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Abstract
We study the large deviations of current-type observables defined for Markov
diffusion processes evolving in smooth bounded regions of Rd with reflections
at the boundaries. We derive for these the correct boundary conditions that
must be imposed on the spectral problem associated with the scaled cumulant
generating function, which gives, by Legendre transform, the rate function char-
acterizing the likelihood of current fluctuations. Two methods for obtaining the
boundary conditions are presented, based on the diffusive limit of random walks
and on the Feynman–Kac equation underlying the evolution of generating func-
tions. Our results generalize recent works on density-type observables, and are
illustrated for an N-particle single-file diffusion on a ring, which can be mapped
to a reflected N-dimensional diffusion.
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1. Introduction

The main property of nonequilibrium systems that distinguishes them from equilibrium sys-
tems is the existence of energy or particle currents produced by non-conservative internal
or external forces, or coupling to reservoirs at different temperatures or chemical potentials
[1]. These currents and their fluctuations have been the subjects of many studies in the last
decades, owing to their importance in biological transport phenomena [2, 3], and the existence
of fundamental symmetries, referred to as fluctuation relations, which constrain the probability
distribution of current-like quantities, such as the entropy production [4–6].

Similarly to equilibrium systems, the fluctuations of observables, such as currents, can be
studied for nonequilibrium systems using the theory of large deviations, which provides a num-
ber of general techniques for obtaining the distribution of observables in a given scaling limit
(e.g. low-noise, long-time or large-volume limit) relevant to the system studied [7–9]. Many
of these techniques were successfully applied in recent years for Markov models of physi-
cal interest, including random walks, interacting particle models, such as the exclusion and
zero-range models, as well as Markov diffusions described by stochastic differential equations
(SDEs) (see [10–13] for useful reviews).

In this paper, we study the large deviations of Markov diffusions evolving in bounded
domains ofRd with reflection at the boundaries. Such processes are encountered in many appli-
cations, including in biology where they model the diffusion of nutrients within cells [14], and
have been studied before in large deviation theory, though either in the low-noise limit [15–18]
or for density-type observables defined as time integrals of the state of the process [19–27].
Here, we consider the long-time or ergodic limit and focus on current-type observables, defined
as integrals of the state and increments of the reflected diffusion. For these, we show how
the large deviation functions [viz, scaled cumulant generating function (SCGF) and rate func-
tion] characterizing the fluctuations of observables can be obtained from a spectral equation
that must be solved with special boundary conditions, taking into account the reflection of the
process at the boundaries and the fact that the observable is current-like.

These boundary conditions generalize those found recently for density-type observables
[27] and are non-trivial in that they cannot be obtained by directly applying the duality argu-
ment used in [27]. This point is explained in the next section, following a summary of large
deviation theory as applied to dynamical currents defined in the long-time limit. In the sections
that follow, we then derive the boundary conditions using two different methods: one based
on the diffusive limit of a random walk model, which has the advantage of being physically
transparent, and another, more formal method based on the Feynman–Kac equation, which
underlies the spectral equation, and a local-time formalism to describe the boundary behavior.

A consequence of the boundary conditions imposed on the spectral problem is that the
stationary current of the effective or driven process, introduced recently as a way to under-
stand how large deviations are created in time [28–31], vanishes in the normal direction of
the boundaries or walls limiting the diffusion. This is a natural result given that the effective
process corresponds, in an asymptotic way, to the original process conditioned on realizing a
given fluctuation [31] and, therefore, should inherit the zero-current condition of the original
process resulting from the reflections.

As an illustration of our results, we study the integrated particle current of a heterogeneous
single-file diffusion, consisting of N driven, non-identical particles diffusing on a ring without
crossings [32]. This model can be mapped to a non-interacting diffusion model in R

N with a
reflecting wall, for which the spectral problem can be solved exactly to obtain the SCGF and
rate function of the current, characterizing its stationary value and fluctuations. Applications to
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other models, including diffusions with partial or sticky reflections at boundaries, are discussed
in the final section of the paper.

2. Dynamical large deviations with and without boundaries

2.1. Formalism in unbounded domains

We consider a d-dimensional Markov diffusion X(t) evolving in R
d according to the SDE

dX(t) = F(X(t)) + σ dW(t), (1)

where the drift vector F depends on the state of the process, whereas the noise matrix σ
multiplying the Wiener noise is constant. We define the diffusion matrix D = σσT. The pro-
cess density ρ(x, t) = Prob[X(t) = x|X(0) = x0] evolves according to the Fokker–Planck (FP)
equation

∂tρ(x, t) = (L†ρ)(x, t), (2)

expressed using the FP operator

L† = −∇ · F +
1
2
∇ · D∇, (3)

which acts on the domain of twice-differentiable, integrable densities. We assume the existence
of a unique invariant density ρ∗ for which L†ρ∗ = 0. Time-dependent averages of functions f
of the process evolve in time according to

∂t 〈 f (X(t))〉 = 〈(L f )(X(t))〉 , (4)

with the operator

L = F · ∇+
1
2
∇ · D∇, (5)

known as the Markov generator [33]. Using the standard inner product

〈ρ, f 〉 =
∫
Rd

dx ρ(x) f (x), (6)

the Markov operators L and L† are related via the duality relation〈
L†ρ, f

〉
= 〈ρ,L f 〉 (7)

for arbitrary densities ρ and functions f for which the inner product is finite.
We are concerned in this paper with time-integrated observables VT derived from the empir-

ical current JT of the process. The empirical current at x is the number of passes through x
(counted with sign) per unit time in a time window [0, T]:

JT(x) =
1
T

∫ T

0
δ(X(t) − x) ◦ dX(t) (8a)

=
1
T

lim
Δt→0

∑
i

δ

(
X(ti +Δt) + X(ti)

