ∈ B(Rd)

µt(A) = (P∗s,tµs)(A) = (P∗u,tP∗s,uµs)(A) = (P∗u,tµu)(A). (3.5)

Theorem 3.5 (Stochastic flows generated by solutions of SDE’s). Suppose that the coef-

ficients of the SDE (2.1) are such that b( · , x), σ( · , x) are continuous for all x ∈ Rd, and for all

t ∈ R, b(t, · ), σk(t, · ) ∈ C̃l,δ(Rd), l ∈ N0, 0 < δ 6 1, where {σk}mk=1, denote the columns of σ. If

the initial condition Xs in (2.1) is independent of the S-algebra generated by Wt−s( · ), t > s, and

E
[
|Xs|2

]
<∞, there exist unique global solutions of (2.1) which generate a forward stochastic flow

of homeomorphisms (l = 0) or Cl-diffeomorphisms (l > 1) on Rd,
{
φ(t, s, · , · ) : s, t ∈ R, s 6 t

}
such that

Xs,x
t (ω) = φ(t, s, ω, x), ∀ s, t ∈ R, s 6 t, x ∈ Rd, P - a.s., (3.6)

and which are adapted to the filtration (F ts )s6t on (Ω,F ,P), see, e.g., [53, Thm 3.4.6 and §4.7]

with slight modifications. If, in addition, E|Xs|p < ∞, 2 6 p < ∞, then E
[
|Xt|p

]
< ∞,

s 6 t < ∞. Stronger (e.g., dissipative) growth conditions may have to be imposed on the co-

efficients (b, σ) in the SDE (2.1) to guarantee the existence of the absolute moments of the

solutions for all time (see, e.g., Remark 4.5 and Appendix A).
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Definition 3.6. (Infinitesimal generators). Let f ∈ C1,2(R × Rd,R), and t 7→ φ(t, s, ω, x),

s, t ∈ I, s 6 t, ω ∈ Ω, be a solution of the SDE in (2.1). Considering the evolution of

f
(
t, φ(t, s, ω, x)

)
allows one to represent the infinitesimal generator of solutions of (2.1) through

the second-order operator3 (e.g., [53]);

Ltf(t, x) = ∂tf(t, x) +

d∑
i=1

bi(t, x)∂xif(t, x) + 1
2

d∑
i,j=1

m∑
k=1

σik(t, x)σjk(t, x)∂2
xixjf(t, x), (3.7)

where (b, σ) are sufficiently regular drift and diffusion coefficients in the SDE (2.1). Analogously,

for g ∈ C1,2(R × Rd × Rd,R), the infinitesimal generator of the two-point motion [53, §4.2],

t 7→
(
φ(t, s, ω, x), φ(t, s, ω, y)

)
, of the flow

{
φ(t, s, · , · ) : s 6 t

}
can be represented through the

second-order differential operator

L(2)
t g(t, x, y) = ∂tg(t, x, y) +

d∑
i=1

(
b(t, x)∂xig(t, x, y) + b(t, y)∂yig(t, x, y)

)

+
1

2

d∑
i,j=1

m∑
k=1

(
σik(t, x)σjk(t, x)∂2

xixjg(t, x, y) + σik(t, x)σjk(t, y)∂2
xiyjg(t, x, y)

+ σik(t, y)σjk(t, x)∂2
yixjg(t, x, y) + σik(t, y)σjk(t, y)∂2

yiyjg(t, x, y)
)
. (3.8)

Definition 3.7. (Random Dynamical System [8, 7] ).Given a probability space (Ω,F ,P),

a measurable random dynamical system (RDS) on
(
Rd,B(Rd)

)
over a measurable dynamical

system (DS), Θ :=
(
Ω,F ,P, (θt)t∈R

)
, satisfying4 θP = P, is a mapping Φ : I ×Ω×Rd → Rd s.t.

(a) (t, ω, x) 7→ Φ(t, ω, x) is measurable for all t ∈ I ⊆ R,

(b) Φ(0, ω, · ) = idRd for all ω ∈ Ω,

(c) Φ(t+ s, ω, · ) = Φ(t, θsω,Φ(s, ω, · )) for all s, t ∈ I, ω ∈ Ω (cocycle property),

(d) Φ is continuous if (t, x) 7→ Φ(t, ω, x) is continuous for all t ∈ I, x ∈ Rd,
(e) Φ is smooth of class Cl, if Φ(t, ω, x) is l-times differentiable w.r.t. x ∈ Rd, and the derivatives

are continuous w.r.t. (t, x) ∈ I × Rd.
The canonical filtration on (Ω,F ,P) for the RDS is generated by (θt)t∈R.

Definition 3.8. (Canonical DS for processes with stationary increments). Consider the

probability space (Ω,F ,Pξ) with the measure Pξ on (Ω,F) induced by the law of a stochastic

process with continuous time ξ = (ξt)t∈R, ξt : Ω → Rd. A process ξ is said to have stationary

increments if for any t0 6 · · · 6 tn, n ∈ N1, the distribution of (ξt1+t − ξt0+t, . . . , ξtn+t − ξtn−1+t)

is independent of t ∈ R; i.e.,

θ(t)Pξ = Pξ for all t ∈ R, (3.9)

where (θt)t∈R is a semigroup of time shifts. The corresponding measurable dynamical system

Θ := (Ω,F ,Pξ, (θt)t∈R) is called the canonical dynamical system for the process with stationary

increments; see, e.g. [8, Appendix A.3] for details.

Proposition 3.9 (Canonical DS for Brownian motion/Wiener process). For the Wiener

probability space (Ω,F ,P) defined in §2.1, the canonical dynamical system Θ =
(
Ω,F ,P, (θt)t∈R

)
3 Strictly, Lt in (3.7) coincides with the generator of (2.1) on f ∈ C1,2c (R × Rd,R+) but it is well-defined for

f ∈ C1,2(R× Rd,R+) and we refer to Lt as the generator throughout; the same applies to L(2)
t in (3.8).

4 Here, the notation θP = P means that P({ω ∈ Ω : θtω ∈ A}) = P({ω ∈ Ω : ω ∈ A}), ∀A ∈ F , t ∈ I; i.e., the
semigroup (θt)t∈I , θt : Ω→ Ω, preserves the measure P; we restrict the definition of the RDS to I = R.
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for a stochastic process with stationary increments is given by

θt : Ω→ Ω, θsω(t) = ω(t+ s)− ω(s), ∀ s, t ∈ R, (3.10)

so that the set Ω = C0(R,Rm) is invariant w.r.t. the shifts (θt)t∈R. The canonical stochas-

tic process Wt(ω) = ω(t), t ∈ R, with stationary independent increments is the Wiener pro-

cess/Brownian motion (with two-sided time) which satisfies identically

Wt(θsω) = Wt+s(ω)−Ws(ω), ∀ s, t ∈ R. (3.11)

Proof: See [8, Appendix A.3] for an outline or, e.g., [72].

Remark 3.10. In the sequel it will be more convenient to use (3.11) in the alternative form

Wt(ω) = Wt+s(θ−sω)−Ws(θ−sω), ∀ s, t ∈ R. (3.12)

Assuming suitable regularity of the coefficients of autonomous SDE’s, as those in Theorem 3.5,

together with appropriate adoption of two-sided stochastic calculus, the solutions of autonomous

SDE’s generate5 an RDS over Θ (e.g., [8, 7, 28, 44, 53]). We will consider the non-autonomous

dynamics of the SDE (2.1) with time-periodic coefficients as an RDS on a suitably extended space.

3.1. Time-periodic setting. In the sequel, we consider non-autonomous SDE’s (2.1) on Rd

with time-periodic coefficients; i.e., b(t + τ, · ) = b(t, · ), σ(t + τ, · ) = σ(t, · ), 0 < τ < ∞,

satisfying the conditions in Theorem 3.5 so that (2.1) has global solutions generating the forward

stochastic flow
{
φ(t+ s, s, · , · ) : s ∈ I = R, t ∈ R+

}
such that, for all s ∈ R, t ∈ R+,

φ(t+ s+ τ, s+ τ, ω, · ) = φ(t+ s, s, θτω, · ) P - a.s. (3.13)

The above property follows from the time-periodicity of the coefficients and the uniqueness of

solutions of (2.1). The relationship in (3.13) is essential for constructing an RDS on [0, τ)×Rd from

solutions of (2.1) with time-periodic coefficients, which is important for asserting the existence

and ergodicity of time-periodic measures supported on random time-periodic paths defined below.

Definition 3.11 (Random periodic path of a stochastic flow [30, 31, 91]). A random

periodic path of period 0 < τ <∞ generated by a stochastic flow
{
φ(t+s, s, · , · ) : s ∈ R, t ∈ R+

}
is a measurable function S : R× Ω→ Rd such that for any s ∈ R the following holds

S(τ + s, ω) = S(s, θτω) and φ(t+ s, s, ω, S(s, ω)) = S(t+ s, ω) P - a.s. ∀ t ∈ R+. (3.14)

Definition 3.12 (Random periodic path of RDS [32, 91]). A random periodic path of period

0 < τ <∞ generated by an RDS, Φ : R+×Ω×Rd → Rd, is a measurable function S : R×Ω→ Rd

such that for any s ∈ R and almost all ω ∈ Ω the following holds

S(τ + s, ω) = S(s, θτω) and Φ(t, θsω, S(s, ω)) = S(t+ s, ω) ∀ t ∈ R+. (3.15)

5 The generation of an RDS from an SDE requires a ‘perfection of the crude cocycle’ associated with the SDE (see,
e.g., [8, Theorem 2.3.26]); here, this important technical nuance does not require an explicit discussion.
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Example 3.13. Let b : Rd → Rd, d > 2, be a globally Lipschitz vector field, and consider

the deterministic flow {ψ(t, · ) : t ∈ R+}, defined via ψ(t, · ) ≡ φ(t, 0, · ) and generated by the

autonomous ODE

dYt
dt

= b(Yt), Y0 = y ∈ Rd, t ∈ R+. (3.16)

Assume that there exists a periodic solution u : R→ Rd of the ODE (3.16) of period 0 < τ <∞,

Y(τ + s) = Y(s) and ψ(t,Y(s)) = Y(t+ s), s ∈ R, t ∈ R+.

Consider the stochastic process Xt(ω) = Y(t) + Zt(ω), where Zt solves the following SDE

dZt = b̂(t, Zt)dt+ σ̂(t, Zt)dWt, Z0 = 0, t ∈ R+, (3.17)

with time-periodic coefficients

b̂(t, z) := b(u(t) + z)− b(u(t)), σ̂(t, z) := σ(u(t) + z).

If Z(t, ω) is a random τ - periodic solution of (3.17), then S(t, ω) = Y(t) + Z(t, ω) is a random

τ - periodic solution of the autonomous SDE:

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = Y(0), t ∈ R+.

Example 3.14 (Stochastic FitzHugh-Nagumo model with periodic current). Consider the fol-

lowing SDE with nontrivial random periodic solutions (see [31]) which has less restrictive condi-

tions on the drift than those considered in the sequel:

dXt = AXtdt+ b(t,Xt)dt+ σ(t)dWt−s, Xs = x ∈ R2, s, t ∈ R, s 6 t, (3.18)

where

A =

(
1 −1

a −1

)
, b(t, x, y) =

(
−1

3x
3 +B1 sin(τ t)

c

)
, σ(t) =

(√
2β−1 +B2 cos(τ t) 0

0 0

)
,

with a < 1, β > 0, B1, B2, c ∈ R, 0 < τ < ∞, and Wt = (W 1
t , 0)T , where W 1

t is a two-sided

Wiener process on R. Let Xs,x
t (ω) = φ(t, s, ω, x), s 6 t, be the solution of (3.18) represented via

φ(t, s, ω, x) = eA(t−s)x+

∫ t

s
eA(t−ζ)b

(
ζ, φ(ζ, s, ω, x)

)
dζ +

∫ t

s
eA(t−ζ)σ(ζ)dWζ−s(ω),

where x 7→ eA(t−s)x is the solution of the linear ODE

dYt
dt

= AYt, Ys = y ∈ R2, s, t ∈ R, s 6 t.

Now, consider the projections P− : R2 → E−, P+ : R2 → E+, where the linear subspaces are

E− = span{y ∈ R2 : Ay = −λy}, E+ = span{y ∈ R2 : Ay = λy}, λ :=
√

1− a.

The process S(t, ω) defined by

S(t, ω) =

∫ t

−∞
eA(t−ζ)P−b(ζ, S(ζ, ω))dζ −

∫ ∞
t

eA(t−ζ)P+b(ζ, S(ζ, ω))dζ

+

∫ t

−∞
eA(t−ζ)P−σ(ζ)dWζ−s(ω)−

∫ ∞
t

eA(t−ζ)P+σ(ζ)dWζ−s(ω),

is a random 2π/τ -periodic solution of the flow generated by the SDE (3.18); see, e.g., [31].
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4. Time-periodic ergodic measures for dissipative SDE’s

In this section we consider a class of non-autonomous SDE’s (2.1) which generate stable random

periodic paths. First, in §4.2 we prove the existence of a unique stable random periodic solution

for a class of ‘dissipative’ 6 SDE’s with time-periodic coefficients, and we assert the existence of

time-periodic measures induced by such dynamics (Theorem 4.7). Ergodicity (in an appropriate

sense, and under typical regularity conditions) of these time-periodic measures are established in

Theorem 4.11 of §4.3. We conclude with an example of a periodically forced stochastic Lorenz

model, which is then used in §5 to illustrate the utility of fluctuation-dissipation formulas for time-

periodic measures when considering the linear response of the dynamics to small perturbations.

4.1. Preliminaries, definitions, and assumptions. First, we recall the notion of a time-

periodic probability measure which will be needed throughout the reminder of this paper.

Definition 4.1 (Time-periodic probability measure [32]). A measure-valued map given by

t 7→ µs+t ∈ P(Rd) and induced by the family (P∗s,s+t)t∈R+ , s ∈ R, defined in (3.4) is referred to

as a time-periodic probability measure of period 0 < τ <∞, if the following holds for any s ∈ R

µs+t = P∗s, s+t µs and µs+τ = µs, ∀ t ∈ R+. (4.1)

Furthermore, µs+t ∈ P(Rd), s ∈ R, t ∈ R+, is called a time-periodic measure with the minimal

(or fundamental ) period τ, if τ is the smallest strictly positive number such that (4.1) holds7.

Proposition 4.2. Let S : R × Ω → Rd be a random periodic path (3.14) of a stochastic flow{
φ(t+ s, s, · , · ) : s ∈ R, t ∈ R+

}
on
(
Rd,B(Rd)

)
and consider a family of probability measures

µs+t(A) := P
(
{ω : S(s+ t, ω) ∈ A}

)
, ∀ s ∈ R, t ∈ R+, A ∈ B(Rd).

Then, the family (µs+t)s∈R,t∈R+ consists of τ -periodic probability measures on Rd.

Proof: This follows by a direct calculation combined with the properties of a random periodic

path (3.14), since for all s ∈ R, t ∈ R+, A ∈ B(Rd), we have

µs+τ (A) = P
(
{ω : S(s+ τ, ω) ∈ A}

)
= P

(
{ω : S(s, θτ ω) ∈ A}

)
= P

(
{ω : S(s, ω) ∈ A}

)
= µs(A). �

The above results will be generalised to the dynamics in the extended state space in §4.1.1.

4.1.1. Dynamics on the extended state space. A useful way of examining ergodicity of time-

periodic measures induced by non-autonomous SDE’s with time-periodic coefficients of period τ

is to lift the original dynamics from Rd to the extended state space [0, τ)×Rd, [0, τ) ' R mod τ ,

so that the resulting ‘lifted’ SDE is autonomous. Such a representation of the original dynamics

does not necessarily simplify the formulation of the problem but the flows of the lifted solutions

generate a cocycle8 in the skew-product variables on [0, τ)× Rd; we refer to this extended state

space as the ‘flat cylinder’. Then, the lifted random periodic paths (3.14) of the stochastic

flow induced by the non-autonomous SDE (2.1) can be associated with random periodic paths

(satisfying (3.15)) of an RDS (see Definition 3.7) generated by the lifted flow in the skew-product

6 See (4.13) for one such class which we focus on in this work.
7 Sufficient conditions for the existence of the minimal period, which are satisfied here, are established in [32, §5].
8 See Definition 3.7.



12 Time-periodic measures, random periodic orbits, and the linear response for dissipative non-autonomous SDE’s

representation on [0, τ)×Rd; this fact allows to prove ergodicity (in an appropriate sense) of time-

periodic measures supported on the random periodic paths on the fibre bundle9 on P
(
[0, τ)×Rd

)
.

To this end, consider the solutions of the SDE (2.1) satisfying the conditions of Theorem 3.5

and assume that the coefficients of (2.1) are time-periodic with period 0 < τ <∞; we recast the

solutions of (2.1) as an extended process X̃t(ω) =
(
t,Xs,x

t (ω)
)T

in the skew-product representa-

tion on R× Rd satisfying

dX̃t = b̃
(
X̃t

)
dt+ σ̃

(
X̃t

)
dW̃t−s, X̃s = (s, x) ∈ R× Rd, s 6 t, (4.2)

where W̃t−s(ω) =
(
0,Wt−s(ω)

)
, ω ∈ Ω, and Wt−s is the m-dimensional Brownian motion for the

two-sided time (see §2.1 or [8]), and b̃ : Rd+1 → Rd+1, σ̃ : Rd+1 → R(d+1)×(m+1), so that

d

(
ζt

Xt

)
=

(
1

b
(
ζt, X

s,x
t

)) dt+

(
0 0

0 σ
(
ζt, X

s,x
t

)) dW̃t−s, s 6 t. (4.3)

The dynamics in (4.2) or (4.3) can be represented in a more convenient form for the subsequent

derivations by setting t→ t+ s, so that

dX̃t+s = b̃(X̃t+s)dt+ σ̃(X̃t+s)dW̃t+s, X̃s = (s, x) ∈ R× Rd, t ∈ R+, (4.4)

where W̃t+s = W̃t+s(θ−sω) is the Brownian motion satisfying (3.12). Finally, given the form of

the coefficients b̃, σ̃, it is convenient to consider the dynamics induced by (4.4) on the flat cylinder

[0, τ)× Rd, where [0, τ) ' R mod τ .

The RDS associated with the lifted dynamics (4.4) is generated in the skew-product represen-

tation (see, e.g., [24, 8]) on [0, τ)× Rd via

Φ̃
(
t, ω, x̃

)
:=
(
t+ s mod τ, φ(t+ s, s, θ−sω, x)

)
∀ x̃ := (s, x) ∈ [0, τ)× Rd, t ∈ R+. (4.5)

The cocycle property10 of Φ̃ in (4.5), i.e., Φ̃(t+r, ω, · ) = Φ̃
(
t, θrω, Φ̃(r, ω, · )

)
for all r, t ∈ R+, and

a.a. ω ∈ Ω, can be verified by recalling that t+r mod τ = t+r−kτ, where k = [ t+rτ ], and utilising

(3.13). Note that, unless (2.1) is autonomous, {φ(t+s, s, θ−sω, · ) : s ∈ R, t ∈ R+} does not have

the cocycle property, and hence it does not generate an RDS on Rd. The RDS representation

of the non-autonomous dynamics of the SDE (2.1) will be useful in §4.3 when considering the

ergodicity of measures supported on random periodic paths, and in the discussion of the linear

response in §5.3.

The transition kernel and transition evolutions (see Definitions 3.3 and 3.4) on [0, τ)×Rd ] are

constructed as follows. For any x̃ := (s, x) ∈ [0, τ)×Rd, t ∈ R+, and Ã ∈ B
(
[0, τ)

)
⊗B

(
Rd
)
, the

transition kernel P̃ (x̃; t, · ) associated with Φ̃ is given by (see Definition 3.3)

P̃
(
x̃; t, Ã

)
:= P

(
{ω : Φ̃(t, ω, x̃) ∈ Ã }

)
= P

(
{ω : (t+ s mod τ, φ(t+ s, s, θ−sω, x)) ∈ J ×A }

)
= δ(t+s mod τ)(J )⊗ P

(
s, x; t+ s,A

)
, (4.6)

for all Ã ≡ J ×A ∈ B
(
[0, τ)

)
⊗ B

(
Rd
)

and the transition kernel P defined in (3.1).

9 See, e.g., [24] for a detailed description of such structures on spaces of probability measures.
10 To be more accurate, the so-called ‘crude’ cocycle property can be easily verified from the flow induced by the
SDE, and the crude cocycle needs to be ‘perfected’ in order to generate an RDS over the DS for the Brownian
motion (see, e.g., [8, Theorem 2.3.26]); here, this important technical nuance does not require an explicit discussion.
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The transition evolution (P̃t)t∈R+ induced by Φ̃ and its dual (P̃∗t )t∈R+ are given by (cf. (3.3))

P̃tϕ(x̃) :=

∫
[0,τ)×Rd

ϕ(ỹ)P̃ (x̃; t, dỹ), ∀ ϕ ∈M∞
(
[0, τ)× Rd

)
, (4.7)

µ̃t+r(Ã) =
(
P̃∗t µ̃r

)
(Ã) :=

∫
[0,τ)×Rd

P̃ (x̃; t, Ã)µ̃r(dx̃), ∀ µ̃r ∈ P
(
[0, τ)× Rd

)
, r ∈ R+, (4.8)

with the short-hand notation µ̃r(dx̃) = δ(r mod τ)(s)ds ⊗ µr(dx) for probability measures in the

skew-product fibre bundle on P([0, τ) × Rd), where µ̃r ∈ P([0, τ) × Rd) and µr ∈ P(Rd); see,

e.g., [24] for more details concerning the structure of skew-product fibre bundles on spaces of

probability measures. Extension of (4.7) to M
(
[0, τ)×Rd

)
can be carried out in a standard way.

