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SUMMARY
CINV1, converting sucrose into glucose and fructose, is a key entry of carbon into cellular metabolism, and
HXK1 functions as a pivotal sensor for glucose. Exogenous sugars trigger the Arabidopsis juvenile-to-adult
phase transition via a miR156A/SPL module. However, the endogenous factors that regulate this process
remain unclear. In this study, we show that sucrose specifically induced the PAP1 transcription factor directly
and positively controls CINV1 activity. Furthermore, we identify a glucose feed-forward loop (sucrose-CINV1-
glucose-HXK1-miR156-SPL9-PAP1-CINV1-glucose) that controls CINV1 activity to convert sucrose into
glucose signaling to dynamically control the juvenile-to-adult phase transition. Moreover, PAP1 directly
binds to the SPL9 promoter, activating SPL9 expression and triggering the sucrose-signaling-mediated ju-
venile-to-adult phase transition. Therefore, a glucose-signaling feed-forward loop and a sucrose-signaling
pathway synergistically regulate the Arabidopsis juvenile-to-adult phase transition. Collectively, we identify
amolecular link between themajor photosynthate sucrose, the entry point of carbon into cellularmetabolism,
and the plant juvenile-to-adult phase transition.
INTRODUCTION

Vegetative phase change is the transition from the juvenile to

adult vegetative phase. During the juvenile phase, plants are

not able to initiate reproductive development leading to flower-

ing, and they are also insensitive to numerous environmental sig-

nals, including vernalization and photoperiod (Matsoukas et al.,

2013; Sgamma et al., 2014; Matsoukas., 2014; Guo et al.,

2017). In Arabidopsis, vegetative phase change is characterized

through an enhancement in the leaf length/width ratio, alterna-

tions in the production of trichomes on the abaxial side of the

leaf blade, a decline in cell size, and an enhancement in the de-

gree of serration of the leaf margin (Usami et al., 2009).

miR156 is a central factor in the regulation of the juvenile-to-

adult transition, and an increase of sugar promotes miR156

downregulation to trigger the juvenile-to-adult transition (Yu

et al., 2013; Yang et al., 2013). Whereas the expression of

miR156 decreases over time during vegetative phase change,

the expression of its targets, squamosa promoter binding pro-

tein-like (SPL) transcriptional factors, for example, SPL3/4/5/9,

are enhanced during this process (Wu et al., 2009; Yu et al.,

2013; Yang et al., 2013). This juvenile-to-adult phase transition
This is an open access article und
is thought to occur following an increase in glucose or a related

metabolite (such as trehalose) beyond a threshold level.

Whereas exogenous sucrose/glucose triggers the juvenile-to-

adult phase transition by a miR156A/SPL9 cascade, the endog-

enous factors that regulate this process remain unclear.

Increasing exogenous sugar results in the suppression of

miR156/157 abundance via transcriptional and post-transcrip-

tional mechanisms, and this binary control strategy is thought

to convey robust repression of miR156, leading to the juvenile-

to-adult transition in plants (Yu et al., 2013; Yang et al., 2013;

He et al., 2018). This is thought to lead to a concomitant

enhancement in transcript abundance of the miR156 target

genes encoding SPL3/4/5/9 transcription factors and miR172

(Wu et al., 2009; Wang et al., 2009; Kim et al., 2012; Jung

et al., 2011, 2012; Yu et al., 2013). The enhancement in SPLs

at the shoot apical meristem (SAM) results in the transcription

of floral meristem initiation genes (Schwab et al., 2005; Schwarz

et al., 2008; Wang et al., 2009; Yamaguchi et al., 2009), and the

increase in SPL9 at leaf blades promotes the juvenile-to-adult

phase transition and flowering by activation of MADS-box and

miR172 genes (Wang et al., 2009; Jung et al., 2011). In parallel,

the expression of miR172 is thought to activate FLOWERING
Cell Reports 36, 109348, July 13, 2021 ª 2021 The Author(s). 1
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LOCUS T (FT) transcription in leaf blades by suppression of the

AP2-like transcripts encoded by SCHNARCHZAPFEN (SNZ),

SCHLAFMÜTZE (SMZ), and TARGETOF EAT 1–3 (TOE1–3) (Ma-

thieu et al., 2009; Jung et al., 2011). In addition to modulation by

sugars, miR156 expression is also controlled through other

exogenous cues, including phosphate starvation (Hsieh et al.,

2009), temperature (Lee et al., 2010; Xin et al., 2010; Yu et al.,

2012), and CO2 concentration (May et al., 2013).

The ability of sugars to function as key signal molecules

across biological kingdoms has been well documented (Rolland

et al., 2001). Sugars are thought to regulate both plant juvenile-

to-adult and adult-to-reproductive phase transitions through

their function as key signaling molecules and energy sources.

Most plant cells acquire their essential carbon from sucrose;

however, this sugar is not utilized directly. Cytosolic invertase

(CINV) irreversibly catalyzes the conversion of sucrose to

glucose and fructose, whereas sucrose synthase (SUS) revers-

ibly catalyzes the conversion of sucrose to fructose and UDP

glucose (Lou et al., 2007). Significantly, the gateway of carbon

from sucrose into cellular metabolism appears to be controlled

principally by CINV1/2 (two of the nine CINV isoforms) rather

than by SUS, which is not essential for normal plant growth

and development (Barratt et al., 2009). An additional INV, vacu-

olar INV (VINV), regulates plant growth by its impact on vacuolar

osmotic potential (Sergeeva et al., 2006; Barratt et al., 2009),

rather than through cellular signaling. As sugars trigger the

Arabidopsis juvenile-to-adult phase transition through a signal

function (Yang et al., 2013), VINV may not be involved in

this process. In contrast, CINV1/2 activity provides a key

point of control for coordinating sucrose catabolism with sugar

signaling/metabolism-mediated plant growth and development.

However, this enzyme has not been previously linked to phase

transitions.

PAP1 (production of anthocyanin pigment 1), a putative MYB

domain-containing transcription factor (MYB75), is considered

a key integration point for a variety of internal and external stimuli

that influence the biosynthesis of anthocyanins (Teng et al.,

2005; Das et al., 2012; Jaakola, 2013). Significantly, sucrose,

but not other sugars, can specifically induce PAP1 expression

(Teng et al., 2005; Solfanelli et al., 2006).

In this study, we show that a glucose feed-forward loop

dynamically converts sucrose signaling into glucose signaling

in leaves to trigger the plant juvenile-to-adult phase transition.

In addition, the major photosynthate, sucrose, specifically in-

duces PAP1 expression and this transcription factor in turn

directly and positively regulates SPL9 expression to promote

the plant juvenile-to-adult phase transition.

RESULTS

PAP1 positively regulates the juvenile-to-adult
transition
A miR156-targeted SPL transcription factor, SPL9, regulates the

Arabidopsis juvenile-to-adult transition mediated by sugar

signaling (Yu et al., 2013; Yang et al., 2013), and SPL9 may

directly interact with PAP1 (Gou et al., 2011). Sucrose, but not

other sugars, specifically promotes mRNA accumulation of

PAP1 (Teng et al., 2005; Solfanelli et al., 2006). Collectively,
2 Cell Reports 36, 109348, July 13, 2021
these findings suggest that PAP1 may be linked to regulation

of the juvenile-to-adult transition.

To address this hypothesis, we utilized three kinds of Arabi-

dopsis PAP1-expressing transgenes to analyze potential PAP1

function in phase transition: (1) cauliflower mosaic virus 35S

(35S):PAP1, (2) an ASYMMETRIC LEAVES 1 (AS1) promoter,

specifically expressed in the leaf and meristem (Guo et al.,

2008), driving expression of a PAP1-green fluorescent protein

(GFP) fusion; and, (3) PAP1 expressed via an activation tag-

generated dominant mutant allele of this transcription factor,

pap1-dominant (pap1-D) (Qi et al., 2011) (Figure S1).

Under short days (10-h light/14-h dark cycle) and standard

light conditions (130 mmol quanta PAR m�2 s�1), 18-day-old

35S:PAP1, AS1pro:PAP1-GFP, and pap1-D seedlings all

showed a shortened juvenile phase (Figure 1A). That is, the ratio

of leaf blade length to width, the first leaf with abaxial trichomes,

and miR156A expression were more closely related to those of

adult leaves in these PAP1 overexpressing plants relative to

the wild-type (Figures 1C, 1E, and 1F). However, under the

same conditions, plants of a PAP1 loss-of-function mutant,

myb75-1, exhibited no obvious prolonged juvenile phase. It

has been reported that ‘‘super short’’ days (8-h light/16-h dark

cycle) and ‘‘low light’’ (80 mmol quanta PAR m�2 s�1) can signif-

icantly elongate the plant life cycle and be used to distinguishing

between a possible developmental phenotype (Yang et al.,

2013). Under super short days and low light conditions,

myb75-1 plants exhibited a prolonged juvenile phase (Figure 1B).

Thus, the ratio of leaf blade length to width, the first leaf with

abaxial trichomes, and miR156A expression more closely

resembled those of juvenile plants (Figures 1D–1F). Furthermore,

an increase of glucose levels inPAP1 overexpressing plants (Fig-

ure 1G) correlated with a shortened juvenile phase. As INV func-

tion is a key generator of glucose, the increase of this hexose

may be due to the enhancement of INV activity. Indeed, INV ac-

tivity was enhanced in PAP1 overexpressing plants (Figure 1H).

In contrast, there was a decrease in glucose levels in myb75-1

plants (Figure 1G), which exhibited a delayed juvenile-to-adult

transition. Furthermore, myb75-1 plants showed a decrease of

INV activity (Figure 1H).

To confirm PAP1 function in phase transition, we utilized two

different Arabidopsis accessions, Cvi and C24. PAP1 has been

identified as a sucrose-activated transcription factor in a previ-

ous analysis of sucrose-induced anthocyanin accumulation in

43 Arabidopsis accessions (Teng et al., 2005). The activity of

PAP1 in Cvi and C24 accessions was impaired as a result of nat-

ural variation in the PAP1 amino acid sequence. Similar to

myb75-1 plants, Cvi and C24 seedlings presented a prolonged

juvenile phase (Figure S2).

Taken together, these data indicate that PAP1 positively regu-

lates the Arabidopsis juvenile-to-adult transition.

PAP1 promotes CINV1/2 expression and elevates
CINV1/2 activity by glucose signaling or by converting
sucrose signaling into glucose signaling
The MYB transcription factor PAP1/MYB75 is specifically

induced by sucrose signaling to stimulate anthocyanin biosyn-

thesis (Teng et al., 2005; Solfanelli et al., 2006). CINV (Lou

et al., 2007; Barratt et al., 2009) gene expression was enhanced



Figure 1. PAP1 promotes the juvenile-to-adult phase transition in Arabidopsis

(A) Eighteen-day-old juvenile seedlings of pap1-D, 35S:PAP1, AS1proPAP1-GFP, and wild-type (Col-0) plants grown in soil under short days and standard light.

