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All higher-dimensional Majumdar-Papapetrou

black holes

James Lucietti∗

School of Mathematics and Maxwell Institute for Mathematical Sciences,

University of Edinburgh, King’s Buildings, Edinburgh, EH9 3FD, UK

Abstract

We prove that the only asymptotically flat spacetimes with a suitably regular event hori-
zon, in a generalised Majumdar-Papapetrou class of solutions to higher-dimensional Einstein-
Maxwell theory, are the standard multi-black holes. The proof involves a careful analysis of
the near-horizon geometry and an extension of the positive mass theorem to Riemannian
manifolds with conical singularities. This completes the classification of asymptotically flat,
static, extreme black hole solutions in this theory.

The Majumdar-Papapetrou solution to Einstein-Maxwell theory represents the static equilib-
rium of an arbitrary number of charged black holes whose mutual electric repulsion exactly balances
their gravitational attraction [1]. This remarkable configuration was later understood to arise as
a supersymmetric solution to N = 2 supergravity, i.e., it saturates the BPS bound and admits
Killing spinors [2]. More recently it has been shown that it is in fact the only family of BPS black
holes in this theory [3].

In higher dimensions Einstein-Maxwell theory is not a consistent truncation of a supergravity
theory. Nevertheless, asymptotically flat static solutions to the Einstein-Maxwell equations obey
a BPS-like inequality M ≥ |Q| in all dimensions n ≥ 4, where M is the ADM mass and Q is the
Maxwell charge (in suitable units) [4, 5]. The M > |Q| case has been fully solved by generalising
the ingenious method of Bunting and Masood-ul-Alam [6] to higher-dimensions, proving that the
unique non-trivial regular solution is the non-extreme Reissner-Nordström black hole [5, 7].

In this note we consider the extreme case M = |Q|, which implies the solution takes a ‘gener-
alised’ Majumdar-Papapetrou form [5],

g = −H−2dt2 +H
2

n−3hABdx
AdxB , F = −dH−1 ∧ dt , (1)

where ξ = ∂t is the static Killing field and (xA) are coordinates on the orthogonal hypersurface Σ.
Here (Σ, h) is an (n − 1)-dimensional Ricci-flat Riemannian manifold that is asymptotically-flat
with zero ADM mass, and the function H is harmonic on (Σ, h). For n = 4 the space (Σ, h) is
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trivially flat, however in higher dimensions this need not be the case. We will perform a global
analysis of this family of spacetimes for all dimensions n ≥ 4 and determine the constraints imposed
by the existence of a suitably regular event horizon.

The higher-dimensional generalisation of the Majumdar-Papapetrou metrics was first found by
Myers [8] in the case (Σ, h) is euclidean space. Heuristic arguments, analogous to those originally
employed by Hartle and Hawking in four dimensions [1], suggest that the only suitably regular
solutions are the standard ‘multi-centre’ solutions given by [8],

H = 1 +
N
∑

I=1

qI

rn−3
I

, (2)

where rI = |x − pI | is the euclidean distance from each centre pI ∈ R
n−1. In four dimensions

Hartle and Hawking demonstrated that these centres correspond to regular event horizons and
these spacetimes can be analytically extended through these horizons [1]. Curiously, in higher
dimensions n > 4, the solutions with multiple horizon components (N > 1) do not have smooth
horizons and analytic extensions do not exist in general [9]. In particular, if n = 5 the metric at
the horizon is generically C2 and the Maxwell field is C0, whereas if n > 5 the metric is generically
C1 at the horizon and the Maxwell field is C0 [10–13]. Therefore, as we explain below, we will
allow for this lower differentiability in our analysis.

For dimension n = 4 it has been proven that the only asymptotically flat regular black hole
solutions in the Majumdar-Papapetrou class are the standard multi-black holes [14], i.e., the
harmonic function must take the multi-centre form (2). The proof requires detailed use of the
near-horizon geometry. In this note we show that a similar result holds in all dimensions: any
suitably regular asymptotically flat black hole solution in the generalised Majumdar-Papapetrou
class (1) must have (i) a base (Σ, h) isometric to euclidean space (minus a point for each horizon)
and (ii) a harmonic function H of multi-centre type (2). Interestingly, the proof of (i) requires
a mild extension of the positive mass theorem to manifolds with conical singularities (we present
this in the Appendix, as it may be of independent interest).

