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The charging load of electric vehicles (EVs) is characterized by uncertainty and flexibility,
which burdens the distribution network, especially when there is a high penetration of
distributed generation (DG) in smart grids. Large-scale EVmobility integration not only affects
smart grid operation reliability but also the reliability of EV charging services. This paper aims
at estimating the comprehensive impacts caused by spatial-temporal EV charging from the
perspective of both electricity system reliability and EV charging service reliability. First, a
comprehensive reliability index system, including two novel indexes quantifying EV charging
service reliability, is proposed. Then, considering traffic constraints and users’ charging
willingness, a spatial-temporal charging load model is introduced. In the coupled
transportation and grid framework, the reliability impacts from plenty of operation factors
are analyzed. Moreover, the electricity system reliability and EV charging service reliability
correlated with DG integration are discussed. A coupled transportation grid system is
adopted to demonstrate the effectiveness and practicability of the proposed method. The
numerical results analyze reliability impacts from EV penetration level, trip chain, EV battery
capacity, DG installation location, and capacity. The proposed studies reveal that when the
EV capacity ratio to DG capacity is 3:1, the system reliability reaches the maximum level.

Keywords: electric vehicle integration, electricity system reliability, transportation network, distributed generation,
electric vehicle charging service reliability

HIGHLIGHTS

1) Impacts on reliability are studied from the perspective of both electricity system and EV charging
service.

2) A spatial-temporal simulation strategy for mobile EV charging load is proposed.
3) A coupled transportation and grid framework is used for reliability assessment.
4) Reliability impacts from EV penetration level, trip chain, EV battery capacity, DG installation

location and capacity are quantified.

INTRODUCTION

The problems of carbon emissions and energy shortage have been increasingly serious nowadays,
which has captured people’s attention on sustainable and clean energy. Thus, the application of
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electric vehicles (EVs) has attracted much attention recently
(Shafiee et al., 2013; Veldman and Verzijlbergh, 2015; Patil
and NagoKalkhambkar, 2021). According to an industry
report forecast, sales for EVs in 2021 will be between 1.8 and
2 million, of which more than 80% will be private cars. Moreover,
several countries, such as China, Japan, America, Germany, etc.,
provide lavish subsidies to EV users to promote the development
of electric vehicles. For instance, Germany provided up to 1.2
billion euros of subsidies to individual EV users. In addition, the
construction of charging infrastructure has also caused broad
concern. It is predicted that, in China, by the end of 2021, the
number of public charging piles will exceed 1.15million, while the
number for the private will be close to 1.5 million. And for battery
swapping stations, the number will approach 1,000. Hence, EV
penetration in smart grids is increased significantly. However,
while environmental stress is relieved due to EV high penetration
in smart grids, the potential risk of electricity system operation is
also increased as EVs are charged stochastically based on traffic
constraints and users’ subjective willingness. This problem will be
even more serious with the increasing penetration of distributed
generation (DG) whose output power is also uncertain. On the
other hand, with the large scale of EV integration, the reliability of
EV charging services cannot be ignored as well. For EV users, the
purpose of their charging behavior is to guarantee their own
demand, while they are also an important part of electricity load.
Hence, electricity system reliability and EV charging service
reliability may conflict sometimes. However, there is still
relatively little research on this field. As a result, impacts of
EV integration on the coupled system considering EV spatial-
temporal mobile charging should be investigated to make a trade-
off between electricity system reliability and charging service
reliability and to obtain a strategy for EV and DG
coordination operation.

The transportation network and distribution network are
closely coupled and interacted due to EV charging and
movement. An integrated traffic-power framework proposed
in Xiang et al. (2018) described the interactions between the
evolution coherence of EV charging load and traffic flow.
Reference Acha et al. (2010) discussed the impacts of different
EV charging strategies on distribution system energy losses,
which showed that distribution system operation can be
optimized by EV coordination. Reference Sun et al. (2020)
proposed a day-ahead robust, cost-minimizing scheduling
strategy for EV overnight charging in low voltage distribution
networks. In Hoog et al. (2015), EV charging was formulated as a
linear optimization problem considering distribution network
constraints, such as transformer capacity, voltage, and current
magnitude limits. Amixed-integer linear programmingmodel for
EV coordinate charging in unbalanced distribution networks was
presented in Franco et al. (2015), considering loads imbalance
and three-phase circuits. However, traffic characteristics were not
considered in the process of EV charging load modeling in these
works, which was not in accordance with the load characteristics
of EVs.

As participants in both urban transportation networks and
distribution networks, characteristics of EV mobile charging load
are closely associated with users’ travel habits and traffic

constraints. Furthermore, the larger the scale of EV
integration, the tighter the correlation among different
participants. On this basis, some scholars have studied how to
model transportation characteristics accurately. In Xiang et al.
(2016), the siting and sizing of EV charging stations were
discussed considering traffic constraints. In Luo et al. (2020a),
an EV charging strategy was proposed considering traffic speed
and EV numbers in charging stations. A mathematical model of
EV charging demand was introduced in Xia et al. (2019), where
some important factors were considered, such as seasons, travel
patterns, and traffic congestion. In Su et al. (2020), a novel control
method was proposed to control imbalanced feeder power on EV
flexible charging. In Xiang et al. (2019), existing EV charging
modeling methods were summarized from the temporal and
spatial dimension perspectives. On this basis, a scale EV
evolution model of charging load was introduced in Xiang
et al. (2019). In Ding et al. (2020), a multiperiod restoration
model for distribution networks considering the coordination of
mobile EVs, routing repair crews, and microgrids was proposed,
which showed that EV could help with restoration during a
system outage. Reference Su et al. (2019) investigated
distribution network planning problems with aggregated EV
charging, which took into account EV charging behavior and
driving patterns. In Manbachi et al. (2016), impacts of EV
integration with different penetration on quasi Volt-VAR
Optimization in distribution networks were evaluated, where
EV types, mixes, and ZIP modeling were illustrated to model
EV and loads. But it was ignored in these studies that EV charging
was stochastic, being based on users’ own charging willingness to
a great extent.