Scale bar, 1.0 cm.

(B) Twenty-six-day-old juvenile seedlings of myb75-1 and wild-type (Nossen) grown in soil under super short days and low light. Scale bar, 1.0 cm.

(C) Bar graph illustrating the length-to-width ratio of leaf blades shown in (A).

(D) Bar graph illustrating the length-to-width ratio of leaf blades shown in (B).

(E) Bar graph illustrating the first leaf with abaxial trichomes as shown in (A) and (B).

(F) Bar graph illustratingmiR156A expression within the indicated seedlings in (A) and (B). Quantification of wild-type seedlings was set as 1.0 in qPCR analysis.

Quantification was normalized to the expression of UBQ5.

(G) Bar graph illustrating the glucose levels in the five or six mature leaf blades of the indicated seedlings in (A) and (B).

(H) Bar graph illustrating neutral invertase activity in the five or six mature leaf blades of the indicated seedlings in (A) and (B).

Error bars represent SD (n = 14 in C; n = 18 in D; n = 28 in E; n = 3 in F–H). Student’s t test (*p < 0.05, **p < 0.01).
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when the PAP1-related potato MYB transcription factor, Sola-

num tuberosum anthocyanin 1 (StAN1), was infiltrated into to-

bacco leaves (Payyavula et al., 2013). We therefore tested INV

activity in our Arabidopsis lines expressing PAP1. INV activity

was enhanced in the PAP1 overexpressing plants and was

diminished in myb75-1 plants (Figure 1H). We therefore

determined whether CINV1/2 might be induced by PAP1 in

Arabidopsis.

CINV1/2 expression was enhanced in pap1-D and 35S:PAP1.

In contrast, CINV1/2 expression was reduced inmyb75-1 plants

relative to the wild-type (Figure 2A). Furthermore, the expression

of both PAP1 and CINV1/2 increased with age (Figures 2B and

2C). Additionally, CINV1 transcripts were less abundant in 13-,

16-, 19-, and 22-day-old myb75-1 plants relative to the corre-

sponding wild-type line (Figure 2C). These findings suggest

that PAP1 may promote CINV1/2 expression.

Exogenously supplied sucrose specifically promotes the

expression of PAP1 (Teng et al., 2005), and our data suggest
that PAP1 may promote CINV1/2 expression. Thus, the expres-

sion of both PAP1 and CINV1 may be mediated by sucrose. To

explore this, we monitored both PAP1 and CINV1 expression

over time in response to sucrose. The expression of both

PAP1 and CINV1 genes in wild-type seedlings was significantly

elevated after sucrose application (Figures 2D and 2E). However,

CINV1 expression inmyb75-1 seedlingswas not found to be pro-

moted by transiently applied sucrose (Figure 2F). These findings

indicate that PAP1 promotes CINV1/2 expression, and tran-

siently applied sucrose stimulates CINV1 expression, which is

dependent on PAP1 function.

Since PAP1 promotes CINV1/2 expression and neutral INV

activity was enhanced in the PAP1 overexpressing plants lines

(Figure 1H), we determined whether this PAP1-CINV1/2

pathway also results in enhanced CINV1/2 activity. Our findings

indicated that neutral INV activity was decreased in cinv1/2

(deficient in two closely related isoforms of neutral INV) seed-

lings (Figure 2G).
Cell Reports 36, 109348, July 13, 2021 3



Figure 2. PAP1 positively regulates CINV1/2 expression

(A) Bar graph showing the differential expression of CINV1 and CINV2 among 16-day-old wild-type, 35S:PAP1, and pap1-D grown in soil under short days and

standard light or wild-type (Nossen) and myb75-1 seedlings grown in soil under super short days and low light. The expression of the above genes in wild-type

was set as 1.0.

(B) Bar graph showing differential expression of PAP1 in 13-, 16-, 19-, and 22-day-old wild-type seedlings grown in soil under short days and standard light.

Quantification of wild-type seedlings was set as 1.0 in qPCR analysis.

(C) Bar graph showing differential expression ofCINV1 in 13-, 16-, 19-, and 22-day-old wild-type (Nossen) andmyb75-1 seedlings grown in soil under super short

days and low light. Quantification of wild-type seedlings was set as 1.0 in qPCR analysis.

(D and E) Bar graph showing differences in the expression levels of PAP1 (B) and CINV1 (C) between 6-day-old wild-type seedlings. Wild-type seeds were sown

and grown on solid MS medium with 1% sucrose for 6 days, and then seedlings were gathered and treated with double-distilled (dd) water (without sugar as

control) and 2% sucrose for 30, 60, and 90 min. Total RNA was extracted from these treated seedlings and qPCR was performed. Quantification of 6-day-old

wild-type seedlings treated without sugars was set as 1.0.

(F) Bar graph showing differences in the expression level of CINV1 between 6-day-old wild-type seedlings. myb75-1 seeds were sown and grown on solid MS

mediumwith 1%sucrose for 6 days, and then these seedlings were gathered and treatedwith ddwater (without sugars as control) and 2%sucrose for 30, 60, and

90 min. Total RNA was extracted from these treated seedlings and qPCR was performed. Quantification of 6-day-old wild-type seedlings treated without sugars

was set as 1.0.

(G) Bar graph illustrating neutral invertase activity in the five or six mature leaf blades in 20-day-old wild-type and cinv1/2 seedlings.

Error bars represent SD (n = 3). Student’s t test (*p < 0.05, **p < 0.01). Quantification was normalized to the expression of UBQ5.
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Taken together, these findings indicate that PAP1 promotes

CINV1/2 expression and elevates CINV1/2 activity by glucose

signaling or by converting sucrose signaling into glucose

signaling.

PAP1 directly binds to theCINV1 promoter, activating its
expression
Malus crabapple McMYB10 complements PAP1 function and

McMYB10 positively regulates the Malus crabapple flavonoid 30

oxidase (McF30H) via directly interacting with six putative MYB-

bindingmotifs (MYB-BMs): TATCCAACC,AACCTAAC,AAACCA,

AACGG, TATCC, and CCAACC (Tian et al., 2015). Thus, to deter-
4 Cell Reports 36, 109348, July 13, 2021
minewhetherPAP1might binddirectly to theCINV1promoter,we

interrogated the promoter sequence ofCINV1 for the presence of

MYB-BMs. This search identified sevenMYB-BMs and one com-

plementaryMYB-BM(GTTAGGTT), designatedC1–C8,within the

CINV1 promoter sequence (Figure 3A).

These findings of MYB-BMs within the CINV1 promoter

prompted us to perform chromatin immunoprecipitation (ChIP)

analysis. Our data indicated that PAP1 in vivo bound to a single

MYB-BM (C4, GTTAGGTT) within theCINV1 promoter sequence

but not to other potential MYB-BMs (C1, C2, C3, C5, C6, C7, C8)

or the remainder of the promoter sequence of CINV1 (Figures 3B

and 3C). Furthermore, PAP1 binding to the CINV1 promoter
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Figure 3. PAP1 directly interacts with the CINV1 promoter, activating its expression

(A) Schematic of the promoter loci of CINV1 and its amplicon for ChIP analysis.

(B andC) ChIP-PCR analysis. Enrichment of particular chromatin regions ofCINV1 (B andC) with anti-GFP antibody (as a control in B), wild-type (as a control in C),

and anti-HA antibody in 35S:PAP1-HA/myb75-1 seedlings grown on solid MSmediumwith 1.0% sucrose, as detected by qPCR analysis. Input was set as 100%

(supernatant including chromatin [input material] is considered as 100%).

(D) ChIP-PCR over time. Enrichment of particular chromatin regions (C4) ofCINV1with anti-HA antibody in 13-, 16-, 19-, and 22-day-old 35S:PAP1-HA/myb75-1

seedlings grown in soil under short days and standard light, as detected by qPCR analysis. Thirteen-day-old 35S:PAP1-HA/myb75-1 seedlings was set as 1.0.

(E) ChIP was performed to analyze the in vivo interaction between PAP1 and sequence C4 of the CINV1 promoter. Enrichment is shown of particular chromatin

regions of C4 in the CINV1 promoter with anti-HA antibody or anti-GFP antibody (control) by using 18-day-old-35S:PAP1-HA/CINV1(mPBS)pro::CINV1-GFP/

cinv1 or 35S:PAP1-HA/myb75-1 seedlings, as detected by qPCR analysis.

(F) UnlabeledCINV1 promoter and unlabeled probes (250 ng [+] and 2.0mg [++]) were used as competitors to determine the specificity of the DNA-binding activity

for PAP1.

(G) A mutant version of the CINV1 promoter (GGTT/GGAA) was labeled with biotin and used for EMSA with PAP1 polypeptides. Free probe and PAP1 probe

complexes are indicated by an asterisk and arrows, respectively, in (F) and (G).

(H and I) Western blot analyses of the indicated proteins pulled down in a protein-DNA pull-down assay with anti-MBPmonoclonal antibody. Arrows indicate the

degradation fragments of MBP-PAP1.

(J) Bar graph illustrating the relative luciferase luminescence intensities were quantitated using Renilla luciferase (REN) for normalization. CINV1mpro-LUC in-

dicates the mutated CINV1pro-LUC construct.

Error bars represent SD (n = 3). Student’s t test (*p < 0.05, **p < 0.01). Quantification was normalized to the expression of UBQ5 in (B)–(E).
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increased over time (Figure 3D), which correlated with an in-

crease ofCINV1 andPAP1 expression (Figures 2Band 2C). How-

ever, a construct, 35S:PAP1-HA/CINV1(mPBS)pro::CINV1-GFP,

which was transformed into the cinv1 mutant, possessing a

mutant binding site for PAP1 (mPBS), exhibited decreased

PAP1 binding within the C4 region of the CINV1 promoter con-

taining the mPBS (Figure 3E).

Moreover, we interrogated the promoter sequence of CINV2

for the presence of MYB-BMs. This search identified five MYB-

BMs in the CINV2 promoter (Figure S3A). We further performed

ChIP analysis to determine whether PAP1 binds to the CINV2

gene promoter. Our findings indicated that, in vivo, PAP1 cannot
bind to any MYB-BMs within the CINV2 promoter sequence

(Figure S3B).

Furthermore, electrophoretic mobility shift assay (EMSA) ex-

periments were performed to determine possible in vitro direct

binding of PAP1 to the C4 sequence within the CINV1 promoter.

