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ABSTRACT Many practitioners would like to deploy deep, convolutional neural networks in
memory-limited scenarios, e.g. on an embedded device. However, with an abundance of compression
techniques available it is not obvious how to proceed; many bring with them additional hyperparameter
tuning, and are specific to particular network types. In this paper, we propose a simple compression
technique that is general, easy to apply, and requires minimal tuning. Given a large, trained network,
we propose (i) substituting its expensive convolutions with cheap alternatives, leaving the overall architecture
unchanged; (ii) treating this new network as a student and training it with the original as a teacher through
distillation. We demonstrate this approach separately for (i) networks predominantly consisting of full
3 × 3 convolutions and (ii) 1 × 1 or pointwise convolutions which together make up the vast majority of
contemporary networks. We are able to leverage a number of methods that have been developed as efficient
alternatives to fully-connected layers for pointwise substitution, allowing us provide Pareto-optimal benefits
in efficiency/accuracy.

INDEX TERMS Machine learning, deep neural networks, computer vision, DNN compression.

I. INTRODUCTION
Deep neural networks [1] (DNNs) are able to excel at a
multitude of challenging tasks in computer vision, such as
image classification, object detection, and semantic segmen-
tation of complex scenes. However, they are famously large
and cumbersome, utilising millions (sometimes billions) of
parameters, which makes deployment on edge devices very
challenging. Arguably, deployment of DNNs to the edge is
where they will see the greatest use [2], e.g. for pedestrian
detection in a vehicle’s computer or human activity recogni-
tion on wearables [3]. We want our networks to be smaller
so they could, for instance, fit into the L1 cache of an ARM
Cortex-A55 (32–128 KB). This is a challenge when many
networks occupy several hundreds of MB.

So how do we achieve this? After all, we do not want to
miss out on the expressive power of deep neural network
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architectures [4]–[10]. Fortunately, there is a wealth of litera-
ture on neural network compression. It is possible to prune
a network to remove redundant connections [11]–[15] or
quantise a network’s weights or activations [16]–[20]. Unfor-
tunately, many of these approaches rely on hyperparameter
tuning and are architecture specific; pruning for example
excels on networks that have large, redundant fully connected
layers which are less prevalent in newer architectures [21].

In this paper, we propose a simple, and general com-
pression technique, that relies on the observation that while
architectures can differ, the vast majority of the parame-
ter and computation budget in modern DNNs is used by
convolutions: either full convolutions with 3 × 3 kernels,
or increasingly, pointwise convolutions [7], [22], [23]; those
with 1 × 1 kernels. Given a trained network, we construct
a compressed student network by replacing its convolu-
tions with a cheaper, substitute convolution, i.e. one utilising
fewer parameters or operations; the structure of the network
remains unchanged. We can then use the original network as
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a teacher to train the student to high performance through
distillation [24], [25].

For networks consisting predominantly of full convo-
lutions, we use grouped convolutions [26] and bottle-
necks [5] as our substitute operations. To construct a student
network we replicate the teacher architecture while replacing
each full convolution in the network with one of these sub-
stitute operations. We show that for a comparable number of
parameters, these student networks outperform student net-
works with full convolutions and smaller architectures. This
research formed part of a conference paper at NeurIPS [27].

We go further with networks utilising pointwise convolu-
tions by remarking that a pointwise convolution is simply a
fully-connected layer applied at each spatial location of an
image representation. This allows us to leverage a number of
methods that have been developed as efficient alternatives to
fully-connected layers [28]–[30] that have seen little consid-
eration in the convolutional setting. By using these methods
to produce substitute operations for student networks, we can
obtain high compression rates while retaining most of the
original performance; exploring a new region in the Pareto
Frontier in terms of accuracy/memory in the process.

This paper is structured as follows: In Section III we review
a range of commonly-available substitute convolutions that
may be used in-place of full convolutions to form a com-
pressed student network. Then, we turn our attention to net-
works utilising pointwise convolutions: we detail how these
can be substituted for a variety of efficient linear alternatives
(Section IV). Finally in Section V we demonstrate that net-
works with such substitutions, trained through distillation,
achieve high performance while being significantly smaller
than their original counterparts.

To summarise, the contributions of the paper are:
• We present a simple compression technique where we
replace a network’s expensive convolutionswith cheaper
alternative convolutions. This is then treated as a student
network, and is distilled from the original networkwhich
is used as a teacher.

• We propose cheap alternative convolutions for networks
where the most expensive convolutions are (i) full 3× 3
convolutions and ii) pointwise (1× 1) convolutions.

• We perform comprehensive experiments showcasing the
sucecess of our approach across CIFAR and ImageNet
for different families of networks.

II. BACKGROUND
Our approach relies on replacing the expensive convolutions
in a network and then distilling the knowledge from the
original network into it. Many of our proposed replacements
are based on grouped convolutions and efficient linear lay-
ers, which we review in Sections II-A and II-B respectively.
We review distillation in Section II-C.

A. GROUPED CONVOLUTIONS
A grouped convolution is illustrated in Figure 1: the input
tensor is split into groups of channels, independent filters

FIGURE 1. A grouped convolution operates by passing independent filters
over the tensor after it is separated into g groups over the channel
dimension; as each of the g filters needs only to operate over N/g
channels, this reduces the parameter cost of the layer by a factor of g.

are passed over each of these groups, and the groups are
then concatenated together again. Convolutions use param-
eters quadratically with the size of the channels. Performing
independent convolutions over channel groups therefore uses
fewer parameters. In the extreme, when there are as many
channels as groups, the grouped convolution only uses param-
eters linear in the number of channels.

Grouped convolutions with two groups appeared in the
original AlexNet paper [31] due to GPU memory constraints
while training, but are now so prevalent that they are a part
of cuDNN [32] which, along with CUDA, forms the most
common backend for deep learning frameworks. We refer
the reader to [33] for a recent, fast grouped convolution
implementation for edge hardware.