The existing research evaluates the impacts of electric vehicle
integration on system reliability which is generally analyzed in
terms of electricity system reliability. In contrast, the reliability of
EV charging services is rarely discussed. In Cheng et al. (2020),
considering spatial-temporal EV charging load predicting, the
reliability of the distribution network was evaluated with large-
scale electric vehicle integration. In Xu and Chung (2016),
evaluation of the distribution network reliability was extended
considering EVs’ operation in different modes, including vehicle-
to-home and vehicle-to-grid. Reference Sadeghian et al. (2019)
analyzed the reliability impact of radial distribution systems
considering demand response and EVs’ flexible charging and
discharging. A probabilistic reliability assessment method was
introduced in Anand et al. (2020) to evaluate the effect of
stochastic EV charging power on distribution network
reliability. In Guner and Ozdemir (2020), reliability
enhancement of distribution network was analyzed considering
storage capacity of electric vehicles parking lots. The potential of
battery-exchange stations in improving distribution system
reliability was investigated in Farzin et al. (2016), where the
conclusion that system reliability could be notably improved
based on the location of the battery-exchange station was
obtained. In Huang et al. (2020), a data-driven reliability
evaluation method was proposed to quantify EV penetrated
system reliability employing slice sampling and diffusion
estimator. However, in these studies the reliability of the
electricity system was studied while EV charging service
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reliability was ignored, which is impractical since the basic
purpose of EV charging is to ensure users’ own charging
demand. In Meng et al. (2021), optimal planning for EV
charging infrastructure was introduced to maximize both
distribution network and EV charging service reliability.
Although EV charging service reliability was considered in
Meng et al. (2021), it was based on EV users’ traveling
reliability rather than considering the reliability of EV
charging power.

The impacts of distributed generation (DG) integration on
urban distribution networks cannot be ignored for its
intermittent and uncertain power characteristics Xiang et al.
(2020). When DG penetration in the grid reaches a certain
level, conventional generator capacity will be less than the
total load capacity (Ge and Wang, 2013). In this case, the
uncertainty of DG output may lead to a system outage,
particularly when large-scale electric vehicle charging has
occurred in the system. A DG planning model taking into
account network reconfiguration and demand-side
management was proposed in Zhang et al. (2018). In Cui
et al. (2019), collaborative planning of distribution network
and distributed generation was introduced, considering the
flexible operation of heat pump load. Reference Das et al.
(2020) analyzed the impacts of DG integration on optimal
reactive power dispatch. In Luo et al. (2020b), an optimization
model to determine the coordinated allocation of EV charging
stations and DG was proposed. In Colmenar-Santos et al. (2019),
a charging strategy was designed to increase DG penetration in
the electricity system by electric vehicle dispatching. Impacts of
EV integration on wind-thermal electricity systems were explored
in Göransson et al. (2010) to reduce carbon emissions. An
optimal bidding strategy considering plug-in EVs and DG was
proposed to maximize microgrids and distribution system profits
in Bostan et al. (2020), where coordination of energy resources
was also optimized for system contingency. In Luo et al. (2019),
an optimization model for joint locating and sizing of EV
charging infrastructure and DG was presented taking into
account real-time charging navigation. But it cannot be
ignored that the coordination operation of EV and DG may
lead to system instability since the power was stochastic for both.
Reliability impacts of DG and EV operation in coordination on
smart grids should be analyzed.

Considering insufficiency in these studies, the reliability
impacts of large-scale mobile EV integration on electricity
system-based sequential Monte Carlo method are discussed in
this paper. The main contributions of this paper are as follows:

1) A comprehensive reliability assessment method that quantifies
both electricity system reliability and EV charging service
reliability is proposed. Two novel indexes aiming to quantify
EV charging power reliability are put forward to evaluate the
curtailing extent of charging energy in each bus and analyze the
charging energy not supplied from a holistic perspective.

2) A spatial-temporal mobile EV charging load model based on
the vehicle-transportation-grid trajectory is proposed
considering EV traffic characteristics and users’ charging
willingness. In the coupled transportation and grid

framework, reliability impacts considering plenty of
operation factors are comprehensively analyzed.

3) Reliability impacts of DG integration on the grid with large-
scale mobile EV deployment are quantified. The coordinated
operation strategy of EVs and DG is discussed as well. DG
installation locations can be selected to coordinate the
reliability level of the distribution system and EV charging
service. Moreover, the optimal DG capacity configuration,
which brings the highest system reliability level, is provided.

The rest of this paper is organized as follows: inMobile Electric
vehicle Charging Load Modeling, spatial-temporal mobile EV
charging load modeling is introduced; the reliability evaluation
method for both system and EV charging service-based sequential
Monte Carlo is proposed in Reliability Assessment; Framework
provides a detailed description of the research framework
employed in this paper; Numerical simulations about coupled
system reliability with EV mobility and DG integration are
performed inCase Study; andConclusion draws some conclusions.

