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The problem of sampling outputs of quan-
tum circuits has been proposed as a candi-
date for demonstrating a quantum computa-
tional advantage (sometimes referred to as
quantum “supremacy"). In this work, we in-
vestigate whether quantum advantage demon-
strations can be achieved for more physically-
motivated sampling problems, related to mea-
surements of physical observables. We focus
on the problem of sampling the outcomes of an
energy measurement, performed on a simple-
to-prepare product quantum state – a problem
we refer to as energy sampling. For different
regimes of measurement resolution and mea-
surement errors, we provide complexity theo-
retic arguments showing that the existence of
efficient classical algorithms for energy sam-
pling is unlikely. In particular, we describe a
family of Hamiltonians with nearest-neighbour
interactions on a 2D lattice that can be ef-
ficiently measured with high resolution using
a quantum circuit of commuting gates (IQP
circuit), whereas an efficient classical simula-
tion of this process should be impossible. In
this high resolution regime, which can only be
achieved for Hamiltonians that can be expo-
nentially fast-forwarded, it is possible to use
current theoretical tools tying quantum ad-
vantage statements to a polynomial-hierarchy
collapse whereas for lower resolution measure-
ments such arguments fail. Nevertheless, we
show that efficient classical algorithms for low-
resolution energy sampling can still be ruled
out if we assume that quantum computers are
strictly more powerful than classical ones. We
believe our work brings a new perspective to
the problem of demonstrating quantum advan-
tage and leads to interesting new questions in
Hamiltonian complexity.

Leonardo Novo: legoncal@ulb.ac.be
Juani Bermejo-Vega: jbermejovega@go.ugr.es
Raúl García-Patrón: rgarciap@ulb.ac.be

1 Introduction
Impressive recent developments in experimental quan-
tum physics are enabling the manipulation of many-
body quantum systems of larger and larger sizes. The
high degree of control and local resolution of mea-
surement reached in experimental platforms such as
quantum gas microscopes [1], Rydberg atoms manip-
ulated with optical tweezers [2], ion traps [3, 4], or
superconducting circuits [5, 6], are moving these ex-
periments closer to the quantum advantage frontier –
a regime that is challenging to model using our tra-
ditional computers. Experiments at this scale should
lead to new insights into important problems in many-
body physics. For example, recent developments of
many-body interferometric techniques to estimate the
entanglement entropy [7, 8] have opened experimental
access to the investigation of quantum thermalization
[9]. Similarly, the access to complex many-body cor-
relators on large-size many-body systems has enabled
the experimental study of quantum critical dynamics
and dynamical phase-transitions [2, 3, 10], many-body
localization [11, 12], scrambling [13, 14] and topolog-
ical order [15, 16].

Several experimental demonstrations of large-scale
quantum simulators that outperform certain classical
simulations methods have already been reported [2,
3, 11, 17, 18]. Unfortunately, the evidence for quan-
tum advantage in these experiments is based solely
on numerical benchmarks against available classical
algorithms such as, e.g., DMRG [17]. Hence, this
does not exclude the possibility that a new classical
algorithm performs as efficiently as a given quantum
simulator or quantum algorithm, for a problem where
it was previously thought there was an exponential
quantum speed-up. A remarkable example where this
happened is the recent work “dequantizing" certain
quantum machine learning algorithms [19].

For this reason, it is of utmost importance to
put statements about quantum advantage on rigor-
ous mathematical ground. This has been the sub-
ject of several recent works which demonstrate, based
on strong complexity-theoretic evidence, that there
are certain tasks that can be performed efficiently by
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quantum devices for which an efficient classical al-
gorithm cannot exist. These are based on sampling
problems that exhibit certain robustness against noise
and are tailored to near-term hardware. Examples
include boson sampling [20], IQP sampling [21], sam-
pling from random quantum circuits [6, 22] and quan-
tum simulations of constant-time Hamiltonian evolu-
tions [23, 24]. The key strength of these results is
that the existence of a quantum advantage is provable
assuming plausible complexity theoretic conjectures,
such as the non-collapse of the Polynomial Hierarchy
(a commonly made assumption in theoretical com-
puter science, which can be seen as a generalization
of the P 6=NP conjecture) [20, 21]. The prospect of
demonstrating in a reliable way exponential quantum
speed-ups has initiated a new field of theoretical and
experimental activity coined quantum computational
advantage (or quantum “supremacy”) [25, 26].

This has motivated several efforts to bring quan-
tum advantage proposals closer to a realistic physical
implementation. These efforts have largely focused
on finding approximate sampling problems that are
robust against certain experimental errors [20, 21];
tailoring quantum sampling problems to existing im-
plementations [22, 24, 27]; verifying such devices with
efficient quantum resources [23, 24, 28] or exponen-
tial classical ones [22, 29–31]. Some works have also
brought a many-body physics perspective to previ-
ously existing quantum advantage proposals, through
the study of the connections between transitions in
sampling complexity and dynamical phase transitions
[32–34]. All these works, however, mostly rely on “un-
physical” sampling problems that were discovered for
the sole purpose of demonstrating a quantum advan-
tage, and further connections with questions of central
interest in many-body physics are yet to be explored.

In this work, we take a step further towards
identifying physically-motivated quantum advantages
in many-body quantum systems. We ask whether
complexity-theoretic results can deliver reliable quan-
tum advantages for the measurement of a physically
meaningful observable or the calculation of quanti-
ties of physical relevance. Specifically, we investigate
whether quantum advantages can be related to the
measurement of the energy of a many-body quantum
system. Such measurements can be implemented, for
example, on a quantum computer via quantum phase
estimation [35, 36], or on analog quantum simulators
[37].

In retrospective, one could interpret the work by
Huh and collaborators [38] as a first attempt in this di-
rection. This work connects a quantum "supremacy"
device, namely a Gaussian boson sampler [39], to the
problem of determining the vibrational spectrum of
a molecule [40]. However, this work did not prove
this problem to be hard for a classical computer and,
in practice, there exist classical algorithms that build
this spectrum for molecules of a hundred harmonic

vibrational modes on a desktop within a few min-
utes [41].

Hence, demonstrating a conclusive physically mo-
tivated quantum advantage remains a difficult mile-
stone. We would like such a quantum advantage pro-
posal to meet two desiderata:

• It describes a physical experiment that efficiently
measures or estimates a relevant many-body ob-
servable or quantity.

• It provides a rigorous mathematical proof of
the impossibility of simulating the outcome of
the physical experiment efficiently with classical
computers.

In this work we focus on the task of sampling out-
comes of an energy measurements of a many-body
quantum system, a problem we refer to as energy sam-
pling. Naturally, the complexity this task depends on
the different parameters characterizing the outcome
probability distribution, such as the measurement res-
olution or other errors affecting the measurement de-
vice. Our main contribution is to present complexity
theoretic arguments that likely exclude the existence
of efficient classical simulators for the energy sampling
problem in different parameter regimes. In particu-
lar, we demonstrate that for Hamiltonians that can
be measured efficiently by quantum devices with very
high resolution, it is possible to demonstrate quantum
advantage for the energy sampling problem based on
the widely believed conjecture of the non-collapse of
the Polynomial Hierarchy, together with other stan-
dard assumptions [20, 21]. We give an explicit exam-
ple of a simple family of Hamiltonians (e.g., with near-
est neighbour interactions on the 2D square lattice)
for which energy measurements are hard to simulate
on classical computers, yet, should be relatively feasi-
ble to measure on a near-term quantum device, which
is able to approximately sample from 2D circuits of
commuting gates [24]. Interestingly, for this exam-
ple, the correct functioning of the quantum measure-
ment device can be efficiently verified using existing
fidelity-witness methods [24], if reliable single-qubit
measurements are available. This leads to a conceiv-
able quantum advantage proposal based on measure-
ments of many-body Hamiltonians. We further dis-
cuss limitations of current theoretical tools to prove
quantum advantage for energy sampling in low reso-
lution regimes and how it connects to the fundamen-
tal problem of proving that quantum computers are
strictly more powerful than classical ones.

For our proof of quantum advantage, we introduce
the concept of quantum diagonalizable Hamiltonians.
This defines the set of Hamiltonians for which one
can efficiently obtain, using a quantum computer,
a description of its diagonalizing unitary as a poly-
size quantum circuit as well as efficiently compute its
eigenvalues. We believe this concept can be of rele-
vance outside the scope of this work and may lead to
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new investigations of speed-ups with respect to clas-
sical algorithms.

1.1 Measurement statistics and parameter
regimes
Before summarizing our contributions in more detail
we introduce some terminology regarding the param-
eters characterizing an energy measurement as well
as the different measurement regimes achievable by
quantum devices (a more detailed discussion is pre-
sented in Sec. 2).

A model of the measurement outcome statistics
needs to take into consideration the imperfect nature
of a realistic measurement. A schematic representa-
tion of an energy measurement and the parameters
we use in this work to characterize it is depicted in
Figure 1. Following Refs. [42–44], we characterize the
quality of a measurement by the measurement resolu-
tion δ, which sets the smallest measurement unit, and
the measurement confidence η. For example, an en-
ergy measurement of an eigenstate |ψE〉 with energy
E is said to have resolution δ and confidence η if it
outputs an estimate E′ such that

Pr(|E′ − E| ≤ δ) ≥ η. (1)

It will be useful to also define the parameter ε = 1−η,
denoting the probability of failure of the measure-
ment. A generalization of Eq. (1) for arbitrary in-
put states (see Sec. 2) defines the target probability
distribution we would like to sample from.

The finite resolution and measurement confidence
result from natural limitations such as a finite mea-
surement time or energy, which are present even if we
assume a noiseless measurement device. In addition,
to take into account the unavoidable presence of noise
in the implementation of a realistic measurement, we
introduce the sampling error parameter β. This pa-
rameter quantifies the deviation in `1-norm between
the target outcome distribution and that of an ideal
measurement of resolution δ and confidence η.

In order to achieve a certain measurement resolu-
tion δ, widely used quantum measurement models,
such as the von Neumann model or quantum phase es-
timation (Sec. 2.1), require a scaling of the resources
needed to perform the measurement which is poly-
nomial in the inverse resolution i.e., poly(1/δ). Typi-
cally, the resources are quantified by the time required
to perform the experiment (assuming a fixed interac-
tion strength between system and a pointer variable
[45]) or by the number of gates of a quantum cir-
cuit that implements the desired measurement. We
will refer to such a measurement with this perfor-
mance as a standard-resolution measurement, since
it can efficiently achieve what we refer to as stan-
dard resolution, where δ = 1/poly(n). This can be
seen as a coarse-grained energy measurement since,
in general, it is not able to distinguish each of the

exponentially many eigenvalues. Nevertheless, for
unknown Hamiltonians it is the best that can be
achieved efficiently. It has been demonstrated that
if the Hamiltonian is unknown but its time-evolution
can be implemented (as in an experimental setting),
an energy-time uncertainty relation is obeyed imply-
ing that the measurement time will be inversely pro-
portional to the targeted energy precision [46]. On
the other hand, as discussed in [44] and in Sec. 2.3,
in some specific situations one can exploit knowl-
edge of the Hamiltonian to achieve what we refer to
as a super-resolution measurement, where the scaling
of resources is O(poly(log(1/δ))). This allows us to
perform a much more accurate measurement which
achieves super-resolution efficiently, i.e. an exponen-
tially small measurement resolution δ = 1/ exp(n).

For our purpose it is sufficient to divide the sam-
pling error parameter β into two regimes. We define
the measurement as “approximate” [20, 21] when the
desired sampling error β is required to be only some
constant independent of the system size n. Our re-
sults on hardness of approximate sampling extend to
the regime β = 1/poly(n). Moreover, we define the
“near-exact” sampling regime if the sampling error β
is required to be inverse-exponential in the input size.