Lemma 4.3. The families of transition evolutions (P̃t)t∈R+ and (P̃∗t )t∈R+ possess a semigroup

structure. In particular, for µ̃t = δ(t mod τ)⊗µt in the skew-product fibre bundle on P([0, τ)×Rd)
the following holds

µ̃t+r+u = P̃∗t+r µ̃u = P̃∗t
(
P̃∗r µ̃u

)
= P̃∗t µ̃r+u ∀ r, t, u ∈ R+.

If the RDS
{

Φ̃(t, · , · ) : t ∈ R+
}

on [0, τ)× Rd has a random periodic path t→ S̃(t, ω) of period

0 < τ < ∞, where S̃(t, ω) =
(
t mod τ, S(t, ω)

)
, t ∈ R, ω ∈ Ω, and t → S(t, ω) is a random

periodic path of
{
φ(t + s, s, · , · ) : t ∈ R+

}
on Rd, then all probability measures in the family

(µ̃t)t∈R+, µ̃tP([0, τ)× Rd), supported on such a path are τ -periodic, i.e.,

µ̃t+r = P̃∗r µ̃t, µ̃t+τ = µ̃t ∀ t ∈ R+,

and

µ̃t(Ã) = µt(At), ∀ Ã ∈ B
(
[0, τ)

)
⊗ B

(
Rd
)
, At =

{
x ∈ Rd : (t mod τ, x) ∈ Ã

}
.

Moreover, every such τ -periodic measure is invariant under the action of the discrete dynamics

induced by (P̃∗nτ )n∈N0, i.e.,

P̃∗nτ µ̃t = µ̃t ∀ n ∈ N0, t ∈ R+.

Proof: The first claim is a direct consequence of (4.8), and the proof follows either by using

the cocycle property of Φ̃ in the first line of (4.6) or by utilising the Chapman-Kolmogorov

equation (3.2) for P in the last line of (4.6).

Regarding the second claim, consider measures supported on the random periodic path S̃

µ̃t+r(Ã) := P
(
{ω : S̃(t+ r, ω) ∈ Ã }

)
, Ã ∈ B

(
[0, τ)

)
⊗ B

(
Rd
)
. (4.9)

Since S̃ is a random periodic path of the RDS Φ̃, we have for all Ã ∈ B
(
[0, τ)

)
⊗ B

(
Rd
)

that

µ̃t+r(Ã) = P
(
{ω : S̃(t+ r, ω) ∈ Ã }

)
= P

(
{ω : Φ̃(r, θtω, S̃(t, ω)) ∈ Ã }

)
= P̃∗r µ̃t(Ã),

for all r, t ∈ R+ by the general properties the of a random periodic path (3.15); this could also

be obtained directly from (4.8) by using the invariance of S̃ under the action of Φ̃. Moreover,

µ̃t+τ (Ã) = P
(
{ω : S̃(t+ τ, ω) ∈ Ã }

)
= P

(
{ω : S̃(t, θτω) ∈ Ã }

)
= µ̃t(Ã),

by the property (3.15). Thus µ̃t is a τ -periodic measure for the RDS
{

Φ̃(t, · , · ) : t ∈ R+
}

on

[0, τ)× Rd which is supported on the random periodic path S̃.

The last two claims are simple consequences of the properties established above and the skew-

product structure of probability measures supported on random periodic paths. �
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In the following sections, after outlining some general assumptions, we will investigate the

existence and uniqueness of stable random periodic paths of the RDS
{

Φ̃(t, · , · ) : t ∈ R+
}

,

and we will prove the ergodicity of probability measures associated with the dynamics of the

skew-product lift (4.4) of the dynamics in (2.1) under some standard regularity assumptions.

4.1.2. Assumptions. Throughout, we assume that the SDE (2.1) with time-periodic coefficients

of period 0 < τ <∞ satisfies the conditions of Theorem 3.5, so that (2.1) has global solutions.

In order to establish the existence of stable random periodic paths in §4.2, we will require the

following assumption:

Assumption 4.4. Let V ∈ C1,2
(
R×Rd;R+

)
s.t. V (t, 0) = 0 for all t ∈ R, satisfy the following:

(i) There exist λ ∈ L1(R; dt), and a constant C > 1, such that for some 1 < p < ∞ and all

ξ, η ∈ Lp(Ω,F t
−∞,P), we haveE|ξ|p 6 E

[
V (t, ξ)

]
6 CE|ξ|p <∞,

E
[
L(2)V (t, ξ − η)

]
6 λ(t)E

[
V (t, ξ − η)

]
,

(4.10)

where L(2) is the two-point generator defined in (3.8) and associated with the SDE (2.1).

(ii) There exists λ̄ > 0 such that

lim sup
(t−s)→∞

1

t− s

∫ t

s
λ(u)du < −λ̄ < 0. (4.11)

(iii) For the one-point motion t 7→ φ(t, s, ω, ξ) induced by (2.1) for ω ∈ Ω, ξ ∈ Rd, and s 6 t,

there exists 0 < D <∞ independent of s, t ∈ R such that11 for all ξ ∈ Lp(Ω,Fs−∞,P)

lim sup
(t−s)→∞

E
[
V
(
t, φ(t, s, ξ)− ξ

)]
6 D, (4.12)

where E
[
V (φ(t, s, ξ))

]
:=
∫

Ω V
(
φ(t, s, ω, ξ)

)
P(dω).

As pointed out later (Remark 4.12 in §4.3), this assumption is not strictly required for proving

ergodicity of τ -periodic probability measures. However, without showing the existence of random

periodic paths (in this case, stable random periodic paths), the existence of τ -periodic measures

µ̃t ∈ P([0, τ)×Rd) would have to be assumed a priori alongside the ergodicity of µ̃t for all fixed

t ∈ [0, τ) with respect to the discrete transition evolution (P̃∗nτ )n∈N0 , as done in [32].

Remark 4.5.

(a) An important class of coefficients satisfying Assumption 4.4, which yield global solutions

of (2.1) are specified in Appendix A. In particular, we might take b(t, · ) ∈ C̃1,δ(Rd) and

σk(t, · ) ∈ C̃1,δ
b (Rd), 0 < δ 6 1, k = 1, . . . ,m, satisfying the following ‘dissipative’ condition

〈b(t, x), x〉 6 Lb1(t)− Lb2(t)|x|2, ‖σ(t, x)‖2hs 6 Lσ(t)
(
1 + |x|2

)
, (4.13)

where Lb1 , Lb2 , Lσ ∈ C∞(R,R+). Here, 〈 ·, · 〉 denotes the dot product on Rd and ‖·‖hs denotes

the Hilbert–Schmidt norm (aka Frobenius norm) defined by ‖A‖2hs = trace(AAT ). Condition

(4.12) is satisfied for (4.13) when (see Lemma A.1 in Appendix A)

inf
t∈R

(
Lb2(t)− 2

p
2
−1Lb1(t)− 1

2(2
p
2
−1 + 1)Lσ(t)(p− 1)

)
> 0, (4.14)

11 This condition can be replaced by a stronger but a more concrete constraint on the global existence of the p-th
absolute moment of φ; see Lemma A.1 in Appendix A.
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and it also leads to the global existence of the p -th absolute moment of the law of the

associated SDE; tighter bounds can be obtained for p = 2, 3 as shown in Propositoin A.2

in Appendix A. Condition (4.12) is reminiscent of the Haśminskii-type regularity condi-

tion [43] for the existence and uniqueness of global solutions of SDE’s; sufficient condi-

tions for verification of Haśminskii’s conditions require the existence of real-valued functions

Lb(·), Lσ(·) ∈ C∞
(
R;R+

)
such that〈

b(t, x), x
〉
6 Lb(t)

(
1 + |x|2

)
, ‖σ(t, x)‖2hs 6 Lσ(t)

(
1 + |x|2

)
. (4.15)

Coefficients satisfying (4.13) also satisfy (4.15), since for some Lb ∈ C
(
R,R+

)
we have

Lb1(t)− Lb2 |x|2 6 Lb
(
1 + |x|2

)
.

(b) Construction of the Lyapunov function V satisfying Assumption 4.4 is often not straightfor-

ward. However, one can construct (e.g., [43, 46, 64]) a polynomial Lyapunov function growing

at infinity as |x|2N , N ∈ N1, for a broad class of SDE’s whose coefficients b( · , x), σ( · , x) are

continuous, b(t, · ) ∈ C̃1,δ
(
Rd
)
, {σk(t, · )}16k6m ∈ C̃1,δ

b

(
Rd
)

and such that

〈
b(t, x)− b(t, y), x− y

〉
6 −Kt|x− y|2,

‖σ(t, x)− σ(t, y)‖hs 6 Lt|x− y|,

sup t∈R
{
|b(t, 0)|+ ‖σ(t, 0)‖hs

}
<∞,

(4.16)

where 0 < Lt,Kt <∞, and

lim sup
(t−s)→∞

1

t− s

∫ t

s
λ(u)du < 0, (4.17)

with λ(t) = −Kt + (p−1)
2 pL2

t for some 1 < p <∞. The function Kt is defined by

Kt = lim inf
R→∞

Kt(R),

where Kt : R→ R is a Borel function defined by

Kt(R) = inf
{
−
〈
b(t, x)− b(t, y), x− y

〉
|x− y|2

: |x− y| = R
}
.

Many important classes of SDE’s driven Levy processes (including the Brownian motion)

satisfy the dissipative conditions (4.16) - (4.17); see [43, 46, 64] for more details.

In order to study the ergodicity of τ -periodic measures, we will require variants of the following

standard conditions (e.g., [42]) to be satisfied:

(i) Relative compactness property of the transition kernel P in (3.3).

(ii) Irreducibility of the transition kernel.

(iii) Strong Feller property12 of the transition evolution (Ps,t)t>s.

Thus, we will require the following version of the Hörmander condition (e.g., [73, 65]) in §4.3

in addition to Assumption 4.4:

12 The transition evolution (Ps,t)t>s on a complete separable metric space X has strong Feller property if for
ϕ ∈ M∞(X ), one has Ps,tϕ ∈ C∞(X ), ∀s 6 t, i.e., Ps,t : M∞(X )→ C∞(X ), ∀s 6 t.



16 Time-periodic measures, random periodic orbits, and the linear response for dissipative non-autonomous SDE’s

Assumption 4.6. Denote by σk, 1 6 k 6 m, the columns of σ in (2.1), and assume that the

following are satisfied for all t ∈ R:

(i) b(t, · ) ∈ C̃∞(Rd) and t 7→ b(t, · ) is differentiable.

(ii) σk(t, · ) ∈ C̃∞b (Rd), t 7→ σk(t, x) is differentiable, and∣∣∂tDβ
xσk(t, x)

∣∣ 6 C <∞, (t, x) ∈ R× Rd. (4.18)

for every multi-index β.

(iii) Lie
(
σ1(t, · ), · · · , σm(t, · )

)
= Rd, for all t ∈ I, where

Lie
(
σ1(t, x), · · · , σm(t, x)

)
:= span

{
σi, [σi, σj ], [σi, [σj , σk]], · · · , 1 6 i, j, k 6 m

}
,

and [F,G ] is the Lie bracket between the vector fields F and G defined by

[F,G ](t, x) := DxG(t, x)F (t, x)−DxF (t, x)G(t, x).

4.2. Existence and uniqueness of time-periodic measures on stable random periodic

paths. Given the preliminary results and assumptions outlined in §4.1, we have the following

result on the existence of a τ -periodic measure (Definition 4.1) for the lifted SDE in (4.2).

Theorem 4.7. Consider the forward stochastic flow {φ(t, s, · , · ) : s, t ∈ R, s 6 t} generated

by the SDE in (2.1) with time-periodic coefficients of period 0 < τ < ∞, and satisfying the

conditions of Theorem 3.5. If Assumption 4.4 holds, there exists a family (µ̃t)t∈R+ of τ -periodic

measures, µ̃t = δ(t mod τ) ⊗ µt, µt ∈ P
(
Rd
)
, µ̃t ∈ P

(
[0, τ)× Rd

)
, given by

µ̃t(Ã) := P
(
{ω : S̃(t, ω) ∈ Ã }

)
, t ∈ R+, Ã ∈ B

(
[0, τ ]

)
⊗ B

(
Rd
)
, (4.19)

which are supported on a unique random periodic path S̃ of the RDS {Φ̃(t, · , · ) : t ∈ R+} with

Φ̃ in (4.5) generated in the skew-product variables on [0, τ)× Rd.

Proof. First, for ξ ∈ Lp(Ω,Fs−∞,P), 1 < p < ∞, where Fs−∞ :=
∨
r6sFsr , we show that

{φ(t, s, ω, ξ) : s, t ∈ R, s 6 t} converges to a random process S(t, ω) ∈ Rd almost surely as

s → −∞, and that S(t, ω) is bounded and independent of ξ. Next, we show that t 7→ S(t, ω) is

a unique stable random periodic path of period 0 < τ < ∞ for {φ(t, s, ω, · ) : s, t ∈ R, s 6 t}.
Finally, we conclude that the law of the random periodic path S̃(t, ω) =

(
t mod τ, S(t, ω)

)
generates a τ -periodic measure for the RDS generated by Φ̃ on the flat cylinder [0, τ) × Rd,
[0, τ) ' R mod τ .

Existence of random periodic paths for the stochastic flow φ. Set ξ, η ∈ Rd to be random vari-

ables on the filtered probability space (Ω,Fs−∞,P), s.t. ξ, η ∈ Lp(Ω,Fs−∞,P). Then, by Itô formula

(e.g., Theorem 4.2.4 in [53] or Theorem 8.1 in [52]) and Assumption 4.4 we have for s 6 t

dE
[
V (t, φ(t, s, ξ)− φ(t, s, η))

]
= E

[
L(2)V (t, φ(u, s, ξ)− φ(t, s, η))

]
dt

6 λ(t)E
[
V (t, φ(t, s, ξ)− φ(u, s, η))

]
dt,

where E
[
V (t, φ(t, s, ξ) − φ(u, s, η)

]
:=
∫

Ω V (t, φ(t, s, ω, ξ) − φ(u, s, ω, η)P(dω). Thus, by the first

part of (4.10) and Gronwall’s inequality, we arrive at

E|φ(t, s, ξ)− φ(t, s, η)|p 6 E
[
V (t, φ(t, s, ξ)− φ(t, s, η))

]
6 E

[
V (s, ξ − η)

]
exp

(∫ t

s
λ(u)du

)
. (4.20)
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Finally, given the bound (4.20), for r < s < t, we have

E
∣∣φ(t, r, ξ)− φ(t, s, ξ)

∣∣p = E
∣∣φ(t, s, φ(s, r, ξ))− φ(t, s, ξ)

∣∣p
6 E

[
V
(
s, φ(s, r, ξ)− ξ

)]
exp

(∫ t

s
λ(u)du

)
,

and, utilising the above with Assumption 4.4(iii), yields

lim sup
r<s, (t−s)→∞

E
∣∣φ(t, r, ξ)− φ(t, s, ξ)

∣∣p = 0. (4.21)

Thus, for ξ ∈ Lp(Ω,Fs−∞,P), 1 < p < ∞, the above bound implies that the Lp limit of the

flow {φ(t, s, · , ξ) : s 6 t} exists as s → −∞. Note that this limit is independent of the initial

condition ξ by (4.12). We denote this limit by the random process S : R× Ω→ Rd, so that

E|S(t)− φ(t, s, ξ)|p → 0 as s→ −∞,

for ξ ∈ Lp(Ω,Fs−∞,P), where S(t) := S(t, · ). Then, by Chebyshev’s first inequality (aka Markov’s

inequality; e.g., [6]), for any ε > 0, we have

P
(
{ω ∈ Ω : |S(t, ω)− φ(t, s, ω, ξ)| > ε}

)
6 ε−p E|S(t)− φ(t, s, ξ)|p, (4.22)

which implies that the convergence is also in probability. Thus, there exists a subsequence (sk)k∈N

in R with sk → −∞ as k →∞ such that

S(t, ω) = lim
k→∞

φ(t, sk, ω, ξ), P - a.s.

To simplify notation, we write

S(t, ω) = lim
s→−∞

φ(t, s, ω, ξ), P - a.s. (4.23)

Note that for ξ ∈ Lp(Ω,Fs−∞,P) with the norm ‖ · ‖p := (E| · |p)1/p we have

‖φ(t, s, ξ)‖p 6 ‖φ(t, s, ξ)− ξ‖p + ‖ξ‖p

6
(
E
[
V
(
t, φ(t, s, ξ)− ξ

)]) 1
p

+ ‖ξ‖p

6
(

sup
s6t

E
[
V
(
t, φ(t, s, ξ)− ξ

)]) 1
p

+ ‖ξ‖p <∞,

by condition (4.12) of Assumption 4.4. Consequently, for any t ∈ R, we have

‖S(t)‖p 6 lim sup
s→−∞

‖φ(t, s, ξ)‖p <∞, (4.24)

implying that S(t, ω) is bounded in Lp(Ω,F t
−∞,P).

Next, we show that t → S(t, ω) is a random periodic path of period 0 < τ < ∞ for the

stochastic flow {φ(t, s, · , · ) : s 6 t} using its τ -periodic property (see equation (3.13) with

appropriately changed variables); namely

S(t+ τ, ω) = lim
s→−∞

φ(t+ τ, s, ω, ξ)

= lim
s→−∞

φ(t+ τ, s− τ + τ, ω, ξ)

= lim
s→−∞

φ(t, s− τ, θτω, ξ)

= S(t, θτω) P - a.s. (4.25)
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Then, by the continuity of (t, s, x) 7→ φ(t, s, · , x) and the flow property, we have

φ(t+ s, s, ω, S(s, ω)) = lim
r→−∞

φ(t+ s, s, ω, φ(s, r, ω, ξ))

= lim
r→−∞

φ(t+ s, r, ω, ξ)

= S(t+ s, ω) ∀ t ∈ R+, s ∈ R P - a.s. (4.26)

The equalities (4.25) and (4.26) imply that S(t, ω) is a random periodic path (3.14) of period

0 < τ <∞ of the stochastic flow
{
φ(t+ s, s, · , · ) : s ∈ R, t ∈ R+

}
on Rd.

Uniqueness: Let S1(t, ω) and S2(t, ω) be two random periodic paths of the forward stochastic

flow
{
φ(t+ s, s, · , · ) : s ∈ R, t ∈ R+

}
on Rd. We know from (4.26) that for s, t ∈ R with s 6 t,

S1(t, ω) = φ
(
t, s, ω, S1(s, ω)

)
P - a.s.,

S2(t, ω) = φ
(
t, s, ω, S2(s, ω)

)
P - a.s.

Then, for 1 < p <∞, we have∥∥S1(t)− S2(t)
∥∥p
p

=
∥∥φ(t, s, S1(s))− φ(t, s, S2(s)

)∥∥p
p

6 exp
(
−λ̄(t− s)

)
E
[
V
(
s, S1(s)− S2(s)

)]
−→ 0
s→−∞

.

Thus, S1(t, ω) = S2(t, ω) for all t ∈ R P - a.s.

Construction of τ -periodic measure for the RDS Φ̃: Let S̃ : R×Ω→ [0, τ)×Rd, [0, τ) ' R mod τ ,

be defined by

S̃(r, ω) =
(
r mod τ, S(r, ω)

)
, ∀ r ∈ R+,

or, alternatively S̃(r, ω) =
(
|r| mod τ, S(r, ω)

)
, ∀ r ∈ R. Then

S̃(r + τ, ω) =
(
r + τ mod τ, S(r + τ, ω)

)
=
(
r mod τ, S(r, θτω)

)
, (4.27)

and from (4.5) and (4.26) we have

Φ̃(t, θrω, S̃(r, ω)) = Φ̃
(
t, θrω,

(
r mod τ, S(r, ω)

))
=
(
t+ r mod τ, φ(t+ r, r, ω, S(r, ω))

)
=
(
t+ r mod τ, S(t+ r, ω)

)
= S̃(t+ r, ω), ∀ t, r ∈ R+ P - a.s. (4.28)

The equalities (4.27)–(4.28) and the lifted version of (3.15), imply that S̃(t, ω) is a random

periodic path of period τ of the RDS generated by Φ̃ (4.5) in the skew-product representation

on the flat cylinder [0, τ)× Rd.
Finally, let (µ̃t)t∈R+ , µ̃t ∈ P([0, τ ]× Rd) be defined by

µ̃t(Ã) = P
(
{ω : S̃(t, ω) ∈ Ã }

)
, ∀ t ∈ R+, Ã ∈ B

(
[0, τ ]

)
⊗ B

(
Rd
)
.