Having the same number of groups as channels is the
most limiting form of grouped convolution; information in
any channel cannot influence another. To deal with this,
a common solution is to use a pointwise convolution after
the grouped convolution. The combination of the two is com-
monly called a separable convolution.

Sifre developed separable convolutions in their current
form [26]. After this, they were used in the Xception archi-
tecture [34] for improved results in classification; at the same
time speeding up inference at test time. The most significant
application for efficiency has been their use in the MobileNet
architecture [35] and in the Inception block [36]. MobileNet
demonstrated separable convolutions for efficiency, achiev-
ing greater accuracy than SqueezeNet [37] while using
22 times fewer multiply-add (mult-add) operations. Using a
number of groups not equal to the number of channels is less
popular, but has been explored [38], [39].

Separable convolutions are similar to intra-channel convo-
lutions [40]. However, in this case the same filter is applied
to channels independently, and then channels are linearly
combined, repeating the process for as many output channels
as required. Despite making a parallel operation sequential,
the technique has been demonstrated to make ResNets [5] use
more than 4 times fewer mult-adds.
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Another step to reduce parameter usage would be to group
the pointwise convolution, but doing this wouldmake channel
groups disconnected throughout the network. To work around
this problem, ShuffleNet [41] proposed a riffle shuffle of the
channels in between alternating grouped pointwise convolu-
tions. On mobile devices this network was more than twice
as fast as MobileNet [35] within 3% error. CondenseNet [42]
adopts a similar strategy.

Deconstructing convolutions further for efficiency has also
been considered in the literature. 3D convolutions along the
channels and spatial axes of the input tensor can be as effec-
tive as a traditional convolutional architecture [43]. Unlike
most ways to modify the elements of neural networks, this
approach shows that a network without the spatial kernel
receptive field we have come to expect in deep learning can
still classify natural images.

B. EFFICIENT LINEAR LAYERS
Efficient linear layers reduce the problem of efficient archi-
tecture design to that of rethinking the matrix multiply
involved in a linear transformation. Convolution can also
be implemented efficiently as a matrix multiplication [44],
making these approaches general enough to consider when
designing an efficient network.

Deep Fried Convnets [45] approximate a matrix multipli-
cation using a Fastfood transform. The Fastfood transform is
composed of permutations, Hadamard transforms and diago-
nal random matrices, which are the trainable parameters. The
advantage of this sequence of transformations is that the num-
ber of operations scales log-linearly instead of quadratically.
Following this, a similar method using the discrete cosine
transform (DCT) was developed, named ACDC [30], which
simply applies two diagonal matrices of parameters between
a forward and reverse DCT. ACDC could operate twice as fast
as a Deep Fried Convnet [45], speeding up an AlexNet [31]
six times with only a 0.6% drop in accuracy.
Structured Spinners [46] have been proposed as a more

general method based on a sequence of Hadamard and ran-
dom diagonal matrices. This paper did not present results on
large-scale image classification problems. As in all of these
methods the particular parameterisation affects the conver-
gence of stochastic gradient descent (SGD), which can be a
barrier to adoption.

Despite the implementation of convolution in most frame-
works as a matrix multiply, these techniques have seen little
application to reduce the number of convolutional parameters
in networks, although we refer the reader to [47] for a recent
example.

C. DISTILLATION
An obvious way to produce a network for edge deployment
would be to choose a much smaller convolutional network
architecture to save computation and storage. Unfortunately
this comes with a large hit in performance. However, if the
smaller student model is trained on the outputs of the
larger teacher model, it can perform close to the original on

test data [24]. This process was popularised as knowledge
distillation [25], and has also featured in reinforcement learn-
ing [48] and Bayesian scenarios [49].

We define knowledge distillation as follows: we denote
the cross entropy of two probability vectors p and q as
LCE (p,q) = −

∑
k pk log qk . Assume we have a dataset

of elements, with one such element denoted x, where each
element has a corresponding one-hot class label: denote the
one-hot vector corresponding to x by y. Given x, we have
a trained teacher network t = teacher(x) that outputs the
corresponding logits, denoted by t; likewise we have a student
network that outputs logits s = student(x). To perform knowl-
edge distillation we train the student network to minimise the
following loss function (averaged across all data items):

LKD = (1− α)LCE (y, σ (s))

+T 2αLCE
(
σ

(
t
T

)
, σ
( s
T

))
,

where σ (.) is the softmax function, T is a temperature param-
eter and α is a parameter controlling the ratio of the two terms.
The first term is a standard cross entropy loss penalising the
student network for incorrect classifications. The second term
is minimised if the student network produces outputs similar
to that of the teacher network.

Some theory has been developed to explain how this is
possible, and is explored by [50] and [51]. The simplest
explanation is that the information content of the logits of a
trained network is much higher than the information content
of a one-hot categorical vector, so it provides better supervi-
sion from which to learn. However, this is likely insufficient,
because it is possible to train a group of student networks
jointly, without the need for a teacher and obtain better results
than if any of the networks had been trained individually [52].
The network morphisms of [53] can also be viewed as a
kind of model distillation in which the added capacity is
trained using the predictions of the smaller model, turning
the distillation idea upside down.

Following the discovery of limitations in the originalmodel
distillation method [54], [55], interest in this method waned.
Modern deep convolutional architectures could not be com-
pressed into a less deep student architecture [54]. However,
a method called attention transfer (AT) [56] using supervi-
sion at intermediate layers has demonstrated it is still possible
to learn simpler residual networks [5] that can mimic larger
ones. Aswe demonstrate in this work, we can use the attention
transfer loss to distil a large network into a smaller network
with minimal engineering effort by replacing the convolu-
tions in the teacher with a cheap substitute.