More precisely, our main result is summarised in the following theorem:

Theorem 1. Let (M, g, F ) be a static, asymptotically flat, extreme solution to the n ≥ 4 dimen-
sional Einstein-Maxwell equations such that:

1. The static Killing field ξ is strictly timelike in the domain of outer communication 〈〈M〉〉
and null on the event horizon (and hence tangent to the null generators).

2. (g, F ) are smooth (C∞) in 〈〈M〉〉, whereas at the horizon:

(a) g is C1

(b) F is C0 and the electric field ιξF is C1

(c) (g, F ) and derived-quantities are smooth in tangential directions.

3. Each component of the horizon admits a smooth cross-section, i.e., an (n − 2)-dimensional
spacelike submanifold transverse to ξ, with an induced metric that is not Ricci-flat.

Then, (〈〈M〉〉, g, F ) is a Majumdar-Papapetrou solution (1) where the base (Σ, h) is isometric
to euclidean space with the points pI=1,...,N ∈ R

n−1 removed (each corresponding to a horizon
component) and the harmonic function is of multi-centre form (2) with poles pI .
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Before presenting our proof it is helpful to make a few remarks to explain the rationale behind
our assumptions. In fact, assumption 1 has been proven for asymptotically flat, static, spacetimes
with a globally hyperbolic 〈〈M〉〉 under certain global assumptions [15]. The regularity assump-
tion 2 is required in order to capture the differentiability properties of the known multi-black hole
solutions discussed above (assumption 2(c) is made for simplicity and could be relaxed). Finally,
assumption 3 together with our regularity assumption 2, allows one to introduce a precise notion
of a near-horizon geometry [16] that is also compatible with the black hole horizon topology the-
orems [17], which is crucial for deriving the geometry of (Σ, h) near a horizon (assumption 2(b)
concerning the electric field is required to control the subleading terms). We will now present a
proof of the above theorem.

Proof. As mentioned above, any asymptotically flat static solution to the Einstein-Maxwell equa-
tions that is extreme (in the sense M = |Q|) must be a Majumdar-Papapetrou solution (1) [5]. We
first record a number of spacetime invariants for this class which will be important in our analysis:

|ξ|2 = −H−2, ιξF = dH−1 , (3)

dξ = 2H−1F . (4)

The minimal regularity for the static Killing field ξ compatible with the assumption that g is C1

at the horizon is that ξ is also C1 at the horizon. Then, from (3) and assumptions 1 and 2, we
deduce that the function H−1 is positive and smooth in 〈〈M〉〉, and that H−1 vanishes precisely
at the event horizon and is C1 at the horizon. It follows that

d|ξ|2 = −dH−2 = −2H−1dH−1 = 0 (5)

on the event horizon, i.e., it is a degenerate Killing horizon of ξ.
Next we perform a careful near-horizon analysis. This is facilitated by assumption 3 which

asserts that each component of the horizon admits a cross-section S. Then, the spacetime in
a neighbourhood of a connected component of such a horizon can be written in Gaussian null
coordinates (xµ) = (v, λ, ya) (see e.g. [16]),

g = −λ2fdv2 + 2dvdλ+ 2λhadvdy
a + γabdy

adyb , (6)

where ξ = ∂v, (y
a) are coordinates on S, and λ is an affine parameter for null geodesics transverse

to the horizon synchronised so λ = 0 on the horizon. Usually, the metric components are assumed
to be smooth at and away from the horizon leading to the above form. Under our regularity
assumptions the metric still takes the above form except now f, ha are C0 and γab is C1 at the
horizon, with all components being smooth away from the horizon. We emphasise that gvv has a
double zero at the horizon due to the fact that H−1 is C1 and vanishes at λ = 0, together with
gvv = −H−2.1

On the other hand, the minimal requirement for existence of the near-horizon limit – defined
by performing the diffeomorphism (v, λ, ya) 7→ (v/ǫ, ǫλ, ya) and taking the limit ǫ → 0 – is that
f, ha, γab are all C0 at the horizon. Therefore, our assumptions still guarantee the existence of a
near-horizon limit of the metric. The resulting near-horizon geometry takes the same form as (6)
with f, ha, γab replaced by their values at λ = 0, which in general we denote by f̊ ≡ f |λ=0 etc.
Note that our assumptions imply that the near-horizon geometry itself is smooth, i.e., the data
f̊ , h̊a, γ̊ab are a smooth function, 1-form and Riemannian metric on S.