It follows from (4.27) - (4.28) and Lemma 4.3 that the probability measure µ̃t is τ -periodic under

the action of the transition evolution (P̃∗t )t∈R+ which is induced by the RDS {Φ̃(t, · , · ) : t ∈ R+}
on [0, τ) × Rd. The skew-product structure of these measures in P

(
[0, τ) × Rd

)
arises from

Lemma 4.3, or directly from (4.6), so that for any J ∈ B
(
[0, τ)

)
, A ∈ B

(
Rd
)

µ̃t(J ×A) = δ(t mod τ)(J )⊗ P
(
ω : S(t, ω) ∈ A

)
= δ(t mod τ)(J )⊗ µt(A). �
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4.3. Ergodicity of time-periodic measures. In this section, we turn to establishing ergodicity

of the τ -periodic measures (µ̃t)t∈R, µ̃t ∈ P
(
[0, τ) × Rd

)
, generated by the Markovian13 RDS{

Φ̃(t, · , · ) : t ∈ R+
}

which was constructed in (4.5) in the skew-product representation on the

flat cylinder [0, τ) × Rd from the lifted flow of solutions of the SDE (2.1) with time-periodic

coefficients. The existence of τ -periodic measures supported on stable random periodic paths

was established in Theorem 4.7. The lack of stationarity and the unavoidable skew-product

structure of the underlying dynamics pose additional challenges when dealing with ergodicity of

P̃∗t - invariant measures, as outlined below. The main theorem of this section (Theorem 4.11) is

preceded by some preparatory results and definitions.

Definition 4.8 (Ergodic periodic measure [32]). A family of τ -periodic measures (µ̃t)t∈R+

on the extended state space
(
[0, τ)× Rd,B([0, τ))⊗ B(Rd)

)
is said to be ergodic if

¯̃µ =
1

τ

∫ τ

0
µ̃tdt, (4.29)

is ergodic with respect to the transition semigroup (P̃∗t )t∈R+ in (4.8).

One can check by the linearity of µ̃0 7→ P̃∗t µ̃0 and Fubini’s theorem that ¯̃µ is an invariant

measure for the transition semigroup (P̃∗t )t∈R+ defined in (4.8); i.e., P̃∗t - invariance of ¯̃µ implies

P̃∗t ¯̃µ = ¯̃µ, for all t ∈ R+. Moreover, from the definition of a τ -periodic measure µ̃t in (4.19),

induced by the RDS {Φ̃(t, · , · ) : t ∈ R+} on [0, τ)× Rd, we have for any Ã ∈ B
(
[0, τ)

)
⊗ B

(
Rd
)

that

¯̃µ(Ã) =
1

τ

∫ τ

0
µ̃t(Ã)dt =

1

τ

∫ τ

0
P
({
ω : S̃(t, ω) ∈ Ã

})
dt =

1

τ
E
[∫ τ

0
IÃ
(
S̃(t, · )

)
dt

]
= E

[
1

τ
m1

({
t ∈ [0, τ) : S̃(t, · ) ∈ Ã

})]
,

where t → S̃(t, ω) =
(
t mod τ, S(t, ω)

)
, t ∈ R+, is a random periodic path (3.15) of an RDS

generated by the lifted dynamics of the SDE (2.1) via Φ̃ in (4.5), and m1 is the Lebesgue

measure on R. Thus, given the invariance of ¯̃µ under the action of the transition semigroup

(P̃∗t )t∈R+ in (4.8), and the τ -periodicity of µ̃t (see Definition 4.1), one has

E
[

1

τ
m1

(
{t ∈ [0, τ) : S̃(t, · ) ∈ Ã}

)]
=
(
P̃∗u ¯̃µ

)
(Ã) =

1

τ

∫ τ

0
(P̃∗uµ̃t)(Ã)dt

=
1

τ

∫ τ

0
µ̃t+u(Ã)dt =

1

τ

∫ u+τ

u
µ̃t(Ã)dt

= E
[

1

τ
m1

(
{t ∈ [u, u+ τ) : S̃(t, · ) ∈ Ã}

)]
,

for any Ã ∈ B
(
[0, τ)

)
⊗ B

(
Rd
)

and any u ∈ R+. This implies that the expected time spent by

the random periodic path t 7→ S̃(t, ω) in any set Ã ∈ B
(
[0, τ)

)
⊗ B

(
Rd
)

over a time interval of

exactly one period is independent of the starting point.

Verification of ergodicity (in the sense of Definition 4.8) of τ -periodic measures (µ̃t)t∈R+ sup-

ported on the random periodic paths of Φ̃ requires one to assert that the time-averaged measure
¯̃µ in the skew-product fibre bundle on P

(
[0, τ) × Rd

)
is P̃∗t - ergodic. This setup arises from the

13 Here, the notion of a ‘Markovian RDS’ means that there exists a version of the RDS which has the Markov
property w.r.t the filtration generated on the Wiener space by the canonical DS for the Wiener process with
W̃t+s(θ−sω) for all s ∈ [0, τ), t ∈ R+; see Proposition 3.9.
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need to deal with the random periodic nature of the underlying dynamics, and it prevents a direct

application of the classical tools for asserting ergodicity in the (asymptotically) stationary case.

In particular, it is well-known (e.g., [78, Theorem 3.2.4]) that the following are equivalent14:

(i) A probability measure ¯̃µ is weakly mixing.

(ii) There exists I ⊂ [0, ∞) of relative measure 1 such that limt→∞,t∈I P̃ (t, x̃, · )→ ¯̃µ weakly.

Thus, given the form of the transition kernel P̃ in (4.6) and the underlying skew-product structure,

it is clear that one cannot establish the mixing property in the random periodic regime15. Thus,

this key condition in Doob’s Theorem [26] does not hold in the random periodic regime which,

alongside the lack of irreducibility of the transition kernel, renders the Hasminskii’s Theorem [43]

for asserting regularity of the transition kernel (needed in Doob’s Theorem) inapplicable.

Instead, the P̃∗t - ergodicity of ¯̃µ can be verified by means of a proposition which was proved

in [32, Lemma 2.18]; we repeat its statement below with a concise proof to make this section

self-contained. The main benefit of utilising the proposition below when dealing with ¯̃µ is that

it essentially relies on ergodicity of τ -periodic measures µ̃t for any fixed t ∈ [0, τ) with respect

to the discrete dynamics induced by (P̃∗nτ )n∈N0 ; the subsequent use of the semigroup property of

(P̃∗t )t∈R+ allows one to show the ergodicity of ¯̃µ. Importantly, the P̃∗nτ - ergodicity of µ̃t on the

respective Poincaré sections with a fixed t ∈ [0, τ) turns the problem into a stationary one which

can be dealt with using the standard methods. The result below provides an extension of the

classical Krylov-Bogolyubov procedure (see, e.g., [8, §1.5]).

Proposition 4.9. Consider a family of τ -periodic measures (µ̃t)t∈R on the extended state space(
[0, τ) × Rd,B([0, τ)) ⊗ B(Rd)

)
. The P̃∗t - invariant measure ¯̃µ in (4.29) is ergodic if and only if

the following holds for any Ã ∈ B([0, τ ])⊗ B(Rd)

lim
N→∞

∫
[0,τ)×Rd

∣∣∣∣∣
∫ τ

0

{
1

N

N−1∑
n=0

P̃ (x̃; t+ nτ, Ã)− µ̃t(Ã)

}
dt

∣∣∣∣∣ ¯̃µ(dx̃) = 0. (4.30)

Proof. Recall from (e.g., [8]) that ¯̃µ is ergodic if P̃t IÃ = IÃ, ¯̃µ - a.e. Ã ∈ B([0, τ ])⊗B(Rd) implies

that either ¯̃µ(Ã) = 0 or ¯̃µ(Ã) = 1. First, we assume that (4.30) holds for any Ã ∈ B([0, τ ])⊗B(Rd)
with P̃ (x̃; t, Ã) = P̃t IÃ(x̃) = IÃ(x̃). Then, it follows from (4.30) that∫

[0,τ)×Rd

∣∣∣IÃ(x̃)− ¯̃µ(Ã)
∣∣∣ ¯̃µ(dx̃) =

∫
[0,τ)×Rd

∣∣∣∣∣1τ
∫ (n+1)τ

nτ
P̃ (x̃; t, Ã)dt− ¯̃µ(Ã)

∣∣∣∣∣ ¯̃µ(dx̃) = 0.

This implies that IÃ(x̃) is a constant for ¯̃µ - a.e. x̃ ∈ [0, τ) × Rd. Thus, either ¯̃µ(Ã) = 0 or
¯̃µ(Ã) = 1. Conversely, assume that ¯̃µ is ergodic, then for any Ã ∈ B([0, τ ])⊗ B(Rd)

lim
T→∞

1

T

∫ T

0
P̃ (x̃; t, Ã)dt = ¯̃µ(Ã) in L2(¯̃µ).

Therefore,

lim
N→∞

1

Nτ

N−1∑
n=0

∫ τ

0
P̃ (x̃; t+ nτ, Ã)dt = ¯̃µ(Ã) in L2(¯̃µ), (4.31)

and (4.30) follows from (4.31) and from the Cauchy–Schwartz inequality. �

14 These statements are not restricted to the skew-product representation of time-periodic measures.
15 As before, we exclude the stationary regime from the random periodic regime by requiring that fundamental
period 0 < τ <∞; see Definition 4.1.
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The key for validation of the convergence of the generalised Krylov–Bogolyubov procedure

in (4.30) in the present case16. Consequently, the subsequent verification of the ergodicity of the

P̃∗t - invariant measure ¯̃µ on [0, τ)×Rd, relies (explicitly or otherwise) on the semigroup property

and periodicity of the transition semigroup (P̃∗t )t∈R+ , and on proving the strong Feller property

of the transition evolution (Ps,t)t>s in (3.3). Recall that the transition evolution (Ps,t)t>s has the

strong Feller property (i.e., Ps,tϕ ∈ C∞(Rd) for any ϕ ∈M∞(Rd)) if and only if

(i) (Ps,t)t>s is Feller, i.e., Ps,t : C∞(Rd)→ C∞(Rd), and

(ii) For any ϕ ∈ C∞(Rd) the family (Ps,tϕ)t>s is equicontinuous.

The first condition follows from the existence of the stochastic flow (see, e.g., [53, 43]); thus, we

only derive the second item in Proposition 4.10 below.

Proposition 4.10. Suppose that Assumption 4.6 holds. Then, for any t ∈ [s, s+ T ], there exist

0 < CT <∞ such that, for any x, y ∈ Rd and ϕ ∈ C∞(Rd), we have

|Ps,tϕ(x)− Ps,tϕ(y)| 6 CT ‖ϕ‖∞|x− y|.

Proof. The proof consists of a tedious but relatively straightforward extension of results which are

well known in the autonomous case; for detailed derivations, involving some Malliavin calculus

estimates; see Theorem B.10 in Appendix B.2.

Given the above setting, we have the following main result of this section:

Theorem 4.11. Suppose that Proposition 4.10 and Assumption 4.4 hold. Then, the family of

τ -periodic measures (µ̃t)t∈R, µ̃t ∈ P([0, τ)×Rd), in (4.19) is ergodic in the sense of Definition 4.8.

Remark 4.12. The requirement in the above theorem that Assumption 4.4 holds is inherited

from the conditions required in Theorem 4.7 for the existence of stable random periodic paths

on which the τ -periodic measures (µ̃t)t∈R+ are supported; hence, the only additional condition

in Theorem 4.11 is introduced by imposing Assumption 4.6 which is required in Proposition 4.10

to assert the strong Feller property of (Ps,t)t>s. If one dropped Assumption 4.4, the existence

of τ -periodic measures would have to be assumed a priori alongside the ergodicity of µ̃t for all

fixed t ∈ [0, τ) w.r.t. the discrete transition evolution (P̃nτ )n∈N0 , as done in [32]. In the present

case, the properties of the τ -periodic measures derived explicitly in the previous section allow us

to dispense with such assumptions.

Proof of Theorem 4.11. The proof is relatively long and we divide it into four steps.

Throughout, we skip the dependence on ω ∈ Ω in all quantities involving expectations w.r.t. P.

Step I: First, we show that for a random periodic path S : R× Ω→ Rd of the stochastic flow φ

on Rd, and η ∈ Lp(Ω,Fs−∞,P), 1 < p <∞, there exists 0 < C̃ <∞ such that

‖φ(s+ nτ, s, η)− S(s+ nτ)‖p 6 C̃ exp

(
1

p

∫ s+nτ

s
λ(u)du

)
, n ∈ N0. (4.32)

16 See the proof of Theorem 4.11.
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To see this, note that from the definition of the random periodic path of a stochastic flow (3.14)

we have S(s+ nτ, ω) = φ(s+ nτ, s, ω, S(s, ω)) P -a.s., so that

‖φ(s+ nτ, s, η)− S(s+ nτ)‖p = ‖φ(s+ nτ, s, η)− φ(s+ nτ, s, S(s))‖p

6
(
E
[
V (s, η − S(s))

]) 1
p

exp

(
1

p

∫ s+nτ

s
λ(u)du

)

= C̃ exp

(
1

p

∫ s+nτ

s
λ(u)du

)
, n ∈ N0, (4.33)

by Assumption 4.4(i) and the fact that S(s) ∈ Lp(Ω,Fs−∞,P), 1 < p < ∞, which was shown in

the proof of Theorem 4.7.

Step II: We show that for 1 < p <∞, there exists 0 < C τ <∞, such that for n ∈ N0∣∣∣∣Ps,s+nτϕ(x)−
∫
Rd
ϕ(y)µs(dy)

∣∣∣∣ 6 C τ‖ϕ‖∞ exp

(
1

p

∫ s+nτ

s
λ(u)du

)
, ϕ ∈ C∞(Rd), (4.34)

where µs(A) = P
(
{ω : S(s, ω) ∈ A}

)
, A ∈ B(Rd).

To see this, we note that from the definition of the periodic measure µs, we have that∫
Rd
Ps,s+nτϕ(y)µs(dy) =

∫
Rd
ϕ(y)µs(dy), ϕ ∈ C∞(Rd);

i.e., µs is invariant under the action of the dual of the discrete transition evolution (P∗s,s+nτ )n∈N0 .

Thus, for ψ ∈ Lip∞(Rd), we have for 1 < p <∞,∣∣∣∣Ps,s+nτψ(x)−
∫
Rd
ψ(y)µs(dy)

∣∣∣∣ =

∣∣∣∣ ∫
Rd

(
Ps,s+nτψ(x)− Ps,s+nτψ(y)

)
µs(dy)

∣∣∣∣
6 ‖ψ‖bl

∫
Rd

E
∣∣φ(s+ nτ, s, x)− φ(s+ nτ, s, y)

∣∣µs(dy)

= ‖ψ‖bl E
∣∣φ(s+ nτ, s, x)− φ(s+ nτ, s, S(s))

∣∣
6 ‖ψ‖bl

(
E|φ(s+ nτ, s, x)− S(s+ nτ)|p

) 1
p

6 C̃ ‖ψ‖bl exp

(
1

p

∫ s+nτ

s
λ(u)du

)
, (4.35)

where we applied Hölder’s inequality and estimate (4.32) in the last two lines respectively.

Now, let ϕ ∈ C∞(Rd) be given. Setting ψ = Ps+nτ, s+τ+nτϕ = Ps,s+τϕ in (4.35), which holds

due to (3.13), and using the invariance of µs under the transition evolution (P∗s,s+nτ )n∈N0 , we

obtain by Markov property and Proposition 4.10 that∣∣∣∣Ps,s+τ+nτϕ(x)−
∫
Rd
Ps,s+τϕ(y)µs(dy)

∣∣∣∣ =

∣∣∣∣ ∫
Rd

(
Ps, s+τ+nτϕ(x)− Ps, s+τ+nτϕ(y)

)
µs(dy)

∣∣∣∣
6 C̃ ‖Ps+nτ, s+τ+nτϕ‖bl exp

(
1

p

∫ s+nτ

s
λ(u)du

)
= C̃ ‖Ps,s+τϕ‖bl exp

(
1

p

∫ s+nτ

s
λ(u)du

)
6 C τ‖ϕ‖∞ exp

(
1

p

∫ s+nτ

s
λ(u)du

)
, (4.36)
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where C τ = Cτ C̃, and Cτ is a constant appearing in Proposition 4.10.

Step III: Let A ⊂ Rd be a closed set, take ϕ = IA, and consider the sequence (ϕm)m∈N1 of

functions defined by

ϕm(x) =


1, if x ∈ A,

1− 2md(x,A), if d(x,A) 6 2−m,

0, if d(x,A) > 2−m,

where d(x,A) = inf{|x− y| : y ∈ A}, x ∈ Rd. Then

ϕm(x)→ ϕ(x), as m→∞, for all x ∈ Rd.

Next, for s ∈ [0, τ), we have

Ps,s+nτ ϕm(x)→ Ps,s+nτ ϕ(x) = Ps,s+nτ IA(x),

which implies that P (s, · ; s + nτ,A) = Ps,s+nτ IA ∈ C∞(Rd) and, since µs is invariant under

(P∗s,s+nτ )n∈N0 , (4.36) leads to∣∣P (s, x; s+ nτ,A)− µs(A)
∣∣ 6 Cτ exp

(
1

pq

∫ s+nτ

s
λ(u)du

)
. (4.37)

By the covering lemma (e.g., [6]), the inequality (4.37) holds for any A ∈ B(Rd), and thus for

J ⊆ [0, τ), we have∫
I

∣∣P (s, x; s+ nτ,A)− µs(A)
∣∣ds 6 ∫ τ

0

∣∣P (s, x; s+ nτ,A)− µs(A)
∣∣ds

6 Cτ

∫ τ

0
exp

(
1

p

∫ s+nτ

s
λ(u)du

)
ds

= Cτ

∫ τ

0
exp

(
1

pnτ

∫ s+nτ

s
λ(u)du

)nτ
ds.

Now, we use the Chapmann–Kolmogorov equation (3.2) for the transition probability to obtain∣∣∣∣ ∫
J

[
P (s, x; t+ nτ,A)− µt(A)

]
dt

∣∣∣∣ =

∣∣∣∣[ ∫
J

∫
Rd
P (t, y; t+ nτ,A)− µt(A)

]
P (s, x; t, dy)dt

∣∣∣∣
6
∫ τ

0

∫
Rd

Cτ exp

(
1

pnτ

∫ t+nτ

t
λ(u)du

)nτ
P (s, x; t, dy)dt

= Cτ

∫ τ

0
exp

(
1

pnτ

∫ t+nτ

t
λ(u)du

)nτ
dt.

By condition (4.11) of Assumption 4.4, there exists 0 < β < 1, 0 < K <∞, such that∣∣∣∣ ∫
J

(
P (s, x; t+ nτ,A)− µt(A)

)
dt

∣∣∣∣ 6 ∫
J

∣∣P (s, x; t+ nτ,A)− µt(A)
∣∣dt 6 Kβnτ .

It then follows that

1

τ

∫ τ

0

∫
Rd

∣∣∣∣ ∫
J

{
1

N

N−1∑
n=0

P (s, x; t+ nτ,A)− µt(A)

}
dt

∣∣∣∣µs(dx)ds 6
K

N

N−1∑
n=0

βnτ −→
N→∞

0. (4.38)

Step IV: In this final step, with the help of Step III, we show the convergence of Krylov-

Bogolyubov scheme for the τ -periodic measures (µ̃t)t∈[0,τ ] on the cylinder [0, τ) × Rd. For any
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J ×A ∈ B([0, τ ])⊗ B(Rd) we have∫
[0, τ ]×Rd

∣∣∣∣ ∫ τ

0

(
1

N

N−1∑
n=0

P̃
(
x̃; t+ nτ,J ×A

)
− µ̃t(J ×A)

)
dt

∣∣∣∣ ¯̃µ(dx̃)

=
1

τ

∫ τ

0

∫
Rd

∣∣∣∣ ∫ τ

0

(
1

N

N−1∑
n=0

P̃ ((s, x); t+ nτ,J ×A)− µ̃t(J ×A)

)
dt

∣∣∣∣µs(dx)ds

=
1

τ

∫ τ

0

∫
Rd

∣∣∣∣ ∫ τ

0

(
1

N

N−1∑
n=0

P (s, x; t+ s+ nτ,A)− µt(A)

)
δ(t+s mod τ)(J )dt

∣∣∣∣µs(dx)ds

=
1

τ

∫ τ

0

∫
Rd

∣∣∣∣ ∫ τ−s

0

(
1

N

N−1∑
n=0

P (s, x; t+ s+ nτ,A)− µt(A)

)
δ(t+s)(J )dt

+

∫ τ

τ−s

(
1

N

N−1∑
n=0

P (s, x; t+ s+ nτ,A)− µt(A)

)
δ(t+s−τ)(J )dt

∣∣∣∣µs(dx)ds

=
1

τ

∫ τ

0

∫
Rd

∣∣∣∣ ∫ τ−s

0

(
1

N

N−1∑
n=0

P (s, x; t+ s+ nτ,A)− µt(A)

)
δ(t+s)(J )dt

+

∫ 0

−s

(
1

N

N∑
n=1

P (s, x; t+ s+ nτ,A)− µt(A)

)
δ(t+s)(J )dt

∣∣∣∣µs(dx)ds

=
1

τ

∫ τ

0

∫
Rd

∣∣∣∣ ∫
J

(
1

N

N−1∑
n=0

P (s, x; t+ nτ,A)− µt(A)

)
dt

− 1

N

∫ 0

−s

(
P (s, x; t+ s,A)− P (s, x; t+ s+Nτ,A)

)
δ(t+s)(J )dt

∣∣∣∣µs(dx)ds

6
1

τ

∫ τ

0

∫
Rd

∣∣∣∣ ∫
J

(
1

N

N−1∑
n=0

P (s, x; t+ nτ,A)− µt(A)

)
dt

∣∣∣∣µs(dx)ds

+
1

Nτ

∫ τ

0

∫
Rd

∣∣∣∣ ∫ 0

−s

(
P (s, x; t+ s,A)

− P (s, x; t+ s+Nτ,A)

)
δ(t+s)(J )dt

∣∣∣∣µs(dx)ds −→
N→∞

0. �

Remark 4.13. The invariance of the τ -periodic probability measures under the discrete evolution

(P̃∗nτ )n∈N0 on their respective Poincaré sections was pointed out in Lemma 4.3. It can be shown,

as a consequence of [32, Theorem 4.11], that such τ -periodic probability measures are ergodic

w.r.t. the discrete evolution (P̃∗nτ )n∈N0 on their respective Poincaré sections; given that we require

Assumption 4.6 to be satisfied, these measures are supported on all of Rd. This fact will be useful

in §5 concerned with ergodic averages in the context of the linear response.