1.2 Summary of results
Our results on classical hardness of simulating energy
measurements concern the previously defined regimes
of resolution and sampling errors as summarized in
Table 1 and in more detail below. For the sake of clar-
ity we omit the confidence parameter η, which can be
taken to be η = 1−O(β). We provide complexity the-
oretic evidence that an efficient classical simulation of
energy measurements should not be possible, and dis-
cuss how the latter provides a suitable test of quan-
tum advantage for suitable resolution and sampling
error regimes. Due to their relevance in describing
physical systems, we focus on measurements of k-local
Hamiltonians acting on n qubits (two level quantum
systems) i.e., Hamiltonians of the form H =

∑
j Hj

where each term Hj acts on k qubits, for constant
k ∈ O(1). Our main contributions are the following:

(i) We provide quantum advantage protocols for
approximate super-resolution energy measurements
(Sec. 3). Specifically, we consider Hamiltonians with
nearest-neighbor interactions on 2D lattices that can
be efficiently diagonalized on a quantum computer.
For the latter, we show, first, that approximate
super-resolution measurements can be implemented
by building an approximate sampler from the diago-
nalizing quantum circuit (Theorem 1). At the same
time, we prove that these measurements are hard
to simulate classically assuming plausible complexity-
theoretic conjectures (Corollary 1). This leads to a
verifiable quantum advantage result based on energy
measurements that could be feasibly implemented in
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Figure 1: Given a Hamiltonian H, an energy measurement can be modelled as a procedure that takes as input a quantum
state ρA and outputs a measurement outcome Ei, as well as a post-measurement state σi

A. We characterize a noiseless
measurement (inside the smaller blue box) by its measurement resolution δ, which determines the accuracy of the output
value Ei, and its failure probability ε (see Eqs. (1) and (4)). Moreover, to characterize a noisy measurement (inside larger
brown box), we introduce an extra parameter β that quantifies the sampling error, in total variation distance, between the
noiseless probability distribution and the observed one (represented by the blue and brown histogram bars, respectively). These

probability distributions are defined explicitly in Definitions 2 and 3.

available quantum simulators. These results exploit
a connection between quantum advantage proposals
based on simulating constant-time Hamiltonian dy-
namics [23, 24] and energy measurement problems.
(ii) Super-resolution measurement procedures for ar-
bitrary Hamiltonians are unlikely to exist based on
complexity theoretic evidence [44, 47]. For this
reason, we investigate the hardness of energy mea-
surements with standard resolution. In Sec. 4, we
give complexity-theoretic evidence that classical com-
puters cannot efficiently simulate energy measure-
ments with standard resolution, even for simple
translation-invariant nearest-neighbor Hamiltonians
on the square lattice (Theorem 3). Analogously to
results obtained in Refs. [48–50] for other sampling
problems, our hardness result is valid in the near-
exact sampling regime where β = 0 or is inverse-
exponential. We give two hardness proofs, one being
based on the quantum advantage proposal of [24], the
other being based on circuit-to-Hamiltonian construc-
tions [51].
(iii) Ideally, one would like a physically motivated
quantum advantage experiment based on approximate
sampling problems with standard resolution, which are
more resilient to imperfections. However, in Sec. 5, we
argue that, with current techniques, it is not possible
to link the classical hardness of this problem to a Poly-
nomial Hierarchy (PH) collapse as in Refs. [20, 21]. As
an intermediate step, we provide alternative hardness
results inspired by the BQP-hardness of this problem
[42, 43]. Using circuit-to-Hamiltonian constructions
[51], we show that a hypothetical classical simulator
for energy measurement of local Hamiltonians could
be used to approximate arbitrary marginals of the

Super-resolution
δ = 1/exp(n)

Standard-resolution
δ = 1/poly(n)

Near-exact samp.
β = 1/2poly(n) (i) PH-collapse (ii) PH-collapse

Approx. samp.
β = const. (i) PH-collapse* (iii) BPP=BQP

Table 1: Our results on classical hardness for the energy mea-
surement problem, summarized in points (i)-(iii) in Sec. 1.2.
For the different regimes of resolution δ and sampling er-
ror β, we show the complexity theoretic implications of the
existence of an efficient classical algorithm for sampling out-
comes of energy measurements, corresponding to the local
Hamiltonians we construct. The cells in grey correspond to
problems that admit efficient quantum algorithms. In par-
ticular, in Sec. 3, we describe an efficient quantum proto-
col for approximate super-resolution energy measurements,
which could be used to demonstrate a quantum advantage.
This result, marked by “*”, requires plausible complexity the-
oretic assumptions other than the collapse of the Polynomial

Hierarchy (PH).

output distribution of any poly-sized quantum cir-
cuit (Theorem 4). Based on hardness of simulating
universal quantum circuits [22, 29, 31], these results
give evidence that approximately measuring a local
Feynman-Kitaev Hamiltonian in the standard reso-
lution regime is classically intractable. As we will
discuss in our manuscript, an open challenge in com-
plexity theory would be to tie these hardness results
to a Polynomial Hierarchy (PH) complexity-theoretic
collapse. Such a result could have additional impli-
cations for the development of quantum protocols ex-
hibiting physically-motivated quantum advantages.
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2 Setting
In this section we set up the framework to discuss
quantum advantage for measurements of many-body
Hamiltonians. We start in Sec. 2.1 by discussing two
ubiquitous quantum measurement protocols: the Von
Neumann pointer, for analog devices, and quantum
phase estimation, for digital quantum computers. We
discuss how our ability to measure is limited by ex-
perimental noise as well as physical restrictions on
available resources, such as time, energy, or quantum
gates counts. These limitations motivate us to de-
fine the problem of approximate Energy Sampling in
Sec. 2.2, where we introduce precisely the parameters
mentioned in Sec. 1.1 characterizing the probability
distribution of an imperfect energy measurement. Fi-
nally, we discuss in Sec. 2.3 the different parameter
regimes and how they can be achieved by quantum
devices.

2.1 Measurement models and their limitations:
from the von Neumann pointer to quantum
phase estimation
Let us consider a physical observable ÔA, with eigen-
vectors |ψi〉 and eigenvalues λi, and a quantum sys-
tem A in state ρA, where both operators act on a finite
dimensional Hilbert space H. Upon an ideal measure-
ment of this observable on system A, the probability
of obtaining an outcome λi is given by

p(λi) = Tr[ρAΠi], (2)

where Πi is the spectral projection on the eigenstates
with eigenvalues λi. In a realistic physical implemen-
tation of a quantum measurement, though, the out-
come probability distribution deviates from the ideal
one and is characterized by a finite resolution and
other error parameters. To understand the funda-
mental limitations of quantum measurements, let us
take as an example the Von Nenmann pointer model
of quantum measurement [45]. In this model, the sys-
tem under study interacts with a continuous-variable
pointer register R for a time t through the unitary
coupling

Umeas = e−iαt(ÔA⊗p̂R), (3)

where p̂R is the momentum operator of the pointer
register and α is a parameter that captures the
strength of the interaction. If ρA corresponds to an
eigenvector |ψ〉 〈ψ|i of ÔA, the effect of Umeas will be
to apply a αλit continuous shift of the pointer reg-
ister R. Therefore, by having access to the value
of the position of the pointer we can infer the out-
come λi. For example, the proposal for quantum
non-demolition energy measurements of many-body
systems from [14] consists in an implementation of a
von Neumann pointer. Naturally, experimental con-
straints, such as the finite width of the initial pointer

Figure 2: Scheme of a quantum circuit for energy measure-
ments. An energy measurement on state |ψ〉 with Hamilto-
nian H can be performed via the quantum phase estimation
(QPE) algorithm, by estimating the eigenphases of the uni-
tary eiH . This algorithm exploits a superposition of different
time evolutions as well as an efficient implementation of the

quantum Fourier transform (QFT).

state, a limited accuracy of the measurement of the
pointer position, or a finite interaction strength α
and interaction time t, impose intrinsic limitations
on the resolution of the measurement process and
the probability that it succeeds. In addition, a re-
alistic measurement process is only able to achieve a
noisy approximation of the ideal unitary Umeas which
results in further errors in the outcome probability
distribution. These limitations justify the introduc-
tion of the parameters δ, η and β presented in Sec-
tion 1.2 (see also Figure 1) and rigorously defined in
the next subsection. Quantum algorithms for simulat-
ing measurements of physical observables also suffer
from limitations and imperfections. In this case, the
measurement resolution as well as the different mea-
surement errors are determined by the finite number
of quantum gates, as well as the noise and imperfec-
tions in the implementation of these gates. It is well
known that an observable ÔA can be measured us-
ing the quantum phase estimation (QPE) algorithm
[35, 36], represented in Figure 2. The QPE algorithm
is a quantum algorithm for estimating the eigenphases
of a unitary matrix, which can easily be converted into
an algorithm for estimating the eigenvalues of ÔA by
taking the unitary Û = ei2πÔA/Λ, where Λ ≥ ||ÔA||
is an upper bound on the norm of ÔA. This way, the
eigenphases of Û can be understood as a normalized
outcome of the measurement of ÔA. In fact, it was
discussed in Ref. [52] that the QPE algorithm can be
seen as a discretized simulation of a Von-Neumann
measurement. In this scenario, the ancillary regis-
ter of phase-estimation plays the role of a discretized
von Neumann pointer, where every ancillary qubit
encodes an additional bit of precision. Therefore, a
quantum simulation of the measurement process will
be also prone to error and necessitate the introduc-
tion of the parameters δ, η and β. The same holds for
any potential classical algorithm trying to simulate
the quantum measurement process.
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2.2 The Energy Sampling problem
Due to their simplicity and significance in condensed-
matter physics, we will focus on measurement prob-
lems for local many-body Hamiltonians on two-level
systems (qubits). Our framework can be easily ex-
tended to measurements of general many-body ob-
servables.

Definition 1 (Measurement resolution). An en-
ergy measurement on a state ρ is said to have resolu-
tion δ and confidence η if the probability of outcome
E′ is such that

Pr(E′ ∈ [EA − δ, EB + δ]) ≥ ηtr(Π[EA,EB ] ρ), (4)

where Π[EA,EB ] is the spectral projection of H in the
energy interval [EA, EB ].

We will also define the parameter ε = 1− η, repre-
senting the probability of failure of the measurement.

Without loss of generality, we assume all observ-
ables throughout the text to have spectra contained
in [0, 1]: any observable can be written in this form via
a suitable rescaling.1 Moreover, although in general
an energy E can be any real number, any device per-
forming an energy measurement has a discrete set of
output values. For this reason, we discretize the real
line into steps of size δ > 0 and assume a measurement
outcome is given by a value Em ∈ {0, δ, ..., 1 − δ, 1}
(we take δ = 1/K for some positive integer K).2

In principle, we could consider energy measure-
ments on any state that can be efficiently prepared
by a quantum device. However, we focus on mea-
surements on product states, since we are interested
in energy measurement problems whose complexity
comes from the Hamiltonian and not from the state
to be measured. Also, considering measurements on
more general quantum states would only increase the
classical complexity of the problem. Hence, we define
the problem of Energy Sampling as follows.

Definition 2 (Energy Sampling). Given an n-
qubit product quantum state ρ, an n-qubit local Hamil-
tonian H =

∑M
i=1 hi, M ∈ O(poly(n)), and parame-

ters η, δ > 0, output Em ∈ {0, δ..., 1− δ, 1} with prob-
abilities qm such that Eq. (4) is fulfilled.

Such a sampler can be used to build an histogram
containing information about how the state ρ decom-
poses in the eigenbasis of the measured Hamiltonian
and thus to learn about the Hamiltonian spectrum, as

1Let κ be an upper bound of ||H||. Then, (H′ := H/κ+1)/2
has spectrum in [0, 1]. Furthermore, such an upper bound can
be efficiently computed for k-local Hamiltonians H =

∑r

i=1 hi

with constant k, where the number of terms r can be at most
O(nk). Specifically, κ ≤ maxi ‖hi‖r.

2Strictly speaking the constraints on the measurement out-
come distribution from Eq. (4) could allow for outcomes −δ or
1 + δ. We assume that these outcomes would be identified with
outcome 0 and 1, respectively, via classical postprocessing.

represented in Figure 1. Namely, for a given outcome
Em, the probability p(Em) can be reconstructed up
to 1/poly(n) errors in probabilistic polynomial time.

It is important to remark that Definition 2 is not
robust to experimental imperfections, as the latter can
introduce a sampling error in total variation distance.
For this reason, our main interest will be the notion
of approximate energy sampling, which allows us to
consider laboratory errors.

Definition 3 (β-approximate Energy Sam-
pling). Given a n-qubit product quantum state ρ,
an n-qubit local Hamiltonian H =

∑M
i=1 hi, M ∈

O(poly(n)), and parameters η, δ, β > 0, output Em ∈
{0, δ..., 1 − δ, 1} with probabilities q′m such that this
probability distribution is β-close in total variation
distance to the outcome probability distribution of an
energy sampler (Definition 2).

The parameter β quantifies how well the probabil-
ities q′m approximate the probability distribution of
an energy measurement with resolution δ and confi-
dence η. Hence, we will refer to the parameter β as
the sampling error.

2.3 Regimes of resolution and error achievable
by quantum devices
As anticipated in the previous section, theoretical
knowledge about the Hamiltonian as well as exper-
imental restrictions lead to different regimes of reso-
lution, confidence and sampling error. In what follows
we extend that presentation with some important re-
marks.
Standard-resolution measurements. For many ubiq-

uitous measurement procedures, the time necessary
to achieve resolution δ grows as poly(1/δ). Taking
again as example the von Neumann model, if we as-
sume that the pointer is prepared as a wavepacket of
a fixed width σ (fixed energy), it is possible to dis-
tinguish two consecutive eigenvalues E1 and E2 with
high confidence by letting the system interact with
the pointer for a time such that αt|E2 − E1| � σ.
Hence, a scaling of t = O(1/δ) is needed to achieve
resolution δ, for a fixed value of the coupling α.

For quantum algorithms that simulate energy mea-
surements, such as QPE, the natural way to quantify
their running time is based on the number of quan-
tum gates applied. It is known that an energy mea-
surement protocol based on QPE achieves a resolu-
tion δ with a number of gates scaling as poly(1/δ)
[36]. This follows from the fact that the bottleneck
for this algorithm is the implementation of an approx-
imation of the time-evolution operator exp(iHT ) for
time T = O(1/δ) in terms of quantum gates, which
takes time poly(1/δ, ||H||) using standard quantum
simulation methods [53, 54]. More generally, it was
shown in Ref. [44] that if the Hamiltonian is unknown
and we can only access the Hamiltonian evolution as
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a black box, or even if its eigenstates are known but
there is no information about its eigenvalues, a num-
ber of gates scaling as poly(1/δ) is the best that can
be achieved by any quantum algorithm.