We formally define attention transfer as follows: consider
a choice of layers i = 1, 2, . . . ,L in a teacher network
with L layers, and the corresponding layers in the student
network. At each chosen layer i of the teacher network, we
will collect the spatial map of the activations for channel j
into the vector atij. We will let Ati collect a

t
ij for all j. Likewise

for the student network we correspondingly collect into asij
and Asi . Now given some choice of mapping f(Ai) that maps
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TABLE 1. Convolutional blocks used as substitutions for full convolutional blocks: a standard block S, a grouped + pointwise block G, a bottleneck block
B, and a bottleneck grouped + pointwise block BG. Conv refers to a k × k convolution. GConv is a grouped k × k convolution and Conv 1× 1 is a
pointwise convolution. Blocks use pre-activations [57]: all convolutions are preceded by a batch-norm layer + a ReLU activation. We assume that the
input and output to each block has N channels and that channel size does not change over a particular convolution unless written out explicitly
as (x → y ). Where applicable, g is the number of groups in a grouped convolution and b is the bottleneck contraction. We give the cost of the
convolutions in each block in terms of these parameters. The batch-norm cost at test time is also given, but is markedly smaller.

each collection of the form Ai into a vector, attention transfer
involves learning the student network by minimising

LAT = LCE + β
L∑
i=1

∥∥∥∥ f(Ati )
||f(Ati )||2

−
f(Asi )
||f(Asi )||2

∥∥∥∥
2
, (1)

where β is a hyperparameter, and LCE is the standard
cross-entropy loss. In [56] the authors use f(Ai) =

(1/NAi )
∑NAi

j=1 a
2
ij, where NAi is the number of channels at

layer i.

III. SUBSTITUTING FULL CONVOLUTIONS
Here, we consider a range of alternatives for replacing full
k × k convolutions (where k is invariably 3) to form com-
pressed student networks. These are prevalent in many popu-
lar and widely-used network architectures [4], [5], [31], [58].
Specifically, we focus on replacing the convolutional block
structure present in residual networks.

First, consider a standard two dimensional convolution that
contains Nout filters, each of size Nin × k × k . Nout is the
number of channels of the layer output, Nin is the number
of channels of the input, and k × k is the kernel size of
each convolution. In modern networks it is almost always
the case that Nin 6 Nout. Let N = max(Nin,Nout). Then the
parameter cost of this layer is NinNoutk2, and is bounded by
N 2k2. In a typical residual network, a block contains two such
convolutions. We will refer to this as a Standard block S, and
it is outlined in Table 1.
An alternative approach is to separate each convolution

into g groups. By restricting the convolutions to only mix
channels within each group, we obtain a substantial reduction
in the number of parameters for a grouped computation:
for example, for Nin = Nout = N the cost changes from
N 2k2 for a standard layer to g groups of (Ng )

2 k2 parameter
convolutions, hence reducing the parameter cost by a factor
of g. This is illustrated in Figure 1. We can then provide some
cross-group mixing by following each grouped convolution
with a pointwise convolution, with aN 2 parameter cost (when
Nin 6= Nout the change in channel size occurs across this
pointwise convolution). We refer to this substitution operator
as G(g) (grouped convolution with g groups).

In the original ResNet paper [5] the authors introduced a
bottleneck block which we have parameterised, and denoted
as B(b) in Table 1: the input first has its channels decreased
by a factor of b via a pointwise convolution, before a full
convolution is carried out. Finally, another pointwise con-
volution brings the representation back up to the desired
Nout . We can reduce the parameter cost of this block fur-
ther by replacing the full convolution with a grouped one;
the Bottleneck Grouped + Pointwise block is referred to as
BG(b, g).
These substitute blocks are compared in Table 1 and their

computational costs are given. In practice, by varying the
bottleneck size and the number of groups, network parameter
numbers may vary over two orders of magnitude; enumerated
examples are given in Table 2.

Using grouped convolutions and bottlenecks are common
methods for parameter reduction when designing a network
architecture. Both are easy to implement in any deep learning
framework. We demonstrate empirically in Section V-A
that using these substitutions with effective model distillation
allows for substantial compression with minimal reduction in
performance.

IV. SUBSTITUTING POINTWISE CONVOLUTIONS
It is increasingly becoming the case that most of the
parameters in a network are used for pointwise (1 × 1)
convolutions. For example, it is common to use pointwise
convolutions to modulate the channel dimension [7], [59].
Separable convolutions—which consist of a grouped convo-
lution followed by a pointwise convolution—are one of the
elementary operations in the neural architecture search space
of DARTS [23]. Indeed, the substitutions we used for full
convolutions in Section III introduce pointwise convolutions.
A pointwise convolution is equivalent to a fully-connected

linear layer applied at each pixel location of an image, or its
downstream representation. Because of this, we can take
advantage of techniques developed to compress linear layers;
we can form student networks by substituting out the point-
wise convolutions present in our networks for cheaper alter-
natives to achieve high performance for reduced parameter
counts and computational cost.
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TABLE 2. Student network test error on CIFAR-10/100. Each network is a WideResNet with its depth-width (D-W) given in the first column, and with its
block type (corresponding to Table 1 in the second. N refers to the channel width of each block, and M refers to the channel width after the bottleneck
where applicable. The total parameter cost of the networks for CIFAR-10 is given, as well as the number of mult-add operations they use. Note that
CIFAR-100 networks use an extra 11.6K parameters and mult-adds over their CIFAR-10 equivalents as they have a larger linear classification layer. Errors
are reported for (i) learning with no distillation i.e. from scratch (Scr), (ii) knowledge distillation with a teacher (KD), and attention transfer with a teacher
(AT). The same teacher is used for training, and is given in the first row. This table shows that (i) through attention transfer it is possible to cut the number
of parameters of a network, but retain high performance and (ii) for a similar number of parameters, students with cheap convolutional blocks
outperform those with expensive convolutions and smaller architectures.

The various substitutions considered are described in
Section IV-A. Each uses either fewer parameters, fewer
mult-adds or both. These are by no means exhaustive, and
are representative examples of a general approach. To make
training these layers practical, we account for the effect of
using compressed linear layers in the choice of weight decay.
We derive the weight decay parameters required to stabilise
training in Section IV-B.