2
− x

)
(X(ti +Δt) − X(ti)). (8b)
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The first line expresses a Stratonovich integral, defined as the discretization procedure shown
in the second line, where i indexes time-points in [0, T] separated by the vanishing durationΔt.
The rationale for using the Stratonovich convention is that the current is properly antisymmetric
under time-reversal of trajectories and has an expectation equal in the long-time limit to the
stationary current

JF,ρ∗ = Fρ∗ − 1
2

D∇ρ∗. (9)

From JT(x), it is possible to define other current-like dynamical observables as

VT =

∫
Rd

g(x) · JT(x) dx =
1
T

∫ T

0
g(X(t)) ◦ dX(t), (10)

where g is an arbitrary kernel vector field. Depending on the process and the choice of g, this
observable can represent, for example, a particle or energy current, or the entropy production.
The probability density PT (v) = Prob[VT = v] of such observables generally satisfies a large
deviation principle for large4 observation times T, meaning that

PT(v) = exp[−TI(v) + o(T)]. (11)

The rate function I(v) characterizes the exponential decay of fluctuations v, that is, sustained
deviations of the observable from the typical value(s) v̄ for which I(v̄) = 0. Dynamical large
deviation theory is concerned with calculating the rate function and with describing via an
effective process the subset of process realizations that give rise to any given fluctuation. Below
we outline the basic elements of dynamical large deviation theory, referring to [31] for details
and derivations.

In order to calculate the rate function, we introduce the SCGF

λ(k) = lim
T→∞

1
T

ln 〈exp[TkVT]〉 , (12)

which is related to the rate function via Legendre–Fenchel (LF) transform,

I(v) = sup
k
{kv − λ(k)}. (13)

This assumes that I(v) is convex, which is guaranteed, for instance, if λ(k) is continuously
differentiable in k [9]. Furthermore, it can be shown (via the Feynman–Kac formula [13]) that
the generating function

u(x, t) = 〈exp[tkVt]〉x, (14)

where the subscript x indicates the initial condition X(0) = x, has a semigroup structure and
evolves in time according to

∂tu(x, t) = Lku(x, t), (15)

where the ‘tilted’ generator Lk is given by

Lk = F · (∇+ kg) +
1
2

(∇+ kg) · D(∇+ kg). (16)

4 In practice, the observation time must be larger than any relevant relaxation time scale of the process.
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Since the semigroup equation (15) is linear, we can decompose it in terms of the eigenvalues
λ(i)

k and eigenfunctions r(i)
k of Lk:

u(x, t) =
∑

i

aie
λ(i)

k tr(i)
k (x). (17)

Inserting this decomposition in the definition of the SCGF, we find in general that the SCGF
is the dominant (Perron–Frobenius) eigenvalue of Lk, so we can write as a shorthand

Lkrk = λ(k)rk, (18)

rk being the eigenfunction associated with the dominant eigenvalue and SCGF λ(k) =
maxi Reλ(i)

k .
These spectral elements are also used in large deviation theory to define a new Markov

diffusion, called the effective or driven process, with generator [31]

Leff
k = r−1

k Lkrk − λ(k), (19)

whose invariant density is

ρ∗k(x) = �k(x)rk(x), (20)

where �k solves the dual eigenvalue problem

L†
k�k = λ(k)�k (21)

with natural boundary conditions on R
d . Here, L†

k is related to Lk via the duality (7) and is
given explicitly by

L†
k = −(∇− kg) · F +

1
2

(∇− kg) · D(∇− kg). (22)

Note that the boundary conditions on rk are defined indirectly by imposing natural boundary
conditions for the density ρ∗k on R

d .
The effective process corresponds to a process with the same diffusion matrix as the original

one, but with a modified drift

Fk = F + D(kg +∇ ln rk). (23)

When k is tuned according to

k(v) = I′(v), (24)

that is, the maximizer in (13), then the effective process gives v as the long-time value of VT .
In this way, this process can be interpreted as describing (asymptotically) the set of trajectories
of the original process conditioned on VT = v (see [31] for a precise statement).

An analogy with equilibrium statistical mechanics can be established by noting that the
tilted generator corresponds (asymptotically) to the generator of a non-conservative process
constructed by penalizing the probability of every trajectory X(t) over [0, T] by the weight
factor exp[TkVT ] as T →∞. This penalized distribution on trajectories is analogous to the
‘canonical ensemble’, bar the missing normalization [31]. Following this analogy, the SCGF
can be seen as being analogous to a free energy density, while the rate function, obtained via
the LF transform, is analogous to an entropy density [9]. The tuning (24) relates k to the inverse
temperature in the canonical ensemble.
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2.2. Introducing boundaries: constraints from duality

We now consider a domain Ω ⊂ R
d which has a smooth boundary ∂Ω. In the interior of the

domain, the process X(t) is still described by the SDE (1). Consequently, the operators L and
L† are still given by (5) and (3), but must be supplemented with boundary conditions on the
functions f and ρ on which they act, in order to account for the boundary behavior.

These boundary conditions are related through the duality relation (7), but with an inner
product integrating over Ω rather than over all of Rd. Starting from 〈Lρ, f 〉 and performing
repeated integration by parts to shift the derivatives from f to ρ (see appendix A), one finds

〈ρ,L f 〉 =
〈
L†ρ, f

〉
−
∫
∂Ω

dx f (x)JF,ρ(x) · n̂(x) − 1
2

∫
∂Ω

dx ρ(x)D∇ f (x) · n̂(x), (25)

where n̂ is the (inward) normal of ∂Ω and the probability current JF,ρ is as defined in (9).
In order for the operators L and L† to be well defined, independently of any particular ρ or

f , it is necessary that the surface integral terms in (25) always vanish. A particular prescription
that accomplishes this constitutes a boundary condition, and amounts to a restriction of the
domains of the Markov operators. Note that if we put f ≡ 1, then the vanishing of the boundary
term corresponds to conservation of probability as it represents the zero net current through
the boundary.