MOBILE ELECTRIC VEHICLE CHARGING
LOAD MODELING

As an uncertain load coupling transportation system and distribution
system, EVs should be modeled spatially and temporally. In this
section, EVmobile trajectory is formulated first based on a trip chain
and Dijkstra algorithm. Then flexible charging of EV is modeled,
including EV trip time, SOC consumption, charging mode selection,
and users’ charging willingness.

Electric Vehicle Mobile Trajectory Modeling
EV charging load is different from conventional load due to its
traffic characteristics. EV traveling starting point, destination,
traveling distance, and users’ habits will influence the charging
behavior. Considering transportation constraints, EV state of
charge (SOC) is determined through its travel trajectory. As a
result, transportation topology should be modeled first. In this
paper, graph theory is employed for bidirectional transportation
network modeling (Tang andWang, 2016). In graph theory, a set
of vertices are linked by the corresponding disjoint edges, while
the roads are modeled by the edges, and transportation system
nodes are modeled via the set of vertices.

After transportation topology is obtained, EV mobile behavior
should be modeled. The mobile behavior of EV users can be
understood as a spatial and temporal interacting process,
normally starting from one certain point and finally arriving
at the destination, which can be simply categorized into three
basic aspects: work, entertainment, and residence. A trip chain is
usually utilized to reflect EV dynamic travel characteristics (Liang
et al., 2020) and is therefore employed in this paper to provide a
better description of user’s travel patterns.

Assuming every trip starts at home, and after staying in several
places, i.e., workplaces, EV users eventually return to home. Then
trip chains are obtained to simulate EV users traveling behaviors
depicted in Figure 1. The set of trip chains are described in
Table 1 as follows:
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C � {C1,C2} (1)

where C represents the whole set of trip chains; C1

represents the simple chain which means there is only
one activity during the trip; accordingly, C2 represents
the complex chain, which means that more than one
activity has occurred during the trip; R represents the
residence area; W is the work area, and E is for an
entertainment area.

The Dijkstra algorithm proposed by Dijkstra in 1959 is a
common algorithm to find the shortest path from a point to any
other point in graph theory (Dijkstra, 1959). Assuming EV
users will travel in the shortest path to save time and energy.
Then specific traveling path is obtained based Dijkstra
algorithm when the trip starting point and destination are
determined.

Electric Vehicle Charging Load Predicting
In this section, EV traveling state, including traveling time and
SOC consumption is modeled. As a flexible charging load,
users’ charging willingness and charging pattern are also
discussed.

Electric Vehicle Traveling State Modeling
According to the statistics of the UK Ministry of Transport
in 2016 (Li et al., 2019), the traveling time can be fitted to a
normal distribution, which can be seen as follows:

f (t; μ, σ) � 1
σ

���
2π

√ exp( − (t − μ)2
2σ2

) (2)

where μ is the expected value of EV traveling time; σ is the
standard deviation; and μ and σ are trip chain type and traveling
points respectively.

Then EV parking time and restarting time can be calculated
based on EV traveling speed:

Ti
Road � ∑W

road�1

Sroad
VEroad

(3)

Ti
park � Ti

start + Ti
Road (4)

Ti+1
start � Ti

park + Ti
stay (5)

where TRoad is the traveling duration in the ith trip;W is the nodes
number that the ith trip includes; Sroad is the road length; VEroad
represents the traveling speed; Tpark is the point of parking time;
Tstart is the point of starting time of next trip; Tstay is the staying
duration in the destination of the ith trip.

If EV is charged during the trip, then Eq 4 can be corrected:

Ti
park � Ti

start + Ti
Road + Ti

mid (6)

where Tmid is the midway charging duration in the ith trip.
SOC of EV is dependent on users driving length. If SOC is

lower than its threshold value after a driving distance, then EV
should be charged to ensure the next trip ends successfully. Thus,
making sure SOC be able to support the next trip for each period
is essential. Assuming that SOC is decreased linearly with the
increase of traveling distance, SOC at one certain point during the
trip can be calculated as follows:

SOCi
Tpark

� SOCi
Tstart

−
∑W

Road�1
SRoad × b

Cap
(7)

where SOCi
Tpark

is the SOC after arriving at a destination; SOCi
Tstart

is the initial SOC during the trip; b is the power consumption per
mileage; Cap is the EV battery capacity.

User Charging Pattern Modeling
Before EV charging mode selection, users should decide whether
EV should be charged first. Based on the current SOC, the EV
traveling distance that can be supported before reaching the
threshold is formulated as follows:

SSOCm � (SOCi
Tstart

− SOCm) × Cap

b
(8)

where SOCm is the SOC threshold value.
If the following formula is met, then the nf th node is the

midway charging node:

0< SSOCm − ∑W
road�1

Sroad < ξ (9)

where ξ is a prespecified value.

FIGURE 1 | EV traveling trajectory with two types of trip chains.

TABLE 1 | Trip chain of EVs.