A. SUBSTITUTE EFFICIENT LINEAR TRANSFORMS
Here, we describe methods that we use to replace pointwise
convolutions to construct compressed student networks. All
provide an approximation to the operation of a dense random
matrix in a linear layer: a matrix-vector product of that matrix
with an input vector of the form y = Wx, where y is the
output vector, W is the dense random matrix, and x is the
input vector.

1) ACDC
In [30],W is decomposed into a stack of L ACDC layers:

W =
L∏
l=1

AlCDlC−1P (2)

whereA andD are diagonal matrices,C andC−1 are forward
and inverse discrete cosine transforms, and P is a random per-
mutation matrix. As the operation of a random permutation
may be time consuming, we replace P with a riffle shuffle.
A riffle shuffle is a fixed permutation, splitting the input in
half and then interleaving the two halves. This was found
to work as well as a fixed random permutation and can be
evaluated much faster as observed by [38]. For W ∈ RN×N

the computational complexity is O(N logN ) and storage cost
is O(N ) [30].

2) TENSOR-TRAIN
First, we assume it is possible to map a higher dimensional
tensor to our weight matrix using a reshape operation: y =
Wx = reshapeR∈N×N (A)x. This allows us to use a tensor
decomposition to representA and implement the linear trans-
form using fewer parameters. In Tensor-Train (TT) [60],A is
decomposed as:

A(ii, . . . , id ) = G1(i1) . . .G(id ) (3)

where Gk (ik ) are rk−1 × rk matrices, with the boundary
conditions that ensure r0 = rd = 1. Each element of the
tensor can then be reproduced by performing this sequence
of matrix products.
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The parameter savings using this method depend on the
number of dimensions possessed by the tensor storing the
weights. It is possible to perform a matrix-vector, or matrix-
matrix, product between two TT tensors. Alternatively, as in
our experiments, we can compute the weight matrix from the
Gk factors and backpropagate the error to update those factors
with automatic differentiation.

In our experiments we found it best to reshape weight
matrices to 3 dimensions, with approximately equal sizes.
We then set the TT-rank r1, . . . , rd−1 to control the level
of compression. This is in line with previous work substi-
tuting TT tensors into fully connected layers of deep neural
networks [29].

3) TUCKER DECOMPOSITION
The Tucker decomposition also decomposes a tensor A ∈
RI0,...,Id , but in this case uses a low rank core G ∈ RR0,...,Rd

projected by factors Uk ∈ RRk ,Ik [61]:

A = G ×0 U0 . . .×d Ud (4)

where ×k denotes the k-mode product: a matrix product on
dimension k while casting over the remaining dimensions.
In our experiments, to compare with TT, we only use the
Tucker decomposition to store our weight matrices. As with
the TT decomposition, we compute the weight matrix, then
backpropagate gradients in order to update the Uk factors.

4) RANK-FACTORISED (RF) DECOMPOSITION
A rank factorised matrix is a linear bottleneck. It is chosen
as a baseline against which to compare methods from the
literature. In place of a dense matrix we first map an input
to a smaller number of dimensions, and then back to the
output number of dimensions. This uses two weight matrices
W1 ∈ Rdbn×din and W2 ∈ Rdout×dbn , where the input dimen-
sionality is din, bottleneck is dbn and output is dout. The linear
transformation from an input X to an output Y can then be
expressed as y =Wx =W2W1x.
This parameterisation can be implemented in popular deep

learning frameworks with two linear layers in sequence, and
can give significant efficiency benefits. For din = dout = d ,
the number of parameters used by applying a dense weight
matrix W to an input vector is d2, while the total parameters
used inW1 andW2 is 2 d2

b where b = d
dbn

.

5) HASHEDNET
A virtual weight matrix V is built from real weights w using
a hash function h to index those weights:

yi =
N∑
j=1

Vijxj =
N∑
j=1

wh(i,j)xj (5)

HashedNets use a hash function to retrieve the weights
used in their network [28]. The particular hash function used
in this case takes as input indices in the virtual weight matrix,
V, used in the linear transformation, and produces as output a
single index into a set of real weights w. As the compression

only depends on the number of virtual weights we choose
to use, this method is extremely flexible for storage com-
pression. Note that some virtual weights may not be used,
as described in Appendix A.

6) LINEARISED SHUFFLENET
The Shufflenet unit [38] can be related to circulant trans-
forms like ACDC [30] by defining a generalised UGConv
block [62]. Unlike applications of circulant transforms, these
units are used to implement a state-of-the-art image classifi-
cation architecture (ShuffleNet). We propose a linear version
of the unit, represented by:

y =Wx = B2PB1x (6)

where B1 and B2 are block diagonal matrices implemented
by grouped 1×1 convolutions, and P is a permutation imple-
mented by a riffle shuffle. While this was not proposed in the
literature as a method to compress a linear transformation,
the building blocks involved are similar to those used in the
ACDC structured efficient linear transformation and so we
consider it here.

B. COMPRESSION RATIO SCALED WEIGHT DECAY
One way to motivate L2 regularisation in neural networks is
to say that it is equivalent to MAP inference with a Gaussian
prior on the weights [63, p.225]. In the context of changing
layer structure, we would wish to preserve the total vari-
ance of the weight matrix prior under the layer replacement.
As the number of parameters tends towards the number in
the full weight matrix, we will then tend toward the original
weight decay factor. Under the simplifying assumption that
the weights, {wn}Nn=1 are Gaussian distributed with variance
1
√
d
, where d is the weight decay factor, then total variance is:

N∑
n=1

E
[
w2
n

]
=

N∑
n=1

1
d
E
[
z2
]
, (7)

where z is Gaussian distributed with variance 1. Then we
have:

N∑
n=1

Var(wn) =
N
d
. (8)

Hence, to maintain total variance for M parameters in the
compressed layer, we should use the scaled weight decay
term:

dc =
Md
N
. (9)

In practice this means multiplying the weight decay factor
for compressed weight matrices by the compression ratio
M/N . We demonstrate in Appendix C: in Figure 10, we illus-
trate that this stabilises training and improves performance.
It has the desirable property of providing a smooth interpo-
lation to an uncompressed matrix – where the weight decay
would be the default. We refer to this approach as compres-
sion ratio scaled (CRS) weight decay.