An alternative way to approximate the probability
distribution of an energy measurement on a state ρ is
by considering its Fourier transform

P (ω) =
∑
i

p(λi)δ(ω − λi) =
∫
χ(t)eiωtdt, (5)

where λi are the eigenvalues of the Hamiltonian, p(λi)
is defined in Eq. (2) and χ(t) = Tr[ρe−iHt] is the
expected value of the time evolution operator. The
function P (ω) can be approximated by measuring
the correlators χ(t) at different times t and calcu-
lating the discrete Fourier transform of these val-
ues [55, 56]. Such correlators can be measured via
an many-body-interferometric experiment akin to, for
example, Ref. [57]. In this case, if we want to in-
crease the resolution of the approximation by a factor
1/x, it is necessary to measure x times more values of
the correlator χ(t), where the longest time will be x
times larger than before. It is then expected that the
time needed to run the experiment grows quadrati-
cally with the inverse resolution δ−1.
Super-resolution measurements. By exploiting cer-

tain knowledge about the Hamiltonian it is sometimes
possible to construct quantum algorithms for energy
measurements whose running time is poly(log (1/δ)),
i.e., the cost of increasing the resolution (decreasing
δ) grows polynomially in the number of digits of δ,
instead of δ itself. We say that such a measurement
procedure is a super-resolution measurement, as it al-
lows to resolve even exponentially small energy gaps
of a Hamiltonian, with a cost increasing only polyno-
mially in n. It was demonstrated in Ref. [44] that this
regime can be achieved by a quantum algorithm iff the
corresponding Hamiltonian can be exponentially fast-
forwarded i.e., the time-evolution Û = exp(−iHT )
can be implemented for exponentially large T using
only polynomially many quantum gates. It is impor-
tant to note, however, that it is not known how to
implement super-resolution measurements of all local
or sparse Hamiltonians, and indeed there is strong
complexity theoretic evidence that this is impossible
[44, 47] – if such a quantum procedure existed, it
would imply that quantum computers would be able
to solve any problem in PSPACE, which is considered
very unlikely.
Near-exact sampling. It is interesting to consider

the regime where the sampling error β is 0 or inverse-
exponential in n (β = 1/2poly(n)), in order to under-
stand the hardness of nearly-exact simulations of ideal
(noiseless) quantum devices [20, 48, 58, 59]. As we will
show, classical hardness results can be demonstrated
in this regime using the widely believed computational
complexity-theoretic conjecture that the Polynomial
Hierarchy (PH) does not collapse (see Sec. 3.3).

As an important side remark, we note that achiev-
ing the standard resolution and near-exact sampling
regime via QPE is non-trivial, even assuming noiseless
quantum gates. To achieve this regime, it is necessary
to efficiently approximate the time-evolution operator
Û = eiHT up to an inverse-exponential error, which is
not possible with methods based on product formulas
such as the original quantum simulation proposal of
Lloyd [53]. However, it is possible to solve this prob-
lem thanks to recently developed quantum simulation
algorithms, which are exponentially more precise than
the original proposal by Lloyd, and are applicable for
most Hamiltonians of interest such as local, sparse, or
low-rank ones [54, 60–63].
Approximate sampling. The sampling error con-

sidered in the near-exact sampling is extremely de-
manding and it is unknown to be reachable even by
fault-tolerant universal quantum devices [64]. For this
reason, several efforts to develop quantum advantage
protocols that are robust against certain sampling er-
rors have been developed [20, 21, 25]. The latter
consider approximate sampling problems, where the
sampling error β is a small constant. However, such
proofs require the introduction of additional compu-
tational complexity conjectures, as will be discussed
in more detail in Sec. 3.4. Furthermore, we discuss in
Secs. 5 that current techniques to demonstrate hard-
ness of approximate sampling fail for energy sampling
problems with standard resolution, as they become
sampling problems with a small output space.
Confidence regimes. For the purposes of our dis-

cussion on classical hardness of the energy sampling
problem, we can take the value of the measurement
failure probability ε = 1 − η to be of the same or-
der of magnitude of the sampling error β, i.e., in the
approximate sampling regime we can tolerate a small
constant value of ε whereas in the near-exact sampling
regime we require ε = 1/2poly(n).

Using a standard energy measurement procedure
such as quantum phase estimation, a resolution δ =
2−l can be achieved with failure probability ε by us-
ing l + log(2 + (2ε)−1) ancillary qubits [65]. The
scaling of the number of gates with this approach is
O(poly(δ−1, ε−1)) and so a small constant value of
ε can be achieved with a constant overhead. Fur-
thermore, any quantum algorithm for energy mea-
surements achieving a failure probability smaller than
ε ≤ 1/2− 1/poly(n), can be efficiently converted into
a procedure achieving an exponentially small failure
probability ε = 1/2poly(n) via confidence amplification
methods [44].

3 Quantum advantage for super-
resolution energy measurements
As we previously mentioned, [44] proves the con-
nection between energy measurements with super-
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resolution and the capability to exponentially fast-
forward the time evolution of the Hamiltonian. The
intuition behind this result comes from the com-
bination of three concepts: (i) the connection be-
tween energy measurements and QPE (ii) the capa-
bility to exponentially fast-forward the time evolu-
tion of a Hamiltonian; (iii) the quantum paralleliza-
tion achieved in QPE that allows exponentially many
more queries than a classical Fourier transform. The
authors of [44] provide some examples of Hamiltoni-
ans amenable to an exponential speed-up of the time
evolution: commuting local Hamiltonians, a Hamil-
tonian constructed from the modular exponentiation
unitary in Shor’s algorithm and free-fermions. The
reason behind the capability to exponentially fast-
forward the time evolution of free-fermions (which is
also applicable in the case of free bosons) is the fact
that the diagonalization of the Hamiltonian is known
[66, 67], which allows to construct a quantum circuit
that accelerates the simulation of the time evolution.
Interestingly, this last set of examples can be gener-
alized to define a potentially larger set that we name
Quantum Diagonalizable Hamiltonians.

3.1 Quantum Hamiltonian Diagonalization
In full generality, we say that a Hamiltonian H̃ is
quantum diagonalizable if

H̃ = U†HfU, (6)

where U is a poly-size quantum circuit and Hf is a
diagonal matrix in the computational basis written as

Hf =
2n−1∑
z=0

f(z) |z〉 〈z| , (7)

where the gate decomposition of the circuit U can be
obtained efficiently using a quantum computer and
there is a quantum circuit that computes f(z) up to
a given number of digits of precision l in time poly(l).
The two conditions on U and f(z) guarantee the ex-
istence of a poly-size quantum circuit that can expo-
nentially fast-forward the Hamiltonian time evolution
(see Figure 3a).

Hybrid quantum-classical algorithms for finding
quantum circuits for approximate diagonalization of a
Hamiltonian have been proposed, as a way to develop
more efficient Hamiltonian simulation procedures [68].
In this work we will restrict to cases where both the
gate decomposition for U and the function f(z) can
be computed efficiently classically, which allows us
to consider simple energy measurement procedures in
Sec. 3.2. Bellow, we explain how to build a circuit
for fast-forwarding a quantum diagonalizable Hamil-
tonian H̃ by analyzing how the circuit acts on an
eigenstate, which has the form |ψz〉 = U† |z〉. The
steps of the circuit are the following:

1. Apply U to |ψz〉 to obtain the state |z〉.

(a)

(b)

Figure 3: a) Representation of the five steps of the quan-
tum circuit for implementing the time-evolution eiH̃T of a
Hamiltonian with a known quantum diagonalization, i.e. of
the form H̃ = U†HfU discussed in Sec. 3.1. Exploiting the
structure of H̃ the time evolution can be implemented effi-
ciently even for exponentially large time T . b) If the Hamil-
tonian has a quantum diagonalization, the energy measure-
ments can be performed by sampling the outcomes z from the
quantum circuit implementing U and computing the eigen-
values via the function f(z). This procedure is simpler than
QPE and exponentially precise energy measurements can be

achieved efficiently.

2. For a given desired evolution time T , com-
pute an a-bit approximation of the phase
φz,T = f(z)T (mod 2π), where a = O(log(n)),
on an ancillary register. This takes time
O(poly(log(T ), log(n))) since we assume that l-
bits of f(z) can be computed in O(poly(log(l)))
time. This creates a state |z〉 |φ̃z,T 〉, where φ̃z,T
is the a-bit approximation of φz,T .

3. Apply the controlled phase e−iφ̃z,T |z〉 |φ̃z,T 〉

4. Undo the computation of φ̃z,T in the ancillary
register to obtain the state e−iφ̃z,T |z〉 |0〉⊗a.

5. Apply U† to obtain the state e−iφ̃z,T |ψz〉.

This quantum circuit, sketched in Figure 3, imple-
ments an approximation U ′ of the time-evolution op-
erator in time O(poly(log(n), log(T ))). The choice
a = log(n) ensures that ||U ′ − exp(−iH̃T )|| =
O(2−a) = O(1/poly(n)), which shows that H̃ is expo-
nentially fast-forwardable, according to the definition
in Ref. [44] (see Appendix A).

We leave open the problem of how quantum diago-
nalizable Hamiltonians relate to the potentially larger
class of exponentially fast-forwardable Hamiltonians.
Also, it is important to remark that, since the quan-
tum diagonalization assumptions imply the ability to
fast-forward, it is unlikely that arbitrary Hamilto-
nians are quantum diagonalizable – otherwise, this
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would imply a general procedure for exponentially
precise energy measurements of arbitrary Hamiltoni-
ans which, combined with the results in [44, 47], im-
plies BQP=PSPACE.

3.2 Super-resolution energy measurements for
Hamiltonians with known diagonalization
The motivation to restrict f(z) to functions that can
be computed efficiently classically, instead of the more
general case where f(z) can be computed by a quan-
tum circuit, is that it allows us to connect super-
resolution energy measurements of H̃ to the problem
of sampling from U . In fact, given that the quan-
tum diagonalization of the Hamiltonian is known,
super-resolution can be achieved by sampling from the
quantum circuit U , together with some classical post-
processing to compute f(z), as schematically depicted
in Fig. 3b . Furthermore, the generated distribution
can be characterized by the parameters δ, η and β de-
fined in Sec. 2.2.

In order to show this, let us assume we have access
to an approximate sampler from outputs of U , i.e. a
device that samples approximately from the probabil-
ities Pz = | 〈z|U |ψ〉 |2. More precisely, we define the
problem of approximate U -sampling as follows.

Definition 4 (β-approximate U-sampling).
Given an initial state |ψ〉 and a unitary U , sample
outcomes z with probabilities P ′z such that

∑
z |Pz −

P ′z| ≤ β.

We will refer to such a sampler as a β-approximate
sampler for U . We can now demonstrate the following

Theorem 1 (Quantum algorithm for super-res-
olution energy measurements). Consider any
quantum diagonalizable Hamiltonian H̃ = U†HfU as
in (6). Then, the following quantum algorithm ef-
ficiently solves the β−approximate Energy Sampling
problem for Hamiltonian H̃, with the initial state |ψ〉
and parameters η = 1 and δ = 2−l:

• Query a β-approximate sampler for U , with ini-
tial state |ψ〉.

• Given an outcome z, output an l-digit approxi-
mation of the value f(z) .

Theorem 1 provides a simple quantum procedure
for super-resolution energy measurements, since l dig-
its of precision can be achieved in poly(l) time. The
procedure is represented schematically in Fig. 3 and
can be used to bypass the QPE algorithm, which re-
quires further overhead. The details of the proof of
Theorem 1 are given in Appendix B, but the result
can be understood intuitively. As expected, an l-digit
accuracy in the computation of f(z) translates into
an l-digit resolution of the energy measurement δ.
Moreover, the finite total variation distance β of the
approximate sampler for U implies that the output

distribution of the algorithm solves a β-approximate
energy sampling problem. Finally, since we have as-
sumed f(z) can be computed deterministically, the
confidence η is 1.

This provides a reinterpretation of the result in
[38] as a proposal for super-resolution energy mea-
surements of the vibronic spectra of a molecule (de-
scribed by a quadratic bosonic Hamiltonian) via a
more economical quantum circuit than the traditional
quantum phase-estimation algorithm.3 The discus-
sion above provides also a generalization of that result
to any Hamiltonian with a quantum diagonalization.

3.3 Classical hardness of super-resolution En-
ergy Sampling

In this subsection, we present our quantum advantage
result based on super-resolution energy measurements
of local Hamiltonians. After introducing the diagonal-
izable local Hamiltonians of interest for our proof, we
show how the existence of an efficient classical (quan-
tum) algorithm for the energy sampling problem im-
plies also an efficient classical (quantum) solution to
the problem of sampling from its diagonalization uni-
tary (see Theorem 2). Exploiting known results on the
hardness of sampling unitary circuits, we obtain as a
corollary (Corollary 1) the existence of a simple class
of local Hamiltonians for which super-resolution mea-
surements can be feasibly implemented in a quantum
device but not efficiently classically simulated (assum-
ing plausible complexity theoretic statements). Our
proof is constructive and applies to a family of Hamil-
tonians diagonalizable by IQP circuits [21, 24] (i.e.,
quantum circuits that are diagonal in the X Pauli ba-
sis). However, the ideas behind the proof are general
and can be applied to find other hard energy sam-
pling problems, by considering Hamiltonians that are
diagonalized by quantum circuits from other quantum
advantage proposals.
The Hamiltonian. Specifically, our Hamiltonian

family is defined by conjugating a diagonal Hamil-
tonian of form (7) with an IQP unitary. For physical
reasons, we further focus on a specific family of near-
est neighbor IQP circuits on the 2D square lattice L2D

3In a nutshell, the Franck-Condon profile at zero temper-
ature which, under certain approximations, gives the vibronic
spectrum of a molecule, can be seen as the distribution ob-
tained by measuring the energy of the vaccuum state of a
given bosonic quadratic Hamiltonian H, according to a differ-
ent bosonic quadratic Hamiltonian H′. If we choose our basis
as the Fock basis of H, it is possible to compute classically
the parameters describing the gaussian transformation U that
diagonalizes H′ and write H′ = U†HfU , i.e. find a quantum
diagonalization for H′. The proposal of Ref. [38] for sampling
from the Franck-Condon profile can thus be seen as an instance
of the scheme for energy measurements discussed in Theorem
1 and represented in Fig. 3b.
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Figure 4: Schematic representation of the Hamiltonian
H2D[~w], from Eq. (10) and (9), and three of its local terms
Ha, Hb and Hc. Each of these terms is a 5-local Hamiltonian
acting on a given qubit (a, b, c) and its nearest neighbors
on the 2D lattice (represented inside each one of the three
squares). We remark that each term can have a different
weight. When all the weights are the same, as in Eq. (9),

the Hamiltonian is translationally invariant.