C C1 C2

RW•WR RW•WE•ER RE•EW•WR RR•RW•WR
RR•RR RW•WR•RR RE•ER•RR RR•RE•ER
RE•ER RW•WW•WR RW•EE•ER RR•RR•RR
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Naturally, the duration for midway charging can be calculated
as follows:

Tmid �
1 − SOCi

Tstart
+ b × ( ∑nf

road�1
Sroad)/Cap

Power
Cap (10)

where Power is the charging power based on the charging pattern.
However, considering users charging willingness, sometimes

EV will still be charged even though the current SOC can support
the next trip. In this case, users will choose to charge or not based
on business urgency, or their behavioral habits, etc.
Consequently, a user charging demand model is adopted in
this paper to describe the charging probability based on fuzzy
theory (Liu et al., 2018a). Define DEGSOC as the index to measure
the sufficiency extent of SOC for the next trip:

DEGSOC �
SOCi

Tpark
× Cap

b × Si+1
(11)

where Si+1 is the traveling distance for the next trip.
Then, the membership function M(DEGSOC) representing the

fuzzy set of charging willingness is formulated as follows:

M(DEGSOC) �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, DEGSOC ≥X

1, DEGSOC ≤Y

1
2
{1 + sin[ π

X − Y
(X + Y

2
− DEGSOC)]}, Y <DEGSOC <X

(12)

where X is the fuzzy coefficient. When the value of DEGSOC is
bigger than X, it means that SOC is adequate, and there is no need
for charging;Y is the elastic coefficient. IfDEGSOC is smaller thanY,
the next trip cannot be supported based on the current SOC. As a
result, whenDEGSOC is betweenX andY, users have the willingness
to charge. The closer to X the value is, the weaker the charging
demand is, and vice versa. The value of M ranges from 0 to 1.

After users decide to charge for EV, then the charging pattern
should be discussed. EV users usually charge for EV at night when a
full-day trip ended, as they should be prepared for the next day’s trip,
and electricity price in the evening is generally lower than during the
day. For the chargingmode, a slow-chargingmode is preferred at night
when there is enough time for the charging since frequent fast charging
may accelerate battery aging. For other situations, the charging pattern
should be analyzed. If SOC cannot be charged to the full state through
slow-charging mode during the parking time, the fast-charge mode
should be adopted, which can be expressed as follows:

Powerslow × Ti
stay

Cap
< 1 − SOCi

Tpark
(13)

where Powerslow is the slow-charging power.

RELIABILITY ASSESSMENT

As themobile EV charging loadmodel proposed is time-dependent
and the system state is continuously changed, the sequential Monte
Carlo simulation is adopted in this paper to evaluate electricity
system reliability (Sankarakrishnan and Billinton, 1995). In the

process of composite reliability evaluation, the optimization with
the objective of minimum load curtailment is performed:

Loadshed � min∑NL

j�1
Ej (14)

subject to

Pinj + E − PLD � 0

Qinj + EQ − QLD � 0

PG ≤ PG ≤ PG

QG ≤QG ≤QG

V ≤V ≤V (15)

where Ej is the load shedding in bus j; NL is the number of
distribution system load buses; Pinj and Qinj are the vectors of
active and reactive power injections respectively; E and EQ are the
vectors of corresponding active and reactive load curtailment; PLD
andQLD are the vectors of active and reactive power loads; PG and
QG are the vectors of active and reactive generating power and
PG , PG, QG , and QG are the vectors of their power limits
respectively; V is the vector of bus voltage magnitude; and V
and V are the vectors of corresponding limits.

In this part, three common reliability indexes to capture
interruption duration, frequency, and load curtailment are
introduced. In addition, two novel indexes aiming at EV charging
service reliability are proposed to complement the existing indexes. All
indexes are calculated based on sequential Monte Carlo simulation.

Reliability Indexes Calculation
For the distribution system, reliability indexes of SAIFI (system
average interruption frequency index), SAIDI (system average
interruption duration index), and EENS (expected energy not
supplied) are adopted to perform reliability assessment, which can
be calculated as Eqs 16–18. Additionally, two reliability indexes
aiming at describing EV stochastic characteristics, i.e., POCCE
(percentage of curtailed charging energy) and CENS (charging
energy not supplied), are proposed to quantify EV charging
service reliability. The two indexes are proposed from the
perspective of EV charging power reliability. For POCCE, it is put
forward to evaluate the curtailing extent of charging energy in each
bus, which showsweaknesses of the charging service system. It should
be noticed that in some charging points the value of POCCE is quite
large while the total charging power is low. However, it still should be
valued as EV charging service reliability is aimed at every EV user
charging satisfaction not the charging reliability in society. For CENS,
similar to distribution system index EENS, it is proposed to analyze
the charging energy not supplied as awhole. It is assumed that when a
system outage has occurred, EV charging load is considered to be
curtailed first. Consequently, CENS can be regarded as a part of
EENS. The calculation formulas are presented as follows:

SAIFI �
∑Nc

ic�1
∑NL

j�1
f jicuj

NY ∑L
j�1

uj

(16)
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SAIDI �
∑Nc

ic�1
∑NL

j�1
Tj
down ic

uj

NY ∑NL

j�1
uj

(17)

EENS �
∑Nc

ic�1
∑NL

j�1
Ej
ic × Tj

down ic

NY
(18)

POCCE �
∑Nc

ic�1
EVj

ic

∑Nf

if �1
EVloadj

ic

× 100% (19)

CENS �
∑Nc

ic�1
∑NL

j�1
EVj

ic × Tj
down ic

NY
(20)

where Nc is the number of simulated cycles, where each cycle
including an outage period Tj

down ic
and a working period Tj

up ic ;
Nf is the number of the outage periods; NY is the simulation year;
uj is the number of users in load bus j; f jic is the interruption
frequency in bus j; Ej

ic is the load curtailment; EVloadjic is the EV
charging load; EVj

ic is the curtailment of EV charging load. It
should be noticed that EVj

ic , which refers to EV charging load
shedding, is included in Ej

ic .