PAP1 bound to the labeled C4 sequence in vitro, and excessive

unlabeled competitor DNA effectively abolished this binding in a

dose-dependent manner (Figure 3F). Furthermore, PAP1 did not

bind to the corresponding mutated DNA sequence (mC4)

(Figure 3G).

To confirm and extend these findings, we performed a DNA-

protein pull-down assay. Full-length myelin basic protein
Cell Reports 36, 109348, July 13, 2021 5



Figure 4. PAP1 acts upstream of CINV1 in regulating the juvenile-to-adult phase transition

(A–E) Twenty-day-old seedlings of cinv1, wild-type, pap1-D, and pap1-D/cinv1/cinv2were grown in soil under short days and standard light. Scale bar, 0.5 cm for

(A)–(E). White arrows indicate anthocyanin accumulation.

(F) The number of rosette leaves from (A)–(E) in short days.

(G) The length-to-width ratio of the leaf blade from (A)–(E) in short days.

(H) Bar graph illustrating the first leaf with abaxial trichomes in (A)–(E).

(I) Bar graph illustrating miR156A expression of the indicated seedlings in (A)–(E). Quantification of wild-type seedlings was set as 1.0 in qPCR analysis.

(J) Bar graph illustrating differences of CINV1 expression in (A)–(E). The expression of CINV1 in wild-type seedlings was set as 1.0.

(K) Bar graph illustrating the different glucose concentrations in the five or six mature leaf blades in (A)–(E).

(L) Bar graph illustrating the difference in neutral invertase activity in the five or six mature leaf blades in (A)–(E).

(M) Bar graph illustrating PAP1 expression in wild-type, pap1-D, and pap1-D/cinv1/cinv2 seedlings. Quantification of wild-type seedlings was set as 1.0 in qPCR

analysis.

(N) Bar graph illustrating miR156A expression in Figure S5.

(O) Bar graph illustrating the first leaf with abaxial trichomes as shown in Figure S5. Error bars represent SD (n > 12 in F; n > 18 in G; n = 22 in H; n = 16 in O; n = 3 in

I–N). Student’s t test (*p < 0.05, **p < 0.01). Quantification was normalized to the expression of UBQ5 in (I), (J), (M), and (N).
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(MBP)-PAP1 was pulled down with a CINV1 promoter fragment

C4 but not with C1, C2, or C3 of CINV1 promoter fragments (Fig-

ure 3H), whichwas consistentwith our EMSAdata (Figures 3F and

3G). Furthermore, biotin-labeled mutated C4 (mC4) failed to pull

down MBP-PAP1 (Figures 3I). Therefore, our findings indicate

that PAP1 binds the C4 sequence within the CINV1 promoter.

Finally, transient expression experiments in Nicotiana benthami-

ana showed that co-expression of PAP1 elevated the expression

of a CINV1pro-LUCIFERASE (LUC) reporter gene (Figure 3J).

Taken together, these data indicate that PAP1 directly binds to

the CINV1 gene promoter to activate CINV1 expression.

CINV1 promotes the juvenile-to-adult phase transition
Since PAP1 function was associated with the plant juvenile-to-

adult phase transition (Figure 1) and PAP1 directly binds to the
6 Cell Reports 36, 109348, July 13, 2021
CINV1 promoter to transcriptionally activate CINV1 expression

(Figures 2 and 3), we determined whether CINV1 activity may

also affect phase transition.

The loss of CINV1 function resulted in small pale green leaves

(Lou et al., 2007), consistent with a prolonged juvenile phase

relative to wild-type plants. Indeed, compared with the cinv1

mutant, the cinv1/cinv2 double mutant showed even smaller

pale green leaf blades and a longer juvenile phase (Figures

4A, 4B, and 4D). Thus, the rosette leaf number, the length-to-

width ratio in the leaves, the first leaf with abaxial trichomes,

and miRNA156A transcripts all showed a prolonged juvenile

phase in the cinv1/cinv2 seedlings (Figures 4F–4I), indicating

that CINV1/2 promotes the juvenile-to-adult phase transition.

Furthermore, CINV1 is strongly expressed in mature leaves

(Figure S4), suggesting that CINV1 has functions in this organ,
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in addition to its role within roots (Lou et al., 2007; Barratt et al.,

2009). Therefore, CINV1/2 promotes the juvenile-to-adult phase

transition.

Furthermore, we crossed pap1-D into the cinv1/cinv2 double

mutant. PAP1 expression in pap1-D and pap1-D/cinv1/cinv2

plants was not clearly different, excluding the possibility that

the transfer DNA (T-DNA) insertions in cinv1/cinv2 silence the

T-DNA insertion in pap1-D (Figure 4M). Our findings indicate

that the reduced level of both CINV1 and CINV2 activity signif-

icantly delayed the juvenile-to-adult transition of pap1-D plants

(Figures 4A–4I), indicating that CINV1/2 acts downstream of

PAP1 to regulate the juvenile-to-adult phase transition.

Furthermore, CINV1 transcript accumulation in leaves of the

pap1-D/cinv1/cinv2 lines was higher than that in cinv1cinv2

plants (Figure 4J), indicating that PAP1 promotes CINV1

expression, and these mutants act dependently from each

other. Also, endogenous glucose levels were significantly

reduced in cinv1/cinv2 and pap1-D/cinv1/cinv2 seedlings (Fig-

ure 4K), which correlated with a delayed juvenile-to-adult

phase transition in these mutants. This may reflect reduced

INV activity in cinv1/cinv2 and pap1-D/cinv1/cinv2 seedlings

(Figure 4L). Taken together, our data show that CINV1/2 acts

downstream of PAP1 to regulate glucose associated with the

juvenile-to-adult phase transition.

To confirm that CINV1 acts downstream of PAP1 to promote

the juvenile-to-adult transition, we overexpressed CINV1 or

CINV2 in myb75-1 plants to determine whether the associated

mutant phenotype could be rescued. Our findings indicated

that 35S:CINV1 can rescue themyb75-1 phase transition pheno-

type (Figures 4N and 4O; Figure S5).

Taken together, our data show thatCINV1 acts downstream of

PAP1 to promote the juvenile-to-adult phase transition.

With increasing age, enhancement of PAP1
transcriptional activity promotes the juvenile-to-adult
transition by directly elevating CINV1/2 activity
To monitor the transcriptional activity of PAP1 during the juve-

nile-to-adult phase transition, we employed a transgenic line

containing the beta-glucuronidase (GUS) reporter gene driven

by six tandem repeats of the PAP1 binding site (PBS) (C4) fused

to a minimal 35S promoter (63 PBS-PAP1::GUS; Tian et al.,

2015). GUS staining intensity over time in the third or fourth

leaf of 13-, 16-, 19-, and 22-day-old seedlings gradually

increased (Figures S6A and S6B). These findings indicate that

PAP1 transcriptional activity is enhanced with age. Furthermore,

PAP1 binding to the CINV1 promoter also increased over time in

35S:PAP1-HA/myb75-1 seedlings (Figure 3D).

GUS staining was observed in the veins of sieve tubes and in

companion cells within the phloem (Figure S6C), indicating local-

ized expression of PAP1 during the juvenile-to-adult phase tran-

sition. In sucrose-storing organs, CINV1/2 plays an important

function in sugar mobilization (Barnes and Anderson, 2018).

Therefore, in a similar fashion to CINV1/2, PAP1 may also have

a function related to sucrose mobilization. How this PAP1-

CINV1/2 module might regulate sugar mobilization between

source and sink requires further exploration.

Collectively, our data indicate that with advancing age,

increased PAP1 transcriptional activity promotes the juve-
nile-to-adult phase transition by directly elevating CINV1/2

activity.

The PAP1-CINV1 module promotes juvenile-to-adult
transition by suppression of miR156 in the shoot apex
Our findings show that PAP1 directly and positively regulates the

function of CINV1/2 to promote the juvenile-to-adult phase tran-

sition (Figures 1–4). miR156 is a central factor in the regulation of

the juvenile-to-adult transition, and an increase of sugar pro-

motes miR156 downregulation to trigger the juvenile-to-adult

transition (Yu et al., 2013; Yang et al., 2013). We therefore deter-

mined whether the PAP1-CINV1 module was dependent on

miR156 function. Thus, we crossed mir156a-2 into myb75-1

and cinv1. Similarly to mir156a-2 (Yu et al., 2013), both the

length-to-width ratio of leaf blades and the first leaf with abaxial

trichomes in the cinv1/mir156a and myb75/mir156a lines

showed a shortened juvenile phase relative to the wild-type (Fig-

ures S7A–S7C). Taken together, our data show that the PAP1-

CINV1 module promotes the juvenile-to-adult transition by sup-

pression of miR156 in the shoot apex.

SPL9 activates PAP1 expression
Our data indicate that with increasing age, the PAP1-CINV1/2

module inhibits miR156-SPL9 expression to promote the juve-

nile-to-adult transition. We therefore determined whether the

transcription factor SPL9 in turn directly regulates PAP1 expres-

sion.We identified putative SPL9 binding sites (GTAC box) within

the promoter of PAP1 (Figure 5A). ChIP analysis indicated that,

in vivo, SPL9 bound to a P3–P4 promoter sequence of PAP1

(Figure 5B). Furthermore, EMSA experiments indicated that

SPL9 bound to the labeled P3–P4 sequence in vitro and that

excessive unlabeled competitor DNA effectively abolished this

binding (Figure 5C). Furthermore, SPL9 did not bind to the corre-

sponding mutated DNA sequence (mP3–P4) (Figure 5D). Finally,

transient expression data in N. benthamiana showed that co-

expression of SPL9 increased the expression of a PAP1pro-

LUC reporter gene (Figures 5E and 5F), indicating that SPL9

directly binds to the PAP1 gene promoter to activate its

expression.

Collectively, our findings show that glucose promotes plant ju-

venile-to-adult phase transition by the PAP1-CINV1-miR156A/C

module (Figures 1, 2, 3, and 4). It has been reported that glucose

promotes plant juvenile-to-adult phase transition by the

miR156A/C-SPL9 module (Yu et al., 2013; Yang et al., 2013).

Furthermore, SPL9 directly activatesPAP1 expression (Figure 5).

Therefore, these molecular components may form a glucose

feed-forward loop (sucrose-CINV1-glucose-HXK1-miR156A/C-

SPL9-PAP1-CINV1-glucose) to control the juvenile-to-adult

phase transition.

The glucose feed-forward loop is under dynamic
regulation
Our findings indicate that a glucose feed-forward loop controls

CINV1/2 activity to convert sucrose into glucose signaling to

trigger the juvenile-to-adult transition. Therefore, our glucose

feed-forward loop model can predict that with increasing age,

an increase of sucrose can induce PAP1 transcript levels that

will lead to transcriptional changes of CINV1, miR156A, and
Cell Reports 36, 109348, July 13, 2021 7



Figure 5. SPL9 directly activates promoter of PAP1

(A) Schematic of the promoter loci of PAP1 and its amplicon for ChIP analysis.