83204 VOLUME 9, 2021



E. J. Crowley et al.: Substituting Convolutions for Neural Network Compression

V. EXPERIMENTS
In Section III we proposed suitable cheap alternatives for full
convolutions that may be used with our approach. Similarly,
in Section IV we proposed efficient linear layers that may be
used as replacements for pointwise convolutions.

Here, we experimentally verify our approach and show
how such substitutions, combined with distillation, allow us
to perform substantial network compression at a minimal
loss of accuracy. In Section V-A we present experiments for
substituting full convolutions, and in Section V-B we present
experiments for pointwise substitution.

A. SUBSTITUTING FULL CONVOLUTIONS
In Section V-A1 we conduct experiments on the CIFAR-
10 and CIFAR-100 datasets (10/100-way classification of
32 × 32 images). We take a WideResNet [58] teacher
and construct students with (i) the cheap substitute blocks
of Section III, (ii) student networks with smaller architec-
tures (i.e. fewer layers/filters) as a baseline. We distil with
(i) knowledge distillation [25] and (ii) attention transfer [56].
We also train the networks without any form of distillation
(i.e. from scratch) to observe whether the distillation pro-
cess is necessary to obtain good performance. In this way
we demonstrate that the high performance comes from the
distillation, and cannot be achieved by directly training the
student networks using the data. Then, in Section V-A2 we
apply our approach to ResNets on the challenging ImageNet
dataset (1000-way classification of 224× 224 images).

1) CIFAR EXPERIMENTS
For our experiments we utilise the Wide Residual Network
(WRN) architecture [58]; the bulk of the network lies in
its {conv2, conv3, conv4} groups and the network depth d
determines the number of convolutional blocks n in these
groups as n = (d − 4)/6. The network width, denoted by k ,
affects the channel size of the filters in these blocks. Note that
when we employ attention transfer the student and teacher
outputs of groups {conv2, conv3, conv4} are used as {A1, A2,
A3} in the second term of Equation (1) with NL = 3.
For our teacher network we use WRN-40-2 (a WRN with

depth 40 and width multiplier 2) with standard (S) blocks.
3 × 3 kernels are used for all non-pointwise convolutions in
our student and teacher networks unless stated otherwise. For
our student networks we use:
• WRN-40-1, 16-2, and 16-1 with S blocks. These are
student networks that are thinner and/or more shallow
than the teacher and represent typical student networks.

• WRN-40-2 with S blocks where the 3× 3 kernels have
been replaced with 2 × 2 dilated kernels (as described
in [64]). This allows us to see if it possible to naively
reduce parameters by effectively zeroing out elements
of standard kernel.

• WRN-40-2 using a bottleneck block B with 2× and 4×
channel contraction (b).

• WRN-40-2 using a grouped + pointwise block G for
group sizes (g) {2, 4, 8, 16, N/16, N/8, N/4, N/2, N}

where N is the number of channels in a given block.
This allows us to explore the spectrum between full
convolutions (g = 1) and fully separable convolutions
(g = N ).

• WRN-40-2 with a bottleneck grouped + pointwise block
BG. We use b = 2 with groups sizes of {2, 4, 8,
16, M/16, M/8, M/4, M/2, M} where M = N/b is
the number of channels after the bottleneck. We use
this notation so that g = M represents fully separable
convolutions and we can easily denote divisions thereof.
BG(4,M ) is also used to observe the effect of extreme
compression.

For training we used minibatches of size 128. Before each
minibatch, the images were padded by 4× 4 zeros, and then
a random 32× 32 crop was taken. Each image was left-right
flipped with a probability of one half. Networks were trained
for 200 epochs using SGD with momentum fixed at 0.9 with
an initial learning rate of 0.1. The learning rate was reduced
by a factor of 0.2 at the start of epochs 60, 120, and 160. For
knowledge distillation we set α to 0.9 and used a temperature
of 4. For attention transfer β was set to 1000.

Figure 2 compares the parameter cost of each student
network (on a log scale) against the test error on CIFAR-
10 obtained with attention transfer. On this plot, the ideal
network would lie in the bottom-left corner (few parameters,
low error). Almost every network with the same architecture
as the teacher, but with cheap convolutional blocks, performs
better for a given parameter budget than the reduced archi-
tecture networks with standard blocks. BG(2, 2) outperforms
16-2 (5.57% vs. 5.66%) despite having considerably fewer
parameters (287K vs. 692K). Several of the networks with
BG blocks both significantly outperform 16-1 and use fewer
parameters.

It is encouraging that significant compression is possible
with only small losses; several networks perform almost as
well as the teacher with considerably fewer parameters –
G(N/8) has an error of 5.06%, close to that of the teacher,
but has just over a fifth of the parameters. BG(2,M/8) has
less than a tenth of the parameters of the teacher, for a cost of
1.15% increase in error. Even simply switching all convolu-
tions with smaller, dilated equivalents (S − 2× 2) allows one
to use half the parameters for a similar performance.

Note that grouped+ pointwise convolutions are often used
in their fully separable [34] form. However, the networks
with half, or quarter that number of groups perform substan-
tially better for a modest increase in parameters. G(N/4) has
363K parameters compared to the 294K of G(N ) but has an
error that is 1.26% lower. The number of groups is an easy
parameter to tune to trade some performance for a smaller
network. Grouped + pointwise convolutions also work well
in conjunction with a bottleneck of size 2, although for large
bottlenecks the error increases significantly, as can be seen for
BG(4,M ). Despite this, it is still of comparable performance
to 16-1 with half the parameters. Similar trends are observed
for CIFAR-100 in Table 2b.