Reliability Evaluation Based Sequential
Monte Carlo Simulation
Components faults in the distribution network are relevant to
environmental and operational factors. Different factors, such as
service time, production defects, temperature, etc., can lead to
component fault with a specified probability (Spinato et al., 2009).
The faults can be considered an independent component to be
modeled as a Markovian component with two states, up and
down (Sulaeman et al., 2017).

Assuming that the duration of components in each state obeys
an exponential distribution, the random state of the system is
obtained by combining the operation states of components.
Additionally, the electricity system reliability index is
calculated based on the optimal power flow (OPF) solved by
MATPOWER. Specific steps of the reliability assessment based
on sequential Monte Carlo are as follows:

1) Set up the initial system state and input the original data,
including grid topology, power load, charging load, power
generation, etc.

2) According to the failure rate and repair rate of components,
the time series state of components is extracted, and the
component state matrix is generated. The duration of
down and upstate is obtained as follows:

Tj
down ic

� − 1
μj
lnNrand (21)

Tj
up ic � − 1

λj
lnNrand (22)

where μj and λj are the repair state and failure state respectively;
Nrand is a random number evenly distributed between 0 and 1.

3) According to the component state matrix, the optimal power
flow is calculated when a component failure occurred. If part
of the load is curtailed, the system is considered in a failure
state. Based on the simulation results, the reliability indexes
are calculated based on Eqs 16–20.

4) In the process of sequential Monte Carlo evaluation, a
stopping criterion is adopted when calculated parameters
during the simulation are tended to be stable, which can be
seen as Eq 23. If the inequation is met, the simulation stops.

β �
�������
V(βnMC

)√
E[βnMC

] ≤ ε (23)

where β is the variation coefficient; E[·] is the expectation
function; βnMC

is the reliability index (such as EENS) after nMC

simulation cycles; V(·) is the variance function; ε is a
predetermined tolerance.

FRAMEWORK

In this section, the overall framework of the proposed method is
introduced. The coupled system framework-based spatial-
temporal EV charging mobility is shown in Figure 2. The
upper half part of the figure is the coupled transportation
and distribution system, while the lower half is EV mobile
trajectory-based “RW•WE•ER” trip chain and its
corresponding SOC variation. Letter “a” represents the fast-
charging mode adopted for midway charging during the trip in

FIGURE 2 | Coupled system framework based spatial-temporal mobile
EV charging.
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Figure 2. After the EV user gets home (the destination of the
third trip), the EV is charged through low-charging mode as the
letter “c” shows. Letter “b” means charging mode should be
determined based on Eqs 12, 13. As can be seen, the users prefer
to charge for EV at the destination of the first trip rather than the
second trip.

Solution steps of the proposed method are shown in Figure 3,
which are divided into two parts: the mobile EV charging load
modeling and the reliability evaluation based on sequential
Monte Carlo.

For the first part, the spatial-temporal EV charging load is
modeled. Firstly, EV traveling starting time and back time are
obtained according to a normal distribution. Then, the EV
traveling path is obtained through the trip chain and Dijkstra
path search algorithm. Considering EV users’ charging
willingness, Eqs 12, 13 are calculated to decide whether to
charge for EV or not during the trip. If EV users choose to

charge, the slow-charging mode is preferred first. However, the
fast-charging mode is chosen if SOC cannot be charged to the full
state through slow charging mode during the staying time. When
EV users get home, EVs will be charged through low-charging
mode due to factors such as preparation for the next trip, lower
electricity price, etc. The spatial-temporal EV charging load can
be obtained when the whole EV time-space trajectory simulation
is accomplished.

After EV charging load modeling, the total system load can be
determined by combining the initial system load and EV charging
load. The components are modeled as the Markovian
components with two states, up and down. The optimal power
flow (OPF) calculation is performed to obtain the system state
with the minimum load shedding. If load curtailment occurs, the
system state is identified as a failure. According to the OPF
results, the reliability indexes are calculated. Repeat these steps
until solutions are converged.

FIGURE 3 | Flowchart of reliability evaluation considering spatial-temporal EV charging load.
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CASE STUDY

In this section, simulations based on the IEEE 57-node test system
and a coupled transportation system are performed. EV spatial and
temporal characteristics are analyzed first. Then system reliability
is deeply evaluated based on different EV penetration levels, trip
chain, EV battery capacity, DG integrating location, and capacity.

Simulation Settings
The topology of coupled IEEE 57-bus system and 59-node
transportation system is depicted in Figure 4. In the distribution
system, there are 80 branches, seven generators, and 57 buses
containing 42 load buses. The number of total users is 932. As for
the transportation system, it is divided into six areas: three residential
areas, two work areas, and one entertainment area. The matching
nodes of the transportation system and the distribution system buses
are shown in Supplementary Appendix Tables A–C. Moreover, the
length of each road is illustrated inSupplementaryAppendixTableD.

For the parameters of EVs, the battery capacity of each EV is
set to be 30 kWh, and the fast-charging power and low-charging
power are 20 and 6 kW, respectively. The whole generator
capacity is 1976 MW in the 57-bus system. It is defined that
the penetration level of EV is the ratio of the fast charging power
of the whole fleet to the total generator capacity. For example, a
10% penetration level means there are 9800 EVs in the coupled
system (Cheng et al., 2013). Private EV is adopted as the analysis
object in this paper as the traveling mode of private cars is more
flexible. The parameters of X and Y are set to 2 and 1.2
respectively.