Example 4.14 (Stochastic Lorenz model with periodic forcing). Consider a modified Lorenz

system (e.g., [47]) given by 
ẋ = −ᾱx+ ᾱy,

ẏ = −ᾱx− β̄ y − xz,

ż = −γ̄ z + xy − γ̄β̄−2 (%̄+ ᾱ),

(4.39)
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with parameters ᾱ, β̄, γ̄, %̄ > 0. We set (v1, v2, v3) := (x, y, z) ∈ R3 and consider the periodically-

in-time and stochastically perturbed version of (4.39) for t ∈ R+ in the form

dvt = b(t, vt)dt+ σ(vt)dWt =
[
−Avt −G(vt) + F (t)

]
dt+ σ(vt)dWt, v0 ∈ R3, (4.40)

where

A =

ᾱ −ᾱ 0

ᾱ β̄ 0

0 0 γ̄

 , G(v) =

 0

v1v3

−v1v2

 , F (t) =

f̄
(
1 + δ̄ sin

(
2π
τ t
))

0

−γ̄β̄−2(%̄+ ᾱ)

 , σ(v) = σ̄

v1 0 0

0 v2 0

0 0 v3

 ,
with |δ̄| 6 |f̄ | <∞ and σ̄ ∈ R \ {0} finite, 0 < τ <∞, and Wt = (W 1

t ,W
2
t ,W

3
t ) an independent

Wiener process in R3. Although the above system is in the ‘toy category’, considering the

effects of time-periodic forcing and stochastic perturbations is relevant in many atmosphere-

ocean applications to model, for example, seasonal and diurnal cycles in climate models (e.g.,

[80, 58, 59, 76, 77, 63]). It is well-known that for σ̄ = 0 the system (4.40) has an absorbing ball

for all values of the parameters, since for V (t, v) = |v|2 we have

1

2

dV

dt
= 〈b(v), v〉 = −ᾱ

(
v1 −

F1

2ᾱ

)2

− β̄v2
2 − γ̄

(
v3 +

%̄+ ᾱ

2β̄2

)2

+
ᾱγ̄β̄−2(%̄+ ᾱ)2 + F 2

1

4ᾱ
,

where we skip the explicit time dependence and F1(t) = f̄
(
1 + δ̄ sin

(
2π
τ t)
)
. Note that the drift

and diffusion coefficients, b, σ, in (4.40) are smooth and satisfy the growth conditions (4.13)

outlined in Remark 4.16(a); since for 0 < κ1,κ3 <∞, and F̄1 = sup[0,τ ] |F1(t)| we have

〈b(v), v〉 6 −ᾱ
(

1− F̄1

4ᾱκ1

)
v2

1 − β̄v2
2 − γ̄

(
1− %̄+ ᾱ

4β̄2κ3

)
v2

3 + F̄1κ1 + γ̄β̄−2(%̄+ ᾱ)κ3,

where we used the fact that |x| 6 κ + 1
4κ |x|

2 for κ > 0. Thus, we have

〈b(v), v〉 6 Lb1 − Lb2 |v|2, ‖σ(v)‖2hs 6 Lσ
(
1 + |v|2

)
, (4.41)

where Lσ = σ̄ and

Lb1 = κ1F̄1 + κ3 γ̄β̄
−2(%̄+ ᾱ), Lb2 = min

(
β̄, ᾱ

(
1− F̄1

4ᾱκ1

)
, γ̄

(
1− %̄+ ᾱ

4β̄2κ3

))
. (4.42)

Thus, (4.40) has global solutions and it generates a stochastic flow of diffeomorphisms on R3.

Next, note that the linear part in (4.40) satisfies

〈Av, v〉R3 > CA|v|2, CA = min{ᾱ, β̄, γ̄},

and the nonlinear term G(v) = B(v, v) is given by a bilinear map B(v, w) = (0, v1w3,−v1w2),

v, w ∈ R3, which satisfies (see also [47])
〈B(v, w), w〉R3 = 〈(0, v1w3,−v1w2), (w1, w2, w3)〉R3 = 0,

〈B(v, w), u〉R3 = 〈(0, v1w3,−v1w2), (u1, u2, u3)〉R3 = −〈B(v, u), w〉R3 ,

|B(v, w)| 6 |v||w|.

(4.43)

Consider V (t, v) = |v|p for some 1 < p <∞, so that

∂viV (t, v) = pvi|v|p−2, ∂2
vivjV (t, v) = p(p− 2)vivj |v|p−4 + δijp|v|p−2.

Next, we have

〈G(v)−G(w), v − w〉 = 〈B(v − w, v), v − w〉 6 |v − w|2|v|, (4.44)
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which follows from (4.43) after some simple manipulations17, so that

L(2)V (t, v − w) = p
〈
−Av +Aw −G(v) +G(w), v − w

〉
R3 |v − w|p−2

+
1

2

3∑
ij=1

[
(vi − wi)

(
σi(v)− σi(w)

)(
σj(v)− σj(w)

)
(vi − wj)p(p− 2)|v − w|p−4

+ δij p
(
σi(v)− σi(w)

)(
σj(v)− σj(w)

)
|v − w|p−2

]
6 p|v||v − w|p − pβ|v − w|p + 1

2 σ̄
2p(p− 1)|v − w|p, (4.45)

where L(2) is the two-point generator associated with (4.40). Next, choose p such that for

v, w ∈ Lp+1(Ω,F t
−∞,P) and 0 < E|v − w|p. Then, from Jensen’s inequality we have

0 < E|v − w|p 6 (E|v − w|p+1)p/(p+1) <∞, (4.46)

while the Hölder’s inequality leads to (with ‖X‖p := (E[|X|p])1/p)

E
[
|v||v − w|p

]
=
∥∥|v||v − w|p∥∥

1
6 ‖v‖p+1

(
E|v − w|p+1

)p/p+1
. (4.47)

The bounds (4.46) and (4.47) imply that there exists a constant 1 6 Cp <∞ such that(
E|v − w|p+1

)p/(p+1)
= Cp E|v − w|p. (4.48)

Combining (4.48), (4.47), and (4.45) leads to

E
[
L(2)V (t, v − w)

]
6 −λp E

[
V (t, v − w)

]
,

where λp = p
(
CA − 1

2 σ̄(p − 1) − Cp‖v‖p+1

)
. Now, for vt = φ(t, s, ω, ξ), wt = φ(t, s, ω, η) solving

(4.40), we have from the above

E
[
L(2)V

(
t, φ(t, s, ξ)− φ(t, s, η)

)]
6 −λp(t, s)E

[
V
(
t, φ(t, s, ξ)− φ(t, s, η)

)]
, (4.49)

so that combining Itô’s lemma

dE
[
V
(
t, φ(t, s, ξ)− φ(t, s, η)

)]
= E

[
L(2)V

(
t, φ(t, s, ξ)− φ(t, s, η)

)]
,

with (4.49) we obtain

E
[
V
(
t, φ(t, s, ξ)− φ(t, s, η)

)]
6 E

[
V (s, ξ − η)

]
exp

(
−
∫ t

s
λp(r, s)dr

)
. (4.50)

Thus, in order for Assumption 4.4(ii) to hold, it is sufficient to require that

CA − 1
2 σ̄(p− 1)− lim sup

(t−s)→∞

1

t− s

∫ t

s
Cp(u, s)‖φ(u, s, ξ)‖p+1du > 0.

Finally, we choose p = 2, so that V (t, v) = |v|2 and note that (see Appendix A)

lim
(t−s)→∞

‖φ(t, s, ξ)‖3 = (27)1/6

(
Lb1 + Lσ
Lb2 − Lσ

)1/2

,

17 This identity is obtained with the help of (4.43) by noticing that one has

〈B(v − w, v), v − w〉 = 〈B(v, v), v − w〉 − 〈B(w, v), v − w〉
= 〈B(v, v), v − w〉 − 〈B(w,w), v − w〉 − 〈B(w, v − w), v − w〉
= 〈G(v), v − w〉 − 〈G(w), v − w〉,

where the last term in the second line vanishes due to the fact that 〈B(u,w), w〉R3 = 0 ∀u,w ∈ R3.
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Figure 1. Illustration of some aspects of the dynamics of the stochastic Lorenz model with time-periodic
forcing (4.40) with the flow of solutions {φ(t, 0, ω, · ), t > 0} in two different regimes. The top row corresponds
to the regime in which the time-periodic measure exists and is supported on stable random periodic orbits of
(4.40); the inset of the top-right figure shows a finite sample from this measure on a Poincare section (i.e., on
the subspace R3 of X = [0, τ) × R3). The top-left inset illustrates the relationship in (4.50) in the case when
limt→∞ λp(t) < 0 and random periodic orbits exist (see text and Theorem 4.7); colours denote path-wise evolution
of |φ(t, 0, ω, ξ) − φ(t, 0, ω, η)|2 for fixed ξ, η, and the dotted black line denotes E|φ(t, 0, · , ξ) − φ(t, 0, · , η)|2. The
bottom row illustrates a regime where limt→∞ |φ(t, 0, ω, ξ)−φ(t, 0, ω, η)| > 0 and existence of random periodic orbits
and periodic measures cannot be guaranteed. Parameters in (4.40) are: (top row) ᾱ = 7.3, β̄ = 26, γ̄ = 7, %̄ = 10,
f̄ = 100, δ̄ = 0.9, τ = 1, σ̄ = 0.2, and (bottom row) ᾱ = 10, β̄ = 1, γ̄ = 8/3, %̄ = 28, f̄ = 23, δ̄ = 0.9, τ = 1, σ̄ = 0.2.

so that simple but tedious algebraic manipulations lead to

CA − 1
2 σ̄ − C̄

(
Lb1 + Lσ
Lb2 − Lσ

)1/2

> 0, C̄ = (27)1/6 lim
(t−s)→∞

1

t− s

∫ t

s
C2(u, s)du, (4.51)

where Lb1 , Lb2 , and Lσ for the system (4.40) are given in (4.42).

Therefore, by Theorem 4.7, we conclude that the time-periodically forced stochastic Lorenz

equation (4.40) admits a family of periodic measures {µt : t ∈ [0, τ)} ⊂ P(R3) supported on

stable periodic solutions of (4.40) lifted to [0, τ) × R3. For σ̄ 6= 0, Assumption 4.6 holds in

addition to Assumption 4.4, and Theorem 4.11 implies existence of ergodic τ -periodic measures

µ̃t = δt mod τ ⊗ µt ∈ P
(
[0, τ) × R3

)
in the sense of Definition 4.8. Numerical illustration of the

convergence in (4.50) is provided in Figure 1 alongside a sample from the density of the ergodic

measure supported on the attractor containing stable random periodic orbits.
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5. Linear response in the random time-periodic regime

In this section, we derive a general formula for the linear response function which characterises

the change of a statistical observable in response to small perturbations of SDE dynamics with a

time-periodic ergodic probability measure. The results presented below build on and extend the

derivations obtained for time-dependent stochastic systems in [61]. First, we derive the linear

response formula associated with perturbations of dynamics with time-periodic measures, and we

represent it via formulas exploiting the asymptotic statistical properties of the unperturbed dy-

namics; in line with terminology from statistical physics, these are termed fluctuation-dissipation

formulas. In Theorem 5.14, we derive the fluctuation-dissipation formulas in the case when

only the unperturbed dynamics has a time-periodic ergodic measure. In Theorem 5.16 we con-

sider the linear response associated with perturbations of dynamics with a time-periodic ergodic

measure under stronger conditions when perturbed dynamics also has a time-periodic ergodic

measure. During the revision of the manuscript, we become aware of related results derived

independently in [20] for non-autonomous SDE’s; those results are complementary to ours since

they are confined to a finite time interval in the non-autonomous case with a restricted class of

perturbations, and they do not deal with perturbations of asymptotically time-periodic ergodic

measures. We conclude with some examples of the linear response for the periodically forced

stochastic Lorenz model used earlier in Example 4.14. In principle, the results discussed below

apply to a wider class of SDE’s generating time-periodic measures under less stringent condi-

tions than those in Assumption 4.4; however, establishing the existence and ergodicity of such

measures in a more general setting is not trivial and it is beyond the scope of this work.

5.1. Setup and assumptions. Consider the following SDE on Rd for t > s, s ∈ R,

dXα
t = b̂(α(t), t,Xα

t )dt+ σ̂(α(t), t,Xα
t )dWt−s, Xα

s = x, (5.1)

where the maps t 7→ b̂(0, t, · ) = b(t, · ), t 7→ σ̂(0, t, · ) = σ(t, · ), are τ -periodic and coincide

with the coefficients in (2.1); α( · ) ∈ C1
∞(R;R) will be assumed sufficiently small in the sequel.

Allowing for the explicit time dependence in α(t) enables one to consider time-dependent changes

in the coefficients of (5.1) relative to those in the original dynamics for α = 0; for example, one

can think of changes in the ‘climatological’ forcing (e.g., [1, 3, 58, 61, 33, 35, 36, 37, 38, 63])

which is relevant for considerations in atmosphere-ocean science.

Similar to §4, we consider the Wiener probability space (Ω,F ,P), Ω := C0(R,Rm), with F the

Borel S-algebra on Ω, and the probability measure P on (Ω,F) induced by the m-dimensional

Wiener process Wt. Furthermore, we assume that there exists a proper interval A ⊆ R containing

α = 0 such that, for all α ∈ A, the coefficients b̂(α, t, · ), σ̂(α, t, · ) are sufficiently regular for (5.1)

to generate a forward stochastic flow on Rd (see Theorem 3.5); i.e.,

Xα
t (ω) = φα(t, s, ω, x), s 6 t P - a.s.

The forward stochastic flow
{
φα(t, s, · , · ) : s 6 t

}
induced by (5.1) has a one-point generator

Lα =
∑
i=1

b̂i(α(t), t, x)∂xi + 1
2

∑
i,j=1

âij(α(t), t, x)∂2
xixj , â := σ̂σ̂T . (5.2)

As in the previous sections (see (4.2)), we lift the SDE (5.1) to R×Rd to represent the dynamics as

dX̃α
t = b̃(α(t), X̃α

t )dt+ σ̃(α(t), X̃α
t )dW̃t−s, X̃α

s = x̃, s 6 t, (5.3)
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where x̃ = (s, x) ∈ R× Rd, and

b̃
(
α, x̃

)
=
(
1, b̂(α, s, x)

)T
, σ̃

(
α, x̃

)
=

(
0 0

0 σ̂(α, s, x)

)
.

Finally, shifting the time t→ t+ s allows to the represent the dynamics in (5.3) for t ∈ R+ as

dX̃α
t+s = b̃(α(t+ s), X̃α

t+s)dt+ σ̃(α(t+ s), X̃α
t+s)dW̃t+s, X̃α

s = x̃, (5.4)

where W̃t = W̃t(θ−sω) due to (3.12). In what follows, we will always assume that the SDE with

α = 0 satisfies the conditions of Theorem 4.7.

The lifted process Φ̃α : R+ × Ω× R× Rd → R× Rd, is defined analogously to (4.5); namely

Φ̃α
(
t, ω, x̃

)
:=
(
t+ s, φα(t+ s, s, θ−sω, x)

)
, x̃ := (s, x) ∈ R× Rd, t ∈ R+. (5.5)

Note that if the flow φα is induced by the solutions of (5.1) with the coefficients b̂
(
α(t), t, x

)
and σ̂

(
α(t), t, x

)
which are time periodic for all α ∈ A, Φ̃α can be represented on a flat cylinder

[0, τ̂) × Rd, [0, τ̂) h R mod τ̂ , 0 < τ̂ < ∞, and the results of §4 hold; one obvious case is for

α = 0 when, by construction, the coefficients are time periodic with period τ . If τ̂ = τ for any

α ∈ A, both the unperturbed (α = 0) and perturbed (α 6= 0) dynamics can be considered on the

same cylinder. We will consider such a case in the last theorem of this section (Theorem 5.16).

Similarly, the transition evolutions (P̃αt )t∈R+ , and their duals (P̃α∗t )t∈R+ can be defined through

(4.7)-(4.8) with the transition kernel P̃α
(
x̃; t, Ã

)
:= P

(
{ω : Φ̃α(t, ω, x̃) ∈ Ã }

)
; namely

P̃αt ϕ(x̃) :=

∫
R×Rd

ϕ(ỹ)P̃α(x̃; t, dỹ), ∀ ϕ ∈M∞
(
R× Rd

)
, (5.6)

µ̃αt+r(Ã) =
(
P̃α∗t µ̃αr

)
(Ã) :=

∫
R×Rd

P̃α(x̃; t, Ã)µ̃αr (dx̃), ∀ µ̃αr ∈ P
(
R× Rd

)
, r ∈ R+, (5.7)

with the short-hand notation µ̃αr (dx̃) = δr(s)ds ⊗ µαr (dx) for probability measures in the skew-

product fibre bundle on P(R × Rd), where µ̃αr ∈ P(R × Rd) and µαr ∈ P(Rd); see, e.g., [24] for

more details concerning the structure of skew-product fibre bundles of probability measures. The

definition in (5.6) can be extend to ϕ ∈M
(
R× Rd

)
in a standard fashion.

The generator of the lifted one-point motion is given by L̃α = ∂s +Lα (see Definition 3.6). By

construction (see, e.g., [61]), one can check that if µαt ∈ P(Rd) is a solution of forward Kolmogorov

equation with the operator L∗α, then µ̃αt = δt⊗µαt solves the lifted forward Kolmogorov equation

with L̃∗α in the skew-product fibre bundle embedded in P(R× Rd).
In the sequel, we derive fluctuation-dissipation formulas associated with the linear response for

time-asymptotic SDE’s dynamics in the random time-periodic regime with the ergodic measure
¯̃µ ∈ P([0, τ)×Rd) as in Theorem 4.11. We start with the definition of a linear response function

which approximates changes in the statistical observables due to sufficiently small perturbations

of the unperturbed dynamics with a time-periodic ergodic probability measure.

Definition 5.1 (Linear Response Function). Assuming that E[ϕ(Φ̃α)] ∈ L1(µ̃0), consider a

family of statistical observables

Fµ̃0ϕ (t, α) =

∫
[0,τ)×Rd

E
[
ϕ
(
Φ̃α(t, ω, x̃)

)]
µ̃0(dx̃) =

〈
P̃αt ϕ, µ̃0

〉
, ϕ ∈ Cτ

(
R× Rd

)
, (5.8)

where

C2
τ (R× Rd) :=

{
ϕ ∈ C2(R× Rd) : ϕ(t+ τ, · ) = ϕ(t, · ), t ∈ R

}
, (5.9)
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the transition evolution {P̃αt }t∈R+ is induced by Φ̃α in (5.5), and µ̃0 ∈ P([0, τ) × Rd) is the

probability measure on the initial condition in (5.4), which is assumed throughout to be given by

the τ -periodic ergodic measure associated with the ‘unperturbed’ dynamics with α = 0. If there

exists a locally integrable function Rµ̃0ϕ such that the Gateaux derivative of F̃µ̃0ϕ ( · , α) at α = 0

satisfies

∆Fµ̃0ϕ,ϑ(t) :=
d

dε
Fµ̃0ϕ (t, εϑ)

∣∣∣
ε=0

=

∫ t

0
Rµ̃0ϕ (t− r, r)ϑ(r)dr, ϑ ∈ C1

∞(R+,R), ϑ(0) = 0, (5.10)

we say thatRµ̃0ϕ is a linear response function due to perturbations of the statistical observable Fµ̃0ϕ .