[24]. The latter implements a unitary

U2D = exp

iπ4
 ∑

(j,k)∈L2D

XjXk +
∑
k

Xk

 , (8)

corresponding to a constant time-evolution of a
translation-invariant nearest-neighbor Hamiltonian
on L2D. The Hamiltonian we use to define an energy
measurement problem is of the form

H2D [~w] =
n∑
j=1

wjU
†
2Dn̂jU2D, n̂j := (Ij−Zj)/2 (9)

where n̂j acts locally on qubit j and ~w = (w1, ..., wn)
is a set of real-valued weights. It is easy to see that the
unitary (8) implements a product of controlled-Z [65]
gates in the X basis, whose action on Pauli operators
can be analyzed in the stabilizer formalism [69]. Using
this property, we arrive at the final expression for our
Hamiltonian:

H2D [~w] =
n∑
j=1

wjXj

∏
j:(j,l)∈L2D

Zl. (10)

This Hamiltonian is 5-local, with local terms repre-
sented in Fig. 4. It is a “weighted” non-translation-
invariant variation of the 2D cluster state Hamilto-
nian used in measurement based quantum computa-
tion [70, 71].
Quantum advantage result. Our next result gives

complexity theoretic evidence that energy measure-
ments of Hamiltonians of form (10) on product states
cannot be efficiently classically simulated. To demon-
strate our result, we exploit recent quantum advan-
tage results [24]. Namely, we reduce the problem of
measuring these Hamiltonians with super resolution,
to that of sampling from the output distribution of a
constant-time Hamiltonian evolution of form (8) given

an input product states of form

|ψθ,x〉 =
n⊗
j=1

(|+〉+ (−1)xjeiθj |−〉), (11)

where θj and xj are chosen uniformly at random from
the set Θ = {0, π/4} and the set {0, 1}, respectively
[24]4. Precisely, we prove the following reduction be-
tween these two problems.

Theorem 2 (Circuit sampling from energy sam-
pling). Consider the problem of measuring the Hamil-
tonians H2D [~w] on input product states |ψθ,x〉 with θj
and xj are chosen uniformly at random from the set
Θ = {0, π/4} and the set {0, 1}, respectively. As-
sume the existence of an efficient classical (quantum)
algorithm for the associated approximate energy sam-
pling problem with resolution δ = O(2−n), confidence
η = 1 − ε and approximation error β. Then, there
exists an efficient classical (quantum) algorithm for
γ−approximate sampling from the unitary U2D (8),
acting on the same inputs, with γ = 2ε+ β.

Ref. [24] rules out the existence of efficient classical
simulations for short-time Hamiltonian evolutions of
form (8) based on three plausible complexity-theoretic
conjectures: (C1) the non-collapse of the Polynomial
Hierarchy; (C2) an approximate average-case hard-
ness conjecture; (C3) an anticoncentration conjecture.
These conjectures are similar to those in [20, 21] and
are reviewed in Sec. 3.4. Here, we demonstrate a
hardness result for super-resolution Hamiltonian mea-
surements, which is a corollary of Theorem 2 and the
hardness results in Refs. [24].

Corollary 1 (Quantum advantage for approximate
super-resolution energy measurements). There can-
not exist an efficient classical algorithm for simulat-
ing measurements of the Hamiltonian (10) with super-
resolution on input product states as in Theorem 2,
for any η = 1− ε, β such that 2ε+ β ≤ 1/22, assum-
ing complexity-theoretic conjectures C1-C3 below, in
section 3.4.

Corollary 1 leads to a natural quantum advantage
proposal, since the problem can be solved via the
quantum algorithm in Theorem 1, by realizing the
unitary (8), which can conceivably be implemented
in several quantum simulation platforms, e.g., cold-
atomic ones [24]. Furthermore, an efficient quantum
verification protocol for the required quantum sam-
pler exists, which only requires reliable single-qubit
measurements [24, 30]. Additionally, the result pro-
vides a connection between the quantum advantage
protocol of [24], based on sampling measurements of
a quantum state in a fixed basis, and a high-precision
spectroscopy problem. This relates these Hamiltonian

4We assume measurements are performed in the standard
computational basis.
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quantum advantage proposals to a physical problem
of interest, complementing previous work on vibronic
spectra [38].

To prove Theorem 2, we choose an appropriate set
of weights ~w that establishes a one-to-one map be-
tween the eigenvalues of H2D[~w] and its eigenvec-
tors. The proof technique (detailed next) generally
yields quantum advantage results for measurements
of Hamiltonians that are diagonalized by “Ising-type”
evolutions that implement IQP circuits [21, 48, 59],
if the associated diagonalizing unitary U is hard to
simulate classically. For instance, we could replace
U2D with the long-ranged local IQP circuits of [21],
or the nearest-neighbor translation invariant Hamilto-
nian evolutions of [23, 24, 72]. The resulting Hamil-
tonian for an IQP circuit on a k-degree interaction
graph would be k + 1 local (see Appendix C for de-
tails). These alternative constructions yield quantum
advantage results analogous to Corollary 1 for Hamil-
tonians that are n-body long-ranged considering the
quantum circuits from [21]; 6-local nearest-neighbor
on the dangling-bond square lattice for [24]; and 4
or 5-local for the brickwork lattices of [23, 72]. Al-
ternatively, the diagonalizing unitaries could also be
chosen from other families of quantum circuits that
lead to quantum advantage beyond IQP circuits, such
as random quantum circuits [22]. In the latter case,
however, the resulting Hamiltonian family would be
n-local and hence of less physical interest.
Proof of Theorem 2: The Hamiltonian H2D[~w] is local
and admits a diagonalization of the form (6), since
it is diagonalized by the matrix U2D and its eigen-
values can be efficiently computed classically via the
function f(z) =

∑
i wizi, where zi denotes the bit de-

composition of the integer z ∈ {0, 2n − 1}. We will
consider the case where f(z) is an invertible function
such that the value of z can be efficiently computed
from the energy value f(z). In this case the probabil-
ity of observing a particular energy value (up to error
δ) can directly be related to a certain output proba-
bility of the quantum circuit U2D. For simplicity, we
will consider the choice of weights uj = 2−j , in which
case f(z) ≡ Id(z) = z2−n, for z ∈ {0, ..., 2n − 1} is a
rescaled identity function, which is clearly invertible.
Other choices could be possible without necessarily
requiring exponentially decaying weights 5.

Let us consider a β-approximate energy sampler for
the Hamiltonian H2D[~u], given by

H2D[~u] =
∑
j

2−jU†2Dn̂jU2D. (12)

To show how an efficient classical sampler from U2D

5Another possible choice of weights which leads to an invert-
ible function f(z) is ui = log(pi)/C, where the pi’s are different
prime numbers and C is a large enough positive number that
guarantees the maximum energy to be less or equal to one. In
this case f(z) = log(

∏
i
p

zi
i ) and given that each number has

an unique prime decomposition and the values of pi are known,
z can be computed efficiently from the value of f(z).

can be constructed from a classical algorithm for
super-resolution energy measurements, we consider
the following sampling algorithm

Algorithm 1

• Query a β−approximate energy sampler with
input Hamiltonian H2D[~u], input state ρ =
|ψθ,x〉 〈ψθ,x| and parameters δ = 2−n/3, η = 1−ε.

• Given an output Em = mδ, output the unique z
satisfying Em ∈ {z/2n − δ, z/2n, z/2n + δ}.

The algorithm queries an energy sampler with a reso-
lution one third smaller than the separation between
consecutive eigenvalues of H2D [~u], which is 2−n, in
order to guarantee that the spectral projection in the
interval [z2−n− δ, z2−n+ δ] is simply given by Πz2−n .
As shown below, this allows us to relate the prob-
ability that Algorithm 1 outputs z to the quantity
Pz = | 〈z|U |ψθ,x〉 |2, the latter being the probability
of observing the computational basis state |z〉 from a
sampler from U2D with initial state |ψθ,x〉.

To demonstrate this relation, we first analyze the
case when β = 0. Using the definition of measurement
resolution from Eq. (4), we obtain that the probability
that Algorithm 1 outputs z is given by

pz = Pr(|Em − z/2n| ≤ δ) (13)
≥ (1− ε) 〈ψθ,x|Πz2−n |ψθ,x〉 (14)
≥ (1− ε)| 〈z|U2D |ψθ,x〉 |2 (15)

The equality follows from the constraints on the prob-
ability distribution of an energy sampler, defined by
Eq. (4). The first inequality results from the spectral
projection in the interval [z2−n − δ, z2−n + δ] being
simply given by Πz2−n . The second inequality follows
from the fact that, by construction ofH2D [~u], we have
that

Πz2−n = U†2D |z〉 〈z|U2D. (16)

From Eq. (15) we can define dpz ≥ 0 such that pz =
(1− ε)Pz + dpz. In addition, it can be seen, from the
construction of Algorithm 1, that the probabilities pz
are normalized, which implies that∑

z

pz = 1⇔
∑
z

(1− ε)Pz + dpz = 1 (17)

⇒
∑
z

dpz = ε. (18)

Hence, it follows that∑
z

|Pz − pz| =
∑
z

|εPz − dpz|

≤ ε+
∑
z

dpz ≤ 2ε, (19)

which shows that Algorithm 1 is an 2ε-approximate
sampler for U2D.
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For the case where β ≥ 0, Algorithm 1 outputs z
with probability p′z∑

z

|p′z − pz| ≤ β. (20)

Consequently, the bounds from Eqs. (19) and (20)
imply that ∑

z

|p′z − Pz| ≤ β + 2ε. (21)

This implies that Algorithm 1 is an efficient γ-
approximate sampler for unitary U2D and initial state
|ψθ,x〉, with γ = 2ε+ β. �

Proof of corollary 1. The classical hardness result for
this energy measurement problem follows directly
from the application of Theorem 2, which maps this
problem to that of sampling from U2D, together with
the quantum advantage result of Ref. [24]. Specifi-
cally, Theorem 1 from Ref. [24] states that a classical
algorithm cannot approximately sample from outputs
of the circuit U2D, up to a total variation distance of
β = 1/22, in polynomial time. This result is based
on three complexity theoretic assumptions which we
summarize in section 3.4.

We remark that a crucial point of the proof of The-
orem 2 is to choose the weights wi so the spectrum
of the Hamiltonian is non-degenerate. It can be seen
that this requires the weights wi to be defined up to
O(n) bits of precision. Such precision in controlling
the parameters of a Hamiltonian is hard to achieve in
an experimental setting. Nevertheless, measuring the
energy of quantum states according to such Hamilto-
nians is a valid theoretical question that can be ex-
plored using quantum devices beyond what is likely to
be simulable efficiently classically given Corollary 1 .
We leave as an open problem whether a similar hard-
ness result to Corollary 1 can be achieved for measure-
ments of Hamiltonians whose parameters are defined
up to constant precision.

3.4 Complexity theoretic assumptions needed
for quantum advantage via sampling problems
The quantum advantage proposal of Corollary 1 re-
lies on complexity-theoretic conjectures. Specifically,
these are the same conjectures6 underlying the quan-
tum advantage proposal of Ref. [24]; the latter are, in
turn, analogous to those involved in hardness proofs
for random universal quantum circuits [22, 31] and
slightly weaker than those in the seminal boson sam-
pling and IQP proposals of Refs. [20, 21]. Any
progress towards proving the conjectures in Ref. [24]
would simultaneously improve our results.

6This follows, from the proofs of Theorem 2 and Corollary 1,
since we exploit a reduction to the quantum sampling problem
therein.

For the sake of completeness we here summarize
the conjectures that enter the quantum advantage re-
sults in [24]. The first (C1) is the non-collapse of the
Polynomial Hierarchy, a widely believed generaliza-
tion of the P 6= NP conjecture [73–75], first linked to
hardness of classical simulation of quantum circuits
in [58]. This assumption alone rules out the existence
of near-exact classical simulators for a large family of
quantum devices, including the ones we study: specif-
ically, this is the case for quantum devices with output
probabilities that are #P-hard to approximate up to
constant relative errors in worst case (see [20, 59] and
appendix D).

Following an approach pioneered in [20, 21], this
classical hardness result can be made noise-robust
up to a constant sampling error in total varia-
tion distance β assuming two additional conjectures
about the output probabilities of the quantum device.
Specifically, let the set of all output probabilities of
our device be Pn = {px, x ∈ {0, 1}n}, where n is the
number of qubits. Then, we require: (C2) an approx-
imate average-case hardness conjecture, which states
that a constant fraction of the output probabilities
in Pn are #P-hard to approximate (up to a constant
relative error); (C3) an anticoncentration conjecture,
stating that the output distribution is “sufficiently
flat”, in the sense that probpx∼Pn [px > α/2n] > γ,
for some constants α, γ ∈ O(1). Assuming (C2)-(C3),
it can be shown that the existence of an efficient clas-
sical algorithm for β-approximate sampling from the
unitary U2D implies the collapse of the Polynomial
Hierarchy to its 3rd level. The central technique in
this argument is Stockmeyer’s counting algorithm [76]
(Sec. 5.1 and Appendix D), which shows that such
a classical sampler implies the existence of an algo-
rithm (inside the third level of the Polynomial Hier-
archy) for estimating the probabilities in Pn on av-
erage with high accuracy, a #P-hard problem. This
then implies the aforementioned collapse of complex-
ity classes by Toda’s theorem[77] (see appendix D for
more details). We note that the specific total vari-
ation distance β tolerated for the classical sampler
depends on the choices of the constant parameters in
the statement of the conjectures; the values chosen in
Ref. [24] lead to the threshold β = 1/22.