The sequential Monte Carlo method is adopted in this paper,
and the step size of the sequential simulation is set to 15 min. The
failure rate of the feeder is set to 0.002, and the repair rate is 0.25.
The failure of the generator is not considered. Virtual generators
that have high generating and operation costs are connected to
load buses to calculate load curtailment. The daily load profile
data is obtained from Ge et al. (2014).

FIGURE 4 | Coupled system of distribution and transportation network.
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Electric Vehicle Spatial-Temporal
Simulations
Charging load simulation for a working day and a resting day is
performed in this section to evaluate the difference of charging
load in different typical days. Assuming in a working day, simple
trip chain accounts for 40%, and complex trip chain accounts for
60%. For resting day, 40% of people will choose to rest at home,
and the complex and straightforward trip chain accounts for 50
and 10%, respectively. The charging load of 200 electric vehicles

in working day and resting day are simulated, respectively, as
shown in Figure 5.

It can be seen in Figure 5 that the EV charging load on the
working day is much bigger than the one on the resting day,
where the peak value of working-day charging power is triple that
of the resting day. In addition, for both resting and working days,
the time from 7:30 to 10:30 and 16:00 to 23:00 are high-demand
charging periods. Moreover, different from the resting days, the
charging demand is heavy in the evening, as people will often

FIGURE 5 | Daily EV charging load in resting and working day.

FIGURE 6 | Description of EVs’ traveling trajectory and charging demand.
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choose to charge for EV after work. As for the charging location, it
can be seen that charging demand at the entertainment area on a
resting day is more distinct than that on a working day. In
contrast, the charging power on a working day is much higher
than that on a resting day in a residential area.

EV is charged movably and indeterminately due to its traffic
characteristics. Six electric vehicles’ traveling trajectories and charging
power are presented in Figure 6. Overall, the distribution of EV
trajectory ismainly distributed at the central road of the transportation
network. Compared to the upper part of the network depicted in
Figure 6, EV charging in the lower part is more centralized. It can be
noticed that the Entertainment area is located in the lower part of the
transportation network, and so is Work area 2, which both lead to a
high traffic density there. Consequently, the charging demand in these
places is larger than the one in upper part of the system.As a result, EV
charging in the lower part is more concentrated.

To draw EV spatial-temporal characteristics more clearly, a
complex trip chain and a simple trip chain are extracted to be
compared, as shown in Figure 7.

From Figure 7, we can see the first trajectory is presented as a
complex trip train that passes through residential area 2 (the start
point), work area 1, entertainment area 1, work area 2 (the
destination 1), entertainment area 1 (the destination 2), work
area 1 and residential area 2 (destination 3, i.e., home). As the first
trip (from residential area 2 to work area 2) is a long trip, EV is
charged midway at node 48 to support the next trip. For the

second simple trip chain, it can be noticed that SOC is dropped to
the same value at both two destinations (node 29 and node 51).
This is because the two trips have the same distance according to
the Dijkstra path search algorithm.

Reliability Evaluation Based Sequential
Monte Carlo
In this section, reliability indexes based on different EV penetration
and trip chains are simulated. Besides, effects on the coupled system
reliability due to EV charging based on different EV battery
capacities are also discussed. Reliability indexes are shown in
Table 2 and Figure 8 are based on EV penetration from 10 to
40%. The ratio of simple trip chain to complex trip chain is 1:9.

From the data above, it is not difficult to find that all reliability
indexes, including CENS and POCCE, worsen with EV

FIGURE 7 | The spatial-temporal EV mobile trajectory and corresponding SOC variation.

TABLE 2 | Reliability indexes based on different EV penetration.

Reliability index EV penetration

10% 20% 30% 40%

SAIDI (h/year) 0.3050 0.3685 0.5633 0.7741
SAIFI (f/year) 0.6415 0.7631 1.0508 1.3006
EENS (MWh/year) 97.4986 119.7360 138.5801 191.2316
CENS (MWh/year) 5.2232 12.1849 24.8158 56.0833
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penetration increasing. Moreover, it is noteworthy that there is a
trend towards worsening POCCE value, which means that
although the total EV charging power has been increased, the
growth rate of curtailed charging power is more significant than
before. As a result, a conclusion can be drawn that EV charging
service reliability will be more seriously influenced by the growth
of charging demand. Besides, there is a large capacity of charging
power curtailment in buses 27, 32, 33, 35, 52, 53, and 54, which

shows that the EV charging demand in the lower part of the
network is more robust than the results obtained from Electric
Vehicle Spatial-Temporal Simulations. To analyze the reliability
level of different load buses, the loss of energy and charging
energy in each load bus are compared in Figure 9.

By comparing the two kinds of curves of “Loss of Total Energy”
and “Loss of EV Charging Energy” in Figure 9, it is easy to realize
that the buses with poor reliability level are consistent with the results

FIGURE 8 | Reliability index POCCE based different EV penetration.

FIGURE 9 | Loss of total energy and EV charging energy at each load bus in a year based on different EV penetration.
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TABLE 3 | Reliability indexes based on a different ratio of trip chain.

Reliability index Ratio of simple trip chain to complex trip chain

1:9 3:7 5:5 7:3 9:1

SAIDI (h/year) 0.5596 0.4245 0.3926 0.3635 0.3543
SAIFI (f/year) 1.0611 0.8594 0.7550 0.7592 0.7208
EENS (MWh/year) 142.6823 138.8306 125.3006 119.4343 108.0768
CENS (MWh/year) 25.1174 23.6312 23.4708 23.0626 22.4251

FIGURE 10 | The reliability index POCCE based on a different ratio of trip chain.