In this paper, we are concerned with reflective boundaries. At the level of the FP equation,
this means that the probability flow through the boundary vanishes at every point on the surface:

JF,ρ(x) · n̂(x) = 0 for all x ∈ ∂Ω. (26)

From (25), we note that (26) implies that the boundary condition on f is

D∇ f (x) · n̂(x) = 0 for all x ∈ ∂Ω, (27)

which is equivalent to

∇ f (x) · Dn̂(x) = 0 for all x ∈ ∂Ω, (28)

since D is symmetric by definition. Thus, unlike the current,∇ f does not vanish in the direction
normal to the surface, but in the direction Dn̂, which is called the conormal direction [14, 34].

We now turn to the large deviation elements associated with the current-like observable (10).
Just as in the case without boundaries, we must solve the dominant eigenvalue problem (18)
for Lk and (21) for its dual L†

k, but now with boundary conditions for rk and �k on ∂Ω in some
way determined by the reflective boundary of the original process. Clearly, these boundary
conditions must be consistent with (26) and (27) for k = 0. In addition to this constraint, the
duality relation for the eigenvectors should also hold for all k. Performing repeated integration
by parts we find (appendix B)

〈�k,Lkrk〉 =
〈
L†

k�k, rk

〉
−
∫
∂Ω

dx JFk ,�krk (x) · n̂(x), (29)

where Fk is the modified drift (23). Interpreting again �krk = ρ∗k as the stationary density of
an effective process with drift Fk, the vanishing of the boundary term in (29) expresses the
conservation of probability for the effective process.

On physical grounds, it is reasonable to suppose that if the original process has reflective
boundaries, then so does the effective process, meaning that the boundary term in (29) vanishes
because

JFk ,�krk (x) · n̂(x) = 0 for all x ∈ ∂Ω. (30)

6
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However, as we are about to see, this condition does not allow us to uniquely determine
boundary conditions for rk and �k separately. Indeed, we can write, for an arbitrary constant c,

JFk ,�krk = (F + kDg)�krk +
1
2

D�k∇rk −
1
2

Drk∇�k (31a)

=

[
[F + (1 − c)kDg]�k −

1
2

D∇�k

]
rk + �k

[
ckDgrk +

1
2

D∇rk

]
. (31b)

With this identity, the boundary term in (29) can thenbe made to vanish by imposing the
following boundary conditions:{

[F(x) + (1 − c)kDg(x)]�k(x) − 1
2

D∇�k(x)

}
· n̂(x) = 0, (32a)

{
ckDgrk +

1
2

D∇rk

}
· n̂(x) = 0, (32b)

for x ∈ ∂Ω and any c. The ambiguity arises from the fact that any boundary term proportional
to �krk that vanishes as k → 0 can be split between the two conditions. In [27], which dealt
with reflected diffusions conditioned on density-like observables, this ambiguity does not arise,
because the ‘tilting’ of the generator does not produce any new boundary terms in the duality
relation. An argument beyond assuming a reflective boundary for the effective process to satisfy
the duality is therefore necessary to establish the correct boundary conditions.

In the next sections we provide two independent methods, free from assumptions about
the boundary behavior of the effective process: one based on taking the diffusive limit of a
conditioned lattice problem with boundary (section 3), and the other based on considering local
time at the boundary in the Feynman–Kac formula that defines the tilted generator (section 4).
From both approaches, the boundary conditions emerge as{

F(x)�k(x) − 1
2

D(∇− kg)�k(x)

}
· n̂(x) = 0, (33a)

1
2

D(∇+ kg(x))rk(x) · n̂(x) = 0. (33b)

These boundary conditions correspond to (32) with c = 1/2 and consequently prove that the
effective process indeed possesses a reflective boundary, as described by (30). It is striking
that the boundary conditions are ‘tilted’ in the same manner as the tilted generator itself by
letting ∇→∇+ kg for rk and −∇→−∇+ kg for �k. Furthermore (33b) implies that, on the
boundary, the normal component of the effective drift coincides with the original drift:

Fk(x) · n̂(x) = F(x) · n̂(x) for all x ∈ ∂Ω. (34)

This situation was shown to hold also for the large deviations of density-like observables in
the presence of a reflecting boundary [27].

Finally, we remark that in the special case of an observable satisfying

Dg(x) · n̂(x) = 0 for all x ∈ ∂Ω, (35)

the tilted boundary conditions (32) take the same form as the original ones, i.e. (26) and (27),
and are independent of c. The condition (35) is a necessary condition for the tilted generators
to be symmetrizable.

7
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Figure 1. Illustrations of transitions available for the random walker (a) away from the
boundary; (b) next to the boundary. (c) To interpret the behavior in (b) as a physical
reflection, we may put the wall half a site away from the last inhabitable site, and allow
hops of length 1/2 to the wall, which get bumped off the wall 1/2 step back, with a net
translation of zero.

3. Boundary conditions from the diffusive limit

3.1. Tilted lattice model

A strategy to derive the correct boundary conditions on rk and �k is to consider the original
diffusion as the limit of a jump process [35]; that is, to set up a sequence of jump process N(t)
on a lattice structure L , parametrized by the site separation a, together with a lattice-current
observable AT . The transition rates of the jump process are taken to scale with a such that
a diffusive limit exists, giving as a → 0, L → Ω, N(t) → X(t), and AT/a → VT . Then also
the spectral elements associated with the conditioning on AT map from lattice to continuum,
giving in this limit bulk and boundary equations for �k and rk.

For simplicity, we suppose L to be a cubic lattice with a planar boundary. Since the bound-
ary ∂Ω converged to is always locally planar (because it is smooth), this is not an essential
limitation. The process N(t) evolving on L is then a random walk, as defined in figure 1.
For each i labeling a spatial axis, the hopping rate is pi(n) forwards and qi(n) backwards. The
hopping rate into a boundary vanishes, which can be interpreted as reflection, as illustrated in
figure 1(c).