In other words, Rµ̃0ϕ can be defined if the functional Fµ̃0ϕ ( · , α) is Gateaux differentiable at α = 0

in the direction of ϑ, and the Gateaux derivative is linear and continuous in the neighbourhood

of α = 0. The formula (5.10) can be interpreted as an O(ε) approximation of the change of the

statistical observable Fµ̃0ϕ in response to a sufficiently small perturbation εϑ(t) around α = 0.

The explicit time dependence in the perturbation ϑ(t) enables one to consider the linear response

to small time-dependent changes in the coefficients of (5.4) relative to those in the original

dynamics for α = 0; for example, one can consider changes in the climatological forcing (e.g.,

[1, 3, 58, 61, 33, 35, 36, 37, 38, 63]).

Throughout the remainder of this section, we impose the following regularity conditions which

reduce to Assumption 4.4 when α = 0, and which imply the smoothing property (e.g., [79]) of

the transition evolutions (P̃αt )t∈R+ (in the x-component of the extended state space R× Rd):

Assumption 5.2. Assume that there exists a proper interval A ⊆ R containing α = 0, and that

the following conditions are satisfied for all s 6 t, s ∈ R, and for all α ∈ A:

(i) Dn
α b̂(α, t, · ) ∈ C̃∞(Rd), |Dn

α b̂(α, t, x)| 6 C`(1 + |x|`), 0 6 `,C` <∞, n ∈ N0, and

t 7→ b̂( · , t, · ) is differentiable on A× R× Rd.

(ii) Dn
α σ̂k(α, t, · ) ∈ C̃∞b (Rd), n ∈ N0, and t 7→ σ̂k(t, · , · ) is differentiable on A× R× Rd, and

|∂t∂nαDβ
x σ̂k(α, t, x)| < C <∞, (α, t, x) ∈ A× R× Rd, 1 6 k 6 m,

for any multi-index β, and σ̂k, 1 6 k 6 m the columns of σ̂.

(iii) Lie
(
σ̂1(α, t, x), · · · , σ̂m(α, t, x)

)
= Rd, for all s 6 t, where

Lie
(
σ̂1, · · · , σ̂m

)
:= span

{
σ̂i, [σ̂i, σ̂j ], [σ̂i, [σ̂j , σ̂k]], · · · , 1 6 i, j, k 6 m

}
,

and [F,G ](α, t, x) is the Lie bracket between the vector fields F and G defined by

[F,G ](α, t, x) := DxG(α, t, x)F (α, t, x)−DxF (α, t, x)G(α, t, x).

Remark 5.3. Assumption 5.2, which is a version of the Hörmander condition, implies the exis-

tence of a smooth density of the time-marginal probability measure on (Rd,B(Rd)) induced by

the law of the solutions of (5.1); i.e., µαt (dx) = ραt (x)dx, ραt ∈ C∞(Rd) ∩ L1
+(Rd) for all s 6 t. In

order to simplify the subsequent derivations, we will abuse notation and assume the following

µ̃αt (dx̃) ≡ ρ̃αt (x̃)dx̃ ≡ δt(s)ds⊗ ραt (x)dx, (5.11)

when dealing with probability measures µ̃αt ∈ P
(
R× Rd

)
, µ̃αt (dx̃) = δt(s)⊗ µαt (dx), of the lifted

process in the skew-product fibre bundle associated with the SDE (5.4). This intuitive convention

is consistent with the convention introduced in (4.6) for transition evolutions.
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In addition to Assumption 5.2, the last theorem of this section, which is concerned with the

linear response when both the unperturbed and perturbed measures are τ -periodic and ergodic,

will require the following assumption (which coincides with Assumption 4.4 for α = 0).

Assumption 5.4. Let V ∈ C1,2(R × Rd,R+) such that V (t, 0) = 0 for all t ∈ R, and the

coefficients b̂(α, t, x), σ̂(α, t, x), in (5.1) be such that for α ∈ A, where A ⊆ R is a proper interval

containing α = 0, the following hold:

(i) There exist functions λα ∈ L1(R) with A 3 α 7→ λα(t) bounded for t ∈ R, and a constant

1 6 C <∞ such that for all ξ, η ∈ Lp(Ω,Fs−∞,P) and some 1 < p <∞ we haveE|ξ|p 6 E[V (t, ξ)] 6 C |ξ|p,

E
[
L(2)
α V (t, ξ − η)

]
6 λα(t)E

[
V (t, ξ − η)

]
,

(5.12)

where L(2)
α is defined analogously to the two-point generator L(2) in (3.8) but based on the

coefficients b̂(α, t, · ), σ̂(α, t, · ) of (5.1); moreover, L(2)
α ≡ L(2) for α = 0.

(ii) There exists ¯̄λ > 0 such that

sup
α∈A

{
lim sup
(t−s)→∞

1

t− s

∫ t

s
λα(u)du

}
< −¯̄λ < 0, (5.13)

(iii) Given the one-point motion t 7→ φα(t, s, ω, ξ) induced by (5.1) for ω ∈ Ω, ξ ∈ Rd, and s 6 t,

there exists 0 < Dα <∞ independent of s, t ∈ R such that18 for all ξ ∈ Lp(Ω,Fs−∞,P)

lim sup
(t−s)→∞

E [V (t, φα(t, s, ξ)− ξ)] < Dα, (5.14)

where E
[
V (φα(t, s, ξ))

]
:=
∫

Ω V
(
φα(t, s, ω, ξ)

)
P(dω).

5.2. Preparatory lemmas. We start with the following standard and preparatory results which

utilise relatively well-known results from [79, 86], and are aimed at representing P̃αt ϕ(x̃)−P̃tϕ(x̃)

in the form amenable to further analysis in the context of the linear response. The main results

are derived in §5.3.

Lemma 5.5. Suppose that the coefficients b̂(α, t, x), σ̂(α, t, x) in the SDE (5.1) satisfy Assump-

tion 5.2 so that global solutions of (5.1) exist for all time, and ϕ ∈ C2(R × Rd) is such that

for any fixed x̃ = (s, x) ∈ R × Rd and for all α ∈ A, E[Dβ
xϕ(Φ̃α(t, x̃))] < ∞, |β| 6 2, where

{Φ̃α(t, · , · ) : t ∈ R+} in (5.5) is generated by the lifted SDE (5.4) on R× Rd.
Then, the function v(r, x̃) := P̃αt−rϕ(x̃) with x̃ := (s, x) ∈ R× Rd, and P̃αt defined in (5.6), is

the unique solution of the backward Kolmogorov equation with the terminal condition∂rv(r, x̃) = −L̃αv(r, x̃), 0 6 r 6 t,

v(t, x̃) = ϕ(x̃).
(5.15)

Moreover, for any ϕ ∈ C2
∞(R× Rd), there exists a constant C > 0 such that

‖P̃αt−rϕ‖2,∞ 6 C‖ϕ‖2,∞, 0 6 r 6 t, (5.16)

where ‖ϕ‖2,∞ = ‖ϕ‖∞ +
∑

16|β|62

‖Dβ
xϕ‖∞.

18 This condition can be replaced by a stronger but more concrete constraint on the global existence of the p-th
absolute moment of φα; see Lemma A.1 in Appendix A.
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Proof. See, e.g., [53, Thm 4.8.11] or [79, 86, 18]. Sufficient conditions for E[Dβ
xϕ(Φ̃α)] < ∞,

|β| 6 2, ϕ ∈ C2(R × Rd), α ∈ A, are given in Proposition 5.8. It can also be shown that, under

Assumption 5.2, the problem (5.15) has unique classical solutions for ϕ ∈ C(R× Rd) due to the

smoothing property of (P̃αt )t∈R+ (e.g., [79]; the general case can be obtained by approximating

ϕ ∈ C(R× Rd) by ϕn ∈ C∞(R× Rd) converging uniformly to ϕ on compact subsets of R× Rd).

Lemma 5.6. Suppose that the conditions of Lemma 5.5 hold. Then

P̃αt ϕ(x̃)− P̃tϕ(x̃) =

∫ t

0
P̃r
(
L̃α − L̃

)
P̃αt−rϕ(x̃)dr, 0 6 r 6 t, x̃ ∈ R× Rd. (5.17)

Proof. It can be obtained from Lemma 5.5 that the function u(r, x̃) = P̃αt−rϕ(x̃) − P̃t−rϕ(x̃),

0 6 r 6 t, x̃ ∈ R×Rd, uniquely solves the inhomogeneous Cauchy problem (see, e.g., [86, 79, 18])∂ru(r, x̃) = −L̃u(r, x̃)− α(r) f̂t,α(r, x̃),

u(t, x̃) = 0,
(5.18)

where α ∈ C1
∞(R,R), α(r) ∈ A, and

α(r)̂ft,α(r, x̃) :=
(
L̃α − L̃

)
P̃αt−rϕ(x̃). (5.19)

Next, consider the solutions of (5.4) with α = 0 represented through (5.5) as Φ̃0 = Φ̃(r, ω, x̃)

where Φ̃ is defined in (4.5) and solves the SDE (4.4). Then, by Itô’s formula

du(r, Φ̃r) =
[
∂ru(r, Φ̃r) + L̃u(r, Φ̃r)

]
dr +Dxu(r, Φ̃r)

T σ̃(r, Φ̃r)dW̃r

= −α(r) f̂t,α(r, Φ̃r)dr +Dxu(r, Φ̃r)
T σ̃(r, Φ̃r)dW̃r, (5.20)

where Φ̃r ≡ Φ̃(r, ω, x̃) to simplify notation. Combining (5.20) with (5.18), and using the explicit

form of u(t, x̃) leads to

P̃αt ϕ(x̃)− P̃tϕ(x̃) =

∫ t

0
α(r)E

[
f̂t,α(r, Φ̃(r, x̃)

]
dr =

∫ t

0
P̃r
(
L̃α − L̃

)
P̃αt−rϕ(x̃)dr.

The above identity is well-defined due to the underlying assumptions, and it is discussed further

in Proposition 5.8. �

Definition 5.7 (α-linearised generator). Given the infinitesimal generator L̃α = ∂s + Lα with

Lα defined in (5.2) and (b̂, σ̂) satisfying Assumption 5.2, the α-linearised generator is defined by

Ṽϕ(x̃) = b(x̃)Dxϕ(x̃) +
1

2
Tr
(
a(x̃)D2

xϕ(x̃)
)
, x̃ = (s, x), ϕ ∈ C2

(
R× Rd

)
, (5.21)

where

b(x̃) = ∂αb̂(α, s, x)
∣∣
α=0

, a(x̃) := σ(s, x)HT (s, x) + σT (s, x)H(s, x),

with Hik(s, x) = ∂ασ̂ik(α, s, x)
∣∣
α=0

, 1 6 k 6 m, 1 6 i 6 d, and σ̂(0, t, · ) = σ(t, · ) as in (5.1).

The L2(µ̃t) dual of Ṽ is given by

Ṽ∗ρ̃t(x̃) = −Dx

(
b(x̃)ρ̃t(x̃)

)
+

1

2
Tr
(
D2
x

(
a(x̃)ρ̃t(x̃)

))
, (5.22)

where ρ̃t(x̃) is understood in the sense of (5.11).

Note that the properties of a(x̃) and b(x̃) are fully controlled through Assumption 5.2.
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Proposition 5.8. Suppose that the conditions of Lemma 5.5 are satisfied, and consider a function

ft,α : [0, T )× R× Rd → R, α ∈ A, defined by

ft,α(r, x̃) = Ṽ P̃αt−rϕ(x̃), 0 6 r 6 t 6 T. (5.23)

Then, ft,α ∈ C(R× Rd) and ft,α <∞ for any fixed x̃ ∈ R× Rd.
If Assumption 5.2 holds for 0 6 ` < ∞, and the initial condition in the lifted SDE (5.4) has

p > max(2, `) finite moments, then there exists a constant C = C(T, k, ϕ) > 0 such that for any

fixed x̃ ∈ R× Rd one has

sup
06r6t6T

E
∣∣ft,α(r, Φ̃(r, x̃))

∣∣ 6 C <∞, (5.24)

where {Φ̃(r, · , · ) : r ∈ R+} is the RDS (4.5) generated by the SDE (5.4) with α = 0 (or (4.4)).

The sufficient condition for (5.24) to hold for T → ∞ is that (b̂, σ̂) satisfy the dissipative

conditions (4.13)-(4.14) with p = max(2, `). If ϕ( · , x) 6 Cl(1 + |x|l), 0 6 l,Cl <∞, then (5.24)

holds for T → ∞ when (b̂, σ̂) satisfy (4.13)-(4.14) with p = max(2, `, l); i.e., the conditions

E[Dβ
xϕ(Φ̃α)] <∞, |β| 6 2, in Lemma 5.5 can be replaced by assuming a polynomial growth of ϕ.

Remark 5.9. Note that for a dissipative dynamics satisfying (4.13) the dissipation coefficient

Lb2 might not be large enough to satisfy (4.14) with a given p > 2. Thus, not all dissipative

dynamics automatically satisfy Proposition 5.8 for all time.

Proof. For (s, x) ∈ R× Rd, one can obtain directly from (5.21) that

ft,α(r, x̃) = ṼP̃αt−rϕ(x̃) = b(x̃)DxP̃αt−rϕ(x̃) +
1

2
Tr
(
a(x̃)D2

xP̃αt−rϕ(x̃)
)
. (5.25)

The regularity and growth conditions of the coefficients (b̂, σ̂) imposed in Assumption 5.2 ensure

the existence of global solutions to (5.4) which are represented via Φ̃α(t − r, · , x̃), t − r ∈ R+,

and generate P̃αt−r in (5.6). If p > 2 moments of the initial condition of (5.4) are finite and

E[Dβ
xϕ(Φ̃α(t, x̃))] < ∞, |β| 6 2, t 6 T , then by the assumption on (b̂, σ̂) and Lemma 5.5, we

have ft,α ∈ C(R× Rd) and ft,α <∞ for any fixed x̃ ∈ R× Rd.
Regarding (5.24), the polynomial growth of b̂ combined with the standard calculation utilising

Itô’s formula guarantees the existence of max(2, `) finite moments of the solution for T < ∞
(Theorem 3.5). Thus, (5.24) follows by the Cauchy-Schwarz inequality applied to E|ft,α| and the

finiteness of the moments of a, b for T <∞.

Considering (5.24) for T → ∞, may require additional dissipative constraints on the drift

b̂, as outlined below. Moreover, we specify two explicit classes of ϕ ∈ C2
∞(R × Rd) for which

E[Dβ
xϕ(Φ̃α(t, x̃))] <∞, |β| 6 2, (5.24) holds for all time. First, if ϕ ∈ C2

∞(R× Rd), then

sup
06r6t6T

E|ft,α(r, Φ̃(r, x̃)| 6 CT sup
06r6t6T

‖P̃αt−rϕ‖2,∞. (5.26)

Moreover, by the second part of Lemma 5.5, the term on the right of (5.26) is bounded by C‖ϕ‖2,∞
so that one can set explicitly C = CT C‖ϕ‖2,∞ in (5.24). Given, the existence of global solutions

of (5.4) for all time (Assumption 5.2 and Theorem 3.5), the bound (5.24) can be extended to

T →∞ provided that the dissipative conditions (4.13)-(4.14) hold for (b̂, σ̂) with p = max(2, `);

so that E|b(Φ̃(r, x̃))| <∞, E|a(Φ̃(r, x̃))| <∞, r ∈ R+, in (5.25). More generally, if ϕ ∈ C2(R×Rd)
and ϕ( · , x) 6 Cl(1 + |x|l) with 0 6 l,Cl < ∞, the bound (5.24) can be extended to T → ∞
provided that the dissipative conditions (4.13)-(4.14) hold for (b̂, σ̂) with p = max(2, `, l). Both

assertions can be obtained through derivations analogous to Lemma A.1 in Appendix A. �
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Corollary 5.10. Let f̂t,α : [0, T )× R× Rd → R, α ∈ A, be defined by

α(r)̂ft,α(r, x̃) :=
(
L̃α − L̃

)
P̃αt−rϕ(x̃), x̃ ∈ R× Rd, 0 6 r 6 t 6 T, (5.27)

as in (5.19) of Lemma 5.6; so that f̂t,α(r, x̃) = ft,α(r, x̃) + O(α) with ft,α defined in of Propo-

sition 5.8. Then, under the same conditions as those in Proposition 5.8, f̂t,α ∈ C(R × Rd) and

f̂t,α <∞ for any fixed x̃ ∈ R×Rd. Furthermore, for p > 2 chosen as in Proposition 5.8 one has

sup
06r6t6T

E
∣∣̂ft,α(r, Φ̃(r, x̃))

∣∣ <∞, x̃ ∈ R× Rd, (5.28)

which can be extended to T →∞ in a way analogous to that in Proposition 5.8.

Proof. This is a direct consequence of Proposition 5.8 and the fact that the O(α) terms involve

DxP̃αt−rϕ(x̃), D2
xP̃αt−rϕ(x̃), with coefficients given by Dn

αb̂ and Dn
ασ̂ which are controlled through

Assumption 5.2 and the polynomial bound on the growth of the α-derivatives of b̂.

5.3. Linear response and fluctuation-dissipation formulas for time-periodic measures.

Here, in §5.3.1 we derive a general expression for the linear response function characterising the

change in the statistical observable (5.8) to small perturbations of dynamics of an SDE whose

time-asymptotic dynamics is characterised by time-periodic ergodic probability measures (see §4).

This is followed in §5.3.2 by deriving a more tractable representation of the response function

in terms of fluctuation-dissipation type formulas which allow one to express the change in the

statistical observables through statistical characteristics of the unperturbed dynamics.

5.3.1. The linear response. Here, we derive a general formula for the linear response function

associated with perturbations of the time-asymptotic dynamics of the SDE (4.4). The derived

formula is equivalent to the one obtained formally in [61].

Theorem 5.11 (Linear response). Suppose that Assumption 5.2 holds, Assumption 5.4 holds

for α = 0, and that Proposition 5.8 is satisfied. Consider the family of transition semigroups

{P̃αt : (t, α) ∈ R+ × A} induced by the SDE (5.4) which for α = 0 admit τ -periodic ergodic

measures (µ̃t)t>0, µ̃t ∈ P
(
[0, τ)× Rd

)
, where µ̃t(dx̃) = δ(t+s mod τ)(s)⊗ ρt(x)dsdx.

Then, given the observable Fµ̃0ϕ (t, α) =
〈
P̃αt ϕ, µ̃0

〉
in (5.8), for any ϕ ∈ C2

τ (R × Rd) such that

E[Dβ
xϕ(Φ̃α(t, · ))] ∈ L1(µ̃0), |β| 6 2, and the perturbation α(·) = εϑ(·) ∈ C1

∞(R+,R), ϑ(0) = 0,

such that εϑ ∈ A, the following holds

∆Fµ̃0ϕ,ϑ(t) =

∫ t

0
Rµ̃0ϕ (t− r, r)ϑ(r)dr, (5.29)

with the linear response function given by

Rµ̃0ϕ (t− r, r) =

∫
[0,τ)×Rd

P̃t−rϕ(x̃)
(
Ṽ∗ρ̃r

)
(x̃)dx̃, (5.30)

where Ṽ∗ is defined in (5.22), and ρ̃r(x̃)dx̃ is understood in the sense of (5.11).

Remark 5.12. ∆Fµ̃0ϕ,ϑ(t) can be interpreted as the approximate O(ε) response of the observ-

able Fµ̃0ϕ (t, 0) in (5.4) to a sufficiently small perturbation α(t) = εϑ(t), ϑ(0) = 0. Note that

the linear response formula is solely based on quantities defined for the ‘unperturbed’ dynam-

ics (α = 0). Moreover, the perturbation α(t) = εϑ(t) does not necessarily have to factorise

the coefficients of (5.1) as, e.g., b̂(α(t), t, x) = b̂(0, t, x) + εF(x)ϑ(t). For example, consider the

following b̂(α(t), t, x) = −(2− sin2
(
x(1 + α(t))

)
x cos2(t) in (5.1) and the derivations below.
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Proof. First, we set α = εϑ ∈ A and show that under the assumptions of the proposition the

following holds for any ϕ ∈ C2
τ (R × Rd) such that E[Dβ

xϕ(Φ̃α(t, · ))] ∈ L1(µ̃0), |β| 6 2 (see

Proposition 5.8 for a sufficient condition for this to hold for all time),

lim
ε→0

1

ε

(
P̃εϑ(t)
t ϕ(x̃)− P̃tϕ(x̃)

)
=

∫ t

0
ϑ(r)P̃r(ṼP̃t−rϕ)(x̃)dr, 0 6 r 6 t, ϑ ∈ C1

∞(R+,R),

with Ṽ defined in (5.21). To this end, it follows from Lemma 5.6 that for ε > 0 sufficiently small

1

ε

(
P̃εϑ(t)
t ϕ(x̃)− P̃tϕ(x̃)

)
=

1

ε

∫ t

0
P̃r
(
L̃εϑ(r) − L̃

)
P̃εϑ(r)
t−r ϕ(x̃)dr =

∫ t

0
ϑ(r)E

[
f̂t,ε(r, Φ̃(r, x̃))

]
dr,

where Φ̃(r, ω, x̃) represents the solution of (5.4) with α = 0 (or the solution of (4.4)).