1Thus, even though we assumed the metric is C1 at the horizon, we deduce that |ξ|2 is in fact C2 at the horizon.
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We now consider the Maxwell field. Normally, smoothness (or at least C2) of the solution is
used to show that the near-horizon limit of the Maxwell field exists (in Gaussian null coordinates
this requires Fva = O(λ) and the rest of the components O(1) near λ = 0 [16]). However, given our
lower regularity assumptions, it is not clear that a near-horizon limit of the Maxwell field exists in
general. For the Majumdar-Papapetrou class of solutions, the invariants (3) imply

H−1 = λ
√

f , (7)

and Fvµ = (ιξF )µ = ∂µ(λ
√
f), where f must be positive for small λ > 0 (to ensure ξ is timelike

just outside the horizon). Furthermore, using ξµdx
µ = dλ+λhady

a−λ2fdv, we find that (4) gives

F = −d(
√

fλdv) +
1

2
√
fλ

d(λhady
a) . (8)

In particular, the (λa) component of (8) gives ∂λ(λha) = 2
√
fFλaλ, which together with our

assumption that F, f, ha are C0 at the horizon, implies we can write ha = λka where ka is C0 at
the horizon, i.e., h̊a = ha|λ=0 = 0 and ha is C1 at the horizon.

It can be shown that staticity of (6), i.e. that ξ is hypersurface orthogonal, is equivalent to the
following conditions [18],

∂af = ∂λ(λf)ha − λf∂λha, (9)

∂[ahb] = h[a∂λ(λhb]) . (10)

Using the above results, (9) can be written as ∂af = λva where va := ka∂λ(λf)− f∂λha is C0 at
the horizon. Evaluating this at λ = 0 we immediately deduce that f0 := f̊ is a constant on S,
which must be non-negative (since ξ is timelike for λ > 0). Furthermore, it also follows that ∂af
is C1 at the horizon.

We are now in a position to consider the near-horizon limit of the Maxwell field. It is clear
that the first term in (8) has a well-defined near-horizon limit. For the second term, we can write
Fab = ∂[ahb]/(2

√
f) = λ2k[aF|λ|b], where in the second equality we have used the staticity condition

(10) and the explicit expression for Fλa given earlier. Therefore, since by assumption Fλa is C0 at
the horizon, it now follows that the near-horizon limit of the Maxwell field (8) is simply2

FNH = −d(
√

f0λdv) . (11)

Thus, despite our low regularity assumptions, the near-horizon limit of the Maxwell field still
exists and we have a standard smooth near-horizon solution to the Einstein-Maxwell equations.
Assumption 3 requires that the constant f0 is positive, since if f0 = 0 the near-horizon Maxwell
field vanishes and the horizon metric γ̊ab is Ricci flat.

Even though we assumed that F is C0 at the horizon, the above analysis shows that the
tangential components of the electric field (ιξF )a = ∂a(λ

√
f) are C1 at the horizon (in fact C2).

Therefore, since assumption 2(b) asserts the full electric field ιξF is C1, this reduces to requiring
that the transverse component (ιξF )λ = ∂λ(λ

√
f) is C1 at the horizon. It then follows that f is C1

at the horizon. In particular, this guarantees the existence of a well-defined first order correction
to the near-horizon geometry as in [19, 20], which will be helpful below.

The above near-horizon analysis shows that, under our assumptions, the spacetime metric in a
neighbourhood of a connected component of the horizon takes the form (6) where f, ha, γab are C

1

2This argument is valid even if f̊ = 0, in which case Fλa|λ=0 = limλ→0 ka/
√
f is finite.
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at the horizon, fλ=0 = f0 is a positive constant and ha = λka for some ka which is C0. The orbit
space metric is defined wherever ξ is timelike and is given by qµν := gµν − ξµξν/|ξ|2. Therefore,
using (6), we find that for λ > 0,

q =
1

fλ2
(dλ+ λ2kady

a)2 + γabdy
adyb . (12)

Observe that the horizon λ = 0 is an infinite proper distance from any point, i.e., the orbit space
(Σ, q) is complete and a degenerate horizon corresponds to an asymptotic end even under our weak
differentiability assumptions.3