On the lattice, we consider an observable of the form

AT =
∑

n,n′∈L

α(n′|n)CT(n′|n), (36)

where the empirical flow CT counts the number of transitions over the specified bond,

CT (n′|n) =
1
T

∑
t∈[0,T]:N(t+)=N(t−)

δN(t−),nδN(t+),n′ , (37)

and the function α(n′|n) represents a weight associated with the empirical flow.
Because we seek to map AT onto the diffusion observable VT , we choose an antisymmetric

α:

α(n′|n) = −α(n|n′). (38)

8
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We can then write (36) as

AT =
∑

n

∑
i

α(n + êi|n)JT(n + êi|n) (39)

where êi is the single-site translation vector for axis i and JT(n′|n) is the empirical lattice
current, defined in terms of the empirical flow as

JT(n′|n) = CT(n′|n) − CT (n|n′). (40)

The contraction of the current in (39) giving AT is the jump process analog of (10) for the
diffusion, with α playing the role of g.

As for diffusions, the SCGF of AT corresponds to a dominant eigenvalue, this time of a
|L | × |L | matrix Ls with elements [31]

Ls(n′, n) = W(n|n′)esα(n|n′) − δn,n′
∑

n′′
W(n′′|n). (41)

The non-zero transition rates in this expression are

W(n + êi|n) = pi(n), n + êi ∈ L , (42a)

W(n − êi|n) = qi(n), n − êi ∈ L . (42b)

3.2. Diffusive limit of the observable

The diffusive limit relating the master equation of N(t) to the FP equation of X(t) is defined by
the following scaling relations [35]:

Fi(x) = lim
a→0

a(pi(n) − qi(n)) (43a)

σ2
i = lim

a→0
a2(pi(n) + qi(n)), (43b)

where points in Ω relate to points in L as x = an. Equivalently, we may state

pi(n) =
σ2

2a2
+

Fi(x)
2a

+O(1), (44a)

qi(n) =
σ2

2a2
− Fi(x)

2a
+O(1). (44b)

To show that AT/a converges to VT in this limit, we first use the fact that α is antisymmetric
to write

α(n ± êi|n)/ad = G(x ± aêi) − G(x) (45a)

= ±agi(x) +
a2

2
∂xi gi(x) +O(a3) (45b)

where G is an arbitrary smooth function independent of a such that gi = ∂xi G.

9
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Next, we note that the lattice empirical current over the n → n + êi bond is

JT(n + êi|n) =
1
T

∑
t

[
δN(t−),nδN(t+),n+êi

− δN(t−),n+êi
δN(t+),n

]
(46a)

=
1
T

∑
t

[
δN(t−),nδN(t+),n+êi

+ δN(t−),n+êi
δN(t+),n(Ni(t+) − Ni(t−)), (46b)

where the second line follows because Ni(t+) and Ni(t−) differ by precisely one step. We now
discretize time into points t j narrowly separated by intervals Δt(a), such that the jump process
makes at most one jump in each interval for any value of the site separation a. For any such
trajectory,

δN(t j),nδN(t j+Δt),n+êi + δN(t j),n+êiδN(t j+Δt),n = δN(t j)+N(t j+Δt)
2 ,n+ 1

2 êi
, (47)

which is seen from the fact that both sides are symmetric under exchange of N(t−) and N(t+).
In the diffusive limit we replace N(t) = X(t)/a, δn,n′ = δ(x/a − x′/a), and thus

JT(n + êi|n) =
1
T

∑
j

δN(t j)+N(t j+Δt)
2 ,n+ 1

2 êi
(Ni(t j +Δt) − Ni(t j)) (48a)

=
1
T

∑
j

δ

(
X(t j +Δt) + X(t j)

2
− x

)
(Xi(t j +Δt) − Xi(t j)) (48b)

a→0
= êi · JT(x), (48c)

as defined in (8). Hence

AT/a =
∑

n

∑
i

α(n + êi|n)J(n + êi|n)/a (49a)

=

∫
dx
ad

∑
i

ad+1gi(x)êi · JT (x)/a +O(a) (49b)

a→0
= VT . (49c)

3.3. Diffusive limit of the spectral elements

We now derive the diffusive limit of the spectral elements, assuming the following diffusive
scaling between the lattice and continuum elements:

s = adk (50a)

Λs = λ(k) +O(a) (50b)

Ls(n) = ad�k(x) +O(ad+1) (50c)

Rs(n) = adrk(x) +O(ad+1) (50d)

To begin, we consider the limit of the right eigenvalue equation,

ΛsRs(n) =
∑

n′
Ls(n, n′)Rs(n′). (51)

10
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For n away from the boundary sites,

ΛsRs(n) =
∑

i

[
pi(n)es α(n+êi|n)Rs(n + êi)

+ qi(n)es α(n−êi|n)Rs(n − êi) − (pi + qi)(n)Rs(n)
]
. (52)

Up to relevant orders in a, and suppressing the function arguments x and n,

λ(k)rk =
∑

i

[
pi

(
1 + kagi +

1
2

ka2∂xi gi + k2a2g2
i

)

×
(

rk + a∂xirk +
1
2
∂2

xi
rk

)

+ qi

(
1 − kagi +

1
2

k2a2∂xi gi + k2a2g2
i

)(
rk − a∂xi rk +

1
2
∂2

xi
rk

)

− (pi + qi)rk

]
(53a)

=
∑

i

[
a(pi − qi)

(
∂xi rk + kgirk

)
+

a2

2
(pi + qi)

×
(
∂2

xi
rk + rk∂xi gi + 2kgi∂xi rk + k2g2

i rk

) ]
(53b)

=
∑

i

{
Fi(∂xi + kgi)rk + (∂xi + kgi)

σ2
i

2
(∂xi + kgi)rk

}
(53c)

= Lkrk, (53d)

with Lk as in (16). This recovers the spectral equation for rk in the bulk.
Now let us take n to be a boundary site as in figure 1(b). Then