(B) ChIP-PCR analysis. Enrichment of particular chromatin regions of PAP1 with anti-GFP antibody and anti-FLAG antibody (as a control) in pSPL9::GFP-rSPL9

seedlings grown in soil, as detected by qPCR analysis. Quantifications were normalized to the expression of UBQ5.

(C) Unlabeled PAP1 promoter and unlabeled probes (250 ng [+] and 2.0mg [++]) were used as competitors to determine the specificity of the DNA-binding activity

for SPL9.

(D) A mutant version of the PAP1 promoter was labeled with biotin and used for EMSA with SPL9 polypeptides. Free probe and SPL9 probe complexes are

indicated by an asterisk and arrows, respectively, in (C) and (D).

(E) Bar graph illustrating transient expression of the 35S:SPL9 effector construct with the ProPAP1:LUC reporter construct in N. benthamiana leaves. Note

PGreen-mPAP1 indicates that the conserved sites (GTAC) of the region in the PAP1 promoter were mutated.

(F) Quantitative analysis of luminescence intensity in (E). The luminescence intensity in PGreen-mPAP1 represents arbitrary luminescence units (~5), and other

expression was quantified by using Adobe Photoshop CS (Adobe Systems) software, as described previously by (Meng et al., 2015b).

Error bars represent SD (n = 3 in B; n = 5 in F). Student’s t test (**p < 0.01).
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SPL9 to trigger the plant juvenile-to-adult transition, due to feed-

forward promotion of neutral INV activity. We therefore deter-

mined whether this glucose loop is under dynamic regulation.

Sucrose increased over time in wild-type plants (Figure 6A;

Yu et al., 2013) and in turn specifically induced PAP1 transcript

accumulation (Figure 2B) and elevated PAP1 levels (Figure 6B).

PAP1 in turn activated CINV1/2 expression by directly binding

to its promoter (Figure 3), increasing neutral invertase activity

(CINV1/2 activity) (Figure 6C). The resulting glucose signaling

inhibited miR156A expression and in turn promoted SPL9

expression (Figures 6D and 6E). Subsequently, SPL9 activated

PAP1 expression by directly binding to its promoter (Fig-

ure 5). As a result, AS1pro:PAP1-GFP seedlings exhibited an

accelerated juvenile-to-adult transition, whereas cinv1 seed-

lings were delayed in this process (Figures 6F–6I). Collectively,

these findings suggest that this glucose loop is under dynamic

regulation.

To confirm and extend these findings, we disrupted a

component (PAP1) within this loop. In detail, we generated a
8 Cell Reports 36, 109348, July 13, 2021
transgenic line possessing a DEXpro:PAP1-GFP transgene,

where the cDNA of PAP1, inserted in the antisense orientation,

is under the control of a DEX (dexamethasone)-inducible pro-

moter. When these DEXpro:PAP1-GFP seedlings were grown

in soil for 3 days, DEX was applied to inhibit PAP1 expression.

In induced DEXpro:PAP1-GFP seedlings, PAP1 transcript over

time is declined relative to the wild-type (Figure S8A), which in

turn suppressed CINV1/2 expression (Figure 3). The resulting

neutral INV activity (CINV1/2 activity) decreased (Figure S8B),

which may trigger a disruption of glucose signaling. The disrup-

ted glucose signaling promoted miR156A expression, which in

turn inhibited its target gene, SPL9 expression (Figures S8C

and S8D). Subsequently, SPL9 activated PAP1 expression

by directly binding to its promoter (Figure 5). As a conse-

quence, a reduction of PAP1 transcripts following induction

of DEXpro:PAP1-GFP resulted in a delayed juvenile-to-adult

transition (Figures S8E–S8G). In aggregate, these data show

that the identified glucose feed-forward loop is under dynamic

regulation.



Figure 6. The juvenile-to-adult transition is dynamically regulated by the sucrose-CINV1-glucose-HXK1-miR156-SPL9-PAP1-CINV1-

glucose loop

(A) Bar graph illustrating the sucrose levels of leaf blades in 13-, 16-, 19-, and 22-day-old wild-type, cinv1, and AS1proPAP1-GFP seedlings in (F)–(I). Leaf blades

were used for assaying sucrose levels in 13-, 16-, 19-, and 22-day-old seedlings.

(B) Images showing the nuclear localization of AS1pro:PAP1-GFP in leaf blades of 13-, 16-, 19-, and 22-day-old AS1pro:PAP1-GFP seedlings. Arrows indicate

nuclear localization of PAP1 protein. Scale bar, 500 mm.

(C) Bar graph illustrating neutral invertase activity in leaf blades of the indicated seedlings in (F)–(I). Leaf blades were used for assaying sucrose levels in 13-, 16-,

19-, and 22-day-old seedlings.

(D and E) Bar graph showing the difference in the expression levels of miR156A (D) and SPL9 (E) between 13-, 16-, 19-, and 22-day-old wild-type, cinv1, and

AS1proPAP1-GFP seedlings in (F)–(I). Leaf blades were used for extracting RNA in 13-, 16-, 19-, and 22-day-old seedlings. Quantifications were normalized to

UBQ5 expression. Quantification of wild-type seedlings in (F)–(I) is set as 1.0.

(F–I) The 13-, 16-, 19-, and 22-day-old-seedlings of wild-type, cinv1, and AS1proPAP1-GFP were grown in soil under short days and standard light. Fully

elongated leaf blades were detached and photographed. Error bars represent SD (n = 20). Scale bar, 1.0 cm.

Error bars represent SD (n = 3 in A, B, D, and E). Student ’s t test (*p < 0.05, **p < 0.01).
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Sucrose-induced PAP1 directly binds to the SPL9

promoter to promote a sucrose-mediated juvenile-to-
adult transition
Previously, a miR156A/C-SPL9 cascade has been implicated in

establishing a sugar-mediated juvenile-to-adult transition (Yang

et al., 2013). In this study, we have shown that transcription fac-

tor SPL9 activates PAP1 expression by directly binding to the

PAP1 promoter (Figure 5). In turn, we determined whether the

sucrose-induced transcription factor, PAP1, could activate

SPL9 expression by directly binding to the SPL9 promoter.

qPCR analysis indicated that SPL9 expression was elevated in

pap1-D and 35S:PAP1 plants and decreased in myb75-1 plants

(Figure 7A). Furthermore, SPL9 expression was also enhanced in

myb75/mir156a seedlings (Figure 7A). Collectively, these data

suggest that SPL9 may be a downstream target of PAP1.

We therefore interrogated the promoter sequence of SPL9 for

the presence of MYB-BMs.We identified a number of MYB-BMs

in the SPL9 promoter (Figure 7B). Subsequently, we performed
ChIP analysis to determine whether PAP1 directly binds to the

SPL9 promoter. Our findings indicated that, in vivo, PAP1 bound

to a MYB-BM of SPL9 (SPL9 promoter sequence, S2–S3),

but not to other MYB-BMs or to the remainder of the

promoter sequence of SPL9 (Figures 7C and 7D). Furthermore,

PAP1 association with the SPL9 promoter increased over time

(Figure 7E).

EMSA experiments were performed to determine possible

direct in vitro binding of PAP1 to the S2–S3 sequence of SPL9

containing a MYB-BM. Indeed, PAP1 bound to the labeled S2–

S3 sequence in vitro and excessive unlabeled competitor DNA

effectively abolished this binding in a dose-dependent manner

(Figure 7F). Furthermore, PAP1 did not bind to the corresponding

mutated DNA sequence (mS2–S3) (Figure 7G). Finally, transient

expression data in N. benthamiana showed that co-expression

of PAP1 increased the expression of a SPL9pro-LUC reporter

gene (Figure 7H), indicating that PAP1 directly binds to the

SPL9 gene promoter to activate its expression.
Cell Reports 36, 109348, July 13, 2021 9



Figure 7. PAP1 directly interacts with the promoter of SPL9, activating its expression

(A) Bar graph showing the differential expression of SPL9 among 14-day-old wild-type, 35S:PAP1, and pap1-D or wild-type (Nossen), myb75/mir156a, and

myb75-1 seedlings grown in soil. The expression of these genes in wild-type was set as 1.0.

(B) Schematic of the promoter loci of SPL9 and its amplicons for ChIP analysis.

(C and D) ChIP analysis. Enrichment of particular chromatin regions of SPL9 with anti-GFP antibody (as a control in C), wild-type (as a control in D), and anti-HA

antibody in 35S:PAP1-HA/myb75-1 seedlings grown in soil, as detected by real-time PCR analysis.

(E) ChIP-PCR over time. Enrichment of particular chromatin regions (S2) of SPL9 with anti-HA antibody in 13-, 16-, 19-, and 22-day-old 35S:PAP1-HA/myb75-1

seedlings grown in soil under short light conditions, as detected by qPCR analysis. Thirteen-day-old 35S:PAP1-HA/myb75-1 seedlings grown in soil were set

as 1.0.

(F) Unlabeled SPL9 promoter and unlabeled probes (250 ng [+] and 2.0 mg [++]) were used as competitors to determine the specificity of DNA-binding activity for

PAP1.

(G) A mutant version of theCINV1 promoter (AAACCA/TTTCCA or CCAACC/GGAAGG) was labeled with biotin and used for EMSA with PAP1 polypeptides. Free

probe and PAP1 probe complexes are indicated by either an asterisk or arrow, respectively, in (F) and (G).

(H) Bar graph illustrating the relative luciferase luminescence intensities that were quantitated using Renilla luciferase (REN) for normalization. SPL9mpro-LUC

indicates the mutated SPL9pro-LUC construct.

(I) Bar graph illustrating the length-to-width ratio of leaf blades in indicatedmutant lines grown in soil under short light conditions. Quantification was normalized to

the expression of UBQ5. Error bars represent SD (n = 3 in A, C, D, and E; n = 5 in H; n = 13 in I). Student’s t test (*p < 0.05, **p < 0.01).

(J) Model illustrating how glucose and sucrose signaling control the juvenile-to-adult transition by the identified glucose feed-forward loop and the sucrose-

signaling pathway, respectively. Glucose promotes the juvenile-to-adult phase transition by a glucose feed-forward loop under typical photosynthetic conditions.

Sucrose promotes the juvenile-to-adult phase transition by a PAP1-SPL9 gene cascade under typical photosynthetic conditions. Note that a glucose feedback

loop indicates sucrose-CINV1/2-glucose-HXK1-miR156A/C-SPL9-PAP1-CINV1-glucose. Suc, sucrose; Glc, glucose. Arrows and bars represent positive and

negative regulation, respectively. Solid lines indicate direct regulation, whereas dotted lines indicate either indirect regulation or regulation in an unknownmanner.
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spl9-4 single mutant plants presented a delayed juvenile-to-

adult phase transition (Figure 7I; phenotype curated by the Ara-

bidopsis Biological Resource Center, The Ohio State University).