There has been steady progress towards proving the
complexity theoretic assumptions made. In Ref. [24],
numerical evidence was presented which supports the
anticoncentration conjecture (C3), for the choice of
angles of the input state from the set Θ = {0, π/4}.
Moreover, this conjecture was recently proven for a
uniform random choice of angles of the input state
(see Eq. 11) from the set Θ = [0, 2π] [78]. Further-
more, positive evidence for conjecture (C2) is given
by approximate worst-case hardness results in [24]
(case Θ = {0, π/4}), as well as by recent proofs of ex-
act average-case hardness and anticoncentration the-
orems given in [78] for the larger set of angles (case
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Θ = [0, 2π]). The results in [24, 78] are analogous
to approximate worst-case hardness results in [20–22];
proofs of anti-concentration of the output distribution
in [21, 72]; and exact average-case hardness results in
[31, 79]. For all known quantum advantage propos-
als, including ours, proving approximate average-case
hardness remains an open question.

4 Near-exact simulation of energy
measurements with standard resolution
The previous result establishes a complexity-theoretic
obstruction for classical algorithms to simulate en-
ergy measurements of certain local Hamiltonians in
the super-resolution regime. In this section, we in-
vestigate whether the less restrictive standard res-
olution regime can be efficiently reached classically.
Our main result shows this problem remains hard,
with high complexity theoretic evidence (specifically,
a collapse of the Polynomial Hierarchy, introduced in
section 3.3), if we demand exponentially small error
parameters.

Theorem 3 (Hardness of near-exact standard-
-resolution energy measurements). Let H be a
local Hamiltonian acting on n qubits. If there exists
an efficient classical algorithm for the energy sam-
pling problem for any such H with product-state in-
puts; resolution δ ∈ O(1/poly(n)); confidence η = 1−
O(1/2poly(n)); and sampling error β ∈ O(1/2poly(n));
then the Polynomial Hierarchy collapses to the 3rd
level. Furthermore, the same holds if H is a nearest-
neighbor, translation invariant 5-local Hamiltonian on
a 2d lattice.

To demonstrate this theorem, the idea is to show
that such a classical algorithm would efficiently sam-
ple an outcome whose probability is #P-hard to ap-
proximate. This is achieved by constructing local
Hamiltonians with two properties:

(i) there is a unique ground state with energy 0,
and a polynomially small gap to the first excited
state.

(ii) the overlap of this ground state with a product
state is #P-hard to calculate up to an inverse-
exponential additive error.

The first condition ensures that a standard-resolution
energy measurement protocol is capable of efficiently
discriminating the ground state from the rest of the
spectra, while the second ensures that a near-exact
sampling measurement samples from a #P-hard prob-
ability.

We provide two examples of families of local Hamil-
tonians that fulfill these properties in Secs. 4.1. The
first example is presented in Secs. 4.1.1 and is a
translation-invariant version of the 5-local cluster

state Hamiltonian from Eq. (10). By construction,
the ground state is related to an output state of
the quantum circuit U2D and hence property (ii) fol-
lows directly from the results of Ref. [24]. The sec-
ond example, presented in Sec. 4.1.2, is a 4-local
Hamiltonian based on Feynman-Kitaev (FK) circuit-
to-Hamiltonian constructions [51, 80], used in the
proof of equivalence between adiabatic and circuit
model quantum computation [80]. This construction,
although more complicated than the first example,
gives a general technique to relate the output state of
an arbitrary poly-size quantum circuit to the ground
state of a local Hamiltonian. Consequently, all the re-
sults on #P-hardness of output probabilities of quan-
tum circuits can be translated to results on hardness
of Energy Sampling with standard resolution.

Using these examples of local Hamiltonians, we
present the proof of Theorem 3 in Sec. 4.2, follow-
ing standard arguments from the quantum advantage
literature.

4.1 Physical examples
4.1.1 A 5-local translationally invariant Hamiltonian

We consider the Hamiltonian family defined in
Eq. (10). If we pick a uniform choice of weights
vj := 1/n, j = 1, . . . , n, the resulting Hamiltonian
is 5-local nearest-neighbor and translation-invariant.
In particular, up to single-qubit rotations, it is the
well-known 2D cluster state Hamiltonian [70, 71]:

H2D [~v] = 1
n

n∑
j=1

Xj

∏
j:(j,l)∈E2D

Zl. (22)

This model is mapped to a trivial unentangled one via
the unitary (8), which has constant depth. In a con-
densed matter sense, this implies that H2D [~v] can be
seen as the energy density operator (the Hamiltonian
divided by the number of particles in the lattice) of a
gapped model in the trivial phase [81, 82]. In partic-
ular, H2D [~v] has an inverse polynomial gap Ω(1/n),
which ensures that a standard-resolution measure-
ment can efficiently discriminate its ground state from
the rest of the spectra.

Upon an ideal energy measurement of a state |ψθ,x〉
from Eq. (11), the probability of obtaining outcome
E = 0, which is the ground-state energy, is given by

PGS = | 〈0|⊗n U2D |ψθ,x〉 |2. (23)

Such probabilities are related to partition functions
of Ising models and were shown to be #P-hard to
approximate to relative error or to inverse-exponential
additive error [21, 24]. This is a crucial ingredient for
the proof of Theorem 3, presented in Sec. 4.2.

4.1.2 Circuit-to-Hamiltonian constructions

So far, we have only considered Hamiltonians whose
diagonalization is known. Here we present a more gen-
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eral strategy to relate probabilities of outputs of ar-
bitrary quantum circuits to probabilities of outcomes
of energy measurements, while keeping the Hamilto-
nian local. To do so, we use the so-called circuit-to-
Hamiltonian constructions, based on Feynman clocks,
that have been widely used in Hamiltonian complexity
and adiabatic quantum computation [51, 80]. In fact,
the Hamiltonian that has the properties we require is
used in the proof that the adiabatic model of quan-
tum computation is equivalent to the circuit model
[80]. More precisely, we consider the final Hamilto-
nian at the end of the adiabatic schedule, since it has
polynomially small gap and its ground state contains
a information about the final state of a quantum com-
putation, as we explain in what follows. We describe
this construction in more detail since we build upon
it to demonstrate our main result in Sec. 5.2.

Let us consider a quantum circuit of T = poly(n)
gates U = UTUT−1...U1 and the propagation Hamil-
tonian

Hprop = 1
2

T∑
t=1

1⊗ |t〉 〈t|c + 1⊗ |t− 1〉 〈t− 1|c

− Ut ⊗ |t〉 〈t− 1|c − U
†
t ⊗ |t− 1〉 〈t|c , (24)

which is defined on a Hilbert space with T + 1 clock
states |t〉c and n qubits. We will describe the case,
where the clock is implemented with O(log(T + 1))
qubits, in which case the Hamiltonian Hprop. is
O(log(n))-local. Nevertheless our result extends to 5-
local Hamiltonians using the unary clock implementa-
tion of Ref. [51], or 4-local Hamiltonians using a clock
implementation based on the hopping of a excitation
in a unidimensional spin-chain (see [83] for a recent
discussion on different clock implementations). We
define the states

|ηy(0)〉 = |y〉 |0〉c
|ηy(t)〉 = UtUt−1...U1 |y〉 |t〉c , t ∈ {1, ..., T}, (25)

and the subspaces

Ω(y) = span{|ηy(t)〉 , t = 0, ..., T}. (26)

We note that for each y the subspace Ω(y) is invariant
under the action of the Hamiltonian Hprop. Hence,
we can diagonalize the Hamiltonian in each of these
subspaces, obtaining the 2n degenerate ground states

|ψ(y)〉 = 1√
T + 1

T∑
t=0
|ηy(t)〉 (27)

which have energy 0. These are called history states
as they contain information about the whole history of
a quantum computation. In particular, we have that
〈x| 〈t|c |ψ(y)〉 = 1√

T+1 〈x|Ut...U1 |y〉, which is propor-
tional to the transition amplitude from state y to state
x after t steps of the computation. It can be shown

that Hprop is positive semidefinite and has a gap of
O(1/T 2) with respect to the first excited state [51].

To fix the initial state of the computation to be |0〉
it is necessary to add an energy penalty Hamiltonian
of the form

Hinit =
n∑
i=1
|1〉 〈1|i ⊗ |0〉 〈0|c , (28)

where the projector |1〉 〈1|i acts on the ith qubit, en-
suring that when the clock is in its initial state |0〉c,
any computational basis state which is not the |0〉
state is energetically penalized. The total Hamilto-
nian

H = Hinit +Hprop (29)
has a single ground state |ψ(0)〉 with energy 0 and gap
∆ = O(1/T 3) [51], ensuring the discernibility of the
groundstate via a standard-resolution measurement.
Hence, the probability of observing the ground state
of H upon an ideal energy measurement of a state
|y〉 |T 〉c is given by

PGS = | 〈ψ(0)| (|y〉 |T 〉c)|
2 (30)

= 1
T + 1 | 〈y|U |0〉 |

2 (31)

This quantity is #P-hard to estimate to relative error
or inverse-exponential additive error for several fami-
lies of quantum circuits such as IQP [21, 84], or boson
sampling [20] (which can also be implemented in the
circuit model [85]), among others. Depending on the
family of circuits we choose, this defines a family of
local Hamiltonians of the form given by Eq. (29) for
which Theorem 3 applies.

4.2 Proof of Theorem 3
Before we proceed, let us prove the following technical
lemma that will be useful in what follows.

Lemma 1. Let H be a Hamiltonian with eigen-
values in the interval [0, 1], a ground state energy
EGS = 0 and a gap ∆ to the first excited state. Given
this Hamiltonian and an initial state |ψ〉, consider a
β−approximate Energy sampler with δ = ∆/3 and
confidence η = 1 − ε. Let q′GS be the probability
that this sampler outputs a value Em in the interval
[0,∆/3]. We have the following bounds on q′GS:

|q′GS − PGS | ≤ ε+ β. (32)

where
PGS = 〈ψ|ΠGS |ψ〉 (33)

and ΠGS is the spectral projection in the ground state
space of H.

Proof. An energy sampler with parameters η = 1− ε
and δ = ∆/3 outputs a value in the interval [0,∆/3]
with probability

qGS ≥ (1− ε)PGS ≥ PGS − ε, (34)
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which follows from the constraints on the outcome
probability distribution defined by Eq. (4). On the
other hand, the probability of obtaining a value in
the interval [2∆/3, 1] obeys the bound

q̄ ≥ (1− ε) 〈ψ|Π[∆,1] |ψ〉 (35)
= (1− ε)(1− PGS), (36)

where we used Eq. (4) in the first step and the fact
that ΠGS + Π[∆,1] = I in the second step, which fol-
lows from the assumption that the Hamiltonian has a
gap ∆. In addition, the q̄ and qGS probabilities sum
up to 1, which implies that

qGS = 1− q̄ (37)
≤ 1− (1− ε)(1− PGS) (38)
= (1− ε)PGS + ε ≤ PGS + ε, (39)

where in the second step we used Eq. (36). Combining
equations (34 and (39)) we obtain the inequality

|qGS − PGS | ≤ ε. (40)

A β-approximate Energy sampler with parameters
η = 1− ε and δ = ∆/3 outputs a value in the interval
[0,∆/3] with probability q′GS , where |q′GS − qGS | ≤
β. Hence, using (40) and the triangle inequality we
conclude the proof.

With this lemma we are ready to prove Theorem 3.

Proof of theorem 3. Lemma 1 implies that an approx-
imate energy sampler with δ = ∆/3 = 1/(3n + 3),
ε = 1− η = 1/2poly(n) and β = 1/2poly(n) would out-
put Em ∈ [0,∆/3] with a probability qGS = PGS + ε′,
where |ε′| is an exponentially small number. Fur-
thermore, we have seen two constructions of local
Hamiltonians for which PGS is #P-hard to estimate
with inverse-exponential additive error (Eqs. (23) and
(31)). Let us assume there is an efficient classical
energy sampler with the parameters defined in The-
orem 3 for these Hamiltonians. Following standard
arguments in the literature of quantum advantage
[20, 21], this would imply the probability q′GS could
be estimated up to an inverse-exponential additive er-
ror via Stockmeyer’s algorithm, an algorithm in the
third level of the polynomial hierarchy (PH). This im-
plies that a #P-hard problem could be solved in the
third level of the PH and hence the PH would col-
lapse to the third level. Stockmeyer’s algorithm and
its connection to quantum advantage is reviewed in
more detail in Sec. 5.1 and Appendix D.

This gives strong evidence to the impossibility
for classical computers to efficiently simulate en-
ergy sampling problems with confidence exponentially
close to optimal, i.e., η = 1 − 1/2poly(n), inverse-
exponential β = 1/2poly(n), and standard resolution

δ = 1/poly(n). This can be seen as a classical hard-
ness result for the problem of simulating an ideal im-
plementation of the quantum phase estimation algo-
rithm (with confidence amplification [44]), for measur-
ing the energy of a local Hamiltonian with standard
resolution.

5 Computational Complexity of ap-
proximate energy sampling with stan-
dard resolution
The previous section provided evidence that classi-
cal algorithms for near-exact simulations of energy
measurements of many-body Hamiltonians cannot ef-
ficiently simulate measurements with standard resolu-
tion (δ = 1/poly(n)). From a physical perspective, it
is natural to ask whether the previous complexity the-
oretic results involving collapses of the Polynomial Hi-
erarchy can be extended to approximate simulations.
Specifically, we are interested in extending Theorem
3 to the regime where the measurement failure proba-
bility ε and the sampling error β are small constants.
We present a no-go lemma and one positive result.

Approximate sampling measurements of Hamilto-
nians in the standard resolution regime can be inter-
preted as examples of quantum sampling problems
with a small number of output qubits. It would
thus be tempting to apply the Stockmeyer-based tech-
niques of Refs. [20, 21] (cf. section 3.4) to study
the complexity theory of classically simulating such
measurements. Unfortunately, we first point out in
Lemma 2 (section 5.1) that the Stockmeyer argument
cannot meaningfully link the hardness of approximate
sampling problems with few outputs to a Polynomial
Hierarchy collapse. This is due to an error param-
eter in such proofs that becomes too large precisely
for quantum computations where the number of mea-
sured output qubits is “small”: constant or O(log(n)).
This issue is generic and affects, e.g., existing quan-
tum advantage proposals based on variations of the
one-clean-qubit (DQC1) model [49, 50].