FIGURE 11 | Interruption frequency and duration based trip chain of 1:9 and 9:1.
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in Figure 8 as well, which verifies the validity of the comprehensive
reliability assessment method proposed in this paper. There may be
three explanations for the phenomenon. First, the generators are
mostly located at the upper part of the system, where the reliability
level of buses is much higher. Besides, the lower part structure of the
network is sparse; if there is a branch breaking down, nearby buses
will severely be affected. Furthermore, high traffic density leads to a
heavier load in the lower part.

EV traffic characteristics are much correlated to users’
behaviors. The reliability indexes based on different ratios of
the trip chains are shown in Table 3 and Figure 10. The
penetration level of EV is set to be 30% uniformly.

It can be noticed that with the decreasing of the complex trip
chain proportion, the value of all reliability indexes is basically on a
downward trend, whichmeans system reliability has been improved.
This is because, for the complex trip chain, the EV traveling
trajectory is more complex. Therefore, the charging demand
becomes more robust. As the proportion of the complex trip
chain decreased, the system is less burdensome, and the reliability
level is significantly improved. To see the difference further
intuitively, the interruption frequency and duration in each load
bus-based trip chain of 1:9 and 9:1 are shown in Figure 11.

From Figure 11, we can observe that the buses with high-
reliability levels are basically in line with the previous results. And
the interruption frequency and duration with the trip chain ratio
of 1:9 is larger than the one with a ratio of 5:5, which is also
consistent with the data in Table 3.

However, the above simulations are based on the constant
capacity of each electric vehicle. In reality, different EV models
may have various battery capacities. Thus, analyzing the effect of
EV operation with different capacities is mandatory and practical.
Keep the total EV capacity constant, i.e., the penetration level is
the same as the data in Table 3. Increase the battery capacities of
each EV to 30 kWh and the fast-charging power and low-
charging power to 20 and 6 kW, respectively. The results are
shown in Table 4.

To compare the data in Tables 2, 4 more intuitively, the
corresponding change rate of the reliability index is calculated.
The results are shown in Figure 12.

It can be seen that the change rates of index “SAIDI” and
“CENS” are greater than zero with penetration 10–40%, while the
change rates of index “SAIFI” and “EENS” are less than zero. It
means that after increasing EV battery capacity, “SAIDI” and
“CENS” are increased and “SAIFI” and “EENS” are decreased,
and as EV penetration increases, the change becomes more

obvious. It may because EV users will have more unsatisfactory
charging requirements in the event of a power outage when the
capacity of the EV battery increases. Additionally, it may lead to a
large amount of charging load at a certain moment, making the
system burden much heavier. Consequently, the system becomes
more complex to maintain steady-state operation. Hence, the
Index “SAIDI” is increased. Since the total EV capacity is
constant, the increase of EV charging power at certain
moments leads to the charging power decrease at other
moments. As a result, the frequency failure of the system and
the amount of load curtailment are diminished.

Reliability evaluation With Electric Vehicle
and Distributed Generation Integration
Due to the development of green energy and the requirements
of national policies, the amount of DG in smart grids has been
considerably increased. EV and DG are both characterized by
their power uncertainty. Hence, system operation will be
significantly influenced when they are jointly integrated
into grids. This part describes the effect of DG integration
on both EV charging service and distribution system
reliability considering EV charging. Among all types of
uncertain resources, the photovoltaic (PV) power
characteristics differ greatly from charging load
characteristics, as its power supply is cut off at night while
EV is mainly charged at that time. In this case, PV is chosen to
represent the uncertainty of DG.

In this section, two PVs with different capacities are integrated
into the coupled system to evaluate its operation on system
reliability. Considering the topology of the distribution system
and traffic density, different PV installation locations may result

TABLE 4 |Reliability indexes with increased battery EV capacity based on different
EV penetration.

Reliability index EV penetration

10% 20% 30% 40%

SAIDI (h/year) 0.3157 0.4927 0.8462 1.5880
SAIFI (f/year) 0.6329 0.7454 0.9752 1.1992
EENS (MWh/year) 96.0692 113.0622 122.7943 148.2297
CENS (MWh/year) 5.3000 15.9867 37.2476 109.8706

FIGURE 12 | Change rate of reliability index with increased EV battery
capacity based on different EV penetration.
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in different reliability impacts. The PV installation location is
determined based on the coupled system reliability. Aiming at
improving EV charging service reliability, locations can be
obtained by selecting buses with the two most considerable
values based on Eq 24. And for distribution network
reliability, it is determined based on Eq 25.

αj � ∑
ℓ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ POCCEj

∑NL

j
POCCEj

+
∑Nc

ic�1
EVj

ic × Tj
down ic

∑NL

j
∑Nc

ic�1
EVj

ic × Tj
down ic

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (24)

βj � ∑
ℓ

∑Nc

ic�1
Ej
ic × Tj

down ic

∑NL

j
∑Nc

ic�1
Ej
ic × Tj

down ic

(25)

where ℓ represents the set of EV penetration from 10 to 40%.
Based on the two formulas above, bus 27 and bus 35 are selected

for PV installation locations based on EV charging service reliability,
and bus 31 and bus 33 for distribution system reliability. The daily
time-varying output of PV can be seen from Liu et al. (2018b);

however, the failure of PV is not considered. Keep the total system
generation capacity constant and increase the total PV capacity from
100 to 400MW, respectively, i.e., the capacity of a single PV cluster is
from 50 to 200MW. The penetration of EV is set to be 30%. The
calculated reliability indexes are shown in Table 5.