To determine whether SPL9 acts downstream of PAP1 in the

regulation of the juvenile-to-adult phase transition, we crossed

pap1-D into spl9-4 plants. Our findings indicated that the loss

of SPL9 function significantly delayed the juvenile-to-adult tran-

sition of pap1-D plants (Figure 7I). These findings indicate that

SPL9 acts downstream of PAP1 to promote the juvenile-to-adult

phase transition. Therefore, sucrose-induced PAP1 increases
10 Cell Reports 36, 109348, July 13, 2021
SPL9 expression and this promotes the sucrose-mediated juve-

nile-to-adult transition by suppression of miR156 in the shoot

apex (Figure 7A).

DISCUSSION

In a similar fashion to animals, plants undergo several key devel-

opmental phase transitions in order to reach maturity. It had long

been speculated that some of the transitions between these

plant developmental stages are triggered by changes in
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nutritional status. In both plants and animals, temporally modu-

lated microRNAs (miRNAs) have been identified as master regu-

lators of developmental timing. InCaenorhabditis elegans, LET-7

(Reinhart et al., 2000) and LIN-4 (Lee et al., 1993), which encode

miRNAs, have been identified as key modulators of the juvenile-

to-adult transition. In plants, the juvenile-to-adult phase transi-

tion is modulated through a temporal decrease in the level of

miR156, a central factor in the regulation of this process (Yang

et al., 2013).

Previous findings have established that the juvenile-to-adult

phase transition was promoted by exogenous sucrose and

glucose (Yu et al., 2013; Yang et al., 2013). The loss-of-function

chlorophyll-deficient mutant chlorina1–4 (ch1–4) is blocked in

the biosynthesis of chlorophyll b and is by extension repressed

in carbohydrate production. The ch1–4 mutant is delayed in

the juvenile-to-adult phase transition. Furthermore, this pheno-

type in ch1–4 plants can be restored by exogenous glucose.

However, the endogenous factors that regulate the juvenile-to-

adult phase transition have remained largely unknown.

In this study, we identified CINV1/2 as a key endogenous regu-

lator of phase change. The phenotype of the cinv1/cinv2 mutant

is the best evidence to date that sugar is important for phase

change in Arabidopsis. It is well established that the gateway

of carbon from sucrose into cellular metabolism is controlled

principally by CINV1/2 (two of the nine CINV isoforms), but not

SUS, because the function of this enzyme is not essential for

normal plant growth and development (Barratt et al., 2009).

Our findings reveal that with increasing age, the major photo-

synthetic product, sucrose, specifically induces PAP1 expres-

sion, which in turn directly elevates CINV1 activity (Figures 3

and 4). The resulting sucrose is irreversibly hydrolyzed by

elevated CINV1 activity to produce fructose and glucose. Subse-

quently, glucose is perceived by the glucose sensor HXK1

(Moore et al., 2003), triggering the juvenile-to-adult phase transi-

tion by the miR156A/SPL9 module (Yu et al., 2013; Yang et al.,

2013). HXK1 inhibits miR156 expression by an unidentified reg-

ulatory pathway (Yang et al., 2013). SPL9 in turn activates

PAP1 expression (Figure 5). We thus identify a aucrose-CINV1-

glucose-HXK1-miR156-SPL9-PAP1-CINV1-glucose loop (Fig-

ure 7J). Furthermore, we demonstrated that the glucose feed-

forward loop is under dynamic regulation (Figure 6; Figure S8):

endogenous glucose accumulation is controlled by CINV1/2 ac-

tivities regulated by this glucose feed-forward loop to dynami-

cally promote the juvenile-to-adult phase transition (Figure 7J).

In this glucose feed-forward loop, whereas the connections of

other components are clear, HXK1 inhibits miR156 expression

by an unidentified regulatory pathway (Yang et al., 2013).

HXK1 binds two unconventional partners, the 19S regulatory

particle of a proteasome subunit (RPT5B) and the vacuolar H+-

ATPase B1 (VHA-B1). Neither of these proteins has DNA binding

capacity, so how this nuclear-localized HXK1 complex regulates

gene expression remains unclear. HXK1 interacts with VHA-B1/

RPT5B (Cho et al., 2006), with this complex potentially inter-

acting with specific target gene promoters, directly regulating

glucose-mediated transcriptional control, for example, at

miR156A/C-SPL9 promoters. Also, an interaction of HXK1 with

VHA-B1/RPT5B might be required to increase miR156A/C

expression. Alternatively, HXK1 might interact with SPL9 and
SPL10, which are known to regulate miR156A/C expression

(Fornara and Coupland, 2009). Exploring these potential mecha-

nisms are an important future research goal.

Biological significance of the glucose feed-forward loop
CINV plays a central role in source-sink regulation (Lou et al.,

2007; Barnes and Anderson., 2018). CINV activity is regulated

by glucose, as well as by stress-related stimuli and phytohor-

mones (Roitsch, 1999). It has been predicted that any signaling

that elevates CINV activities will be maintained and amplified

through a positive sugar-signaling loop (Roitsch, 1999; Lou

et al., 2007). Thus, in addition to glucose signaling, any other

signal network that upregulates CINV activity can in turn promote

glucose-signaling-mediated plant growth by this positive sugar-

signaling loop. However, it is currently unclear whether any such

positive sugar-signaling loops exist.

In this study, we identified a glucose feed-forward loop (su-

crose-CINV1-glucose-HXK1-miR156-SPL9-PAP1-CINV1-

glucose). CINV1/2 activity, a gateway of carbon entry into cellar

metabolism, is a key point of control for the juvenile-to-adult

phase transition (Figure 4). In this glucose feed-forward loop,

the key components, PAP1 and HXK1, are integration points

for multiple cues. The major photosynthetic product, sucrose,

specifically induces PAP1 (Teng et al., 2005; Solfanelli et al.,

2006), which in turn directly controls CINV1/2 activities (Figures

2 and 3). Furthermore, PAP1 acts as an integration point,

receiving diverse internal and external stimuli thatmodulate plant

growth and metabolism (Teng et al., 2005; Das et al., 2012; Jaa-

kola, 2013). Moreover, HXK1 is an additional point of integration

for various plant hormones or external stimuli thatmodulate plant

growth and metabolism (Moore et al., 2003). Our findings have

therefore provided key insights into the mechanisms of how a vi-

tal developmental process in plants is controlled by a gateway

for sugars into cellular metabolism (CINV1/2 activity).

A sucrose-signaling pathway regulates the Arabidopsis

juvenile-to-adult phase transition
Our findings also show that themain photosynthetic product, su-

crose, directly and positively regulates the Arabidopsis juvenile-

to-adult phase transition. Sucrose can specifically induce PAP1

expression (Teng et al., 2005; Solfanelli et al., 2006), and PAP1 in

turn directly binds to the SPL9 promoter to activate SPL9 tran-

scription, promoting the Arabidopsis juvenile-to-adult transition

(Figure 7). Collectively, our findings establish that a sucrose-

signaling pathway regulates the Arabidopsis juvenile-to-adult

phase transition.

Our findings suggest that PAP1may regulate SPL9 expression

via both a complex cascade (a glucose feed-forward loop) and

via direct promoter binding (sucrose-signaling pathway) (Fig-

ure 7J). The glucose feed-forward loop can convert sucrose

signaling into glucose signaling to promote the Arabidopsis juve-

nile-to-adult phase transition. Therefore, there are two signal in-

puts on SPL9. PAP1 regulates a glucose feed-forward loop to

regulate SPL9 expression, and PAP1 directly regulates SPL9

expression by a sucrose-signaling pathway. HXK1 functions in

miR156A/C-SPL9 expression but is not absolutely required for

the suppression of miR156A/C-SPL9 via sugars (Yang et al.,

2013; Yu et al., 2013), suggesting that other independent HXK1
Cell Reports 36, 109348, July 13, 2021 11
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regulatory pathways may exist. Indeed, the sucrose-PAP1-SPL9

pathway identified in this study is independent HXK1. Therefore,

both sucrose and glucose regulate the juvenile-to-adult transi-

tion by distinct pathways, fine-tuning plant growth and develop-

ment to metabolic status (Figure 7J).

Conclusions
In this work, we identified that PAP1 and CINV1/2 are novel

endogenous regulators of the Arabidopsis juvenile-to-adult

phase transition. Whereas previous work reported that exoge-

nous sugars trigger the juvenile-to-adult phase transition by a

miR156A/SPL9 module, the endogenous factors that regulate

this process had remained undetermined. Our findings identified

CINV1/2 activity as an endogenous factor that regulates the ju-

venile-to-adult phase transition. More significantly, we identified

a glucose feed-forward loop, and this loop is under dynamic

regulation to control CINV1/2 activity and shape the juvenile-

to-adult phase transition mediated by glucose signaling in

Arabidopsis. Finally, we identified a sucrose-signaling pathway

(PAP1-SPL9 module) that also contributes to the regulation of

the Arabidopsis juvenile-to-adult phase transition.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

GUS staining Kit COOLABER SCIENCE & TECHNOLOGY Co.,LTD Cat#SL7160

TRIZOL reagent Invitrogen, Carlsbad, CA, USA

the glucose assay kit Beijing Solarbio Science & Technology Co.,Ltd Cat#BC2505

Plant Sucrose or Glucose Assay Kit Beijing Solarbio Science & Technology Co., Ltd,

http://www.solarbio.com/goods-9298.html

Cat#BC2465

LightShift Chemiluminescent EMSA Kit Beyotime Biotechnology Cat#GS009

Recombinant DNA

AS1pro::PAP1-GFP This study N/A

pGreen-PAP1-LUC This study N/A

pGreen-CINV1-LUC This study N/A

pGreen-SPL9-LUC This study N/A

CINV1mPBSpro::CINV1-GFP This study N/A

Oligonucleotides

Primers used in this study This study; Table S1 N/A

Experimental models: Organisms/strains

E. coli (Rosetta2) N/A N/A

Agrobacterium tumefaciens (strain GV3101) N/A N/A

Arabidopsis:WT Col-0 N/A N/A

Arabidopsis:pap-D mutant (CS3884) Qi et al., 2011 N/A

Arabidopsis:myb75-1 (pst16228) Bhargava et al., 2010 N/A

Arabidopsis:mir156a-2 (CS71699) Yu et al., 2013; Yang et al., 2013 N/A

Arabidopsis:spl9-4 (Col-0) Wu et al., 2009 N/A

Arabidopsis:CINV1pro-GUS Meng et al., 2020 N/A

Arabidopsis:cinv2 (Sail_518_D02) Barratt et al., 2009 N/A

Arabidopsis:cinv1/cinv2 Barratt et al., 2009 N/A

Arabidopsis:pap1-D/spl9 This study N/A

Arabidopsis:myb75/mir156a Bhargava et al., 2010 N/A

Arabidopsis:cinv1/mir156a Bhargava et al., 2010 N/A

Arabidopsis: pap1-D/cinv1/cinv2 Solfanelli et al., 2006; Barratt et al., 2009 N/A

myb75/35S:CINV1 Bhargava et al., 2010; Barratt et al., 2009 N/A

ImageJ ImageJ https://imagej.nih.gov/ij/

Graph Pad Prism Graph Pad Software https://www.graphpad.com/
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, Lai-Sheng

Meng (menglsh@jsnu.edu.cn).