On the other hand, the orbit space metric for (1) is simply q = H
2

n−3h. Comparing this to the
general near-horizon orbit space metric (12), we deduce that the base metric h of (1) (which is
invariantly defined where ξ is timelike) near each component of the horizon can be written as

h = α−2fα−1[dρ+ αρn−2kady
a]2 + fαρ2γabdy

adyb , (13)

where ρ := λ
1

n−3 for λ > 0, α := 1/(n− 3) and

f = f0 +O(ρn−3), γab = γ̊ab +O(ρn−3), ka = O(1) , (14)

as ρ → 0. The order of the subleading terms is fixed by the fact that f, ha, γab are C1 at the
horizon (as functions of λ). In terms of the new coordinate

H =
1√

fρn−3
. (15)

To analyse the geometry of (Σ, h) as ρ → 0 it is convenient to adapt the near-horizon limit to this
setting. Thus consider the diffeomorphism ϕǫ : (ρ, y

a) 7→ (ǫρ, ya) and define hǫ = ǫ−2ϕ∗
ǫh. Then

we find that as ǫ → 0 the 1-parameter family of metrics hǫ → h0, where

h0 = α−2fα−1
0

(

dρ2 + ρ2σab(y)dy
adyb

)

(16)

is a cone-metric of the compact space (S, σ) defined by the horizon geometry

γ̊abdy
adyb = α−2f−1

0 σabdy
adyb . (17)

Then, since hǫ is Ricci flat, it must be that h0 is a Ricci flat cone-metric. It follows that σ is an
Einstein metric on S normalised so Ric(σ) = (n− 3)σ. Defining Hǫ = ǫn−3ϕ∗

ǫH and using (15) we
find that Hǫ → H0 = 1/(

√
f0ρ

n−3) is automatically harmonic in the cone metric (16). Thus no
further conditions on the near-horizon geometry occur for this class of solutions (1).4

To summarise, we have found that the near-horizon geometry must be a direct product of AdS2

and an Einstein space (S, σ) normalised as above,

gNH = −f0λ
2dv2 + 2dvdλ+ (n− 3)2f−1

0 σabdy
adyb , (18)

with Maxwell field (11). This in itself is a nontrivial result. In general, the classification of static
near-horizon geometries in higher dimensions is an open problem and one can have non-trivial

3It is of course well known that for a degenerate C2 Killing horizon (Σ, q) is a complete manifold such that any
connected component of a degenerate horizon corresponds to an asymptotically cylindrical end (see e.g. [21, 22]).

4Alternatively, (11) and the near-horizon Einstein equation [16] imply (17) where Ric(σ) = (n− 3)σ.
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solutions which are warped products of AdS2 and non-Einstein metrics γ̊ab [23]. Thus we have
found that constraints arising from the Majumdar-Papapetrou solution rule out the possibility of
non-trivial near-horizon geometries.5 In particular, for n = 4 the space (S, σ) must be isometric to
the unit round S2, whereas for n = 5 it must be locally isometric to the unit round S3. However,
for n > 5 the horizon (S, σ) need not be a space form, although Myers’s theorem shows that it
must be compact with a finite fundamental group. It is interesting to note that our near-horizon
analysis did not assume compactness of S as is often done, but instead this is an output of our
analysis.

Importantly, equations (13), (14) and (16) also show that any connected component of a horizon
corresponds to a conically singular end of (Σ, h). That is, there is an end E diffeomorphic to
(0, ρ0)× S with a metric which approaches a cone metric, i.e.,

|h− h0|h0
= O(ρδ) (19)

as ρ → 0 for some δ > 0, where h0 is the cone metric (16) of a compact Riemannian manifold
(S, σ), | · |h0

is the norm defined by h0 and ρ ∈ (0, ρ0). Specifically, our near-horizon analysis
(14) shows that δ = n − 3, and also |∇̊sh|h0

= O(ρδ−s) for 1 ≤ s ≤ n − 3 where ∇̊ is the metric
connection of h0.

Now, we also know that (Σ, h) is Ricci-flat and asymptotically-flat with zero mass. For com-
plete Riemannian manifolds the positive mass theorem would immediately imply (Σ, h) must be
isometric to euclidean space [26,27]. However, the conically singular end implies that (Σ, h) is not
complete and therefore the standard positive mass theorem cannot be applied.