VOLUME 9, 2021 83205



E. J. Crowley et al.: Substituting Convolutions for Neural Network Compression

FIGURE 2. Test error vs. No. parameters for student networks learnt with attention transfer on CIFAR-10. Note that the x-axes are
log-scaled. Points on the red curve correspond to networks with S convolutional blocks and reduced architectures. All other networks
have the same WRN-40-2 architecture as the teacher but with cheap convolutional blocks: G, B, and BG. The blocks are described
in Table 1. Notice that the student networks with cheap blocks outperform those with smaller architectures and standard
convolutions for a given parameter budget.

We also observe that training a student with attention
transfer is substantially better than using knowledge distil-
lation, or simply training from scratch. Consider Table 2,
which shows the attention transfer errors of Figure 2 (the AT
column) alongside those of networks trained with knowledge
distillation (KD), and no distillation i.e. from scratch (Scr)
for CIFAR-10 and CIFAR-100. In all cases, the student net-
work trained with attention transfer is better than the student
network trained by itself – the distillation process appears to
be necessary. Some performances are particularly impressive;
on CIFAR-10, for G(2) blocks the error is only 0.08% higher
than the teacher despite the network having 60% of the
parameters.

These results support our claim that greater model com-
pression through distillation is possible by substituting the
convolutional blocks in a network, rather than by shrinking its
architecture. We have also demonstrated that the blocks out-
lined in Table 1 are suitable substitutes. By observing Table 2
we can also see that our networks with cheap substitute blocks
utilise fewer mult-add operations than their standard equiva-
lents, which roughly corresponds to a faster runtime. Note
that runtime on a given platform or device is dependent on
specifics (memory paging, choice of libraries etc.), so mult-
adds are not always fully indicative of runtime, but are a
decent approximation in a platform/implementation-agnostic
setting.

2) IMAGENET
We use a pre-trained ResNet-34 [5] (21.8M parameters) as a
teacher and we train several networks using attention transfer

(AT). We compare student networks that have the archi-
tecture of ResNet-34, with cheaper convolutions, to those
that have reduced architectures, and full convolutions. Note,
that the bulk of the parameters in a ResNet are contained
in four groups, as opposed to the three of a WideResNet.
We train the following student networks: (i) ResNet-18, (ii)
ResNet-18 with the channel widths of the last three groups
halved (Res18-0.5), ResNet-34with each convolutional block
replaced by (iii) a G(N ) block and (iv) a G(4) block. Valida-
tion errors for these networks are available in Table 3.

Consider Res34-G(N) and Res18-0.5, which both have
roughly the same parameter cost (∼3M). After distillation,
the former has a significantly lower top-5 error (10.66% vs.
15.02%). This again supports our claim that is preferable to
cheapen convolutions, rather than shrink the network archi-
tecture. Res34-G(N) trained from scratch has a noticeably
higher top-5 error (12.26%), it benefits from distillation.
Conversely, distillation makes Res18-0.5 slightly worse, sug-
gesting that it has no further representational capacity.

Res34-G(4) similarly outperforms Res18 (these are
roughly similar in cost at 8.1M and 11.7M parameters respec-
tively), although in this case the latter does benefit from dis-
tillation. It is intriguing that Res34-G(4) trained from scratch
is actually on par with the original teacher (having a 0.12%
lower top-1 error, and a 0.05% higher top-5 error) despite
having 13 million fewer parameters; this generalisation capa-
bility of grouped convolutions in networks has been observed
previously by [41]. Distillation is able to push its performance
slightly further to the point that its top-5 error surpasses that
of the teacher (8.43% vs. 8.57%).
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FIGURE 3. The relationship between top-1 error on the validation set and the number of parameters is plotted for experiments
involving WRN-28-10 on CIFAR-10, for experiments using AT. Each substitute linear transform tested is indicated in the legend. On this
problem, both Tensor-Train and HashedNet substitutions are able to achieve the highest rates of compression while maintaining
performance. At lower compression settings, all methods compared achieve comparable top-1 error.

TABLE 3. Top 1 and top 5 classification errors (%) on the validation set of
ImageNet for models (i) trained from scratch, and (ii) those trained with
attention transfer with ResNet-34 (Res34) as a teacher. Res18 refers to a
Resnet-18, and Res18 w/2 is a Resnet-18 where the channel width in the
last three groups is halved. Res34 G(x) is a ResNet-34 with each
convolutional block replaced by a G(x) block. We are able to produce
compressed, high-performing networks on this challenging dataset.

3) SUMMARY
• We have applied our method to WideResNets for a
multitude of substitute blocks on CIFAR, all of which
allow for significant compression with minimal loss of
accuracy e.g. with G(N/8) we get 5× compression for
only 0.27% change in accuracy on CIFAR-10.

• We have demonstrated that our findings hold for Ima-
geNet, where we were able to compress a ResNet by
2.65× and see its accuracy increase.

B. SUBSTITUTING POINTWISE CONVOLUTIONS
We train student networks where each pointwise (1 × 1)
convolution in the original teacher network is substituted
for a particular linear transform from Section IV-A. These
transforms are: ACDC, Tensor-Train, Tucker decomposition,

Rank-factorised (RF) decomposition, HashedNet, and Lin-
earised ShuffleNet. Each of these substitutions has a tun-
ing parameter that can be altered to determine the number
of parameters utilised, allowing us to compare networks
for a range of parameter budgets. We perform experiments
on CIFAR-10 [65] with (i) Wide-ResNets (WRN) [58],
specifically WRN-28-10, and (ii) the network discovered
through differentiable architecture search (DARTS) [23] as
teacher networks. We also experiment on ImageNet [66] with
(i) WRN-50-2 and (ii) MobileNetV2 as teacher networks.
We chose parameter budgets over which networks with each
substitution under consideration would have support (see
Appendix B). When training:

1) We perform attention transfer (AT) [56] on each sub-
stitute network with a trained version of the original
network as a teacher.

2) We utilise CRS weight decay, as defined in
Section IV-B.

1) WRN-28-10 ON CIFAR-10
The base WRN-28-10 teacher network achieves a top-1 vali-
dation error of 3.2% and has 36.5M parameters. We produce
substitute student networks at three approximate parameter
budgets: 2.4M, 1.2M, and 0.6M. Note that these correspond
to very high compression rates.