ΛsRs(n) = q1(n)es α(n−ê1|n)Rs(n − ê1) − q1(n)Rs(n)

+
∑
i>1

[
pi(n)es α(n+êi|n)Rs(n + êi)

+ qi(n)es α(n−êi|n)Rs(n − êi)

− (pi + qi)(n)Rs(n)
]
. (54)

Thus, including all relevant orders,

λ(k)rk = q1 (1 − kag1)
(
rk − a∂x1rk

)
− q1rk +O(1), (55)

where we have used (53) to neglect the sum on the i > 1 terms. In fact, the right-hand side of
(55) is O(1/a). Substituting qi with (44b), multiplying both sides by a, and taking a → 0, we
then arrive at

0 =
1
2
σ2

1

(
∂x1rk + g1rk

)
, (56)

11
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which generalizes, including all other components, to

D(∇+ kg)rk · n̂ = 0. (57)

Thus, we find the boundary condition (33b), corresponding to (32) with c = 1/2.
Now that the boundary condition on rk has been established, the boundary condition (33a)

for �k follows uniquely from duality. One may also verify that this boundary condition follows
from the diffusive limit of the left eigenvalue equation, in a calculation analogous to that of rk.
Furthermore, the duality relation (29) is the result of applying the diffusive limit to the trivial
identity ∑

n,n′
Ls(n)Ls(n, n′)Rs(n′) =

∑
n,n′

Rs(n)L�
s (n, n′)Ls(n′). (58)

4. Boundary conditions from Feynman–Kac expectation

We provide in this section an alternative derivation of the boundary condition (33b) on rk,
proceeding directly from the generating function u(x, t), as defined in (14), which, from its
spectral decomposition (17), shares the boundary conditions placed on the eigenfunctions of
Lk. To account for the reflection upon reaching the boundary ∂Ω, we employ a formulation
of reflected SDEs, introduced by Skorokhod [36] and Tanaka [37], based on the following
modified SDE:

dX(t) = F(X(t))dt + σ dW(t) + γ̂(X(t))dL(t). (59)

The first two terms on the right-hand side describe the evolution of X(t) inside the domain Ω,
whereas the last term pushes the process inside Ω in the direction of the unit vector γ̂(x) in
the event that the process reaches x ∈ ∂Ω. The extra random process L(t) accounting for the
reflection is called the local time, since it is incremented only when the process reaches ∂Ω,
and is known [38] to be such that

〈dL(t)〉X(t)=x = O(
√

dt). (60)

Therefore, the increment dX(t) on x ∈ ∂Ω satisfies

〈dX(t)〉X(t)=x = F(x)dt + σ 〈dW(t)〉+ γ̂(x)〈dL(t)〉X(t)=x = γ̂(x)ε+O(ε2)

(61)

where we have used the fact that 〈dW(t)〉 = 0 for all t, and where ε = O(
√

dt) such that
dt(ε) = O(ε2). Here, we take γ̂ to be in the conormal direction, that is,

γ̂(x) =
Dn̂(x)
|Dn̂(x)| . (62)

This choice is necessary (see [39, theorem 2.6.1]) to preserve the zero-current condition (26)
associated with reflections.

Our goal now is to understand the effect of the boundary dynamics on the generating func-
tion u(x, t) of the observable VT , as defined in (14). To this end, we consider a point x ∈ ∂Ω

12
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and write the generating function as

u(x, t) =

〈
exp

[
k
∫ dt(ε)

0
g(X(s)) ◦ dX(s) +

∫ t

dt(ε)
g(X(s)) ◦ dX(s)

]〉
x

, (63)

having isolated in the first integral the contribution from the reflection, which takes place over
the infinitesimal time dt(ε). Using the Stratonovich discretization, as in (8), we have

exp

[
k
∫ dt(ε)

0
g(X(s)) ◦ dX(s)

]
= exp

[
kg

(
x +

dX(0)
2

)
· dX(0)

]
, (64)

so that

u(x, t) =

〈
exp

[
kg

(
x +

dX(0)
2

)
· dX(0)

]

× exp

[∫ t

dt(ε)
g(X(s)) ◦ dX(s)

]〉
x

. (65)

The expression of the expectation can be written explicitly as

u(x, t) =
∫

d(ξ̂δ) p
(

dX(0) = ξ̂δ |X(0) = x
)

× e
kg
(

x+ ξ̂δ
2

)
·ξ̂δ
〈

exp

[∫ t

dt(ε)
g(X(s)) ◦ dX(s)

]〉
X(dt)=x+ξ̂δ

(66)

using the conditional probability density of the first increment dX(0) from X(0) = x ∈ ∂Ω,
which includes all the information about the reflections on the boundary. Using the definition
of the generating function for the last factor in the integral, we then obtain

u(x, t) =
∫

d(ξ̂δ) p
(

dX(0) = ξ̂δ |X(0) = x
)

e
kg
(

x+ ξ̂δ
2

)
·ξ̂δ

u(x + ξ̂δ, t − dt(ε)). (67)

At this point, we perform Taylor expansions in both space and time, starting with the one
in space, which gives to first order in δ:

u(x, t) =
∫

d(ξ̂δ)p
(

dX(0) = ξ̂δ |X(0) = x
) [

u(x, t − dt(ε))

+∇u(x, t − dt(ε)) · ξ̂δ + ku(x, t − dt(ε))g(x) · ξ̂δ +O(δ2)
]
. (68)