Now suppose that (Σ, h) is flat. Then, it follows that hǫ and hence h0 are also flat metrics. The
latter condition is equivalent to (S, σ) being a maximally symmetric space with positive curvature
Riem(σ)abcd = σacσbd − σadσbc. Thus (S, σ) is isometric to a quotient of the unit round sphere
Sn−2/Γ where Γ is a discrete subgroup of O(n− 1). This implies that the end E is diffeomorphic
to Rn−1/Γ−{p}, where p ∈ R

n−1 is a fixed point of Γ that corresponds to the conically singular end.
Thus, supposing we have N conically singular ends corresponding to p1, . . . , pN ∈ R

n−1, we deduce
that (Σ̂ = Σ ∪ {p1, . . . , pN}, h), is a flat orbifold. By a generalisation of the Cartan-Hadamard
theorem for orbifolds [28], it follows that (Σ̂, h) must be isometric to a global quotient of euclidean
space. However, as (Σ̂, h) is also asymptotically flat, this quotient must be trivial and hence (Σ̂, h)
is isometric to euclidean space. Thus, we deduce that (Σ, h) must be isometric to euclidean space
with N points removed, that is, Σ ∼= R

n−1 − {p1, . . . , pN} and h = δ is the euclidean metric. It
also follows that (S, σ) is isometric to the unit round sphere for each conically singular end.

Let (xi) be cartesian coordinates on R
n−1 and p ∈ R

n−1 correspond to a horizon component.
The coordinate change (xi) 7→ (ρ, ya) maps the euclidean metric to the general form for the base
metric near the horizon (13) if and only if

∂ρx
i∂ρx

i = α−2fα−1, ∂ρx
i∂ax

i = α−1fα−1ρn−2ka,

∂ax
i∂bx

i = ρ2fαγab + ρ2(n−2)fα−1kakb . (20)

In particular, this implies that ∂ρx
i = O(1) and ∂ax

i = O(ρ) as ρ → 0 and hence

xi − pi = O(ρ) . (21)

We may now determine the precise singular structure of H at a horizon. Using (15) and (21) we
find that as x → p, or equivalently as ρ → 0,

|x− p|n−3H =
1√
f

( |x− p|
ρ

)n−3

= O(1) . (22)

5This was not properly taken into account in previous attempts at classifying static extreme black holes [24,25].
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Recall the harmonic function H must be smooth in 〈〈M〉〉 and singular at the horizon. Therefore,
in cartesian coordinates H must have an isolated singularity at x = p. Hence (22) shows that H
has a pole of order n − 3 at x = p. From the standard theory of harmonic functions in euclidean
space we deduce that

H =
q0

|x− p|n−3
+K (23)

where q0 is constant and K is a harmonic function smooth in a neighbourhood of x = p.
We may now use this to derive global constraints on the spacetime via elementary arguments.

Above we have shown that any connected component of a horizon corresponds to a pole of H
of order n − 3 and H is smooth elsewhere. Thus, if the horizon has N -connected components
corresponding to the points x = pI , I = 1, . . . , N , we can write

H =

N
∑

I=1

qI

rn−3
I

+ H̃ , (24)

where qI are constants, rI = |x − pI | and H̃ is a harmonic function which is smooth everywhere
on R

n−1. Furthermore, asymptotic flatness requires H → 1 as r → ∞. Therefore H̃ is a bounded
regular harmonic function on R

n−1 and hence must be a constant. The constant is fixed by the
asymptotics to be H̃ = 1 and hence we arrive at the general solution (2) corresponding to the
standard multi-black hole solution. This completes the proof in the case (Σ, h) is flat.

To complete the proof, it remains to establish that (Σ, h) must be flat. As discussed above,
this would follow from a generalisation of the rigidity part of the positive mass theorem to coni-
cally singular manifolds. In fact, for our purposes we only need the rigidity part of the following
generalisation of a simpler version of the positive mass theorem [26, 27]: Any asymptotically-flat
Riemannian manifold (Σ, h) with conical singularities and Ric(h) ≥ 0, must have ADM mass
m ≥ 0 and m = 0 if and only if (Σ, h) is flat.6 We sketch a proof of this in the Appendix. Thus
applying this to our case we deduce that (Σ, h) is flat, which completes the proof. �

We close with a few remarks. The above analysis also classifies asymptotically-flat, static,
supersymmetric black holes in five-dimensional minimal supergravity. This is because these must
also take the form (1) with (Σ, h) hyper-Kähler (and hence Ricci flat) [29]. In this case a different
uniqueness proof has been previously given for supersymmetric (not necessarily static) black holes
with a locally S3 horizon, by assuming the supersymmetric Killing field is strictly timelike outside
the black hole [30]. In this context the conical singularity in the base is an ADE singularity which
may be resolved to yield a complete asymptotically-flat hyper-Kähler base which therefore must
be R

4 (thus avoiding the need to invoke the positive mass theorem). Our result also complements
the recent classification of supersymmetric black holes with biaxial symmetry in five-dimensional
minimal supergravity [31]. It would be interesting to complete the classification of supersymmetric
black holes in this theory.