By Proposition 5.8, Corollary 5.10, and the dominated convergence theorem, we have

lim
ε→0

1

ε

(
P̃εϑ(t)
t ϕ(x̃)− P̃tϕ(x̃)

)
=

∫ t

0
ϑ(r)E

[
lim
ε→0

f̂t,ε(r, Φ̃(r, x̃)
]
dr =

∫ t

0
ϑ(r)E

[
ṼP̃t−rϕ(Φ̃(r, x̃)

]
=

∫ t

0
ϑ(r)P̃r

(
ṼP̃t−rϕ(x̃)

)
dr.

Using Fubini’s theorem and Proposition 5.8, we have

lim
ε→0

1

ε

〈
P̃εϑ(t)
t ϕ− P̃tϕ, µ̃0

〉
=

∫ t

0
ϑ(r)

∫
[0,τ)×Rd

P̃r
(
ṼP̃t−rϕ(x̃)

)
µ̃0(dx̃)dr

=

∫ t

0
ϑ(r)

∫
[0,τ)×Rd

ṼP̃t−rϕ(x̃)(P̃∗r µ̃0)(dx̃)dr

=

∫ t

0
ϑ(r)

∫
[0,τ)×Rd

ṼP̃t−rϕ(x̃)µ̃r(dx̃)dr.

By the Hörmander Lie bracket condition in Assumption 5.2, and ergodicity of the time-periodic

measures µ̃r, there exists 0 < ρr ∈ C∞(Rd) ∩ L1
+(Rd) such that (P̃∗r µ̃0)(dx̃) = µ̃r(dx̃) = ρ̃r(x̃)dx̃,

where ρ̃r(x̃)dx̃ is understood in the sense of (5.11). Thus, for any ϕ ∈ C2
τ (R × Rd), such that

E[Dβ
xϕ(Φ̃α(t, · ))] ∈ L1(µ̃0), |β| 6 2, we have

lim
ε→0

1

ε

〈
P̃εϑ(t)
t ϕ− P̃tϕ, µ̃0

〉
=

∫ t

0
ϑ(r)

∫
[0,τ)×Rd

ṼP̃t−rϕ(x̃)ρ̃r(x̃)dx̃dr

=

∫ t

0

(∫
[0,τ)×Rd

P̃t−rϕ(x̃)
(
Ṽ∗ρ̃r

)
(x̃)dx̃

)
ϑ(r)dr.

Finally, by the definition of the response functional Rµ̃0ϕ we have for ϑ ∈ C1
∞(R+,R), that∫ t

0
Rµ̃0ϕ (t− r, r)ϑ(r)dr = lim

ε→0

1

ε

[
Fµ̃0ϕ (t, εϑ(t))− Fµ̃0ϕ (t, 0)

]
= lim

ε→0

1

ε

〈
P̃εϑ(t)
t ϕ− P̃tϕ, µ̃0

〉
=

∫ t

0

(∫
[0,τ)×Rd

P̃t−rϕ(x̃)
(
Ṽ∗ρ̃r

)
(x̃)dx̃

)
ϑ(r)dr,

where ρ̃r(x̃)dx̃ is understood in the sense of (5.11). �
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5.3.2. Fluctuation-dissipation formulas. Given the general framework for the linear response

in the time-periodic regime, we now derive a set of more tractable representations of the re-

sponse function (5.30) via formulas exploiting the time-asymptotic statistical properties of the

unperturbed dynamics (4.4), or (5.1) with α = 0; in line with the terminology inherited from

statistical physics, these are termed ‘fluctuation-dissipation’ formulas. The first set of results

in Theorem 5.14 shadows and formalises formulas derived in [61], while the results in a more

restrictive Theorem 5.16 concern the linear response in situations when the ‘α-perturbations’ do

not destroy the time periodicity and ergodicity of the dynamics in the sense that the coefficients

in (5.1) remain τ -periodic for all α ∈ A. It turns out the two results are related in a specific way.

Definition 5.13 (Correlation function). Given the RDS
{

Φ̃(t, · , · ) : t ∈ R+
}

on [0, τ)×Rd,
and ϕ,ψ ∈ C2

τ (R×Rd), such that for any fixed x̃ ∈ [0, τ)×Rd, E[ϕ
(
Φ̃(t, x̃)

)
], E[ψ

(
Φ̃(t, x̃)

)
] <∞,

the correlation of the random variables ϕ
(
Φ̃(t, · , x̃)

)
and ψ

(
Φ̃(r, · , x̃)

)
is given by

E
[
ϕ
(
Φ̃(t, x̃)

)
ψ
(
Φ̃(r, x̃)

)]
= P̃r

(
ψ(x̃)P̃t−rϕ(x̃)

)
, 0 6 r 6 t, (5.31)

where (P̃t)t∈R+ is defined in (4.7), and (5.31) follows from the Markov property of the RDS Φ̃.

The correlation function based on ϕ,ψ ∈ C2
τ (R× Rd) and µ̃ ∈ P([0, τ)× Rd) is defined as

Kµ̃ϕ,ψ(t− r, r) :=

∫
[0,τ)×Rd

P̃r
(
ψP̃t−rϕ

)
dµ̃ =

∫
[0,τ)×Rd

ψP̃t−rϕd(P̃∗r µ̃), 0 6 r 6 t. (5.32)

Theorem 5.14 (FDT I). Suppose that Assumption 5.2 holds, Assumption 5.4 holds for α = 0,

and Proposition 5.8 is satisfied. Then, for any ϕ ∈ C2
τ

(
R×Rd

)
such that E[Dβ

xϕ(Φ̃α(t,·))]∈L1(µ̃0),

|β| 6 2, the following holds:

(i) There exists a family {µ̃t}t>0 of τ -periodic probability measures, µ̃t ∈ P([0, τ) × Rd), and

a uniquely P̃∗t -ergodic probability measure, ¯̃µ ∈ P
(
[0, τ) × Rd

)
, which is associated with the

RDS {Φ̃(t, · , · ) : t ∈ R+} on [0, τ)× Rd and generated by the SDE (5.4) with α = 0.

(ii) The linear response function in (5.30) is given by

Rµ̃0ϕ (t− r, r) = Kµ̃0ϕ,Br(t− r, r) =

∫
[0,τ)×Rd

Br(x̃)P̃t−rϕ(x̃)ρ̃r(x̃)dx̃, Br(x̃) =
Ṽ∗ρ̃r(x̃)

ρ̃r(x̃)
, (5.33)

where 0 6 r 6 t, µ̃r(dx̃) = ρ̃r(x̃)dx̃ is understood in the sense of (5.11), the correlation

function Kµ̃0ϕ, ( · ) is defined in (5.32), and the operator Ṽ∗ is defined in (5.22).

(iii) The linear response for perturbations of observables based on the ergodic measure ¯̃µ is

R̄ϕ(t− r) = K̄ϕ,B(t− r) =

∫
[0,τ)×Rd

B(x̃)P̃t−rϕ(x̃)¯̃ρ(x̃)dx̃, B(x̃) =
Ṽ∗ ¯̃ρ(x̃)

¯̃ρ(x̃)
, (5.34)

where 0 6 r 6 t, R̄ϕ(t− r) := R ¯̃µ
ϕ(t− r, 0), and K̄ϕ,B(t− r) := K ¯̃µ

ϕ,B(t− r, 0).

The above hold for all time if Proposition 5.8 is satisfied for all time.

Proof. Part (i) is a direct consequence of Theorem 4.7 and Theorem 4.11. For Part (ii), we have

from the representation of the response functional Rµ̃0ϕ in (5.30) together with the operator Ṽ∗
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in (5.22) that the following holds for 0 6 r 6 t

Rµ̃0ϕ (t− r, r)

=

∫
[0,τ)×Rd

P̃rṼ
(
P̃t−rϕ(x̃)

)
µ̃0(dx̃) =

∫
[0,τ)×Rd

Ṽ
(
P̃t−rϕ(x̃)

)
ρ̃r(x̃)dx̃

=

∫
[0,τ)×Rd

{
Gi(x̃)∂xiP̃t−rϕ(x̃) +

1

2
[σik(x̃)Hjk(x̃) + σjk(x̃)Hik(x̃)] ∂2

xixj P̃t−rϕ(x̃)

}
ρ̃r(x̃)dx̃

=

∫
[0,τ)×Rd

{
− ∂xi [Gi(x̃)ρ̃r(x̃)] +

1

2
∂2
xixj

(
[σik(x̃)Hjk(x̃) + σjk(x̃)Hik(x̃] ρ̃r(x̃)

)}
P̃t−rϕ(x̃)dx̃

=

∫
[0,τ)×Rd

Ṽ∗ρ̃r(x̃)

ρ̃r(x̃)
P̃t−rϕ(x̃)ρ̃r(x̃)dx̃ =

∫
[0,τ)×Rd

Br(x̃)P̃t−rϕ(x̃)ρ̃r(x̃)dx̃ = Kµ̃0ϕ,Br(t− r, r),

where ϕ ∈ C2
τ

(
R × Rd

)
, E[Dβ

xϕ(Φ̃α(t, · ))] ∈ L1(µ̃0), |β| 6 2, as in Theorem 5.11 (see also

Proposition 5.8 for a sufficient condition), and ρ̃r(x̃)dx̃ is understood in the sense of (5.11); i.e.,

Rµ̃0ϕ (t− r, r) =

∫
[0,τ)×Rd

(
Ṽ∗ρr(x)

)(
Pr,tϕ(t, x)

)
dx

=

∫
[0,τ)×Rd

Br(x)
(
Pr,tϕ(t, x)

)
ρr(x)dx, 0 6 r 6 t. (5.35)

As regards Part (iii), notice that due to the fact that P̃∗r ¯̃µ = ¯̃µ for any r ∈ [0, τ), we have

R ¯̃µ
ϕ(t− r, r) =

∫
[0,τ)×Rd

P̃rṼ
(
P̃t−rϕ

)
¯̃µ(dx̃) =

∫
[0,τ)×Rd

Ṽ
(
P̃t−rϕ

)
P̃∗r ¯̃µ(dx̃)

=

∫
[0,τ)×Rd

Ṽ
(
P̃t−rϕ

)
¯̃µ(dx̃) = R ¯̃µ

ϕ(t− r, 0),

and the desired result can be derived by following analogous derivations to those above. �

Remark 5.15.

(i) Theorem 5.14 implies that for the RDS
{

Φ̃(t, · , · ) : t ∈ R+
}

in (4.5) induced by the lifted

SDE (4.4) on [0, τ) × Rd, the change in the value of an observable Fµ̃0ϕ (t, α) = 〈P̃tϕ, µ̃0〉
in (5.8) in response to a sufficiently small and regular perturbation can be represented by

the correlation function utilising the unperturbed dynamics/fluctuations. The operator Ṽ
defined in (5.21) does not depend on time due to the τ -periodicity of the coefficients of (5.1)

at α = 0 and the skew-product formulation on [0, τ)× Rd.
(ii) The response functions (5.33) and (5.34) evaluated on the unperturbed dynamics are amenable

to practical approximations via the appropriate long-time averages.

By P̃∗nτ - ergodicity of µ̃r for any fixed r ∈ [0, τ), and r 6 t we have (see Remark 4.13)

Rµ̃0ϕ (t− r, r) =

∫
[0,τ)×Rd

Br(x̃)P̃t−rϕ(x̃)ρ̃r(x̃)dx̃

= lim
n→∞

1

N

N∑
n=0

Br
(
P̃nτ (x̃)

)
P̃t−rϕ

(
P̃nτ (x̃)

)
= lim

n→∞

1

N

N∑
n=0

Br(Pt,t+nτ (x))
(
Pr,tϕ(t,Pt,t+nτ (x))

)
,
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where ϕ ∈ C2
τ

(
R × Rd

)
, E[Dβ

xϕ(Φ̃α(t, · ))] ∈ L1(µ̃0), |β| 6 2, and in the last line above, we

used explicitly the skew-product formulation (5.11) and the representation (5.35); (Pr,t)t>r
is the family of transition evolutions defined in (3.3).

Similarly, by P̃∗t - ergodicity of ¯̃µ (see Theorem 4.11) we have for any u ∈ R+

R̄ϕ(u) =

∫
[0,τ)×Rd

B(x̃)P̃t−rϕ(x̃)¯̃ρ(x̃)dx̃

= lim
n→∞

1

N

∫ N

0
B
(
P̃ζ(x̃)

)
P̃uϕ

(
P̃ζ(x̃)

= lim
n→∞

1

N

∫ N

0
B
(
P0,ζ(x)

)
P0,uϕ

(
ζ,P0,ζ(x)

)
dζ.

(iii) Note that the function Br in (5.30) of Theorem 5.14 is unique almost everywhere. To see

this, suppose that there exists B̃r ∈ L1(µ̃r) such that

Kµ̃ϕ,Br(t− r, r) = Kµ̃
ϕ,B̃r

(t− r, r), ϕ ∈ C2
c ([0, τ)× Rd), 0 6 r 6 t.

This implies that〈
P̃t−rϕ,Br − B̃r

〉
µ̃r

= 0, ϕ ∈ C2
c ([0, τ)× Rd), 0 6 r 6 t.

Given that ϕ ∈ C2
c ([0, τ)× Rd) is bounded, taking limit as r → t in the above and applying

the dominated convergence theorem, we obtain Bt = B̃t µ̃t - a.e. by arbitrariness of ϕ.

Throughout the reminder of this section, we shall assume that t 7→ b̂(α, t, x), σ̂(α, t, x), are

τ -periodic for all (α, x) ∈ A×Rd. Thus, under Assumptions 5.4 and 5.2, the family of measures

{µ̃αt : t ∈ R+, α ∈ A} is τ -periodic and ergodic (as in the case of §4.2) and, as a consequence,

the time-averaged (P̃α∗t - ergodic) measures ¯̃µα (see (4.29)) satisfy the stationary PDE∫
[0,τ)×Rd

L̃αϕ(x̃)¯̃µα(dx̃) = 0, α ∈ A, ϕ ∈ D(L̃α) ∩ Eα, (5.36)

where L̃α is the generator of the RDS {Φ̃α(t, · , · ) : t ∈ R+} on [0, τ) × Rd, for α ∈ A (in the

same form as L̃ in Definition 3.6), and the domain D(L̃α) is defined by

D(L̃α) :=H1
(
[0, τ)× Rd; ¯̃µα

)
=
{
ϕ : [0, τ)× Rd → R : ϕ(0, · ) = ϕ(τ, · ) and∫

[0,τ)×Rd
|ϕ(s, x)|2 ¯̃µα(dsdx) +

∫
[0,τ)×Rd

|Dϕ(s, x)|2 ¯̃µα(dsdx) <∞, α ∈ A
}
. (5.37)

and

Eα :=
{
ϕ ∈ C2([0, τ)× Rd) : ϕ(0, · ) = ϕ(τ, · ), E[Dβ

xϕ(Φ̃α(t, · ))] ∈ L1(¯̃µα), |β| 6 2, α ∈ A
}
.

(5.38)

Sufficient conditions for ϕ ∈ Eα were given in Proposition 5.8.

Given the ergodic measure ¯̃µ (4.29) of the unperturbed dynamics (i.e., (5.4) with α = 0) and

the above setup, the linear response ∆F ¯̃µ
ϕ,ϑ(t) of the statistical observable F ¯̃µ

ϕ(t, α) in (5.8) due

to a sufficiently small perturbation εϑ(t) around α = 0 such that it preserves the τ -periodicity of

the unperturbed dynamics is summarised as follows.
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Theorem 5.16 (FDT II). Let Assumptions 5.2-5.4 be satisfied for α ∈ A, and suppose that

Proposition 5.8 holds. Assume further that t 7→ b̂(t, α, x), t 7→ σ̂(t, α, x) are τ -periodic for all

(α, x) ∈ A× Rd. Then, the following hold:

(i) For every α ∈ A, {µ̃αt : t ∈ R+} is a family of τ -periodic measures induced by the one-point

motion x̃ 7→ Φ̃α(t, ω, x̃), ω ∈ Ω, with the uniquely P̃α∗t - ergodic measure ¯̃µα satisfying (5.36).

(ii) The map α 7→ ¯̃µα(dx̃) = ¯̃ρα(x̃)dx̃ (with ¯̃ρα understood in the sense of (5.11)) is weakly

differentiable at α = 0 for all x̃ ∈ [0, τ)×Rd, and the linear response (5.30) associated with

perturbations of observables based on the P̃∗t - ergodic measure ¯̃µ is given by

R̄ϕ(t− r) := R ¯̃µ
ϕ(t− r, 0) = ∂rK

¯̃µ
ϕ,W(t− r, r), 0 6 r 6 t, (5.39)

for ϕ ∈ D(L̃α) ∩ Eα, with the correlation function K ¯̃µ
ϕ,W in (5.32) with W ∈ C∞

(
[0, τ)×Rd

)
given by

W(x̃) =
η(x̃)
¯̃ρ(x̃)

, s.t. 〈η, ϕ〉 := 〈∂α ¯̃ρα, ϕ〉
∣∣
α=0

, (5.40)

with ∂α ¯̃ρα understood in the weak sense.

Proof. Part (i) is a direct consequence of Theorem 4.7 and Theorem 4.11 given the fact that

Assumptions 5.4-5.2 hold for α in a proper interval A containing α = 0. For Part (ii), we proceed

as at the beginning of the the proof of Theorem 5.11, except that due to Part (i), both the

unperturbed and the perturbed measures are τ -periodic. Thus, for ϑ ∈ C1
∞(R+;R) and ε > 0

sufficiently small so that εϑ ∈ A, and for ϕ ∈ Eα there exists a constant 0 < Cε,ϕ <∞ such that

〈ϕ, µ̃εϑt 〉 − 〈ϕ, µ̃t〉 =

∫
[0,τ)×Rd

(
P̃εϑt ϕ(x̃)− P̃tϕ(x̃)

)
µ̃0(dx̃)

=

∫
[0,τ)×Rd

(∫ t

0
εϑ(r)E

[
f̂t,ε(r, Φ̃(r, · , x̃))

]
dr

)
µ̃0(dx̃)

6 εt‖ϑ‖∞Cε,ϕ, (5.41)

where the bound is due to Proposition 5.8. Averaging both sides over t ∈ [0, τ) we have

lim
ε↓0

1

ε
〈ϕ, ¯̃µεϑ − ¯̃µ〉 <∞, ϕ ∈ Eα. (5.42)

Thus, ¯̃µα is weakly differentiable. Next, by the Hörmander condition in Assumption 5.2, we have
¯̃µα(dx̃) = ¯̃ρα(x̃)dx̃ so that for any ϑ ∈ C1

∞
(
R+,R

)
lim
ε↓0

1

ε
〈ϕ, ¯̃ρεϑ − ¯̃ρ〉 <∞, ϕ ∈ Eα, (5.43)

which implies that ¯̃ρα is weakly differentiable at α = 0 (with ¯̃ρα understood in the sense of (5.11)

to simplify notation). Furthermore, (5.36) yields〈
¯̃ρα, L̃αϕ

〉
= 0, α ∈ A, ϕ ∈ D(L̃α) ∩ Eα. (5.44)

Differentiating (5.44) with respect to the parameter α (in the weak sense), we obtain〈
∂α ¯̃ρα,−L̃ϕ

〉∣∣∣
α=0

=
〈

¯̃ρ, Ṽϕ
〉

=
〈
Ṽ∗ ¯̃ρ, ϕ

〉
. (5.45)

Next, we set
〈
η,−L̃ϕ

〉
:= 〈∂α ¯̃ρα,−L̃ϕ〉|α=0, and note that P̃tϕ ∈ D(L̃α) ∩ Eα, t > 0, for any

ϕ ∈ D(L̃α) ∩ Eα (due to Assumption 5.2 and the associated smoothing property of (Ps,t)s6t
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generating (P̃t)t∈R+ in (4.7); e.g., Proposition 4.10 and [79]). Thus, we have

K ¯̃µ
ϕ,W(t− r, r) =

〈
P̃r
(
WP̃t−rϕ

)
, ¯̃ρ
〉

=
〈
P̃t−rϕ,W ¯̃ρ

〉
=
〈
P̃t−rϕ, η

〉
, (5.46)

where W is given in (5.40), and subsequently

∂rKϕ,W(t− r, r) = ∂r〈P̃t−rϕ, η〉 = 〈−L̃P̃t−rϕ, η〉.