This becomes

u(x, t) = u(x, t − dt(ε)) +∇u(x, t − dt(ε)) · 〈dX(0)〉X(0)=x

+ ku(x, t − dt(ε))g(x) · 〈dX(0)〉X(0)=x +
〈
|dX(0)|2

〉
X(0)=x, (69)

given that ∫
d(ξ̂δ) p

(
dX(0) = ξ̂δ |X(0) = x

)
= 1 (70)
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and ∫
d(ξ̂δ) p

(
dX(0) = ξ̂δ |X(0) = x

)
ξ̂δ = 〈dX(0)〉X(0)=x, (71)

and noting that δ = |dX(0)|. Moreover, since x ∈ ∂Ω, we have

〈dX(0)〉X(0)=x =
Dn̂(x)
|Dn̂(x)|ε+O(ε2) (72)

from (61) and (62), yielding

u(x, t) = u(x, t − dt(ε)) +∇u(x, t − dt(ε)) · Dn̂(x)
|Dn̂(x)|ε

+ku(x, t − dt(ε))g(x) · Dn̂(x)
|Dn̂(x)|ε+O(ε2). (73)

Considering now the Taylor expansion in time, we have

u(x, t − dt(ε)) = u(x, t) − Lk dt(ε)u(x, t) +O(dt(ε)2) = u(x, t) +O(ε2), (74)

using the fact that dt(ε) = O(ε2). Therefore, we find

u(x, t) = u(x, t) +∇u(x, t) · Dn̂(x)
|Dn̂(x)|ε+ ku(x, t)g(x) · Dn̂(x)

|Dn̂(x)|ε +O(ε2) (75)

that is,

∇u(x, t) · Dn̂(x)
|Dn̂(x)| = −ku(x, t)g(x) · Dn̂(x)

|Dn̂(x)| (76)

or

D∇u(x, t) · n̂ = −ku(x, t)Dg(x) · n̂(x), (77)

using the fact that D is symmetric. This is the boundary condition satisfied by the generating
function for all x ∈ ∂Ω. The eigenfunctions r(i)

k (x) of the tilted generator Lk share the same
boundary condition, so we have in the end

D∇rk(x) · n̂(x) = −krk(x)Dg(x) · n̂(x) for all x ∈ ∂Ω, (78)

which reproduces the boundary condition (33b), obtained also from the diffusive limit. The
boundary condition on �k can then be found in the usual manner via the duality relation (29),
thereby recovering (33a).

The same calculation can be performed, in principle, for an arbitrary reflection direction
γ̂(x), in which case the boundary condition becomes

∇u(x, t) · γ̂(x) = −ku(x, t)g(x) · γ̂(x). (79)

Comparing with the duality relation (25) for k = 0 then shows that we only obtain the zero-
current condition at the boundary when the chosen direction for reflection is the conormal
direction, as mentioned before. It is also interesting to note that, if we repeat the calculation
for a density-type observable of the form

AT =
1
T

∫ T

0
f (X(s))ds, (80)
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Figure 2. (a) Illustration of heterogeneous single-file diffusion on a ring. (b) Space–time
plot of a typical realization. Due to hardcore exclusion, i.e. reflection, the particles’ paths
do not cross.

then the boundary condition is

D∇rk(x) · n̂(x) = 0, (81)

which is the result obtained in [27] using only the duality relation.

5. Exactly solvable example: heterogeneous single-file diffusion on a ring

We illustrate the formalism and results developed in the previous sections for a single-file
diffusion model, recently solved for its steady state [32] similarly to earlier lattice models
[40, 41]. The model consists of N distinct point-particles moving on a ring S of circumference
L, as illustrated in figure 2. Each particle i has a constant intrinsic velocity vi and a diffusivity
Di = σ2

i arising from white noise of strength σi. The particles interact through volume exclu-
sion: if one particle attempts to overtake another, that move is reflected. Collecting the (stochas-
tic) particle positions Xi(t) taking values in S into a vector X(t) on a domain Ω ⊂ SN , we obtain
an N-dimensional diffusion of the form (1) where the drift F is the collection v = (v1, . . . , vN)�

of intrinsic velocities, and D is the diagonal matrix diag{D1, . . . , DN}.
The boundary ∂Ω of the process consists of those configurations for which two (or

more) particles are immediately adjacent. The hardcore exclusion rule translates into the
reflective boundary condition (26). For two particles, for instance, the boundary consists of
X1 = X2, which in the space S2 � [0, L) × [0, L) is a diagonal with normal n̂ = (ê2 −
ê1)/

√
2 = (−1,+1)/

√
2. Generalising to N particles, we then find that the boundary conditions

are

êi · Jv,ρ(x, t)|xi=x j = ê j · Jv,ρ(x, t)|xi=x j . (82)

The periodicity of the ring is implemented by the condition

ρ(x, t) = ρ(x + L1, t), (83)

for the density, where 1 is the vector of ones, so that L1 is the translation vector moving all
particles simultaneously by one period L.
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It was shown in [32] that the invariant density of this process is

ρ∗(x) ∝ exp[k · x]. (84)

This result assumes that x ∈ [0, L)N and that the ordering of particles is consistent with that of
the initial condition, clearly conserved by the dynamics. Without loss of generality, we assume
. . . xi−1 < xi < xi+1 < · · · (modulo L). The vector k has elements

ki =
vi

Di
− ṽ

Di
, (85)

where ṽ satisfies

ṽ

D̃
=

N∑
i=1

vi

Di
, and

1

D̃
=

N∑
i=1

1
Di

. (86)

It is clear from the geometrical constraints on the particles’ motion that they must have a com-
mon net velocity in the long-time limit, corresponding in fact to ṽ. If follows from (84) that

êi · Jv,ρ∗(x) = ṽρ∗(x), (87)

independent of i, which confirms the interpretation of ṽ. Note that k · 1 = 0, which ensures the
periodicity (83).

It is natural to consider as a current-like observable the empirical velocity of particle i, given
by the ith component of the empirical current JT integrated overΩ. However, since all particles
must have the same net velocity for long averaging periods, all observables of the form (10)
with g a constant vector whose components sum to one (1 · g= 1) should have the same large
deviations. To validate this claim, we keep g arbitrary apart from these constraints, and thus
consider the current observable

VT = g ·
∫
Ω

JT(x) dx . (88)

The empirical velocity of particle i is obtained by choosing gj = δi j.
To find the dominant eigenvalue λ(k) and eigenvector rk related to this observable, we

consider as an ansatz

rk(x) = exp[a · x], (89)

with a to be determined. This ansatz is motivated by the fact that the dominant eigenvalue 0
for L† and L corresponds to eigenfunctions with an exponential form: (84) for the former, and
trivially e0 for the latter.