In spite of the above hurdle, our second result (The-
orem 4, section 5.2 below) gives complexity theo-
retic evidence of the classical hardness of approximate
standard-resolution energy sampling. The result links
the worst-case complexity of this problem to that of
classically simulating universal quantum computers.
Specifically, we prove that the existence of an effi-
cient classical algorithm for this problem would imply
the ability to efficiently classically compute arbitrary
marginal output probabilities of universal poly-sized
quantum circuits (a BQP-hard task, in the language
of complexity theory [65]). This provides evidence
against an efficient classical simulation of energy mea-
surements with standard resolution.

The first result in this section highlights the exis-
tence of a gap in the complexity theoretic understand-
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ing of quantum approximate sampling problems with
small output support. The second opens the possibil-
ity to develop quantum advantage tests based on such
problems. This is however complicated by the lack of
tools to study the average-case hardness of this prob-
lem. We discuss this latter possibility and associated
open challenges in section 5.3.

5.1 Sampling problems with small support “do
not simply” collapse the Polynomial Hierarchy
Here, we point out a technical obstruction towards
extending available approaches in quantum advantage
proofs [20, 21] to the standard-resolution approximate
energy sampling problems. First, we remark that
any algorithm for energy measurements with stan-
dard resolution samples from a probability distribu-
tion with poly(n) outcomes. This is in contrast with
most quantum advantage proposals, which have an
outcome space that is exponentially large. This fact
constitutes a roadblock for the application of the proof
technique of Refs. [20, 21].

To understand the limitation, we recall (section 3.4)
that the traditional approach to prove quantum ad-
vantage results via sampling problems heavily relies
on Stockmeyer’s algorithm Refs. [20, 21]. The goal
there is to induce a Polynomial Hierarchy (PH) col-
lapse assuming, among other assumptions, that it is
#P-hard to approximate the output probabilities of a
quantum device up to very small errors: specifically,
a constant relative one if we have anticoncentration.
Unfortunately, as shown next, if we tried to adapt
the same argument to rule out classical algorithms for
sampling problems with poly-sized support, we would
have to adopt an analogous average-case conjecture
where the error is too large for the assumption to be
plausible. Below, we characterize these errors for cir-
cuits with an arbitrary number of output bits. Let qU
be the output probability distribution of a quantum
circuit U , and 0m be the string with m zeroes.

Lemma 2 (Stockmeyer error). Let Qn, n ∈ N be a
family of uniformly-generated poly-size n-qubit quan-
tum circuits with m output bits and the hiding prop-
erty

∀U ∈ Qn, x ∈ {0, 1}m,∃Ux ∈ Qn : qU (x) = qUx(0m).

Assume there exists a classical algorithm A that sam-
ples from qU with `1 error β in O(poly(n, 1/β)) time
given U ∈ Qn. Then, for any 0 < ν < 1, there is an
FBPPNP algorithm which, given access to A, approx-
imates qU (x), x ∈ {0, 1}m up to additive error ε

ε ∈ O
(
qU (x)

poly(n) + β

2mν

(
1 + 1

poly(n)

))
. (41)

with probability 1− ν over the choice of x ∈ {0, 1}m.

We provide the proof of this lemma in Appendix
D. There, we also argue in detail how the Stockmeyer

argument fails to provide a plausible collapse of PH
in the m < log(n) regime. The basic intuition is as
follows. In Refs. [20, 21], where m = n, the algo-
rithm provides a relative error estimation of the out-
put probabilities in average case if we assume anti-
concentration. This problem is then conjectured to
be #P-hard. Evidence for this conjecture is provided
by worst-case results and near-exact worst-to-average
reductions (section 3.4). Because of Toda’s theorem,
that provides a collapse of PH, since PH⊂P#P. In the
m < log(n) regime, the right hand side of Eq. (41) has
a term that can only be upper bounded by an inverse
polynomial, which limits the accuracy ε of the algo-
rithm that estimates probabilities in FBPPNP. Un-
fortunately, to induce the same collapse of PH in the
casem < log(n), we would need to show that it is #P-
hard to estimate quantum output probabilities with
an inverse polynomial error. This is however implau-
sible because, if it was true, then quantum computers
could efficiently solve #P-hard problems, which is be-
lieved to be impossible [79, 86].

5.2 Hardness of approximate energy measure-
ments with standard resolution
In the previous section, we discussed obstructions to-
wards proving quantum advantage results based on
known complexity theoretic conjectures for approx-
imate standard-resolution energy sampling, as well
as quantum sampling problems with small support.
This points towards a tension between having practi-
cal physically-motivated quantum advantage schemes
and strong complexity theoretic proofs of classical
hardness.

This motivates us to consider different approaches
to prove physically-motivated quantum advantage re-
sults, which do not rely on the Stockmeyer argument
of Refs. [20, 21]. In fact, alternative evidence for
the impossibility of developing efficient classical algo-
rithms to simulate approximate energy measurements
with standard resolution can be drawn from the work
of Refs. [42, 43]. Therein, the authors show that a
procedure for energy measurements of local Hamil-
tonians achieving a resolution of 1/poly(n) and con-
fidence η = 1 − ε, where ε is a small constant, can
be used to decide any problem in BQP, the class of
decision problems that can be efficiently solved by a
quantum computer [65]. The Hamiltonians consid-
ered therein are 4-local non-nearest neighbor Hamil-
tonians in [42] and translational invariant chains of
qudits in [43]. Although these works did not explic-
itly consider β sampling errors, they can be easily
extended to the approximate energy sampling regime
where β is a small constant. Consequently, the ex-
istence of a classical algorithm for standard resolu-
tion approximate energy sampling problems, would
imply that classical computers could solve efficiently
any problem in BQP.
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In this section, we provide additional complexity-
theoretic evidence that classical computers cannot ef-
ficiently simulate energy measurements with standard
resolution. We do so by showing that this problem is
at least as hard as estimating marginals of output
probability distributions of universal circuits, a prob-
lem that is more general than considering only deci-
sion problems solvable by quantum circuits. Specifi-
cally, our main result (Theorem 4) shows that the abil-
ity to simulate the approximate energy sampling prob-
lem efficiently would imply the existence of a “poly
box”, in the notation of [87]: i.e., an efficient algo-
rithm to estimate any marginal output probability of
any poly-size quantum circuit up to a polynomially
small error, a BQP-hard task.

Definition 5 (Probability estimator or “poly-box”).
Let U be a poly-size quantum circuit acting on n-
qubits. An algorithm is said to be a probability es-
timator or poly-box for U if it can compute an esti-
mate p̂ of any marginal probability p of the distribution
| 〈x|U |0〉 |2 such that

Pr(|p− p̂| ≤ δp) ≥ 1− εp (42)

in time O(poly(n, δ−1
p , log(εp−1))).

The connection between standard-resolution energy
measurements and probability estimators is stated
precisely in the following theorem.

Theorem 4 (Hardness of approximate stan-
dard-resolution energy measurements). Let us
assume the existence of a classical algorithm for ap-
proximate energy sampling for 4-local Hamiltonians
on product states, reaching a resolution δ, confidence
η = 1− ε and sampling error β, with a running time
of O(poly(n, δ−1, β−1, ε−1)). This implies existence
of a classical poly-box for arbitrary poly-size quantum
circuits.

Theorem 4 shows that standard-resolution energy
measurements can be used to estimate arbitrary out-
put probabilities of quantum circuits, and not just
of single-qubit measurements, generalizing the results
of [42, 43].

To prove theorem 4, we show that it is possible to
encode any marginal probability of a quantum cir-
cuit’s output distribution as the probability of mea-
suring the ground state energy of a certain 4-local
Feynman-Kitaev Hamiltonian, which has a polyno-
mially small gap. Hence, with a polynomial number
of energy measurements, the marginal probability can
be estimated with a polynomially small error via the
Hoeffding bound.

Proof of Theorem 4. Let p be an output probability
or a marginal probability of a poly-size quantum cir-
cuit U from a family of quantum circuits C acting on
n-qubits. For a fixed computational basis state input

of the circuit |x〉, we can write the marginal probabil-
ity as

p =
∑
y∈S∗

| 〈y|U |x〉 |2. (43)

for a given set of bit strings S∗. More precisely, we
define S∗ has a set of 2n−l bit strings of size n where
l bits are fixed. We pick the bits at different positions
ki, with ki ∈ {1, ..., n}, i ∈ {1, ..., l}, such that the
kith bit is fixed to a chosen value bi ∈ {0, 1} i.e.,

S∗ = {y : yki = bi, i ∈ {1, .., l}}. (44)

To demonstrate the theorem we will first show that
it is possible to construct a local Hamiltonian with
two properties: the ground state energy is EGS =
0 and there is a polynomially small gap to the first
excited state. Moreover, the probability of observing
the outcome EGS = 0 after an energy measurement
of this Hamiltonian on a product state is given by
PGS = p/(T + 1), where T is the number of gates
of circuit U . Such Hamiltonian can be constructed
by a simple modification of the circuit-to-Hamiltonian
construction mentioned in Sec. 4.1.2 in the following
way.
Let us consider the gate decomposition of circuit

U = UTUT−1...U1 and the propagation Hamiltonian
from Eq. (24). Similarly to Sec. 4.1.2, we will prove
our result for the simplest case, where the clock is im-
plemented with O(log(T+1)) qubits and the Hamilto-
nian Hprop. is O(log(n))-local. The physicality of the
Hamiltonian can be improved to 4-local or 5-local, us-
ing standard clock implementations [51, 83].
We recall that the subspaces

Ω(y) = span{|ηy(t)〉 , t = 0, ..., T}, (45)

with the states |ηy(t)〉 defined in Eq. (25), are in-
variant under the action of the Hamiltonian Hprop.
Furthermore, Hprop has 2n degenerate ground states
|ψ(y)〉 (see Eq. (27)) with energy zero. Another im-
portant property that will be used in the following
proof is that Hprop is positive semidefinite and has a
gap of O(1/T 2) with respect to the first excited state
[51].
To relate the probability of observing the ground

state to the marginal probability p we need to lift the
ground state such that |ψ(y)〉 is a ground state only
for y ∈ S∗. With this aim, we introduce the following
penalty Hamiltonian

Hpen =
l∑
i=1

(
|b̄i〉 〈b̄i|

)
ki
⊗ |0〉 〈0|c , (46)

where b̄i denotes the NOT of the bit bi and the pro-
jector

(
|b̄i〉 〈b̄i|

)
ki

acts non-trivially only on the kith
qubit (and as identity in the other qubits). It can
easily be checked that |ηy(t)〉 are eigenstates of Hpen
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with eigenenergies

〈ηy(t)|Hpen |ηy(t)〉 =


0, if t 6= 0
0, if t = 0 ∧ y ∈ S∗

Cy, if t = 0 ∧ y /∈ S∗
(47)

where Cy ≥ 1, since if y /∈ S∗ then at least one bit
of y in one of the positions ki is in state b̄i. From
Eq. (47) it can be seen that Hpen has no effect in the
subspaces Ω(y) with y ∈ S∗.
Let us now determine the ground states of H =

Hprop + Hpen as well as the gap to the first excited
state. First, let us note that the subspaces Ω(y) from
Eq. (45) are also invariant under the action of Hpen,
which trivially follows from the fact that |ηy(t)〉 are
eigenstates of Hpen. Furthermore, since both Hprop

and Hpen are positive semidefinite matrices, H is also
positive semidefinite.
Let us denote as H(y) and H(y)

prop the Hamiltonian
H and Hprop restricted to the subspace Ω(y), respec-
tively. Then we have

H(y) = H(y)
prop, if y ∈ S∗ (48)

H(y) = H(y)
prop + Cy |ηy(0)〉 〈ηy(0)| , if y /∈ S∗, (49)

which follows from Eq. (47). Hence, for y ∈ S∗ the
state of H(y) with the lowest energy is |ψ(y)〉, which
has energy 0, and the first excited state has energy
O(1/T 2).

The final step needed to demonstrate that these
are the only ground states of H is to show that the
state with the lowest energy of H(y), with y /∈ S∗, has
an energy at least of O(1/T 3). This implies that no
state belonging to the subspace Ω(y) with y /∈ S∗ is
a ground state of the whole Hamiltonian H and that
this Hamiltonian has indeed a gap of 1/poly(n). To
show this we use the geometrical lemma [51, 88].

Lemma 3. (Geometrical Lemma) Let H1 and H2 be
two Hamiltonians with ground state energies g1 and
g2, respectively. Also, let ∆1 and ∆2 be the their re-
spective gaps to their first excited states. Then the
ground state energy of H is g ≥ g1+g2+∆(1−cos(θ)),
where ∆ = min(∆1,∆2) and cos(θ) is the maximum
possible absolute value of the overlap between a ground
state of H1 with a ground state of H2.

We will use this lemma consideringH1 = H
(y)
prop and

H2 = Cy |ηy(0)〉 〈ηy(0)|. In this case, we have g1 = 0,
∆1 = O(1/T 2) and g2 = 0, ∆1 = Cy ≥ 1. Hence we
can take ∆ = O(1/T 2). Moreover, the ground state
of H(y)

prop is |ψ(y)〉 whereas the ground state space of
Cy |ηy(0)〉 〈ηy(0)| is spanned by the states |ηy(t)〉, for
t = 1, ..., T .
In order to calculate the maximum overlap be-

tween the two ground spaces, let us define Π2 =∑T
t=1 |ηy(t)〉 〈ηy(t)|. The state belonging to the

ground state space of H2 with the maximum over-
lap with |ψ(y)〉 is |v2〉 = Π2 |ψ(y)〉 /

√
〈ψ(y)|Π2 |ψ(y)〉.