Table 5 shows that by selecting PV to installation location based
on electricity system reliability, the overall reliability level of the system
is much better. However, it can be noticed that the value of “CENS/
EENS” with PV location in bus 31 and 33 is higher than the one with
PV location in bus 27 and 35. It means that although the overall
reliability level is improved by selecting PV location bus-based
electricity system reliability, EV charging service reliability will be
more obviously enhanced if PV is integrated into bus 27 and 35, which
gives further verification on the validity of the novel reliability indexes.

Besides, it can be noticed that with the increase of PV
integration capacity, both distribution system reliability and
EV charging reliability are improved first and then decreased.
To see trends more visually, select bus 31 and 33 as the integration
locations, and the reliability indexes with PV capacity from 100 to
450 MW are shown in Figure 13.

When PV capacity is from 100 to 170 MW, the indexes are all
on a downward trend, which means as PV penetration increases,

TABLE 5 | Reliability indexes with PV integration.

Reliability index Total PV capacity

100 MW 200 MW 300 MW 400 MW

Bus with PV integration 27.35 31.33 27.35 31.33 27.35 31.33 27.35 31.33
SAIDI (h/year) 0.2106 0.1564 0.1972 0.1589 0.3722 0.2459 0.7849 0.6005
SAIFI (f/year) 0.4320 0.3292 0.4395 0.3775 0.6320 0.4839 1.4952 1.2065
EENS (MWh/year) 70.4218 48.5267 55.2075 41.7842 72.0103 47.5085 171.1702 114.5682
CENS (MWh/year) 7.7053 7.7334 6.4259 6.4825 12.7411 10.8313 50.3606 38.3109
CENS/EENS 0.1094 0.1594 0.1164 0.1551 0.1769 0.2280 0.2942 0.3344

FIGURE 13 | Reliability indexes with PV integration-based capacity from 100 to 450 MW.
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the electricity system reliability level is improved. Consequently,
the optimal PV capacity leading to the highest reliability is about
170 MW. As PV is integrated into the system, the operation of the
distribution network is changed from a single power supply mode
by the main power grid to a more flexible multi-terminal power
supply mode by both the power main grid and PV. EV can be
supplied by DG, which alleviates the system burden to a great
extent. Besides, the basic power supply can be ensured by PV
output in some areas when there is a system failure occurred. It
means that when the ratio of EV capacity to DG capacity is 3:1,
the coordinated optimal operation strategy is obtained. However,
when PV capacity exceeds 200MW, the electricity system
reliability level starts to decline. It is noteworthy that when PV
capacity is increased by more than 370 MW, the reliability index
starts to keep proliferating. Furthermore, when PV capacity
reaches 400 MW, the system reliability level is even lower than
the initial reliability level without PV integration. PV cannot
undertake the main load for its intermittency and uncertainty,
especially when there are numerous flexible EV charging loads.

CONCLUSION

Reliability impacts of large-scale mobile EV integration on both
electricity system and EV charging service system in a coupled
transportation and grid framework are explored in this paper.
The case study results indicate the following:

• With the increase in EV penetration level and proportion
of the complex trip chain, the reliability level for both the
electricity system and EV charging service shows a
downward trend. EV charging service reliability will
be more severely affected by the growth of charging
demand.

• Through increasing EV battery capacity, indexes “SAIDI”
and “CENS” are increased while “SAIFI” and “EENS” are
decreased. As EV penetration increases, the change becomes
more obvious. The results implicate that both distribution
network reliability and EV charging service reliability can be

improved significantly by increasing EV battery capacity if
there is enough backup power during the peak period.

• DG installation locations can be determined to coordinate
the reliability level of the distribution system and EV
charging service. Appropriate DG capacity can improve
system reliability, but once a certain threshold is
exceeded, the system will rapidly collapse. When DG
capacity is about 170 MW, i.e., the ratio of EV capacity
to DG capacity is 3:1, the highest system reliability level is
reached. However, when DG capacity exceeds 370 MW,
system reliability starts to deteriorate rapidly.
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GLOSSARY

TRoad traveling duration in a trip

W nodes number that a trip includes

Sroad road length

VEroad traveling speed

Tpark point of parking time

Tstart point of traveling starting time

Tstay staying duration in the destination

Tmid midway charging duration

SOCTpark SOC after arriving at a destination

SOCTstart initial SOC

S traveling distance

b power consumption per mileage

Cap EV battery capacity

Powerslow slow-charging power

X fuzzy coefficient

Y elastic coefficient

SSOCm traveling distance before reaching SOC threshold

SOCm SOC threshold value

NL number of distribution system load buses

Power charging power based charging mode selection

Ej load shedding in bus j

Pinj, Qinj vectors of active and reactive power injections

E, EQ vectors of corresponding active and reactive load curtailment

PLD and QLD vectors of active and reactive power loads

PG, QG vectors of active and reactive generating power

PG , PG vectors of active power limits

QG , QG vectors of reactive power limits

V vector of bus voltage magnitude

V , V vectors of bus voltage limits

Nc number of simulated cycles

Tj
down ic

outage period

Nf number of the outage periods

NY simulation year

uj number of users in load bus j

f jic interruption frequency of bus j

Ej
ic load curtailment of node j

EVloadjic EV charging load in bus j

EVj
ic curtailment of EV charging load in node j

μj repair state

λj failure state

Nrand a random number evenly distributed between 0 and 1

β variation coefficient
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