We observe that 1 · n̂(x) = 0 for all x ∈ ∂Ω, and that 1 is the only vector with this property.
From the boundary condition (33b), we therefore find

1
2

D(a + kg) = α1 (90)

for some constant α. Hence

a = 2αD−11 − kg. (91)

The periodicity (83) requires a · 1 = 0, so that

α =
k1 · g

21�D−11
=

1
2

kD̃, (92)
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where we have used the property 1 · g = 1 and (86). Applying Lk to rk, one then finds that rk

is an eigenfunction with eigenvalue

λ(k) = 2D̃−1α(α+ ṽ) = kṽ +
1
2

k2D̃. (93)

By LF transform, we then obtain the rate function

I(v) =
(v − ṽ)2

2D̃
, (94)

which shows that the fluctuations of the current are Gaussian around the stationary velocity ṽ.
The same eigenvalue (93) is obtained by assuming for the left eigenfunction

�k = exp[b · x], (95)

for which we find, in a calculation analogous to the one for rk,

b = 2D−1(v + β1) + kg (96)

with

β = −1�D−1v + 1
2 k1 · g

1�D−11
= −ṽ − 1

2
kD̃. (97)

It is interesting to note that the rate function (94) is equivalent to that of a single particle
with drift ṽ and diffusivity D̃. To better understand how current fluctuations are created, we
can determine the effective drift Fk of the conditioned dynamics using (23) and the expression
for rk. The result is

Fk = v + (v − ṽ)1, (98)

which gives for the probability current

JFk ,ρ∗k
(x) =

v

ṽ
JF,ρ∗(x). (99)

Thus, for the particle system to generate an atypical fluctuation of the collective current, each
particle gives rise through fluctuation to an equal absolute increase in their intrinsic velocity,
equal to Δv = v − ṽ. The current thus changes uniformly.

These results are consistent with the fact that the rate function saturates a universal quadratic
bound on current fluctuations [42], and are also expected given that the heterogeneous single-
file diffusion on a ring, while not satisfying detailed balance directly, does so with respect to
a reference frame moving with the collective velocity ṽ. As a result, the stationary density of
the effective process (20) must be equal to the original invariant density (84):

ρ∗k(x) = ρ∗(x). (100)

This can be checked more directly by noting that a + b = k.
To close, it is instructive to compare the results of the single-file diffusion model to those

of the asymmetric simple exclusion process (ASEP) conditioned on a large current [43]. For
that model, it was found analytically that asymptotically large currents are generated through
an effective process comprised of two effects: a uniform increase in the hopping rate of all par-
ticles, and a pairwise repulsive interaction between particles, not present in the unconditioned
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process. Since the ASEP yields in the diffusive limit a single-file dynamics with identical parti-
cles, we conclude that the second effect is purely a lattice effect. Indeed, on the lattice, jammed
configurations form a finite fraction of all possible system configuration, whereas on the con-
tinuum, jammed configurations constitute a boundary layer of measure zero relative to the bulk.

6. Discussion

We have provided two independent methods showing that for reflected diffusions, the correct
boundary conditions for the spectral problem associated with the dynamical large deviations
of current-like observables are given by (33). These boundary conditions are interesting in
that they mimic the ‘tilting’ of L and L† to Lk and L†

k, respectively. We indeed recall that
Lk is obtained from L by the replacement ∇→∇+ kg, while L†

k is obtained from L† by the
replacement −∇→−∇+ kg. The same replacements, when applied to the condition (27) for
f and the condition (26) for ρ, gives, respectively, the boundary condition (33b) for rk and the
boundary condition (33a) for �k. Based on this result, it is natural to conjecture that the same
replacements apply to other boundary conditions describing other types of boundary behavior,
e.g. partially reflecting [44] or sticky [45].

Two physically significant results follow from the boundary conditions (33). Firstly, they
imply that the effective process, describing how current fluctuations are realized, also has
reflective boundaries, but relative to the effective drift Fk (23). This is expected: all system
trajectories are reflected at the boundary and, therefore, so is any subset of trajectories cor-
responding to a given current fluctuation. The second, less obvious result is that the effective
force at the boundary is not modified in the normal direction, as expressed in (34). A physical
(as opposed to mathematical) understanding of why this is so may come from studying more
specific model diffusions. Note that both results were also found for occupation-like observ-
ables in one-dimensional diffusions [27], so the type of observable considered (occupation-like
or current-like) is not relevant for their explanation.

In our example of heterogeneous single-file diffusion conditioned on the collective particle
current, the effective force changes in both magnitude and direction, but its projection onto the
boundary normal does not. One can note that the original process has an irreversible drift [46],
generally defined by Fir(x) = J∗(x)/ρ∗(x), which is a constant vector, everywhere orthogonal
to the boundary normal. This property allows us to solve the model exactly [32], and explains
why the irreversible drift of the effective process is only modified in magnitude [47]. To obtain
more complicated and interesting behavior upon conditioning on a current, one could study
models for which the irreversible drift does not have this special structure; looking, for instance,
at non-planar boundaries and state-dependent original drifts. Our general results show how, in
principle, one can calculate the large deviation elements in these cases. In any such model an
interesting question will be the relative importance of the system bulk to the near-boundary
region in generating fluctuations.
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Appendix A. Duality for Markov operators

We show here the calculation leading to the duality relation for the Markov operators:

〈ρ,L f 〉 =
〈
L†ρ, f

〉
−
∫
∂Ω

dx f (x)JF,ρ(x) · n̂(x) − 1
2

∫
∂Ω

dx ρ(x)D∇ f (x) · n̂(x), (A.1)

when the process is constrained to a region Ω ⊂ R
d. Before proceeding, we state for conve-

nience a mathematical identity, which amounts to integration by parts in higher dimensions.
For a scalar field u and vector field V we have∫