Since P̃t−rϕ ∈ D(L̃α) ∩ Eα for 0 6 r 6 t, we have by (5.45) that for ϕ ∈ D(L̃α) ∩ Eα

∂rKϕ,W(t− r, r) = 〈−L̃P̃t−rϕ, η〉 =
〈
ṼP̃t−rϕ, ¯̃ρ

〉
=

∫
[0,τ)×Rd

(ṼP̃t−rϕ)(x̃)¯̃µ(dx̃) = R ¯̃µ
ϕ(t− r, 0). �

Remark 5.17. Note that Theorem 5.14 is more general than Theorem 5.16 in the sense that

it only requires time-periodicity of the coefficients of the SDE (5.1) and the existence of time-

periodic probability measure for the unperturbed dynamics (i.e., for α = 0 in (5.1)) but it does

not preclude the perturbed dynamics to have time-periodic measures. Thus, a natural question

arises as to the connection between the linear response functions R̄ϕ in (5.34) of Theorem 5.14 and

(5.39) of Theorem 5.16, respectively, in the case when both the unperturbed and the perturbed

dynamics (i.e., for α ∈ A in (5.1)) have time-periodic ergodic measures of period τ . The desired

connection stems from the fact that under Assumption 5.2 the identity (5.45) leads to

〈W,−L̃ϕ〉 ¯̃µ = 〈W ¯̃ρ,−L̃ϕ〉 = 〈η,−L̃ϕ〉 = 〈Ṽ∗ ¯̃ρ, ϕ〉 =
〈 Ṽ∗ ¯̃ρ

¯̃ρ
, ¯̃ρϕ

〉
= 〈B, ϕ〉 ¯̃µ,

for any ϕ ∈ D(L̃α)∩Eα, where L̃ = ∂s+L is the generator of the one-point motion x̃ 7→ Φ̃(t, ω, x̃),

t > 0, on the extended state space [0, τ) × Rd. Thus, we obtain B = −L̃ ¯̃µ∗W, where L̃ ¯̃µ∗ is the

L2(¯̃µ) dual of L̃. In fact, the above result also implies that W in (5.40) of Theorem 5.16 is

not unique in contrast to B in (5.34) of Theorem 5.14. To see this, assume that there exists

W̃ ∈ L1(¯̃µ) on [0, τ)× Rd such that

∂rK
¯̃µ
ϕ,W(t− r, r) = ∂rK

¯̃µ

ϕ,W̃
(t− r, r), ϕ ∈ C∞c ([0, τ)× Rd), 0 6 r 6 t,

which implies that (see (5.46))

d

dr

〈
P̃t−rϕ,W− W̃

〉
¯̃µ

= 0, ϕ ∈ C∞c ([0, τ)× Rd), 0 6 r 6 t.

Since C∞c ([0, τ) × Rd) ⊂ D(L̃), it follows by the smoothing property of P̃t−r (under Assump-

tion 5.2) and the dominated convergence theorem that〈
L̃ϕ,W− W̃

〉
¯̃µ

= 0.

Since W− W̃ ∈ L1(¯̃µ), W− W̃ is a.e. constant; hence, W satisfying Theorem 5.16 is not unique.

Example 5.18 (Stochastic Lorenz model with periodic forcing). We return to the stochastic

Lorenz model with time-periodic forcing used in Example 4.14, and we consider a simple case of

perturbed dynamics in (4.40) in the form

dvαt =
[
−Avαt −G(vαt ) + F (t) + εF(vαt )ϑ(t)

]
dt+ σ(vαt )dWt, (5.47)

where ϑ ∈ C1
∞(R+,R), ϑ(0) = 0, v 7→ F(v) ∈ C̃∞∞(Rd), and A,G(v), F (t) are defined as in (4.40) for

vαt = (xαt , y
α
t , z

α
t ). Here, the last term in the drift represents a perturbation of the dynamics (4.40)
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Figure 2. The responses ∆Ex(t), ∆Ey(t), ∆Ez(t) of the expectations E[xt], E[yt], E[zt], associated with the
dynamics (4.40) perturbed to (5.47) via the spatially uniform, time-aperiodic perturbation (5.51) with ε = 0.05,
and t0 = 80τ,∆T = 12. The left column shows the direct simulation of (5.47), and the right column shows
the comparison between the exact response and the linear response given by (5.48) and the response func-
tion given by (5.50). The parameters of the unperturbed system (4.40) are ᾱ = 7.3, β̄ = 26, γ̄ = 7, %̄ = 10,
f̄ = 100, δ̄ = 0.9, τ = 1, σ̄ = 0.2; see Figure 1. Further details are discussed in the main text of Example 5.18.

due to α(t) = εϑ(t), which is chosen for simplicity to be in the space-time factorised form (recall,

however, that the perturbation in this framework can take a more general form; see Remark 5.12).

Note that, analogously to (4.40), the periodically forced dynamics in (5.47) satisfies Assump-

tion 5.2, and recall that in appropriate parameter regimes of (4.40) (or in (5.47) with α = 0)

there exists a time-periodic ergodic measure µt ∈ P(Rd) with a smooth density ρt with respect

to the Lebesgue measure on R3 for all t ∈ [0, τ), 0 < τ <∞.

Assuming that the conditions of Theorem 5.11 hold, the linear response ∆Fµ̃0ϕ,ϑ(t) in (5.29)

∆Fµ̃0ϕ,ϑ(t) =

∫ t

0
Rµ̃0ϕ (t− r, r)ϑ(r)dr, ϑ ∈ C1

∞(R+,R), ϑ(0) = 0, (5.48)

of the observable ϕ to the perturbation εF(v)ϑ(t) in (5.47) in the random time-periodic ergodic

regime is determined by convolving the response function Rµ̃0ϕ with ϑ, where (see Theorem 5.14)

Rµ̃0ϕ (t− r, r) =

∫
[0,τ)×R3

∂v
(
F(v)ρ̃r(ṽ)

)
P̃t−rϕ(ṽ)dṽ = Kµ̃0ϕ,Br(t− r, r), 0 6 r 6 t, (5.49)

which is solely based on the unperturbed dynamics. In the above expression µ̃t(ṽ) = ρ̃t(ṽ)dṽ,

ṽ = (s, v) ∈ [0, τ) × R3, and Kµ̃0ϕ,Br(t − r, r) is the correlation function (5.32) of the random

variables ϕ(ṽt), and Br(ṽ) = −∂v(F(v)ρ̃r(ṽ))/ρ̃r(ṽ), with µ̃t(ṽ) = ρ̃t(ṽ)dṽ understood in the sense

of (5.11). Thus, the response function can be written in a form amenable to computations as

Rµ̃0ϕ (t− r, r) =

∫
[0,τ)×Rd

(
Ṽ∗ρr(v)

)(
Pr,tϕ(t, v)

)
dv

=

∫
[0,τ)×Rd

Br(v)
(
Pr,tϕ(t, v)

)
ρr(v)dv, 0 6 r 6 t, (5.50)
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(see Remark 5.15(ii)) where Ṽ∗ is defined in (5.22), Br is given in (5.33), and (Pr,t)t>r is the

family of transition evolutions defined in (3.3). Furthermore, (5.50) can be evaluated in a more

practical fashion via appropriate ergodic averages, as discussed in Remark 5.15(ii).

For simplicity of the numerical illustration we consider the linear response of the expectation of

the solutions to (4.40) to the perturbation εF(vα)ϑ(t) introduced in the drift coefficient of (5.47).

Given the dynamics (5.47) and ϕ(v) = v, setting p = 2 is sufficient for Assumption 4.4 and

Proposition 5.8 to hold (i.e., Theorems 4.7, 4.11, 5.11, 5.14 will hold for all time if the perturbation

maintains dissipativity, which is the case here). In the examples shown in Figures 2, 3 we denote

the expectation of the solutions to (5.47) by E[xt], E[yt], E[zt], and we consider the response of

the expectation to a spatially uniform perturbation εF(vα)ϑ(t) with F(vα) = (f̄ , 0, 0)T and

ϑ(t) = Θ(t) cos(2π/3.3 t), (5.51)

where

Θ(t) =


1 t > t0 + ∆T,

2
∆T (t− t0)− 1

∆T 2 (t− t0)2 t0 6 t 6 t0 + ∆T,

2
∆T (t− t0) + 1

∆T 2 (t− t0)2 t0 −∆T 6 t 6 t0,

−1 t < −t0 −∆T.

(5.52)

The simulations were performed for (5.47) with the same parameter values as those in Exam-

ple 4.14 in the random time-periodic regime, and the perturbation with t0 = 80τ,∆T = 1 with

the amplitudes set to ε = 0.05 in Figure 2, and ε = 0.25 in Figure 3. The unperturbed initial

time-periodic measure at t = 0, i.e., µ̃0 = δ0 ⊗ µ0, was approximated from long-time simulations

of an ensemble of solutions to (5.47) with α = 0 at t = τn, n ∈ N0. To simplify the notation, the

linear response ∆Fµ̃0ϕ,ϑ(t) in (5.29) of the expectations is denoted by, respectively, ∆Ex(t), ∆Ey(t),
∆Ez(t). The linear response was estimated with the help of the fluctuation-dissipation formula

(5.50), where Kϕ,Br(t− r, r) in (5.32) exploits the statistical correlations in the time-asymptotic

dynamics of the unperturbed system (4.40) via (5.31). As expected from the theory, the linear

response provides a good approximation for a sufficiently small perturbation (Figure 2), and it

deteriorates with the increasing amplitude of the perturbation (Figure 3); the accuracy of the

approximation improves still with the decreasing amplitude of the perturbation but we do not

show these unsurprising results.

In the simple example illustrated in Figure 4, we consider the response of the expectation of the

solution to (5.47) in the stable random time-periodic regime to a spatially uniform time-periodic

perturbation εF(vα)ϑ(t) with ε = 0.1, F(vα) = (f̄ , 0, 0)T and

ϑ(t) = H(t− 80.25τ) cos2(2π/τ t), (5.53)

where H(t) is the Heaviside step function. As in the previous examples, the accuracy of the linear

response via the FDT formulas (5.49) or (5.50) combined with (5.48) improves for decreasing

magnitude of the perturbation but we do not show these unsurprising results. Note that in this

case the perturbed measures are also τ -periodic and one could consider the FDT for the ergodic

measure ¯̃µ as in Theorem 5.16; such considerations of the linear response are more relevant in

the abstract analysis and we do not pursue such a scenario here (see, however, Remark 5.17).

Finally, it needs to be stressed that the direct numerical evaluation of the correlation function

Kϕ,Br(t−r, r) in (5.49) is, in general, very computationally intensive due to the need for estimating

the time-dependent density ρt(v), v ∈ R3, t ∈ [0, τ); more practical implementations rely on
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Figure 3. The responses ∆Ex(t), ∆Ey(t), ∆Ez(t) of E[xt], E[yt], E[zt] associated with the dynamics (4.40) to
a spatially uniform, time-aperiodic perturbation (5.51) in (5.47) with ε = 0.25; the remaining parameters are as in
Figure 2. See the main text in Example 5.18 for more details.

Figure 4. The responses ∆Ex(t), ∆Ey(t), ∆Ez(t) of E[xt], E[yt], and E[zt] associated with the dynamics (4.40)
to a spatially uniform, time-periodic perturbation (5.53) in (5.47) with ε = 0.1; the remaining parameters are as
in Figure 2. See the main text in Example 5.18 for more details.

various approximations (e.g., a Gaussian approximation of the underlying density), and they

were discussed in [61] in the time-periodic setting, and in [1, 2, 3, 58, 61, 33, 35, 36, 37, 38, 63] in

the stationary setting. These references also consider much more elaborate examples than what

we could consider in this work.
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Appendix A. Growth conditions and existence of absolute moments of solutions

of non-autonomous SDE’s

Here, we provide explicit examples of two classes of time-periodic coefficients in the SDE (2.1)

which satisfy Assumption 4.4.

Lemma A.1. Let {φ(t, s, · , · ) : t > s} be a stochastic flow generated by the SDE (2.1), and let

V ∈ C1,2(R×Rd;R+) be a Lyapunov function satisfying the first part of (4.10) with some p > 1.

Assume that the following ‘dissipative’ growth conditions hold on the coefficients of (2.1)

〈b(t, x), x〉 6 Lb1(t)− Lb2(t)|x|2, ‖σ(t, x)‖2hs 6 Lσ(t)(1 + |x|2). (A.1)

Suppose further that there exist bounded functions Lb1(·), Lb2(·), Lσ(·) ∈ C(R;R+) such that

inf
t∈R

(
Lb2(t)− 2

p
2
−1Lb1 − 1

2(2
p
2
−1 + 1)Lσ(t)(p− 1)

)
> 0.

Then, there exists a stochastic flow {φ(t, s, · , · ) : s 6 t} on Rd induced by the solutions of (2.1),

which has a finite p-th absolute moment for all time. Furthermore, the following holds

lim sup
(t−s)→∞

E
[
V
(
t, φ(t, s, x)− x

)]
<∞

in Assumption 4.4(iii).

Proof. It can be established (in a similar way to that in [53, Theorem 3.4.6]) that the growth

conditions (A.1) lead to existence and uniqueness of global solutions of

dXs,x
t = b(t,Xs,x

t )dt+ σ(t,Xs,x
t )dWt−s, Xs,x

s = x, (A.2)

such that Xs,x
t (ω) = φ(t, s, ω, x) P-a.s., t > s. In order to prove the main part of the Lemma,

consider first g(x) = |x|p, p > 2; then

Lt|x|p = p|x|p−2
d∑
i=1

bi(t, x)xi + 1
2p|x|

p−4
d∑

i,j=1

{
|x|2δij + (p− 2)xixj

}
(σσT )ij(t, x, x)

6 p|x|p−2(Lb1(t)− Lb2(t)|x|2) + 1
2Lσ(t)p(p− 1)(1 + |x|2)|x|p−2

= p
(
Lb1(t) + 1

2Lσ(t)(p− 1)
)
|x|p−2 − p

(
Lb2(t)− 1

2Lσ(t)(p− 1)
)
|x|p. (A.3)

Next, since |x|p−2 6 (1 + |x|2)
p
2
−1 6 (1 + |x|2)

p
2 6 2

p
2
−1(1 + |x|p), we get

Lt|x|p 6 2
p
2
−1p
(
Lb1(t) + 1

2Lσ(t)(p− 1)
)

− p
(
Lb2(t)− 2

p
2
−1Lb1 − 1

2(2
p
2
−1 + 1)Lσ(t)(p− 1)

)
|x|p,

which can be written as

Lt|x|p 6 ap − bp|x|p, (A.4)
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with coefficients

ap = p 2
p
2
−1 sup

t∈R

(
Lb1(t) + 1

2Lσ(t)(p− 1)
)
, (A.5)

bp = p inf
t∈R

(
Lb2(t)− 2

p
2
−1Lb1 − 1

2(2
p
2
−1 + 1)Lσ(t)(p− 1)

)
. (A.6)

It turns out that sharper bounds can be obtained for p = 2, 3; these are derived in Proposition A.2.

Next, consider Xs,x
t (ω) = φ(t, s, ω, x) solving (A.2) and g(x) = |x|p, p > 2. Then, Itô’s Lemma

and the bound (A.4) lead to

dE
[
|Xs,x

t |p
]

= E
[
Lt|Xs,x

t |p
]
dt 6

(
ap − bp E

[
|Xs,x

t |p
])
dt. (A.7)

Therefore, based on the differential form of Gronwall’s inequality, (A.7) yields

E|Xs,x
t |p 6 e−bp(t−s)E|x|p +

ap
bp

(
1− e−bp(t−s)

)
. (A.8)

Consequently, for p > 2, and Lb1 , Lb2 , Lσ such that bp > 0 in (A.6), we have

0 6 lim
(t−s)→∞

E|φ(t, s, x)|p 6 ap
bp

<∞.

For 1 < p < 2 we use Hölder’s inequality and obtain

E [|Xs,x
t |p] 6

(
E
[
|Xs,x

t |2p
]) 1

2
.

Thus, analogous derivations to those in (A.3) onwards can be carried out for p′ = 2p > 2, with

1 < p < 2.

Finally, note that for Y s,x
t (ω) = φ(t, s, ω, x)− x we obtain

dY s,x
t = b(t, Y s,x

t + x)dt+ σ(t, Y s,x
t + x)dWt, Y s,x

s = 0,

so that analogous calculations in conjunction with Assumption (4.4) lead to

E
[
V (t, φ(t, s, x)− x)

]p
6 CE|φ(t, s, x)− x|p 6 C

ap
bp

(
1− ebp(t−s)

)
,

Consequently, for p > 1 and 0 < Lb1 , Lb2 , Lσ <∞ such that bp > 0

0 6 lim
s→−∞

sup
s6t

E
[
V
(
t, φ(t, s, x)− x

)]
<∞,

0 6 lim
t→∞

sup
s6t

E
[
V
(
φ(t, s, x)− x

)]
<∞. �

Proposition A.2 (Sharper conditions for existence of absolute moments p = 2, 3 for SDE’s with

dissipative growth conditions).

Consider the same setup as in Lemma A.1. Suppose further that there exist bounded functions

Lb1(·), Lb2(·), Lσ(·) ∈ C∞(R;R+) such that

b̃2 = 2 inf
t∈R

(
Lb2(t)− 1

2Lσ(t)
)
> 0.
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Then, there exists a stochastic flow {φ(t, s, · , · ) : s 6 t} on Rd induced by the global solutions

of (2.1), which has a finite second absolute moment for all time. Moreover, if for some κ > 0

b̃3 = 3 inf
t∈R

(
Lb2(t)− Lσ(t)− 4

27κ2
(Lb1(t) + Lσ(t))

)
> 0, (A.9)

then the stochastic flow has a finite third moment for all time.

Proof: For p = 2, we proceed in a way similar to (A.3), and we have

Lt|x|2 6 2(Lb1(t)− Lb2(t)|x|2) + Lσ(t)(1 + |x|2)

= 2
(
Lb1(t) + 1

2Lσ(t)
)
− 2
(
Lb2(t)− 1

2Lσ(t)
)
|x|2 6 ã2 − b̃2|x|3, (A.10)

where

ã2 = 2 sup
t∈R

(
Lb1(t) + 1

2Lσ(t)
)
, (A.11)

b̃2 = 2 inf
t∈R

(
Lb2(t)− 1

2Lσ(t)
)
. (A.12)

Thus, based on (A.8) the second absolute moment exists for all time if b̃2 > 0.

For p = 3 we have

Lt|x|3 6 3|x|(Lb1(t)− Lb2(t)|x|2) + 3|x|Lσ(t)(1 + |x|2)

= 3
(
Lb1(t) + Lσ(t)

)
|x| − 3

(
Lb2(t)− Lσ(t)

)
|x|3

6 3κ
(
Lb1(t) + Lσ(t)

)
− 3
(
Lb2(t)− Lσ(t)− 4

27κ2
(Lb1(t) + Lσ(t))

)
|x|3

6 ã3 − b̃3|x|3, (A.13)

with

ã3 = 3κ sup
t∈R

(
Lb1(t) + Lσ(t)

)
, (A.14)

b̃3 = 3 inf
t∈R

(
Lb2(t)− Lσ(t)− 4

27κ2
(Lb1(t) + Lσ(t))

)
, (A.15)

where we used the fact that |x| 6 κ + 4
27κ2 |x|3, κ > 0. Thus, based on (A.8) the third absolute

moment exists for all time if b̃3 > 0. �

Remark A.3. It is worth noting that, for Lb1 , Lb2 , Lσ constant, and such that b̃3 > 0, the upper

bound on the asymptotic moment E|φ(t, s, x)|p for p = 3 is optimised for κ2 = 12
(
Lb1+Lσ
Lb2−Lσ

)
so

that

min
κ>0

ã3

b̃3

= (27)1/2

(
Lb1 + Lσ
Lb2 − Lσ

)3/2

. (A.16)

Moreover,

ã2

b̃2

6

(
Lb1 + Lσ
Lb2 − Lσ

)
6

(
min
κ>0

ã3

b̃3

)2/3

= (27)1/3

(
Lb1 + Lσ
Lb2 − Lσ

)
; (A.17)

this fact merely reflects the Jensen’s inequality for the second and third absolute moments, i.e.,

E|Xs,x
t |2 6 (E|Xs,x

t |3)2/3, but it is useful in Example 4.14.

Lemma A.4. Let {φ(t, s, · , · ) : t > s} be a stochastic flow generated by the SDE (2.1) and let

V ∈ C1,2(R×Rd;R+) be a Lyapunov function satisfying the first part of condition (4.10). Suppose
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further that there exist Lb(·), Lσ(·), C(·) ∈ C∞(R;R+) such that

〈b(t, x), x〉 6 Lb(t)(1 + |x|2), ‖σ(t, x)‖2hs 6 Lσ(t)
(
1 + |x|2

)
, (A.18)

and

0 < lim sup
(t−s)→∞

exp

(∫ t

s
C(u, p)du

)
<∞, (A.19)

where C(t, p) = Lb(t) + 1
2(p− 1)Lσ(t), for some 1 < p <∞.

Then, for x ∈ Rd, there exist global solutions of (2.1) such that the stochastic flow φ induced by

the solutions of (2.1) has a finite p-th absolute moment for all time. Furthermore, the following

holds

lim sup
(t−s)→∞

E
[
V (t, φ(t, s, x)− x)

]
<∞

in Assumption 4.4(iii).

Proof. First, we suppose that p > 2 and set g(x) = 1 + |x|2 and ϕ(x) = g(x)
p
2 ; then

Ltϕ(x) = pg(x)
p
2
−1

d∑
i=1

bi(t, x)xi +
1

2
pg(x)

p
2
−2

d∑
i,j=1

{
g(x)δij + (p− 2)xixj

}
(σσT )ij(t, x, x).