Hence, we obtain

cos(θ) = | 〈v2|ψ(y)〉 | =
√
〈ψ(y)|Π2 |ψ(y)〉 (50)

=
√

T

T + 1 ≤ 1− 1
2T . (51)

Hence, the geometrical lemma implies that the lowest
energy state of H(y) for y /∈ S∗ is O(1/T 3).

This shows that the states |ψ(y)〉 for y ∈ S∗ are the
ground states of H = Hprop + Hpen. Consequently,
the probability of observing 0 upon an ideal energy
measurement of a quantum state |x〉 |T 〉 is given by

PGS = 1
T + 1

∑
y∈S∗

| 〈ψ(y)| (|x〉 |T 〉)|2

= 1
T + 1

∑
y∈S∗

| 〈y|UTUT−1...U1 |x〉 |2.

= p

T + 1 (52)

Let us assume now that we have a classical algo-
rithm for approximate energy sampling for Hamilto-
nian H = Hprop +Hpen and initial state |x〉 |T 〉, with
a running time O(poly(n, δ−1, β−1, ε−1)). In what fol-
lows we demonstrate that we can estimate p from such
energy sampler by making use of Lemma 1 together
with Hoeffding inequality. First, we choose the pa-
rameters of the energy sampler to be δ = ∆/3 =
O(1/T 3), where ∆ is the gap of Hamiltonian H and

ε+ β = δp
2(T + 1) , (53)

where δp is defined in Eq. (42). By assumption, the
energy sampling algorithm would output one sample
in time poly(n, δ−1

p ). Given the choice of parameters
ε, β we obtain from Lemma 1 that the probability of
obtaining an outcome Em ∈ [−∆/3,∆/3] is given by
q′GS such that

|q′GS − PGS | ≤
δp

2(T + 1) . (54)

We now demonstrate that we can estimate q′GS within
an additive error δp/(2T + 2) by querying the energy
sampler s times and computing the average number of
times an event in the interval [−∆/3,∆/3] is observed.
Let us denote this estimator by q̂s. By Hoeffdings
inequality we have that

Pr
(
|q′GS − q̂s| ≥

δp
2(T + 1)

)
≤ 2 exp

(
− 2sδp2

4(T + 1)2

)
(55)

In order to reach an error of εp we choose

exp
(
− sδp

2

2(T + 1)2

)
= εp (56)

⇔ s = log
(

2
εp

)
2(T + 1)2

δp
2 (57)
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Hence, with s = O(poly(n, δ−1
p , log(εp−1))) number

of queries to the energy sampler we can obtain the
estimator q̂s within the desired error bound.
Finally we can construct our estimator for p as p̂ =

(T + 1)q̂s. Given the choice of s from Eq. (57) and
using Eqs. (54) and (55) we obtain

Pr(|p− p̂| ≤ δp) ≥ 1− εp (58)

as desired. The number of samples needed is
s = O(poly(n, δ−1

p , log(εp−1))) and for each sam-
ple we require time poly(n, δ−1

p ), which shows
that the total running time to compute p̂ is
O(poly(n, δ−1

p , log(εp−1))) as required by Defini-
tion 5.

5.3 Random Energy Measurement (REM) Test
Given that standard-resolution energy measurements
are BQP-hard to simulate, this problem has the po-
tential to be a suitable physically motivated test at
which quantum devices can outperform classical sim-
ulations. In particular, this suggests the following
quantum advantage experiments where one measures
the energy of a random local Hamiltonian on an input
product state.

Random Energy Measurement (REM) Test:

1. A classical user picks a random many-body local
Hamiltonian H =

∑
i Jihi, where the local terms

{hi}i and couplings {Jj}j are chosen from a tar-
get class at random, according to a distribution
that is efficient to sample from classically. The lat-
ter ensemble is picked so that complexity theoretic
evidence against an efficient classical simulation is
available.

2. The experimenter performs an approximate
standard-resolution measurement of the energy of
the Hamiltonian H picked from the ensemble.

3. The test is to produce samples from the
output distribution of the above protocol in
O(poly(n, δ−1, β−1, ε−1)) time, within a β error in
the total variation distance.

As discussed in section 5.1, this type of test is radi-
cally different than usual sampling problems [20, 21].
Further research is thus deemed necessary to fully un-
derstand its classical simulability. Below, we discuss
open directions for future investigations.
Complexity of the REM Test. Theorem 4 pro-

vides worst-case evidence against the classical simu-
lability of standard-resolution energy measurements.
Yet, it provides no insight into the hardness of sim-
ulating a typical instance of this problem for differ-
ent ensembles of random local Hamiltonians. Natu-
ral candidates that could lead to hard problems on
average are, for example, Feynman-Kitaev Hamilto-
nians encoding random quantum circuits, frustrated

spin systems [89] and universal quantum Hamiltoni-
ans [90]. However, in order to develop higher confi-
dence against the classical simulability of the REM
Test, it would be required to develop new tools to
study average-case complexity of problems in BQP.
This is because known polynomial-interpolation tech-
niques used in worst-to-average reductions are rather
sensitive to noise [31, 78, 91, 92] and cannot be readily
applied in the standard-resolution regime.
Is the REM test easy to verify? Commonly-studied

quantum sampling problems, with an exponentially
large output space, are difficult to verify [25]. Veri-
fying statistical closure in the total variation distance
to the ideal distribution based on a single-round of
classical post-processing requires exponentially many
experimental samples [93]. Although sample-efficient
verification approaches have been proposed [22, 29,
31], the verification takes exponential time and works
under circuit-level assumptions on noise [22, 29, 31]
or new complexity conjectures [29]. If reliable single-
qubit measurements are available, a polynomial-time
verification is sometimes possible [24, 28, 30].

On the other hand, measurements with standard
resolution could potentially be easier to verify than
commonly-studied sampling problems. Indeed, it is
easy to see that they bypass the no-go theorem in
Ref. [93] because of the polynomial size of the output
space: via the Hoeffding bound, collecting statistics
and computing the variation distance to the ideal dis-
tribution gives a trivial brute-force exponential-time
verification method with polynomial sample complex-
ity, which could be applicable in near-term experi-
ments of limited size. In this context, available verifi-
cation methods for BQP-complete problems [30, 94–
96] could potentially be useful.

6 Discussion
In this work, we have established energy measure-
ments of many-body Hamiltonians as a problem that
can show a reliable quantum advantage based on com-
plexity theoretic arguments. We thus make a key step
towards bringing quantum advantage demonstrations
closer to physically-motivated questions.

We have analyzed two different regimes regarding
the scaling of the cost of performing the measure-
ment, which can be quantified either by the evolution
time of the experiment or the number of quantum
gates applied in a quantum algorithm such as quan-
tum phase estimation. We have defined a standard-
resolution measurement as a measurement where the
cost in increasing the resolution is polynomial in 1/δ,
which is the standard performance of quantum devices
for general local Hamiltonians; and super-resolution
measurements, where the measurement cost scales as
poly(log(1/δ)), which can be achieved by a quan-
tum device if we exploit certain knowledge about the
Hamiltonian, such as its diagonalization (or in gen-
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eral, the ability to exponentially fast-forward its time-
evolution [44]).

We prove that for super-resolution measurements it
is possible to achieve a quantum advantage demon-
stration even when the measurement is approxi-
mate (with a system-size-independent sampling er-
ror), based on plausible complexity-theoretic assump-
tions similar to ones used in the "quantum computa-
tional supremacy" literature [20–22, 24, 31, 78]. The
quantum advantage originates in the super-resolution
measurement of a simple 5-local cluster state Hamil-
tonian on the 2D square lattice on product state in-
puts. The protocol can be implemented using the
quantum simulation scheme of Ref. [24] and requires
the short time-evolution of a nearest-neighbor on a
2D square lattice, suitable for implementations in, for
example, optical lattices. Moreover, this scheme can
be efficiently certified using reliable single-qubit mea-
surements. These results open up the possibility of
near-term experimental demonstrations of quantum
advantage via energy sampling.

In the standard-resolution regime, we find two
types of complexity-theoretic evidence against the ef-
ficient classical simulation of measuring local Hamil-
tonians. First, in a reminiscent fashion to early
work on IQP circuits [48], we find a classical sim-
ulation to be impossible for simple 2D translation-
invariant Hamiltonians in the near-exact sampling
regime with inverse-exponential sampling errors, un-
less the Polynomial Hierarchy collapses. Addition-
ally, we point out limitations of available techniques
[20, 21] to extend this quantum advantage result
to an approximate-sampling one, based on Polyno-
mial Hierarchy collapses. Second, using circuit-to-
Hamiltonian constructions and connections to ran-
dom universal quantum circuits [22, 29, 31], we
give alternative complexity-theoretic evidence that
approximate standard-resolution measurements of 4-
local Hamiltonians can show a quantum advantage:
a classical simulation here would lead to an efficient
classical estimator of marginal probabilities of univer-
sal quantum circuits, a BQP-hard task [42, 43].

Three potential improvements related to the tech-
nical results in our work are: Firstly, a major
challenge would be to tie the hardness of simu-
lating approximate standard-resolution energy mea-
surements to well-known complexity-theoretic conjec-
tures beyond BPP 6=BQP. This program would re-
quire techniques beyond the Stockmeyer-method and
Polynomial-Hierarchy collapses[20, 21]; Secondly, in
this manuscript we have not investigated the verifi-
ability of the standard resolution proposals. How-
ever, due to the small size of the energy output
space, classical verification methods similar to those
in Refs. [22, 29, 31] could be developed; Thirdly, it
would be interesting to improve the locality of our
Hamiltonians. The locality of the examples based on
5-local Hamiltonians on 2D lattices could, in principle,

be improved using the general techniques presented
in Ref. [90], which show that there exist simple 2-
local universal Hamiltonians that can reproduce the
physics of other Hamiltonians, including the energy
spectrum and measurement statistics. The examples
based on circuit-to-Hamiltonian constructions could
be improved using techniques such as, e.g., pertur-
bation gadgets or space-time circuit-to-Hamiltonian
constructions [97, 98].

We have also introduced the concept of quantum
Hamiltonian diagonalization which, up to our knowl-
edge, is a new concept which can be of interest be-
yond the scope of this work. It characterizes a class
of Hamiltonians for which there exists a polynomial-
size quantum circuit U mapping its eigenbasis to the
computational basis and whose eigenvalues can be
computed efficiently by a function f(z) on a quan-
tum computer. This guarantees the exponential fast-
forwarding of the dynamics of the Hamiltonian.

For the purposes of demonstrating quantum advan-
tage, we restricted ourselves to examples where f(z)
can be computed efficiently classically – this simplifies
the protocol for super-resolution measurements so it
can be potentially implemented in near-term devices.
In this case, the reason why the energy measurement
problem is hard to simulate classically results from the
fact that the populations of the different eigenstates
are # P-hard to approximate. It would be interesting
to construct new examples of quantum advantage for
super-resolution energy measurements where the clas-
sical hardness results from the need to sample from
the right eigenvalues (to exponential accuracy) and
not only from the right eigenstate populations.

Indeed, Ref. [44] shows that such constructions are,
in principle, possible. Therein, the authors present
an academic example of a Hamiltonian which can be
measured by a quantum algorithm (Shor’s algorithm)
with super resolution, even though it is not known
how to compute its eigenvalues efficiently classically.
This Hamiltonian is given by Ĥ = UME+U†ME , where
UME is the unitary implementation of the modular ex-
ponentiation used in Shor’s algorithm. It is interest-
ing to point out that it is possible to find a quantum
diagonalization for the aforementioned Hamiltonian
using existing quantum algorithms for decomposing
finite commutative groups [99, 100]. This academic
example shows how quantum algorithms could poten-
tially be helpful for expanding our knowledge of the
inner structure of a given Hamiltonian (here its quan-
tum diagonalization), which can later be exploited
to answer specific questions about a given physical
system more accurately (here obtaining its spectra).
Finding families of Hamiltonians with stronger physi-
cal motivation than this example, for which its quan-
tum diagonalization could be learned thanks to a
quantum algorithm, would offer a new and interesting
application for quantum computers, potentially lead-
ing to new exponential speed-ups over known classical
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algorithms.
Overall, we believe this work brings a new per-

spective into questions related to Hamiltonian com-
plexity [101] by focusing on problems that can be
solved efficiently by quantum devices, unlike prob-
lems such as the QMA-complete ground state prob-
lem [35]. Furthermore, we believe it could inspire
new demonstrations of quantum advantage for mea-
suring other quantities of interest in quantum many-
body physics, which would strengthen the belief that
quantum computers and simulators can answer prob-
lems about quantum matter beyond the power of any
present or future classical algorithms.
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a Hamiltonian and the ability to do exponentially pre-
cise energy measurements. In this section, we summa-
rize the definitions of Ref. [44] and explain how our
results fit in the context of that work.

A normalized Hamiltonian H is said to be exponen-
tially fast-forwardable if a poly-size quantum circuit
U ′ can be constructed such that ||U ′−exp(−iHT )|| ≤
α for T = O(2Ω(n)) and α = 1/poly(n). Atai-
Aharonov show that the ability to exponentially fast-
forward a Hamiltonian implies that one can find a
poly-size circuit ŨEM such that ||ŨEM −UEM || ≤ α′,
where UEM is a unitary operation that performs an
exponentially precise energy measurement and α′ =
1/poly(n). More precisely, UEM acts on an eigenstate
|ψE〉 and additional ancillas as

UEM |ψE , 0, 0〉 = |ψE〉
∑
E′

aE′ |E′, g(E′)〉 (59)

where E′, g(E′) live in a poly-size register, E′ is the
measurement outcome and g(E′) is some garbage
data; furthermore, the probability of observing E′

obeys Eq. (1) where δ = 1/2Ω(n) and η = 1 −
1/poly(n).