Materials availability
All unique/stable reagents generated in this study are available from the Lead Contact without restriction.
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Data and code availability
This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key resources table.

This paper does not report original code. ‘‘Any additional information required to reanalyze the data reported in this paper is available

from the lead contact upon request.’’

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All plants are in the Col-0 background, unless indicated differently. Plants were grown at short days (10h light/14h dark), super short

days (8h light/14h dark), standard light condition (130 mmol quanta PAR m -2 s -1) and low light (80 mmol quanta PAR m -2 s -1) at 22�C

METHOD DETAILS

Plant materials and growth conditions
pap-Dmutant (CS3884) (Qi et al., 2011),myb75-1 (pst16228) (Bhargava et al., 2010),mir156a-2 (CS71699) (Yu et al., 2013; Yang et al.,

2013), spl9-4 (Col-0) (Wu et al., 2009), CINV1pro-GUS (Meng et al., 2020), cinv2 (Sail_518_D02) (Barratt et al., 2009) were described

previously.

In this work, transgenic plants were generated using the Agrobacterium tumefaciens (with used plasmids)-mediated floral dip

method (Meng et al., 2015a, 2015b). Transformants were selected on hygromycin B/Kan for three generations followed by analysis

of segregation ratios. The plasmids used in this work were introduced into tobacco by Agrobacterium mediated-transformation

(Meng et al., 2015a, 2015b).

The cinv1/cinv2 mutant was created by crossing cinv1 (SALK_095807) with cinv2 (Sail_518_D02). The absence of CINV1 and

CINV2 transcripts was confirmed by qPCR (Figures S9A and S9B), as has been described by Barratt et al. (2009). The pap1-D/

spl9 mutant was created via crossing pap1-D with spl9-4. The absence of SPL9 transcripts and the overexpression of PAP1 tran-

scripts were confirmed by qPCR (Figures S9C andS9D). Themutants ofmyb75/mir156a and cinv1/mir156awere created by crossing

mir156a-2withmyb75-1 and cinv1. The absences ofmIR156A, PAP1 andCINV1 transcripts were confirmed by qPCR (Figures S9E–

S9H). Further, there are pale orange seeds in the siliques of mature plants (Bhargava et al., 2010). We generated an F2 population

segregating this mutation, and show that the late trichome phenotype segregates in a 1:3 ratio, and that all of the plants with a

late trichome phenotype are homozygous for the myb75-1 mutation. Used primers were shown in Table S1. The pap1-D/cinv1/

cinv2 mutant was obtained from F2 seedlings of pap1-D 3 cinv1/cinv2 that purple seeds in the siliques of mature plants (Solfanelli

et al., 2006) and had severely shortened roots in 10-day-old seedlings under normal conditions (Barratt et al., 2009). The myb75/

35S:CINV1mutant was obtained from F2 seedlings ofmyb75-1 x 35S:CINV1 that pale orange seeds in the siliques of mature plants

(Bhargava et al., 2010) and had elongated roots under normal conditions (Barratt et al., 2009).

Plant growth has been described previously (Meng et al., 2015a, 2015b, 2016) withminor revisions. Short days (10h light/14h dark),

super short days (8h light/14h dark), standard light condition (130 mmol quanta PARm -2 s -1) and low light (80 mmol quanta PARm -2 s
-1) at 22�C (Yang et al., 2013; Guo et al., 2017). Plants were grown in solid MS medium with sugar concentrations shown in figure

legends.

Wild-type is Col-0, unless indicated differently. In all experiments, three biological replicates were performed with similar results

and error bars represent SD.

Plasmid constructs
By using gatewaymethods, as has been described by (Meng et al., 2015a, 2015b, 2016), we obtained the below plasmids. In details, to

obtain DEXpro:PAP1-GFP and AS1pro::PAP1-GFP plasmids, a PAP1/MYB75 (AT1G56650) CDS and an AS1 (AT2G37630) promoter

were obtained by using specific primers. To obtain 35S:PAP1-HA and 35S:CINV1 plasmids, a PAP1/MYB75 (AT1G56650) CDS and a

CINV1 (AT1G35580) CDS were obtained by using specific primers. To obtain CINV1mPBSpro::CINV1-GFP plasmids, a CINV1

(AT1G35580) CDS and promoter were obtained by using specific primers. Please see Table S1 for details on all these primers.

GUS assay and histochemical analysis of GUS activity
The GUS assays were described previously (Meng et al., 2015a, 2015b, 2016). In details, by using a mix buffer [0.1% (v/v) Triton X-100,

0.4 mM of K3Fe(CN)6/K4Fe(CN)6, 60 mM NaPO4 buffer, and 1 mM X-gluc], samples in this work were stained,and then incubated at

37�C for 6-10 h. After GUS staining, chlorophyll was removed using 30, 50, 70, 90 and 100% ethanol about 30 min for every process.

Histochemical analysis of GUS activity was as described (Li et al., 2013). In details, assayed tissues were transferred to microfuge

tubes containing a solution of pH 7.0, 10 mM EDTA, 100 mMNa phosphate buffer, 2 mM potassium ferricyanide, 0.1% Triton X-100,

1 mg/mL 5-bromo-4-chloro-3-indolyl-b- D -glucuronide and 2mM potassium ferrocyanide at 37�C overnight. Stained tissues were

cleared by using 30, 50, 70, 90 and 100% ethanol about 30 min for every process.

ChIP-PCR
Transgenic lines containing 35S:PAP1:HA/myb75-1 were used in this experiment. ChIP was performed using 15 day-old seedlings

grown in short days (Meng et al., 2015a, 2015b, 2016, 2018a, 2018b). Please see Table S1 for details of specific primers.
Cell Reports 36, 109348, July 13, 2021 e2
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Quantitative PCR
Total RNA was extracted from tissues indicated in the figures by the TRIZOL reagent (Invitrogen). SYBR green was used to monitor

the kinetics of PCR product in real-time RT-PCR. Briefly, first-strand cDNA samples were produced from total RNA samples via

reverse transcription using an AMV reverse transcriptase first-strand cDNA synthesis kit (Life Sciences, Promega) and were used

as templates for RT- PCR–based gene expression analysis. The expression of CINV1, CNIV2, SPL9, PAP1 and miR156A/C were

analyzed by qPCR in wild-type, indicated mutants or overexpressing lines. These primers are listed in Table S1.

Enzymatic assay of invertase by ELISA
Acidic and neutral Invertase in Arabidopsiswas extracted and purified according to Lou et al. (2007). ELISA was used to assay acidic

and invertase activity, as has been described (Meng et al., 2015a, 2015b, 2016, 2018b). In details, the plant N invertase activity assay

Kit (Sangon, Shanghai, China) was used in this work. Based on the manufacturer’s protocols, in normal sample, and testing medium

(48-well plates) with N invertase-antigen, and assayed sample (antibody) were supplemented and incubated in 37�C for 30 min. And

then the mixtures were washed for five times to use cleaning solution, and HRP (invertase label) was applied and incubated at 37�C
for 30 min for generating antibody�HRP�antigen complexes. When reaction was performed, the mixtures were washed five times

utilizing cleaning solution, and then TMB-B and TMB-A were supplemented and incubated at 37�C for 10 min for dyeing. The TMBs

were catalyzed through HRP, and then become blue. With termination buffer used, these mixtures became yellow. By using enzyme

mark instrument, OD values (450 nm)were assayed. At last, the invertase activity in assayed samples wasmeasured comparedwith a

normal sample.

Transient assay
To produce CINV1-LUC and SPL9-LUC, the target promoter was amplified via PCR, then inserted into the cloning site of the

pGreen0800-LUC vector (Meng et al., 2020). See Table S1 for primer. In details. to examine PAP1 activates CINV1 expression by

LUC activity assay, we performed the below experiments. To generate proCINV1-LUC, the promoter was PCR amplifiedwith primers

proCINV1-F and proCINV1-R for the gnomic DNA of Arabidopsis and inserted into the cloning site of the pGreen0800-LUC vector.

Used primers can be seen in Table S1. The MproCINV1-LUC construct containing mutations in the C4 sequence of the CINV1 pro-

moter was generated using overlap extension PCR with primers and inserted into pGreen0800-LUC vector. Two fragments ofMpro-

CINV1 were combined into a integrated fragments ofMproCINV1 by using primers. To examine PAP1 activates SPL9 expression by

LUC activity assay, we performed the similar experiments.

Used primers can be seen in Table S1.

Test of sugar metabolites
Plant Sucrose or Glucose Assay Kit (Beijing Solarbio Science & Technology Co., Ltd, Cat#BC2465; http://www.solarbio.com/

goods-9298.html) was used for assays of sugar metabolites. 0.1g mature leaf blades were ground into homogenate at 23�C, with

0.5 mL extraction buffer and transferred into a centrifuge tube after grinding and kept at 80�C for 10 min, with occasional shaking.

After cooling these extracts were centrifuged at 4,000 g for 10min, the supernatant was transferred to a fresh tube and 2mg reagent 5

added to decolorize at 80�C for 30 min. Subsequently, 0.5 mL extraction buffer was added, mixed and centrifuged at 4,000 g for

10 min. The supernatant was transferred to a fresh tube for visible light analysis.

Three centrifugal tubes per sample were used with 25 mL of sample. Standard product (reagent 1) and water were added, respec-

tively. Fifteen mL of reagent 2 was added, mixed and boiled at 100�C for 5 minutes. Subsequently, 175 mL of reagent 3 and 50 mL of

reagent 4 were added, respectively, followed by boiling in water for 10 min. Light absorption at 480 nm after cooling was undertaken.

Protein expression and purification
In this experiment, the coding sequence in PAP1 and SPL9 was amplified, and it was then cloned into pGEX-5X-1. Recombinant

GST-tagged PAP1 and SPL9 was extracted from transformed E. coli (Rosetta2) after 10 h of incubation at 16�C following induction

with 10 mM isopropyl b-D-1-thiogalactopyranoside. These recombinant proteins were purified using GST–agarose affinity. Relevant

primers are in Table S1.