Each network was trained for 200 epochs with a learn-
ing rate starting at 0.1 and scaled by 0.2 on epochs 60,
120 and 160. Momentum was set to 0.9 and the minibatch
size was 128. Weight decay was set to 5 × 10−4 and scaled
in all experiments according to the method described in
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FIGURE 4. Top-1 validation errors on CIFAR-10 for DARTS networks with substitute linear transforms and their parameter totals. Each
substitute linear transform tested is indicated in the legend. ACDC is omitted as it failed to converge below 8% in any case. We compare
against recent networks presented in the literature, including: DenseNet [7], Moonshine [27], Wide ResNet [58], ResNeXt [39],
Stochastic Depth [67], GoogleNet [68], CondenseNet [42], NASNet [69], ResNet [5], PNASNet [70], AmoebaNet [71] and
DARTS [23]. Using these substitutions we are able to explore a new region in the Pareto Frontier.

Section IV-B. Data was augmented with random crops,
left-right flips and Cutout [72].

The relationship between the number of parameters used
by our substitute WRN-28-10 networks and the top-1
error—through AT with the teacher network—is illustrated
in Figure 3. We report mult-adds where possible in Figure 5.1

One might expect HashedNet or Tensor-Train to work best
as compressionmethods, as they do not necessarily reduce the
number of mult-adds used by the network. HashedNet, in par-
ticular, substitutes a weight matrix of precisely the same size
at test time, and applying that weight matrix uses the same
number of mult-adds used by the original network. While all
of the considered methods produce a network that contains
less than 10% the parameters used by the teacher network
while losing only 1% error, HashedNet and Tensor-Train sub-
stitutions can maintain this error using less than 3% of the
parameters. Unfortunately, ACDC was only able to place
a single point at the lowest compression ratio. It performs
comparably well, but becomes unstable with larger numbers
of ACDC layers.

2) DARTS NET ON CIFAR-10
DARTS net is a highly competitive image classifica-
tion network [23] obtained through neural architecture
search [22], [69] achieving 2.83% error while using only

1We were unable to calculate robust estimates for the mult-adds used by
TT or Tucker substitutions, as they would depend on the choice of rounding
and efficient matrix-vector multiplication algorithms used [60].The only
stable ACDC experiment cost 1.8×109 mult-adds, far more than competing
methods.

FIGURE 5. The relationship between top-1 error on the validation set and
the number of mult-adds consumed by each network is plotted for
experiments involving WRN-28-10 on CIFAR-10.

3.8M parameters. We use this as a teacher network,
and substitute its pointwise convolutions (present in sep-
arable convolutions) for parameter budgets of 1.42M,
0.83M, and 0.49M.

Each network was trained with AT for 600 epochs using
a cosine annealed learning rate schedule starting at 0.025.
Momentum was set to 0.9 and the minibatch size was 96.
Weight decay was set to 3 × 10−4 and scaled in all exper-
iments according to the method described in Section IV-B.
The auxiliary classification head was used in training, but
not counted at test time, and the drop-path method from the
paper [23] followed the same schedule of a linear increase
in drop probability from 0 to 0.2 over the learning schedule.
Data was again augmented with random crops, left-right flips
and Cutout [72].

The validation errors of these substitute networks against
their parameter total is shown in Figure 4. We can achieve
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TABLE 4. Top-1 validation errors on ImageNet for WRN-50-2 with our proposed substitutions: ShuffleNet, Tensor-Train and RF. Each method is tested at
two approximate parameter budgets. Compression is given as a percentage of the original model size. Methods from the literature are provided for
comparison: WRN-50-2 [58], ShuffleNet [38], DenseNet [7], MobileNet [35], ACDC [30] and TT [29]. These results show that our method generalises to
large, deep convolutional neural networks for image classification.

FIGURE 6. Top-1 validation errors on CIFAR-10 for DARTS networks with
substitute linear transforms and their associated mult-add cost. Not all
substitute transforms tested could be included here, as noted in Figure 5,
not all could be easily estimated. We compare against recent networks in
the literature, including: ResNext [39], DenseNet [7], Wide ResNet [58],
CondenseNet [42], Stochastic Depth [67], and ResNet [5]. On this Figure,
ShuffleNet substitutions appear to be Pareto optimal, but we were not
able to compare against a large number of papers that do not report
mult-add cost on CIFAR-10.

compression of up to 20% of the original number of
parameters for HashedNet, ShuffleNet and Tensor-Train
substitutions while still being within 1% the original
top-1 error.

We can see that our networks explore an empty region of the
Pareto frontier in the context set by the literature. The top-1
error achieved through a HashedNet substitution is equal to
or lower than all published networks compared against, save
for DARTS and NASNet-A, while using several times fewer
parameters.

When we compute the mult-adds used by these networks
(Figure 6) we observe similar trends. Notably, our ShuffleNet
substitution performs extremely similarly to the original net-
work while using around 5 times fewer operations. In terms of
mult-adds, these networks again extend the Pareto boundary
defined by all methods considered.

3) WRN-50-2 ON IMAGENET
Based on their performance in the two CIFAR-10 experi-
ments, we chose HashedNet, Tensor-Train and ShuffleNet to
compare on ImageNet with WRN-50-2 as a teacher network.
We also included RF substitution as a baseline.

Each network was trained for 90 epochs with a learning
rate of 0.1 scaled by 0.1 at epochs 30 and 60. Momentum
was set to 0.9 and the minibatch size was 256. Weight decay
was 1 × 10−4 and scaled according to the method described
in Section IV-B. Data was augmented with random crops and
left-right flips.

The results of the experiments are shown in Table 4. Ima-
geNet is a more difficult problem than CIFAR-10, and we see
that performance rapidly degrades as we reduce the number
of parameters, although this appears to be the same trend
observed with published networks in the literature. The com-
pression rates achieved with our agnostic substitutions com-
pare favourably to other state-of-the-art image classification
networks in the field. This demonstrates the generalisation
of this method to even the largest deep convolutional neural
networks for image classification.