It can be seen that since ŨEM is close to UEM in op-
erator norm (||ŨEM − UEM || ≤ 1/poly(n)), the total
variation distance between the probability distribu-
tions resulting from a measurement of the output of
UEM and ŨEM is also bounded by β = 1/poly(n).
Hence, the ability to exponentially fast-forward a
Hamiltonian implies the ability to generate a quan-
tum circuit that solves the β-approximate energy
sampling problem with confidence η sampling error
β = 1/poly(n) and resolution δ = 1/2Ω(n).

B Proof of Theorem 1
In this section we give technical proof of Theorem 1
of the main text.

Theorem 1 (Quantum algorithm for super-res-
olution energy measurements). Consider any
quantum diagonalizable Hamiltonian H̃ = U†HfU as
in (6). Then, the following quantum algorithm ef-
ficiently solves the β−approximate Energy Sampling
problem for Hamiltonian H̃, with the initial state |ψ〉
and parameters η = 1 and δ = 2−l:

• Query a β-approximate sampler for U , with ini-
tial state |ψ〉.

• Given an outcome z, output an l-digit approxi-
mation of the value f(z) .

Proof: First let us consider this algorithm in the
case we have access to an exact sampler from U , that
is, we take β = 0. Such sampler outputs z with prob-
ability Pz = | 〈z|U |ψ〉 |2. We denote the function
that approximates f(z) to l-bits as f̃(z), implying
that |f̃(z) − f(z)| ≤ δ = 2−l. Assuming the values

of f(z) lie in the interval [0, 1], the function f̃(z) out-
puts values Em ∈ {0, δ, ...., 1− δ, 1}.

Let us denote the probability of outputting Em, via
the procedure described in the theorem, as qm. Then

qm =
∑

z∈f̃−1(Em)

Pz, (60)

where f̃−1(Em) is the pre-image of Em under the
function f̃ i.e., the set of values z that are mapped
to Em via f̃ .

Let us demonstrate that this probability distribu-
tion obeys the constraints given by Eq. (4), of an en-
ergy sampler with ε = 0 and δ = 2−l. Let us define
f−1([Ea, Eb]) as the pre-image of the energy interval
[Ea, Eb] under f(z) i.e.,

f−1([Ea, Eb]) = {z | f(z) ∈ [Ea, Eb]}. (61)

Given an outcome value z ∈ f−1([Ea, Eb]), we have
that f̃(z) ∈ [Ea − δ, Eb + δ]. Hence, the probability
that Procedure 1 outputs a value E′ ∈ [Ea−δ, Eb+δ]

Pr(E′ ∈ [Ea − δ, Eb + δ]) ≥
∑

z∈f−1([Ea,Eb])

Pz (62)

=
∑

z∈f−1([Ea,Eb])

| 〈z|U |ψ〉 |2

(63)

On the other hand, we have that the eigenstates of
H are given by U† |z〉 with eigenvalue f(z). It fol-
lows that the spectral projection of H in an interval
[Ea, Eb] is given by

Π[Ea,Eb] =
∑

z∈f−1([Ea,Eb])

U† |z〉 〈z|U. (64)

Consequently, defining ρ = |ψ〉 〈ψ| and using Eqs. (63)
and (64) we have that the probability that Proce-
dure 1 outputs the energy value E′ is given by

Pr(E′ ∈ [Ea − δ, Eb + δ]) ≥ tr
(
ρΠ[Ea,Eb]

)
, (65)

which is an energy sampler with parameters δ = 2−l
and ε = 0.

Let us now consider the more general case where
Procedure 1 has access to a β-approximate sampler
for U i.e., the outcome z is observed with probability
P ′z such that ∑

z

|P ′z − Pz| ≤ β. (66)

In this case, analogously to Eq. (60), we define q′m as
the probability that the procedure described in the
theorem outputs Em = mδ, which is given by

q′m =
∑

z∈f̃−1(Em)

P ′z. (67)
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Using Eq. (60), we have that

∑
m

|qm − q′m| =
∑
m

∣∣∣∣∣∣
∑

z∈f̃−1(Em)

(Pz − P ′z)

∣∣∣∣∣∣ (68)

≤
∑
m

∑
z∈f̃−1(Em)

|Pz − P ′z| (69)

=
∑
z

|Pz − P ′z| ≤ β. (70)

This shows that the probability distribution {q′m} has
a total variation distance of at most β with respect to
the energy sampler with parameters ε = 0 and δ = 2−l
defined by the probabilities {qm}. �

C Locality of Hamiltonians diagonal-
ized by IQP circuits with bounded de-
gree
Let us consider the class of Hamiltonians HIQP =∑
j wjU

†
IQP n̂lUIQP , where UIQP is an IQP cir-

cuit [21], of the form

UIQP = exp(iπ8
∑

(j,k)∈EG

wjkXjXk +
∑
k

vkXk). (71)

where EG denotes the edges of the interaction graph
of the circuit. Clearly, U2D is a particular case of
this more general set of unitaries, which is obtained
when the weights are wjk = 2 if (j, k) corresponds
to an edge of a 2D lattice. We start by calculating
U†IQPZlUIQP . We can write UIQP = exp(iπ/8HXX)
with

HXX =
∑

(j,k)∈EG

wjkXjXk +
∑
k

vkXk (72)

=Xl ⊗ (vlI +
∑
k 6=l

wklXk) + H̄l (73)

=Xl ⊗Hl + Il ⊗ H̄l (74)

where we have defined the Hamiltonians Hl and H̄l

acting on the n− 1 qubits other than l as

Hl = vlI +
∑
k 6=l

wklXk (75)

H̄l =
∑
j,k 6=l

wjkXjXk +
∑
k 6=l

vkXk (76)

Using this, we can write

U†IQPZlUIQP = e−i
π
8Xl⊗HlZl e

iπ8Xl⊗Hl (77)

= Zl − i
π

8 [Xl ⊗Hl, Zl] (78)

− 1
2

(π
8

)2
[Xl ⊗Hl, [Xl ⊗Hl, Zl] + ...

=
∞∑
k=0

Ck
k!

(
−iπ8

)k
, (79)

where C0 = Zl and Ck results from applying k-times
the commutator [Xl ⊗Hl, · ] to the operator Zl. By
calculating the first few commutators, a pattern can
be noticed

C1 = [Xl ⊗Hl, Zl] = [Xl, Zl]⊗Hl = −2iYl ⊗Hl,
(80)

C2 = −2i[Xl ⊗Hl, Yl ⊗Hl] (81)
= −2i[Xl, Yl]⊗H2

l (82)
= −2i(2i)Zl ⊗H2

l . (83)

The even terms are thus given by

C2k = (2i)k(−2i)kZl ⊗H2k
l

(
−iπ8

)2k
(84)

= (−1)kZl ⊗
(π

4Hl

)2k
, (85)

whereas the odd terms yield

C2k+1 = (2i)k(−2i)k+1Yl ⊗H2k+1
l

(
−iπ8

)2k+1
(86)

= −(−1)kYl ⊗
(π

4Hl

)2k+1
, (87)

Using these results, we can write

U†IQPZlUIQP = Zl ⊗ cos
(π

4Hl

)
− Yl ⊗ sin

(π
4Hl

)
.

(88)

This term acts non-trivially in d + 1 qubits, where d
is the number of non-zero values of wkl, for k 6= l i.e.,
the number of qubits that interact with qubit l via
Hamiltonian HXX in Eq. (72). In the case discussed
in the main text, HXX is defined on a 2D lattice,
which implies that each qubit interacts with 4 other
qubits. Hence, the Hamiltonian H2D from Eq. (9)
is 5-local. In fact, since all the weights are the same
(wjk = 2, (j, k) ∈ E2D) the expression above simplifies
to

U†2DZlU2D = Zl
∏

j:(j,l)∈E2D

Xj . (89)

D Proof and consequences of
Lemma 2
Lemma 2 (Stockmeyer error). Let Qn, n ∈ N be a
family of uniformly-generated poly-size n-qubit quan-
tum circuits with m output bits and the hiding prop-
erty

∀U ∈ Qn, x ∈ {0, 1}m,∃Ux ∈ Qn : qU (x) = qUx(0m).

Assume there exists a classical algorithm A that sam-
ples from qU with `1-error β in O(poly(n)) time for
any circuit U ∈ Qn. Then, for any 0 < ν < 1, there
is an FBPPNP algorithm which, given access to A,
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approximates qU (x), x ∈ {0, 1}m up to additive error
ε

ε ∈ O
(
qU (x)

poly(n) + β

2mν

(
1 + 1

poly(n)

))
.

with probability 1− ν over the choice of x ∈ {0, 1}m.

Proof. For any U ∈ Qn, let pU the distribution gen-
erated by A fulfilling

‖pU − qU‖ =
∑

x∈{0,1}m
|pU (x)− qU (x)| < β. (90)

As discussed in [21], Stockmeyer’s algorithm implies
the existence of an FBPPNP algorithm that computes
a relative-error estimate p̃U (x) of pU (x):

|p̃U (x)− pU (x)| ≤ pU (x)
poly(n) . (91)

Using the triangle inequality we get

|p̃U (x)− qU (x)| ≤ qU (x)
poly(n) (92)

+ |pU (x)− qU (x)|
(

1 + 1
poly(n)

)
.

Last, for any 0 < ν < 1, Markov’s inequality implies
that

|p̃U (x)− qU (x)| ≤ qU (x)
poly(n) + β

2mν

(
1 + 1

poly(n)

)
(93)

with probability 1− ν over the choice of x ∈ {0, 1}m.
This completes the proof.

We review a few consequences of this lemma that
are mentioned in the main text, section 3.4.

(I) Classical hardness of near-exact quantum sam-
pling problems based on the non-collapse of the Poly-
nomial Hierarchy. First, we review how Stockmeyer’s
algorithm can be used to rule out near-exact classi-
cal simulations of certain sampling problems (where
β = 1/2poly(n)), assuming only the non-collapse of
the Polynomial Hierarchy (PH) [20, 59]. This is the
case for poly-size quantum circuits with output prob-
abilities that are #P-hard to compute up to a relative
error, even when the number of output bits m is con-
stant.

To demonstrate this, it is important to note that
the output probabilities of the latter are either zero or
larger than p∗ = 1/2O(nc), for some constant c [102].
Using this fact, we can estimate these probabilities
up to relative error via Stockmeyer’s algorithm by
choosing a value of β < p∗/poly(n) i.e., significantly
smaller than the probability gap p∗. This can be seen
by analysing the error of the estimation on the right
hand side (RHS) of Eq. (92). If qU (x) is not zero,
then it is larger than p∗ [102] and the aforementioned

choice of β guarantees that the error on the RHS of
Eq. (92) is upper bounded by qU (x)/poly(n). Hence,
in this case, p̃U (x) is a relative error estimation of
qU (x). On the other hand, if qU (x) = 0, the error on
the RHS of Eq. (92) is upper bounded by p∗/poly(n).
This implies that p̃U (x) ≤ p∗/poly(n), which is sig-
nificantly smaller than p∗. This allows us to conclude
that qU (x) = 0.

Consequently, the existence of an efficient classical
algorithm for near-exact sampling of these quantum
circuits implies, via the previous arguments, the exis-
tence of an algorithm in the complexity class FBPPNP

that computes #P-hard to estimate output probabili-
ties. It follows that PH collapses to its 3rd level, since
it is known that FBPPNP is in level three, and P#P

is above the hierarchy (by Toda’s theorem) [77].
(II) Classical hardness of approximate quantum

sampling problems based on additional complexity-
theoretic conjectures. As discussed in section 3.4, it
is possible to extend the above results to rule out
classical simulations with constant or inverse poly-
nomial sampling errors assuming additional conjec-
tures. Specifically, Refs. [20, 21] exploit Lemma 2,
in the case m = n, to prove the hardness of ap-
proximate sampling problems based on three conjec-
tures: the non-collapse of PH, anticoncentration, and
the average-case #P-hardness of approximating out-
put probalities of a quantum device. We review the
key idea behind this proof. If the distribution qU (x)
anticoncentrates (assumption C3 in section 3.4), then
probx [qU (x) > α/2n] > γ, for some constants α, γ ∈
O(1). Then, with constant probability, the error in
equation (93) is a relative error for qU (x), if m = n.
It follows that there is an FBPPNP algorithm that can
approximate the output probabilities of the device up
to a relative error for a constant fraction of the in-
stances (i.e., in “average” when we randomize over the
choice of probability). If we assume this problem to
be #P-hard (the average-case assumption C2 in sec-
tion 3.4), then the Polynomial Hierarchy collapses to
its 3rd level.

(III) The m < log(n) case. In this scenario,
the error in the right hand side of Eq. (93) is
Ω(1/poly(n)). Assuming the existence of an efficient
classical sampler of the circuit family Qn, the Stock-
meyer argument implies the existence of an average-
case FBPPNP algorithm that approximates up to this
error the output probabilities of Qn. This error is
quite large and, in fact, can be achieved simply by
querying the hypothetical classical sampler a polyno-
mial number of times i.e., this problem would be in
BPP.

In order to draw an unlikely complexity theoretic
implication in this scenario, one would have to prove
that approximating a typical output probability of a
quantum circuit to 1/poly(n) errors is hard for a com-
plexity class which is unlikely to be contained in BPP.
However, it is important to note that this approxi-
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mation problem can be efficiently solved by sampling
from quantum circuits, and is therefore in BQP. It is
thus implausible that one can show that this problem
is #P-hard, or even NP-hard, for then quantum com-
puters would be able to solve such problems; which
is, in turn, considered to be unlikely [79, 86]. Hence,
new techniques seem to be required to give complexity
theoretic evidence for the classical harness of approx-
imate sampling problems with small output space.
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