Ω

dx u(x)∇ · V(x) = −
∫
∂Ω

dx u(x)V(x) · n̂(x) −
∫
Ω

dx V(x) · ∇u(x), (A.2)

where n̂(x) is the inward normal vector at point x ∈ ∂Ω. Starting from the inner product over
the domain Ω and using the expression (5) for the Markov generator, we write

〈ρ,L f 〉 =
∫
Ω

dx ρ(x)

[
F(x) · ∇+

1
2
∇ · D∇

]
f (x). (A.3)

Using (A.2), we have∫
Ω

dx ρ(x)F(x) · ∇ f (x) = −
∫
∂Ω

dx ρ(x) f (x)F(x) · n̂(x) −
∫
Ω

dx∇ · [F(x)ρ(x)] f (x)

(A.4)

and∫
Ω

dx ρ(x)

[
1
2
∇ · D∇

]
f (x) = −1

2

∫
∂Ω

dx ρ(x)D∇ f (x) · n̂(x) − 1
2

∫
Ω

dx∇ρ(x) · D∇ f (x).

(A.5)

Given that D is symmetric, we have

1
2

∫
Ω

dx∇ρ(x) · D∇ f (x) =
1
2

∫
Ω

dx D∇ρ(x) · ∇ f (x) (A.6)

and applying (A.2) to this last expression, we obtain

1
2

∫
Ω

dx D∇ρ(x) · ∇ f (x) = −1
2

∫
∂Ω

dx f (x)D∇ρ(x) · n̂(x) −
∫
Ω

dx f (x)

[
1
2
∇ · D∇

]
ρ(x).

(A.7)

Substituting (A.4), (A.5) and (A.7) into (A.3), we obtain

〈ρ,L f 〉 =
〈
L†ρ, f

〉
−
∫
∂Ω

dx f (x)

[
ρ(x)F(x) − 1

2
D∇ρ(x)

]
· n̂(x)

− 1
2

∫
∂Ω

dx ρ(x)D∇ f (x) · n̂(x), (A.8)

where L† is defined as in (3). Recognizing the definition of the current (9) in the above, (A.1)
follows.
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Appendix B. Duality for tilted generators

Here we obtain the duality expression

〈�k,Lkrk〉 =
〈
L†

k�k, rk

〉
−
∫
∂Ω

dx JFk ,�krk (x) · n̂(x), (B.1)

for the tilted generators for a process constrained to a region Ω ⊂ R
d, proceeding in a similar

manner as done in appendix A. Using the expression (16) for the tilted generator, we have

〈�k,Lkrk〉 =
∫
Ω

dx �k(x)

[
F(x) · (∇+ kg(x)) +

1
2

(∇+ kg(x)) · D(∇+ kg(x))

]
rk(x).

(B.2)

For the first term we have, using integration by parts as in (A.2), that∫
Ω

dx �k(x) [F(x) · (∇+ kg(x))] rk(x) = −
∫
∂Ω

dx lk(x)rk(x)F(x) · n̂(x)

+

∫
Ω

dx [(−∇+ kg(x))

× · F(x)lk(x)] rk(x). (B.3)

For the second term, we first note that

1
2

(∇+ kg(x)) · D(∇+ kg(x)) =
1
2

(
∇ · D∇+ kg(x) · D∇

+∇ · kDg(x) + k2g(x) · Dg(x)
)
. (B.4)

The last term in the above contains no derivatives and produces no boundary terms, while the
first term has already been dealt with in appendix A in (A.5) and (A.7) (with the understanding
that �k and rk are to replace ρ and f , respectively). We can therefore immediately write∫

Ω

dx �k(x)

[
1
2
∇ · D∇

]
rk(x) =

∫
Ω

dx rk(x)

[
1
2
∇ · D∇

]
�k(x)

− 1
2

∫
∂Ω

dx �k(x)D∇rk(x) · n̂(x)

+
1
2

∫
∂Ω

dx rk(x)D∇�k(x) · n̂(x). (B.5)

For the last two terms in (B.4), we have∫
Ω

dx �k(x)

[
1
2

kg(x) · D∇
]

rk(x) =
∫
Ω

dx �k(x)

[
1
2

kDg(x) · ∇
]

rk(x) (B.6a)

= −1
2

∫
∂Ω

dx �k(x)rk(x)kDg(x) · n̂(x)

− 1
2

∫
Ω

dx rk(x)∇ · �k(x)kDg(x), (B.6b)
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where we have used the symmetry of D in the first line and integration by parts in the second,
and ∫

Ω

dx �k(x)

[
1
2
∇ · kDg(x)

]
rk(x) = −1

2

∫
∂Ω

dx �k(x)rk(x)kDg(x)

−
∫
Ω

dx
[

1
2

kDg(x) · ∇�k(x)

]
rk(x). (B.7)

Combining (B.3), (B.5)–(B.7) we obtain

〈�k,Lkrk〉 =
∫
Ω

dx rk(x)

[
(−∇+ kg(x)) · (F(x)�k(x)) +

1
2

(
∇ · D∇�k(x)

− kDg(x) · ∇�k(x) −∇ · (kDg(x)�k(x))

+ k2g(x) · Dg(x)�k(x)

)]

−
∫
∂Ω

dx
{
�k(x)rk(x) (F(x) + kDg(x)) +

1
2
�k(x)D∇rk(x)

− 1
2

rk(x)D∇�k(x)

}
· n̂(x). (B.8)

Noting from (22) that the expression in square brackets is simply the operatorL†
k applied to �k,

and observing that

�krk (F + kDg) +
1
2
�kD∇rk −

1
2

rkD∇�k = JFk ,�krk , (B.9)

where we have used the definition of the current (9) and effective force (23), we obtain the
duality relation (B.1).
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