By the Growth conditions (A.18) on the coefficients b, σ, we obtain

Ltϕ(x) 6 pC(t, p)ϕ(x),

where C(t, p) = Lb(t) + c(t) + 1
2(p − 1)Lσ(t). Next, let Y x

t,s(ω) = φ(t, s, ω, x) − x, it follows that

Y x
t,s(x) solves the following SDE

dY x
t,s = b(t, Y x

t,s + x)dt+ σ(t, Y x
t,s + x)dWt, Y x

s,s = 0.

By Itô’s formula, we have

E
[
ϕ(Y x

t,s)
]

= ϕ(0) + E
[∫ t

s
Ltϕ(Y x

u,s)du

]

6 ϕ(0) + p

∫ t

s
C(u, p)E

[
ϕ(Y x

u,s)
]
du.

By Gronwall’s inequality, we have

E
[
ϕ(Y x

t,s)
]
6 ϕ(0) exp

(
p

∫ t

s
C(u, p)du

)
.

But Y x
t,s(ω) = φ(t, s, ω, x)− x P-a.s., ϕ(x) = g(x)

p
2 =

(
1 + |x|2

) p
2 and ϕ(0) = 1, thus,

E
[ (

1 + |φ(t, s, ω, x)− x|2
) p

2

]
6 exp

(
p

∫ t

s
C(u, p)du

)
.

Next, note for p > 2, |x|p 6 (1 + |x|2)
p
2 and by the assumption that V (t, x) 6 C|x|p, we obtain

E
[
V (t, φ(t, s, x)− x)

]
6 CE

[ (
1 + |φ(t, s, x)− x|2

) p
2

]
6 C exp

(
p

∫ t

s
C(u, p)du

)
.
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Since C( · , p) ∈ C(R;R) such that lim sup
s→−∞

exp

(∫ t

s
C(u, p)du

)
<∞, then for p > 2, we have

E
[
V (t, φ(t, s, x)− x)

]
6 C lim sup

s→−∞
exp

(
p

∫ t

s
C(u, p)du

)
<∞. (A.20)

The case where 1 6 p < 2, we use Hölder’s inequality, namely

E
[
V (t, φ(t, s, x)− x)

]
6 CE [|φ(t, s, x)− x|p] 6 C

(
E
[
|φ(t, s, x)− x|2p

] ) 1
2
,

and the rest follows, since in this case 2p > 2. �

Appendix B. Strong Feller property for flows induced by non-autonomous

SDE’s

In order to prove Theorem 4.10, which is a generalisation of standard results to non-autonomous

SDE’s, we first outline some basic notions from Malliavin calculus; the actual proof is given in

and discussed in Appendix B.2.

B.1. Malliavin calculus estimates. Establishing the strong Feller property of Markov evolu-

tions (Ps,t)t>s in our setting requires some estimates rooted in Malliavin calculus. We recall the

main concepts and results on the Wiener space (Ω,F ,P); see (e.g., [39, 42, 65, 70, 73, 90]) for a

comprehensive treatment. To this end, consider the Hilbert space H = L2([s,∞);Rm) equiped

with the inner product

〈η1, η2〉H =

∫ ∞
s

η1(t) · η2(t)dt.

For a Hilbert space E and a real number p > 1, Lp(Ω;E) the space of E-valued random variable

ξ such that E(‖ξ‖pE) :=

∫
Ω
‖ξ‖pE dP <∞. Also, we set L∞−(Ω;E) :=

⋂
16p<∞

Lp(Ω;E).

Following the approach due to Malliavin (e.g., [65, 73]), we introduce a derivative operator

D for a random variable G on the space L∞−(Ω;E). We say that G ∈ D1,∞(E) if there exists

DG ∈ L∞−(Ω;H⊗ E) such that for any η ∈ H,

lim
ε→0

E
∥∥∥∥G

(
ω + ε

∫ .
s η(`)d`

)
−G(ω)

ε
− 〈DG, η〉H

∥∥∥∥p
E

= 0,

holds for every p > 1. In this case, one defines the Malliavin derivative of G in the direction

of η ∈ H by DηG := 〈DG, η〉H. For any p > 1, we define the Sobolev space D1,p(E) as the

completion of D1,∞(E) under the norm

‖G‖1,p,E =
(
E‖G‖pH

)1/p
+
(
E‖DG‖pH⊗E

)1/p
.

We define the k-th Malliavin derivative by DkG = D(Dk−1G), which is a random variable with

values in H⊗k⊗E. For any integer k > 1, the Sobolev space Dk,p(E) is the completion of Dk,∞(E)

under the norm

‖G‖k,p,E = ‖G‖k−1,p,E + ‖DkG‖1,p,H⊗k⊗E .

It turns out that D is a closed operator from Lp(Ω;E) to Lp(Ω;H ⊗ E). The ajoint δ of the

operator D called the divergence operator is continuous from D1,p(H ⊗ E) to Lp(Ω;E) for any
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p > 1, with the duality relationship given as

E
[
〈DG, u〉H⊗E

]
= E

[
〈G, δ(u)〉E

]
, (B.1)

for any G ∈ D1,p(H⊗ E) and u ∈ D1,q(H⊗ E), with 1
p + 1

q = 1.

Throughout the remaining part of this section we assume the following notation:

- C is a generic constant which may depend on T, the exponent p > 1, the initial point x and

fixed element η of the Hilbert space H = L2
(
[s,∞);Rm

)
.

- (Hn) denotes a class of coefficients b, σk, 1 6 k 6 m, where σk are columns of σ, such that

b(t, · ) ∈ C̃n, σk(t, · ) ∈ C̃nb
(
Rd
)
.

Proposition B.1. Suppose the coefficients b, σ of the SDE (2.1) are in the class (H2). Then,

for any t > s, we have φ(t, s, · , · ) ∈ D1,∞(Rd) and the Malliavin derivative Dηφ(t, s) of φ(t, s)

in the direction of η = (η1, η2, · · · , ηm) ∈ H is the unique solution of the following affine SDE

dDηφ(t, s) = Dxb
(
t, φ(t, s)

)
Dηφ(t, s)dt+

m∑
k=1

Dxσk
(
t, φ(t, s)

)
Dηφ(t, s)dW k

t

+

m∑
k=1

σk
(
t, φ(t, s)

)
ηk(t)dt, t > s,

Dηφ(s, s) = 0.

Corollary B.2 (Chain rule, cf. [73]). Suppose that condition (H2) holds true. Then, for any

η ∈ H, p > 2 and for any ϕ ∈ C2
∞(Rd), we have

lim
ε→0

E

∣∣∣∣∣ϕ
(
φεη(t, s)

)
− ϕ

(
φ(t, s)

)
ε

−Dxϕ
(
φ(t, s)

)
Dηφ(t, s)

∣∣∣∣∣
p

= 0,

where φεη(t, s), t > s, ε ∈ (0, 1) is the solution of the following perturbed SDE
dφεη(t, s) = b

(
t, φεη(t, s)

)
dt+

m∑
k=1

σk
(
t, φεη(t, s)

)
dW k

t + ε
m∑
k=1

σk
(
t, φεη(t, s)

)
ηk(t)dt,

φεη(s, s),= x ∈ Rd.

Moreover, ϕ(φ(t, s)) ∈ D1,∞(R) and Dϕ(φ(t, s)) = Dxϕ(φ(t, s))Dφ(t, s).

Definition B.3 (Mean square gradient). Let G(x) : Ω → Rd be a measurable function for all

x ∈ Rd and i ∈ F . We say that the mean square gradient of G(x) with respect to x exists if there

is a linear map A(x) : Ω→ Rd×d such that for any v ∈ Rd,

lim
ε→0

E
∣∣∣∣G(x+ εv)−G(x)

ε
−A(x)v

∣∣∣∣2 = 0.

We denote the mean square gradient matrix A(x) by DxG(x).

Theorem B.4 (e.g., [53, 65, 73]). Assume the condition (H2) holds true. Let φ(t, s, ω, x), t > s,

be the solution of the SDE (2.1). Then, the mean square gradient of φ(t, s, · , x) with respect to

x exists. If we define Jt,s = Dxφ(t, s, · , x), then
dJt,s = Dxb(t, φ(t, s, · , x))Jt,s +

m∑
k=1

Dxσk(t, φ(t, s, · , x))Jt,sdW
k
t , t > s,

Js,s = I,

(B.2)
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where I is a d× d identity matrix. Moreover, the inverse J−1
t,s of Jt,s exists and satisfy

dJ−1
t,s = −J−1

t,s

(
Dxb

(
t, φ(t, s, · , x)

)
−

m∑
k=1

Dxσk
(
t, φ(t, s, · , x)

)
Dxσk

(
t, φ(t, s, · , x)

))
dt

−
m∑
k=1

J−1
t,s Dxσk

(
t, φ(t, s, · , x)

)
dW k

t ,

J−1
s,s = I.

(B.3)

We shall refer to the mean square gradient {Jt,s = Dxφ(t, s, · , · ) : s 6 t} as derivative flow of

{φ(t, s, · , · ) : s 6 t}. Next, we provide a crucial Lp bound for the derivative flow flow Jt,s and

that of its inverse J−1
t,s .

Lemma B.5. Suppose the condition (H2) holds. Then for any p > 2, there exists a positive

constant C = C(T, p) such that

E

(
sup

s6t,u6s+T
|Jt,u|p

)
6 C and E

(
sup

s6t,u6s+T
|J−1
t,u |p

)
6 C. (B.4)

Now, let Drφ(t, s) be the solution of the following SDE:

Duφ(t, s) = σ(u, φ(u, s)) +

∫ t

u
Dxb(`, φ(`, u))Duφ(`, u)d`

+

m∑
k=1

∫ t

u
Dxσk(`, φ(`, u))Duφ(`, u)dW k

` , for t > u,

Duφt,s = 0, for s 6 t < u.

(B.5)

Comparing the SDE’s (B.2) and (B.5), we obtain the following by the variation of parameters

formula Duφ(t, s) = Jt,uσ(φ(t, s)), s 6 u 6 t 6 s+ T,

Duφ(t, s) = 0, u > t.

Next, we recall a result on the Malliavin differentiability of the derivative flow Jt,s, t > s. To

this end, let’s denote by D`u the Malliavin derivative with respect to the `-th component of the

Brownian motion W at time u.

Lemma B.6. Suppose that the condition (H3) holds. Then for all s 6 t 6 s+T, Jt,s ∈ D1,∞(Rd⊗Rd)
and for any p > 2, there exists a positive constant C = C(T, p, x), such that for all j = 1, · · · ,m
and u ∈ [s, s+ T ],

E
[

sup
s6t6s+T

|DjuJt,s|p
]
6 C.

Moreover, for any t 6 s + T, X(t, s) ∈ D2,∞(Rd) and for any p > 2, there exists a positive

constant C = C(T, p, x) such that for all j, l = 1, · · · ,m and ς, u 6 t

E|Dju(Dlςφ(t, s))|p 6 C.

Remark B.7. If (H∞) holds true, then φ(t, s) ∈ D∞(Rd) and Jt,s ∈ D∞(Rd ⊗ Rd).

Denote by (Dφ(t, s))T the transpose of the Malliavin derivative Dφ(t, s). From the relationship

Duφ(t, s) = Jt,uσ(u, φ(u, s)), we have (Duφ(t, s))T = σ(u, φ(u, s))TJTt,u
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Definition B.8 (Malliavin covariance; e.g., [65, 73]). The Malliavin covariance Mt,s of the ran-

dom vector φ(t, s) is defined by

Mt,s = 〈Dφ(t, s), (Dφ(t, s))T 〉H =

∫ t

s
Jt,`σ(`, φ(`, s))σ(`, φ(`, s))TJTt,`d`

= Jt,s

[∫ t

s
J−1
`,s σ(`, φ(`, s))σ(`, φ(`, s))T (J−1

`,s )Td`

]
JTt,s

= Jt,sCt,sJ
T
t,s,

where Ct,s is defined by

Ct,s =

∫ t

s
J−1
`,s σ(`, φ(`, s))σ(`, φ(`, s))T (J−1

`,s )Td`

is the so-called reduced Malliavin covariance of φ(t, s).

We conclude this section by elucidating the invertibility of the Malliavin covariance almost

surely and its integrability of all negative orders.

Proposition B.9 (e.g., [39, 73, 90]). Suppose Assumptions 4.6 holds. Then, for every t > s,

the Malliavin covariance matrix Mt,s of the random vector φ(t, s) is invertible P - a.s., and

E
[
det(M−pt,u )

]
< ∞, for every t, u ∈ [s, s + T ], T > 0, and p > 1. Moreover, for any x ∈ Rd,

s 6 t, the law of φ(t, s, · , x) is absolutely continuous with respect to the Lebesgue measure on Rd

and the probability density is smooth.

B.2. Strong Feller property for non-autonomous dynamics. A transition evolution de-

noted by (Ps,t)t>s (3.3) and induced by a stochastic flow {φ(t, s, · , · ) : s 6 t} has the strong

Feller property (i.e., Ps,tϕ ∈ C∞(Rd) for any ϕ ∈M∞(Rd)) if and only if

(a) (Ps,t)t>t is a Feller semigroup; i.e., Ps,t : C∞(Rd)→ C∞(Rd), and

(b) For any ϕ ∈ C∞(Rd) the family (Ps,tϕ)t>s is equicontinuous.

The first condition follows from the existence of the stochastic flow (see, e.g., [53, 43]); here, we

are concerned with flows associated with solutions of the non-autonomous SDE (2.1). Thus, shall

only derive the second item.

Intuitively, the strong Feller property states that for sufficiently close initial data x, y and

any realisation ω of the past driving noise, one can construct a coupling between two solu-

tions φ(t, s, ω, x) and φ(t, s, ω, y) such that with probability close to 1 as x → y, one has

φ(t, s, ω, x) = φ(t, s, ω, y), for t > s (e.g., [42, 41]). One way of achieving such a coupling

(e.g., [42, 40]) is via a change of measure on the driving process for one of the two solutions such

that the noises W x
t and W y

t driving the solutions φ(t, s, ω, x) and φ(t, s, ω, y), are related by

dW x
t = dW y

t + ηx,yt dt,

where ηx,yt is a control process that steers the solution φ(t, s, ω, x) towards the solution φ(t, s, ω, y).

If one sets y = x + εη and looks for a control of the form ηx,yt = εη, then in the limit as ε → 0,

the scheme will induce a deformation onto the solution φ(t, s, ω, x) after time t in the form of

Malliavin derivative of φ(t, s, ω, x) at ω ∈ Ω in the direction of η ∈ H, H = L2([s,∞);Rd), i.e.,

〈Dφ(t, s, ω, x), η〉H = Dηφ(t, s, ω, x).
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On the other hand, the effect of the perturbation of initial condition by v is given by the directional

derivative of the solution φ(t, s, ω, x) at x along v, i.e.,

Dxφ(t, s, ω, x)v = Js,t(ω, x)v.

In order to assert the strong Feller property, one has to find a control ηv (e.g., [42, 41]) such that

〈Dφ(t, s, ω, x), ηv〉H = Jt,s(ω, x)v, (B.6)

where for brevity of notation we skip the explicit dependence on ω and x.

Theorem B.10. Suppose that Assumption 4.6 hold true. Then for any t ∈ [s, s+ T ], there exist

CT > 0 such that, for any x, y ∈ Rd and ϕ ∈ C∞(Rd), we have

|Ps,tϕ(x)− Ps,tϕ(y)| 6 CT ‖ϕ‖∞|x− y|.

Proof. First, we find a control satisfying (B.6). To this end, for any v ∈ Rd with |v| = 1, let

ηv = (Dφ(t, s))TM−1
t,s Jt,sv. Then,

〈Dφ(t, s), ηv〉 = 〈Dφ(t, s), (Dφ(t, s))TM−1
t,s Jt,sv〉H = 〈Dφ(t, s), (Dφ(t, s))T 〉HM−1

t,s Jt,sv = Jt,sv.

Next, we show that ηv ∈ D1,p(H) for any p > 2. In fact, by chain rule of differentiation,

Dkς ηv = (Dkς (Dφ(t, s))T )M−1
t,s Jt,sv + (Dφ(t, s))TM−1

t,s (Dkς Jt,s)v + (Dφ(t, s))T (DkςM−1
t,s )Jt,sv

= (Dkς (Dφ(t, s))T )M−1
t,s Jt,sv + (Dφ(t, s))TM−1

t,s (D`ςJt,s)v

− (Dφ(t, s))TM−1
t,s

[
〈Dkς (Dφ(t, s)), (Dφ(t, s))T 〉H

+ 〈Dφ(t, s),Dkς (Dφ(t, s))T 〉H
]
M−1
t,s Jt,sv.

By Lemmas B.5, B.6, and Proposition B.9 , we arrive at

E‖ηv‖pH + E‖Dηv‖pH⊗H 6 E‖ηv‖pH +
m∑
k=1

E
[∫ t

s
‖Dkς ηv‖

p
Hdς

]
<∞. (B.7)

Recalling that ηvς,s = σ(ς,X(ς, s))TJTt,ςM
−1
t,s Jt,sv. Then, for ϕ ∈ C1

∞(Rd), we have

Dx(Pt,sϕ)(x)v = E [Dx[ϕ(φ(t, s, x))]v] = E [Dxϕ(φ(t, s, x))Jt,s( · , x)v]

= E [〈Dxϕ(φ(t, s, x))DXs,x
t (ω), ηv〉H] = E [〈Dϕ(φ(t, s, x)), ηv〉H]

= E [〈Dϕ(φ(t, s, x)), ηv〉H] = E [ϕ(φ(t, s, x))δ(ηv)]

= E
[
ϕ(φ(t, s, x))

∫ t

s
σ(ς, φ(ς, s))TJTt,ςM

−1
t,s Jt,sv ? dWς

]

= E
[
ϕ(φ(t, s, x))

∫ t

s
ηvς,s ? dWς

]
, (B.8)

where in the first and second lines, we applied chain rule for mean square gradient and Malliavin

derivative respectively, and third line is Malliavin integration by parts formula (e.g., [73]) and,

the stochastic integral in the fourth or fifth line is interpreted in the sense of Skorokhod, i.e.,∫ t

s
ηvς,s ? dWς is the divergence of the process {ηvς,sI[s,t](ς) : ς > s} (see equation (B.1)).
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Next, since C1
∞(Rd) is dense in C∞(Rd), we have (ϕn)n∈N ⊂ C1

∞(Rd), ϕn −→
n→∞

ϕ ∈ C∞(Rd) so

that 
lim
n→∞

Ps,tϕn(x) = Ps,tϕ(x),

lim
n→∞

Dx(Ps,tϕn)(x)v = E
[
ϕ(φ(t, s, x))

∫ t

s
ηvς,s ? dWς

]
.

(B.9)

On the other hand, by Proposition B.9, there exists a function 0 < ps,t ∈ C∞∞(Rd)×C∞∞(Rd) such

that P
(
{ω : φ(t, s, ω, x) ∈ dy}

)
= P (s, x; t, dy) = ps,t(x, y)dy. This implies that

lim
n→∞

Dx(Ps,tϕn)(x)v = lim
n→∞

∫
Rd
ϕn(y)Dxps,t(x, y)vdy

=

∫
Rd
ϕ(y)Dxps,t(x, y)vdy = Dx(Ps,tϕ)(x)v. (B.10)

Comparing (B.9) and (B.10), we have that (B.8) holds for all ϕ ∈ C∞(Rd).

Next, the Cauchy–Schwartz inequality yields

|Dx(Ps,tϕ)(x)v| 6
√

(Ps,tϕ2)(x)

(
E
∣∣∣∣∫ t

s
ηvς,s ? dWς

∣∣∣∣2
)1/2

, ϕ ∈ C∞(Rd). (B.11)

By generalised Itô isometry (cf. [73]), we have

E
∣∣∣∣∫ t

s
ηvς,s ? dWς

∣∣∣∣2 = E
(∫ t

s
|ηvς,s|2dς

)
+ E

(∫ t

s

∫ t

s
〈Dξηvξ,s,Dςηvς,s〉Rd⊗Rddξdς

)

6 E
(∫ t

s
|ηvς,s|2dς

)
+ E

(∫ t

s

∫ t

s
‖Dξηvς,s‖2Rd⊗Rddξdς

)

= E‖ηv‖2H +

m∑
k=1

E
(∫ t

s
‖Dkξ ηv‖2Hdξ

)
.

Then, by the inequality (B.7) and (B.11), there exists CT > 0 such that

|Dx(Ps,tϕ)(x)v| 6 CT ‖ϕ‖∞|v|, x, v ∈ Rd, ϕ ∈ C∞(Rd). (B.12)

Finally, let z` = `x + (1 − `)y, ` ∈ [0, 1] and set v = x − y. Then, by the mean value theorem

and inequality (B.12), we have

|Ps,tϕ(x)− Ps,tϕ(y)| 6
∫ 1

0
|Dx(Ps,tϕ)(z`)v|d` 6 CT ‖ϕ‖∞|x− y|.

�
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