Electrophoretic mobility shift assay (EMSA)
EMSA was performed as has been described (Meng et al., 2015a, 2015b). Electrophoretic Mobility Shift Assay (EMSA):

The biotin-labeled CINV1 DNA fragments (50- gcctatcttgtttggagttaggttctaggcaaagcaatggattcgttctct-30; 50-agagaacgaatccattg
ctttgcctagaacctaactccaaacaagataggc-30) or mutated CINV1 DNA fragments (50-gcctatcttgtttggagttaggttctaggcaaagcaatggattcgt
tctct-30;c50-agagaacgaatccattgctttgcctagaacctaactccaaacaagataggc-30) were synthesized. The biotin-labeled SPL9 DNA frag-

ments (50-catcagttgaaaaccaagtcaaatttatggtagattggcaatggacaaacacaaaatatcatctccatttattgccaacctcataatg �30; 50-cattatgaggttgg
caataaatggagagatgatattttgtgtttgtccattgccaatctaccataaatttgacttggttttcaactgatg �30) or mutated SPL9 DNA fragments (50- catcagtt
gatttccaagtcaaatttatggtagattggcaatggacaaacacaaaatatcatctccatttattgggtacctcataatg-30; c50-cattatgaaaaccacaataaatggagagatg
atattttgtgtttgtccattgccaatctaccataaatttgactccaacctcaactgatg-30) were synthesized. They were annealed and used as probes, and

the biotin-unlabeled same DNA fragments as competitors in this assay.
e3 Cell Reports 36, 109348, July 13, 2021
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The biotin-unlabeled DNA fragments were employed as competitors in the relevant assay. The primer sequences can be found in

Supplemental Materials. The probes were incubated with PAP1 at room temperature for 20 mins in a binding buffer (50 mM HEPES-

KOH [pH 7.5], 375 mM KCl, 6.25 mM MgCl, 1 mM DTT, 0.5mg/mL BSA, Glycerol 25%). Each 20 mL binding reaction containing 25

fmol Biotin-probe, 6mg protein and 1mg Poly (dIdC) was supplemented to the reaction to minimize nonspecific interactions. The re-

action products were analyzed by 6.5%native polyacrylamide gel electrophoresis. Electrophoresis was performed at 120 V for about

1 h in TGE buffer (containing 12.5 mM Tris, 95 mM glycin, 0.5 mMEDTA, pH 8.3, precooled at 210 uC). Gel separated DNA fragments

were transferred onto nitrocellulose membrane with 0.5XTBE at 100 V (�400 mA) for 40 mins at 4�C. After cross-linking the trans-

ferred DNA to membrane, the membrane was incubated in the blocking buffer for 15 mins with gently shaking, then transferred to

conjugate/blocking buffer by mixing 33.3 mL stabilized Streptavidin-Horseradish Peroxidase and conjugate with 10 mL blocking

buffer according to manufacturer’s protocol (no detail information for the blocking buffer is provided in the kit). The membrane

was washed 6 times, each for 5 mins with a washing buffer. Biotin-labeled DNA was detected by the chemiluminescent method ac-

cording to the manufacture’s protocol.

Western blotting and pull-down assay of protein-DNA
The pull-down assay was performed as has been described previously (Dharmasiri et al., 2005) with minor modifications. Probes

labeled by 10 pmol biotin were incubated with 10 mL streptavidin magnetic beads for 2 h in the buffer [50 mM KCl, 10 mM Tris$HCl

(pH 7.5), 5 mMMgCl 2, 0.05% Nonidet P-40, 3.0% glycerol] and then the free probes were removed by washing out with this buffer.

The probe-bound beads were incubated with MBP-PAP1 or 200 ng MBP and then washed five times with 1.0 mL buffer. These pre-

cipitates were eluted with SDS loading buffer and analyzed by western-blotting (WB) with anti-MBP monoclonal antibody. 100 mL of

buffer supplemented with 10.0 mg BSA and 5 mg fragmented salmon sperm DNA, 100 ng MBP-MBP or MBP were preincubated with

150 pmol of unlabeled probes for 2 h. Subsequently, they were incubated with probe-bound streptavidin magnetic beads (10 ml)

labeled by 10 pmol biotin for 2 h. This was followed by five washes with 1.0 mL buffer, these precipitates were eluted using SDS

loading buffer and subjected to WB with anti-MBP monoclonal antibody.

QUANTIFICATION AND STATISTICAL ANALYSIS

The length and width of leaf blades were performed using ImageJ. Student’s t test was used to determine the statistical significance

between wild-type and mutant lines in measure related to glucose and sucrose levels, invertase activity, qPCR, the first leaf with

abaxial trichomes, luminescence intensity (*p < 0.05; **p < 0.01).
Cell Reports 36, 109348, July 13, 2021 e4
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Supplemental Figure 1. PAP1 gene expression in selected lines, related to Figure 1.
Bar graph showing differences in the expression levels of PAP1 between 18 day-old
wild-type, 35S:PAP1-HA, pap1-D, and AS1pro:PAP1-GFP seedlings grown in soil in
short light. Quantifications were normalized to UBQ5 expression. Quantification of
wild-type seedlings is set as 1.0. Error bars represent SD (n=3). Student’s t test (**P <
0.01).



Supplemental Figure 2. PAP1 promotes juvenile-to-adult transition in Arabidopsis,
related to Figure 1.
A. The 18-day-old-seedlings of wild-type (Col-0), Cvi and C24 grown in soil under
short day light (10h light/14h dark, 100 μmol quanta PAR m-2s-1 at 22°C). Fully
elongated leaf blades were detached and photographed. Bar = 1.0 cm.
B. Bar graph illustrating leaf number in 18-day-old wild-type (Col-0), Cvi and C24
seedlings in A. Error bars represent SD (n=3). Student’s t test (**P < 0.01; *P < 0.05).
C and D. Bar graph showing the differences in the expression levels of miR156A (C)
and SPL9 (D) between 18-day-old wild-type (Col-0), Cvi and C24 in A. Leaf blades
were used for extracting RNA at 18-day-old seedlings in short light. Quantifications
were normalized to UBQ5 expression. Quantification of wild-type seedlings in A is
set as 1.0. Error bars represent SD (n=3). Student’s t test (**P < 0.01).



Supplemental Figure 3. PAP1 does not directly interact with the promoter of CINV2, related to
Figure 3.
A. Schematic of the promoter loci of CINV2 and its amplicons for ChIP analysis. B. ChIP analysis.
Enrichment of particular chromatin regions of CINV2 with anti-HA antibody in 15-day-old
35S:PAP1-HA transgenic seedlings grown in soil under short days and normal light, as detected
by real-time PCR analysis. Quantifications were normalized to the expression of UBQ5. Error bars
represent SD (n=3). Student’s t test. Input is set as 100% [supernatant including chromatin (input
material) is considered as 100%].



Supplemental Figure 4. CINV1pro-GUS expression in mature leaves, related to Figure
4.
Mature leaf blades of 14-day juvenile plants with CINV1pro-GUS grown in soil under
short days and standard light. Bar = 1.0 cm.



Supplemental Figure 5. PAP1 acts upstream of CINV1 to positively regulate the
Arabidopsis juvenile-to-adult transition, related to Figure 4.
Twenty-day juvenile plants of myb75-1, 35S:CINV1 and myb75/35S:CINV1 grown in
soil under short days and standard light. Fully elongated leaf blades were detached
and photographed. Bar = 1.0 cm.



Supplemental Figure 6. Assay of PAP1 function, related to Figure 4.
A, Seedlings of 6×PBS (PAP1 binding site)-GUS were grown in soil for 13, 16, 19, 22
days. Subsequently, GUS staining of the 5 or 6th leaf blades from 12 seedlings was
performed for 8 hours. Twelve samples had similar results. Bar=2.0 cm. B. PAP1
activities (indicated through 6×PBS-GUS activity) of the indicated seedlings in Figure
3K were assayed quantitatively at the indicated time point. GUS activity was
measured by picomoles of 4-methyl umbelliferone (4-MU) per mg protein per min.
Error bars represent SD (n=3). Student’s t test (*P < 0.05). C. Parafin section of leaf
blades. Arrows indicate vascular bundle, and arrows indicate sieve tubes and
companion cells in phloem. Bars= 40 μm.



Supplemental Figure 7. PAP1 and CINV1 act upstream of miR156A to positively
regulate the Arabidopsis juvenile-to-adult phase transition, related to Figure 4.
(A), Twenty-three-day juvenile plants of cinv1, myb75-1, cinv1/mir156a and
myb75/mir156a grown in soil under short days and standard light. Fully elongated
leaf blades were detached and photographed. Bar = 1.0 cm. (B) Bar graph illustrating
the ratio of the length-to-width of leaf blades shown in A. (C) Bar graph illustrating
the first leaf with abaxial trichomes as shown in A.
Error bars represent SD (n=18 in B; n=22 in C). Student’s t test (**P < 0.01).



Supplemental Figure 8. Juvenile-to-adult transition is dynamically regulated by the
Sucrose-CINV1-Glucose-HXK1-miR156-SPL9-PAP1-CINV1-Glucose Loop, related
to Figure 6.
(A) . Bar graph illustrating the PAP1 expression of leaf blades in 14, 18 and
22-day-old Mock [DEXpro:PAP1-GFP (-)] and DEXpro:PAP1-GFP (+) seedlings in
E-G. DEXpro:PAP1-GFP was obtained by that the cDNA of PAP1 gene was inserted
in the antisense orientation and placed downstream of a DEX
(dexamethasone)-inducible promoter. Leaf blades were used for assaying sucrose
levels at 14, 18, and 22-day-old seedlings. Error bars represent SD (n=3). Student’s t
test (**P < 0.01). Quantifications were normalized to UBQ5 expression.
Quantification of wild-type seedlings is set as 1.0.
(B) . Bar graph illustrating neutral invertase activity in leaf blades of the indicated
seedlings in E-G. Error bars represent SD (n=3). Student’s t test (**P < 0.01). Leaf
blades were used for assaying sucrose levels at 14,18, and 22-day-old seedlings.
(C and D). Bar graph showing the difference in the expression levels of miR156A (C)
and SPL9 (D) between 14, 18 and 22-day-old Mock [DEXpro:PAP1-GFP (-)] and
DEXpro:PAP1-GFP (+) seedlings in E-G. Leaf blades were used for extracting RNA
at 14, 18 and 22-day-old seedlings. Quantifications were normalized to UBQ5
expression. Quantification of wild-type seedlings in E-G is set as 1.0. Error bars
represent SD (n=3). Student’s t test (**P < 0.01).
(E-G). The 14, 18 and 22-day-old-seedlings of Mock [DEXpro:PAP1-GFP (-)] and
DEXpro:PAP1-GFP (+) were grown in soil under short days and standard light. Fully
elongated leaf blades were detached and photographed.
Error bars represent SD (n=16). Student’s t test (**P < 0.01). Bar = 1.0 cm.