4) MOBILENETV2 ON IMAGENET
The results on ImageNet in Table 4 show significant com-
pression of WRN-50-2, but do not show that we can main-
tain performance at the state of the art. To investigate this,
we apply a ShuffleNet substitution to a MobileNetV2 [59]
network and train it according to the published regime. The
top-1 error of the resulting network is compared against
competitive compressed networks in terms of both parameter
count and mult-add count in Figure 7. The trained network is
competitive in the space of networks of fewer than 1 million
parameters, for example outperforming ShuffleNet.
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FIGURE 7. Substitution of a linear ShuffleNet block in a MobileNetV2 [59].

5) SUMMARY
• We have applied our method to WRN-28-10 and the
DARTS network for a host of linear substitutions on
CIFAR. This allowed us to significantly compress these
networks while maintaining a competitive performance.
For example, we were able to compress WRN-28-10 by
30× for less than a percent change in accuracy.

• We veirfied that these results held on ImageNet to show
the generalisation capability of our approach.

VI. CONCLUSION
After training a large, deep model it may be prohibitively
time consuming to adopt and tune a model compression
strategy in order to deploy it. We have demonstrated a model
compression strategy that is fast to apply, and does not require
additional engineering. We have demonstrated that full con-
volutions may be substituted for e.g. grouped convolutions to
produce compressed student networks. For substituting point-
wise convolutions we can leverage efficient dense layer and
trivially stabilise the learning dynamics by using CRS weight
decay; allowing us to explore a new region of the Pareto fron-
tier for both parameter and computational cost on CIFAR-10.
In this paper we have considered uniform substitutions for
simplicity, but it is possible to mix different substitutions
within a network for even greater performance [73].

APPENDIX A
HASHEDNET DISCONNECTED WEIGHTS
The indices produced by the hash function are approximately
uniform over the set of real weights. This produces a weight
matrix in which weights are randomly tied, with each unique
weight occurring on average the same number of times. [28]
demonstrate that the cost of accessing these weights is neg-
ligible at test time. In our experiments, we do not use a hash
function, instead sampling the indices once when the layer is
initialised and storing them.

The number of parameters to be optimised here is the num-
ber of real weightsw, which can be set to be 1 or greater, up to
the number of elements in the virtual weightmatrix. However,
as the number of real weights is increased the probability we
may store a weight that is never used in the virtual weight
matrix increases. If Nr is the number of real weights and Nv

FIGURE 8. The effect on percentage of weights excluded depending on
compression ration c , tested for different values of Nv , the number of
elements in the virtual weight matrix, indicated in the legend. At the
compression levels we are interested in—20% of the original number of
weights—we can see that the number of weights excluded is low.

is the number of virtual weights, then the expected number
of weights that will be excluded will be Nr (1 − 1/Nr )Nv .
Defining Nr in terms of Nv using a compression ratio c = Nr

Nv
,

we can investigate what happens to the ratio excluded, e, as c
changes:

e =
(
1− 1

cNv

)Nv
. (10)

Taking the limit in the case of large Nv, we can see this
limit has the functional form of the limit definition of an
exponential, exp(x) = limN→inf

(
1+ x

N

)
:

η = lim
Nv→inf

(
1−

1
cNv

)Nv
= exp

(
−
1
c

)
(11)

As shown in Figure 8, this limit argument holds true for
the values of Nv we are interested in, and the proportion of
weights excluded as the compression ratio grows can be sig-
nificant. In our experiments we do not address these wasted
parameters, despite performing experiments with compres-
sion ratios in regions where 10-20% of our parameters are
being excluded. It would also be possible to identify these
parameters and choose not to store them, but we do not
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FIGURE 9. The parameter cost of a WRN-28-10 after substitution by the
methods listed in the legend, varying the tunable parameter of each over
a normalised range. We design experiments over a parameter count range
such that all methods illustrated will have support, which here is limited
by the maximum size of the Linear ShuffleNet and the minimum size of
the RF substitution.

FIGURE 10. The difference in top-1 error on the validation set of
CIFAR-10, when training with and without CRS weight decay, over all the
substitution methods considered for WRN-28-10. For all methods apart
from HashedNet, this form of weight decay scaling is beneficial; it results
in a lower top-1 validation error.

investigate this. The reason being that we find the HashedNet
substitution effective at high compression levels, such as
below c = 0.1, and in this region a negligible number of
weights will be excluded.

APPENDIX B
CHOSEN PARAMETER BUDGETS
After normalising the tuning of all layers between 0 and 1,
we can plot number of parameters used by each substitution
as shown in Figure 9. The upper limit and lower limits were
chosen where all methods have support. For example, we can
see in Figure 9 we can see that the upper limit is defined
by the Linear ShuffleNet, while the lower limit is defined
by RF. We chose the midpoint by linear interpolation in log
parameter count.

APPENDIX C
CRS WEIGHT DECAY ABLATION
To justify CRS weight decay, we ran an ablation experiment,
repeating the experiments on CIFAR-10 with WRN-28-10,
but disabling CRS weight decay. In Figure 10 these results
are illustrated. For almost all methods we see that there is a

FIGURE 11. Learning curves for HashedNet substitution experiments,
with/without CRS weight decay. When CRS weight decay is enabled the
top-1 error is lower, on train and test, at every epoch until the final part
of the learning rate schedule.

clear benefit. ShuffleNet simply fails to converge without it.
However, for HashedNet we see that it is slightly detrimental.

To investigate why this happens, Figure 11 illustrates the
learning curves—top-1 error plots against current training
epoch—of these HashedNet substitute networks. The CRS
weight decay stabilises training as we would hope, and the
top-1 validation error is lower with it enabled until the final
stage of the learning rate schedule. At this stage we can see
the training top-1 error decreases faster when CRS weight
decay is enabled. This overfitting is enough to cause a slight
increase in top-1 error.
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