This work may be viewed as an analogue of the static black hole uniqueness proof of Bunting
and Masood-ul-Alam [6] for extreme black holes. Their method involves gluing two conformally
rescaled copies of the orthogonal spatial hypersurface along the inner boundaries corresponding
to the horizon, resulting in an asymptotically-flat zero-mass complete surface with non-negative
scalar curvature, which by the positive mass theorem must be isometric to euclidean space. For

6This theorem is only valid for ‘point-like’ conical singularities as above. For higher-dimensional conical singu-
larities it can be false, e.g., the Eguchi-Hanson metric with angles identified so that it is asymptotically-euclidean
gives a non-trivial zero-mass Ricci-flat metric with a conical singularity over a bolt.
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extreme black holes we found this method does not work. Instead, a horizon manifests itself as
a conical singularity of the asymptotically-flat zero-mass Ricci-flat manifold (Σ, h) (rather than a
boundary) and a mild generalisation of the positive mass theorem to accommodate such singu-
larities is sufficient to establish it is flat. It would be interesting to apply this theorem to prove
similar uniqueness results in other theories which support static extreme black holes and branes.

Acknowledgments. I would like to thank Marcus Khuri for helpful suggestions regarding a
proof of the positive mass theorem required in this work. I am supported by a Leverhulme Trust
Research Project Grant.

A Positive mass on manifolds with conical singularities

Here we prove a generalisation of a simple version of the positive mass theorem due to Witten [26]
and Bartnik [27] to allow for conically singular ends, that was invoked in the main text. First,
we recall the definitions of asymptotically flat and conically singular ends for a d ≥ 3-dimensional
Riemannian manifold (Σ, h).

By definition [27], an asymptotically flat end E∞ of (Σ, h) is an end that is diffeomorphic to
R

d\B with B a closed ball, where

hij = δij +O(r−τ) , ∂khij = O(r−τ−1) , (25)

as r =
√
xixi → ∞, (xi) are cartesian coordinates on E∞ defined by the diffeomorphism and τ > 0

is the decay rate. The ADM mass is

m := lim
r→∞

cd

∫

Sr

(∂jgji − ∂igjj)dS
i , (26)

where Sr is the sphere of constant r in E∞, cd an irrelevant positive constant and the decay rate
τ > (d− 2)/2 is required for m to be well-defined [27].

On the other hand, we define a conically singular end E0 of (Σ, h) as follows: E0 is diffeomorphic
to C = (0, ρ0)× S where ρ0 > 0, (S, σ) is a compact Riemannian manifold,

|h− h0|h0
= O(ρδ) , |∇̊h|h0

= O(ρδ−1) , (27)

as ρ → 0, the decay rate δ > 0, the norm | · |h0
and connection ∇̊ are with respect to the cone

metric h0 = dρ2+ρ2σabdy
adyb on C, and the coordinates (ρ, ya) are defined by the diffeomorphism

such that ρ ∈ (0, ρ0) (this is similar to other definitions of conical singularities [32, 33]).
We are now ready to state our result.

Theorem 2. Let (Σ, h) be a d ≥ 3-dimensional asymptotically-flat Riemannian manifold with
conical singularities. If Ric(h) ≥ 0 then the ADM mass m ≥ 0 and m = 0 occurs iff (Σ, h) is flat.

Proof. For simplicity of notation we will assume (Σ, h) has one asymptotically-flat end E∞ and
one conically singular end E0, although the arguments below generalise to multiple ends straight-
forwardly. Thus, we assume there is a compact manifold K such that Σ−K = E∞ ∪ E0.