Supplemental Figure 9. Different double mutants were identified by qPCR, related to
Star Methods.
(A and B) Bar graph showing differential expression of CINV1 (A) and CINV2 (B)
among 10-day-old wild-type and cinv1/cinv2 seedlings grown in soil. Quantification
was normalized to the expression of UBQ5. Quantification of the expression of the
above two genes in wild-type seedlings was set as 1.0. Error bars represent SD (n=3).
Student’s t test (***P < 0.001). (C and D) Bar graph showing differential expression
of PAP1 (C) and SPL9 (D) among 10-day-old wild-type and pap1-D/spl9 seedlings
grown in soil. Quantification was normalized to the expression of UBQ5.
Quantification of the expression of the above two genes in wild-type seedlings was set
as 1.0. Error bars represent SD (n=3). Student’s t test (***P < 0.001). (E and F) Bar
graph showing differential expression of PAP1 (E) and MIR156A (F) among
10-day-old wild-type and myb75/mir156a seedlings grown in soil. Quantification was
normalized to the expression of UBQ5. Quantification of the expression of the above
two genes in wild-type seedlings was set as 1.0. Error bars represent SD (n=3).
Student’s t test (***P < 0.001). (G and H) Bar graph showing differential expression
of CINV1 (G) and MIR156A (H) among 10-day-old wild-type and cinv1/mir156a
seedlings grown in soil. Quantification was normalized to the expression of UBQ5.
Quantification of the expression of the above two genes in wild-type seedlings was set
as 1.0. Error bars represent SD (n=3). Student’s t test (***P < 0.001).



Supplemental Table 1. Primers for Mutant Genotyping, Plasmid Construction,

ChIP-PCR, RT-PCR, and Quantitative RT-PCR, related to Star Methods.
Primer Name DNA Sequence
pCB308R-CINV1-GUS-F ggg gac aag ttt gta caa aaa agc agg ct aaa ata gaa ata aat caa gaa aag at

pCB308R-CINV1-GUS-R ggg gac cac tttg tac aag aaa gct ggg t aaa aat ttt gtc gcc aga att t

PAP1-HA-F ggg gac aag ttt gta caa aaa agc agg ct GAG GGT TCG TCCAAAGGG CT

PAP1-HA-R ggg gac cac tttg tac aag aaa gct ggg t CTAATCAAATTT CACAGT CTC TC

pMD111-CINV1-GFP F- ggg gac aag ttt gta caa aaa agc agg ct aat cga tat taa tta gaa ctc a
plasmid (containing R- ggg gac cac tttg tac aag aaa gct ggg t ttt tta att att ttg gta ttg ttt ata g
TTCAAAmotif)
ChIP-PCR-CINV1-C1 F1-ttt gat tct cta ttt gag ata gct

R1-ttt tta att att ttg gta ttg ttt ata g

ChIP-PCR-CINV1-C2 F2—cgt aaa tat tga att cca cgt ttc c
R2-ttc aag aac atg aaa ttc gta ag

ChIP-PCR-CINV1-C3 F3- ggt ctg ccg gct ttt ata ttt ga
R3-aaa aat ttt gtc gcc aga att t

ChIP-PCR-CINV1-C4 F4- ctt tga tgg tat ttc gtt gct g
R4-acc tac aga caa aaa gct gat g

ChIP-PCR-CINV1-C5 F5-aaa ata gaa ata aat caa gaa aag at
R5-tgc gtt cta att aat atc gat tg

ChIP-PCR-CINV1-C6 F6-ttt att tgg gtt aac aaa acc aa
R6-aga att cac gaa ata aga tat ag

ChIP-PCR-CINV1-C7 F7-act caa aat caa tag gta ata a
R7-tgt gat taa gtt caa tgt tag ag

ChIP-PCR-CINV1-C8 F8-act aat gtt cat gtt gtc gta ta
R8-aca taa aag aaa ttg tta atc cat g

ChIP-PCR-SPL9-S1 F1-gggaagccgaaattttctttgc
R1-ttggtttcctcttactcagac



ChIP-PCR-SPL9-S2 F2- gaaaaaaagttttgatattggttcg
R2-atgtttttccttttggtccacc

ChIP-PCR-SPL9-S3 F3- gaaatataatcgatctctcatattt
R3-gtacgcttacgactatattttttag

ChIP-PCR-SPL9-S4 F4-caaatttcgacgatagagaccata
R4-aacacaattttaatttacgtggaac

ChIP-PCR-SPL9-S5 F5- cgccacatgacccatcacta
R5-aaaaaagaaaccaataaaactttattg

ChIP-PCR-SPL9-S5 F5- cgccacatgacccatcacta
R5-aaaaaagaaaccaataaaactttattg

CINV1-expression in pap1-D F-5'- ATG GAAGGT GTT GGA CTAAGA
R-5'- AGAGTACCAACAGGT TGA CC -3'

CINV2-expression in pap1-D F-5'- ATG GAG GAAGGT CATAAAGAA C -3'
R-5'- GAAAGAACA CCATTGACC TTC T -3'

PAP1-expression in cinv1/2,35S:CINV1 F-5'- ATG GAG GGT TCG TCC AAAGG -3'
R-5'- CTT CCAGCAATTAAAGAC CAC C -3'

PAP1-expression protein F-5'- ATG GAG GGT TCG TCCAAAGG -3'
R-5'- CTT CCAGCAATTAAAGAC CAC C -3'

CINV1-expression in wild type, cinv1, cinv1/cinv2,
pap1-D and pap1-D/cinv1/cinv2 F-5'- ATG GAAGGT GTT GGACTAAGA

R-5'- AGAGTACCAACAGGT TGACC -3'
SPL9-expression in pap1-D,
35S:PAP1 F-5'- TTG GCCAGAAGATCTACT TCG

R-5'- GTT TGAACGACCACC TGA GGA -3'

The expressions of SPL9 in the 35S:PAP1-HA
seedlings F-5'- TTG GCCAGAAGATCTACT TCG

R-5'- GTT TGAACGACCACC TGA GGA -3'
The expressions of CINV1 in the
35S:PAP1-HA seedlings F-5'- ATG GAAGGT GTT GGACTAAGA

R-5'- AGAGTACCAACAGGT TGACC -3'
The expressions of miR156A in the
35S:PAP1-HA seedlings F-5'- CAAGAGAAA CGCAAAGAAACT G

R-5'-GAGATCAGCACC GGAATC TG -3'

The expressions of miR156A in the
5 and 70 day-old wild type seedlings F-5'- CAAGAGAAA CGCAAAGAAACT G

R-5'-GAGATCAGCACC GGAATC TG -3'



The expressions of miR156A in the
35S:PAP1 and pap1-D seedlings F-5'- CAAGAGAAA CGCAAAGAAACT G

R-5'-GAGATCAGCACC GGAATC TG -3'
The expressions of miR156C in the
35S:PAP1 and pap1-D seedlings F-5'- CGC ATAGAAACT GACAGAAGA

R-5'- CGG AAT CTGACAGATAGAGCA-3'
The expressions of HXK1 in the
35S:PAP1 and pap1-D seedlings F-5'- TGC GGT GGC TGT TTT GGT TG

R-5'- TTG TCT CAG TTT CGAGAT CGG-3'
To gain AS1pro::PAP1-GFP, the below primers were used.
CEII-proAS1-F：CAGCTATGACATGATTACGAATTCtcaaagcaggcccatccaagg
AS1-PAP1-FP-R：CGAACCCTCCATctcctactcctcctgacatcac
AS1-PAP1-FP-F：ggaggagtaggagATGGAGGGTTCGTCCAAAGG
CEII-PAP1-R：CTCGCCCTTGCTCACCATAAGCTTATCAAATTTCACAGTCTCTCCATCG

To gain pGreen-PAP1-LUC, the below primers were used.
pGreen-PAP1pF:Ttcctgcagcccgggggatccaatgacttaatctcgtaacgagtcac
pGreen-PAP1pR:Tgtttttggcgtcttccatggggaacaaagatagatacgtaaaatatataa
PAP1pm1R:gctttcttgcatgaaaatttacgtggccgatggaaaacctaggcgaaatgata
PAP1pm2F:Tatcatttcgcctaggttttccatcggccacgtaaattttcatgcaagaaagc
PAP1pm2R: attttctaagaaaagcatttttagtcggcctttttgaggacttgcaatttaaa
PAP1pm3F: Tttaaattgcaagtcctcaaaaaggccgactaaaaatgcttttcttagaaaat

To gain pGreen-CINV1-LUC, the below primers were used.
pGreen-CINV1pF:Ttcctgcagcccgggggatcctgggagacttgtatcgatggtggtg
pGreen-CINV1pR:Tgtttttggcgtcttccatggataacactaaaccaagatctaaaatc
CINV1pm1R:ttaagaaaccaaagtaggataccatttgccatataaaagccggcagaccaacaaaa
CINV1pm2F:ttttgttggtctgccggcttttatatggcaaatggtatcctactttggtttcttaa

To gain pGreen-SPL9-LUC, the below primers were used.
pGreen-SPL9pF:Ttcctgcagcccgggggatcccgccacatgacccatcactatcacgg
pGreen-SPL9pR:Tgtttttggcgtcttccatgggttggtttcctcttactcagacagaa
SPL9pm1R:Tgccaatctaccataaatttgacttggccttcaactgatgaatgcgaaccaatat
SPL9pm2F:atattggttcgcattcatcagttgaaggccaagtcaaatttatggtagattggca
SPL9pm2R:ttggtccaccatttggcattatgagcatcgcaataaatggagatgatattttgtgtttg
SPL9pm3F:caaacacaaaatatcatctccatttattgcgatgctcataatgccaaatggtggaccaa

To gain CINV1mPBSpro::CINV1-GFP, the below primers were used.
CEII-proCINV1-F CAGCTATGACATGATTACGAATTCgtgtccccatttttggctgtg
MproCINV1(PBS)-FP-R gctttgcctagtccaaacaagataggctagtaggtagc
MproCINV1(PBS)-FP-Fctagcctatcttgtttggactaggcaaagcaatggattcg
FP-proCINV1-CINV1-R GTCCAACACCTTCCATtataacactaaaccaagatctaaaatcaaaac
FP-proCINV1-CINV1-FagatcttggtttagtgttataATGGAAGGTGTTGGACTAAGAG
CEII-CINV1-R CTCGCCCTTGCTCACCATAAGCTTGAGTTGTGGCCAAGACGCAG
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