We follow closely the proof for the standard case where (Σ, h) is a complete manifold [26, 27].
Thus suppose zi are globally defined harmonic functions on (Σ, h) such that on the asymptotically
flat and conically singular ends,

∂s(zi − xi) = O(r1−τ−s) , as r → ∞ , (28)

|∇̊s(zi − pi)|h0
= O(ρς−s) , as ρ → 0 , (29)
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respectively, for 0 ≤ s ≤ 2 where the decay rate ς > 0 is to be chosen at our convenience. In
the absence of the conically singular end the proof that such harmonic functions exist was given
by Bartnik [27]. In particular, these provide a set of cartesian coordinates at infinity known as
harmonic coordinates.

In the presence of a conically singular end, we may construct such harmonic coordinates as
follows. Let yi be harmonic coordinates on E∞ (guaranteed to exist by [27]) and extend these to
C∞(Σ) such that on E0 they are constants pi. Define f i := −∆yi, where ∇ and ∆ = ∇A∇A is the
metric connection and Laplacian of h. Clearly f i vanishes identically on the ends and hence has
compact support on Σ. Now consider the elliptic problem on Σ:

∆vi = f i, ∂svi = O(r−τ−s), |∇̊svi|h0
= O(ρς−s) , (30)

where f i is fixed as above. By the maximum principle, a solution vi to this system is unique since
vi → 0 in both ends. Then, defining zi := yi + vi gives a set of harmonic functions on Σ which
obey the decay rates (28) and (29) (the former follows from ∂s(yi − xi) = O(r1−τ−s) [27]). To
establish existence of a Green’s function for this problem rigorously one could presumably adapt
the arguments in [27], perhaps using the theory for the Laplacian on manifolds with admissible
metrics (which include both asymptotically-flat and conically singular ends) [34]. We will not
pursue this here.

Now, define the 1-forms Ki = dzi which, in view of the zi being harmonic, must obey the
Bochner identity

∆|Ki|2 = 2|∇Ki|2 + 2Ric(Ki, Ki) (31)

for each i = 1, . . . , d. Integrate this over Σ to deduce

lim
r→∞

∫

Sr

∂j |Ki|2dSj − lim
ρ→0

∫

Sρ

∂n|Ki|2dvol = 2

∫

Σ

[

|∇Ki|2 + Ric(Ki, Ki)
]

dvol ≥ 0 , (32)

where Sρ is a surface of constant ρ in E0 and n is the unit-normal to Sρ. An important property
of harmonic coordinates is that in terms of them the ADM mass simplifies to

m = −cd
2

∫

S∞

∂jgiidS
j =

d
∑

i=1

cd
2

∫

S∞

∂j |Ki|2dSj , (33)

where to obtain the second equality we have used the fact that in the harmonic coordinates (zi)
we have |Ki|2 = gii (no sum). On the other hand, for the integral near the conical singularity we
find that (29) and (27) imply,

Iρ :=

∫

Sρ

∂n|Ki|2dvol = O(ρ2ς+d−4) . (34)

To see this first note that |Iρ| ≤ |∂nG|maxvol(Sρ) where we have set G := |Ki|2. Now, writing

G = G0+ (G−G0) where G0 := |Ki|2h0
we have the bound |∂nG| ≤ |∇̊G0|h0

+ |∇̊(G−G0)|h0
. The

first term is bounded by |∇̊G0|h0
≤ 2|∇̊∇̊zi|h0

|∇̊zi|h0
= O(ρ2ς−3) using (29), whereas the second

term

|∇̊(G−G0)|h0
≤ 2|h− h0|h0

|∇̊∇̊zi|h0
|∇̊zi|h0

+ |∇̊(h− h0)|h0
|∇̊zi|2h0

= O(ρ2ς−3+δ) (35)

using (29) and (27). Thus, since δ > 0, we deduce that |∂nG| = O(ρ2ς−3), which together with the
fact that vol(Sρ) = O(ρd−1), gives the result (34).

9



Therefore, (34) vanishes as ρ → 0 provided 2ς + d− 4 > 0. For d ≥ 4 this is trivially satisfied
since ς > 0, whereas for d = 3 this can be ensured by taking ς > (d − 2)/2. Thus, summing (32)
over i = 1, . . . , d, we deduce that m ≥ 0 with equality iff ∇Ki = 0 for all i = 1, . . . , d. If m = 0,
the Ki are parallel 1-forms that form an orthonormal basis at infinity, which implies the Ki are a
global parallel orthonormal frame and hence (Σ, h) is flat. �
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