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Abstract

The conditions of relative smoothness and relative strong convexity were recently intro-
duced for the analysis of Bregman gradient methods for convex optimization. We introduce a
generalized left-preconditioning method for gradient descent, and show that its convergence on
an essentially smooth convex objective function can be guaranteed via an application of relative
smoothness in the dual space. Our relative smoothness assumption is between the designed pre-
conditioner and the convex conjugate of the objective, and it generalizes the typical Lipschitz
gradient assumption. Under dual relative strong convexity, we obtain linear convergence with
a generalized condition number that is invariant under horizontal translations, distinguishing
it from Bregman gradient methods. Thus, in principle our method is capable of improving
the conditioning of gradient descent on problems with non-Lipschitz gradient or non-strongly
convex structure. We demonstrate our method on p-norm regression and exponential penalty
function minimization.

1 Introduction

1.1 Setting and method

We study the minimization of a proper, closed, and essentially smooth convex function f : Rd →
R ∪ {∞},

min
x∈Rd

f(x). (P)

For unconstrained f , i.e., dom f = {x ∈ Rd : f(x) < ∞} = Rd, essential smoothness is simply
differentiability. For constrained f , essential smoothness is the assumption that f is differentiable
on int(dom f) 6= ∅ and that the norm of the gradient grows without bound, ‖∇f(x)‖ → ∞, as
x approaches the boundary of the domain. Thus, a global minimizer xmin of f , if it exists, is in
int(dom f). The method that we introduce (Algorithm 1.1) is a non-linear generalization of linear
left-preconditioning for gradient descent (see, e.g., [15, sect. 9.4]), and our analysis relies on recent
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Algorithm 1.1 Dual preconditioned gradient descent.

Given an essentially smooth convex f : Rd → R ∪ {∞}, a Legendre convex k : Rd → R ∪ {∞} with
∇f(int(dom f)) ⊆ int(dom k) and 0 = arg minx∗ k(x∗), x0 ∈ int(dom f), and L∗ > 0. For all i ≥ 0,

xi+1 = xi −
1

L∗
∇k(∇f(xi)).

generalizations of the typical Lipschitz gradient assumption [7]. For the sake of exposition, we will
assume in the introduction that f is twice continuously differentiable on int(dom f), but this is not
a requirement of our method.

In the analysis of first-order methods, it is standard to assume that the derivatives of f at some
order are globally bounded by constants. For example, consider the gradient descent method, whose
iterates satisfy

xi+1 = arg min
x∈dom f

{
〈∇f(xi), x〉+ L

2 ‖x− xi‖
2
}
, (1)

where L > 0 and x0 ∈ int(dom f). A classical analysis shows that the iterates of gradient descent
converge linearly in i, i.e., f(xi)−f(xmin) = O(λi) for λ = 1−µ/L, when f is assumed to be µ > 0
strongly convex and ∇f is assumed to be L-Lipschitz continuous (typically called “smoothness”).
Taken together for twice continuously differentiable f , these conditions are equivalent to the con-
ditions that the eigenvalues of the Hessian matrix of second-order partial derivatives ∇2f(x) are
everywhere lower bounded by µ > 0 (strong convexity) and upper bounded by L > 0 (smoothness),

µI � ∇2f(x) � LI for all x ∈ int(dom f). (2)

Analyses of first-order methods using only non-constant bounds on the derivatives of f have
recently been discovered [11, 7, 45, 42, 31]. In particular, [7] studied the following generalized
gradient method that takes a designed essentially smooth, strictly convex reference function h :
Rd → R∪{∞} with int(dom f) ⊆ int(domh). Given x0 ∈ int(dom f), this method’s iterates satisfy

xi+1 = arg min
x∈dom f

{〈∇f(xi), x〉+ LDh(x, xi)} (3)

where L > 0, 〈·, ·〉 is the Euclidean inner product, and Dh(x, y) = h(x)− h(y)− 〈∇h(y), x− y〉 for
x, y ∈ int(domh). (3) is due to [34] and falls in a family of so-called Bregman gradient methods.
A standard analysis of (3) (see, e.g., [8]) makes the “absolute” assumptions that f is Lipschitz
continuous and that h is strongly convex. In contrast, consider the following “relative” conditions
between f and h, for µ ≥ 0 and L > 0

µ∇2h(x) � ∇2f(x) � L∇2h(x) for all x ∈ int(dom f). (4)

For twice continuously differentiable f , Bauschke et al. [7] first showed that (4) with µ = 0 is a
sufficient assumption to guarantee the sublinear convergence of f(xi) − f(xmin) in (3). Lu et al.
[31] extended this analysis, and showed that (4) with µ > 0 is sufficient for the linear convergence
of f(xi)− f(xmin). Conditions (4) are “relative” in the sense that it is possible for (4) to hold for f
and h that are both non-smooth or non-strongly convex. For example, [7] study a Poisson inverse
objective whose derivatives of all orders are unbounded as x → 0. They design an appropriate h,
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whose Hessian is also unbounded at 0, but which satisfies (4). Analyses of first-order methods using
non-constant bounds on the derivatives of f have been extended to non-convex f [12, 23] continuous
convex optimization [30], composite least-squares problems [24], symmetric non-negative matrix
factorization [23], and the Sinkhorn algorithm [33]. Notably, relative smoothness conditions have
also been used to justify fast implementations of third-order tensor methods [36].

The method that we introduce (Algorithm 1.1) exploits an application of these relative conditions
in the dual space through an essentially smooth, strictly convex dual reference function k : Rd →
R∪{∞} with∇f(int(dom f)) ⊆ int(dom k) and 0 = arg minx∗ k(x∗). The method is a generalization
of left-preconditioned gradient descent, which we discuss in more detail in section 1.2. In section
3 we consider the conditions under which we can provide convergence rates for our method. For
twice continuously differentiable f sufficient conditions that we study are the existence of µ∗ ≥ 0,
L∗ > 0 such that

µ∗[∇2k(∇f(x))]−1 � ∇2f(x) � L∗[∇2k(∇f(x))]−1 for all x ∈ int(dom f). (5)

When µ∗ = 0, we show that k(∇f(xi)) − k(0) converges sub-linearly with rate O(i−1) (and thus
xi → xmin) along the iterates of Algorithm 1.1. When f is strictly convex and µ∗ > 0, we show that
f(xi)− f(xmin) converges linearly with rate λ∗ = 1−µ∗/L∗. As we show in section 3, assumptions
(5) are relative smoothness and strong convexity assumptions in the dual space, and they are
distinct from (4). In section 4, we design dual reference functions for p-norm regression (see [17, 2]
and references therein) and exponential penalty functions (see, e.g., [21, 20]).

1.2 Preconditioning

In this paper, we introduce a generalization of linear left-preconditioning, which is a fundamental
technique used in algorithms for solving linear systems. In this subsection, we review linear pre-
conditioning, following closely Wathen’s short introduction [46], and give an interpretation of our
method and Bregman gradient methods as left- and right-preconditioning, respectively.

Consider the problem of minimizing a positive-definite quadratic, which is equivalent to finding
the solution x of a linear system of d equations with d unknowns: Ax = b where b ∈ Rd and
A ∈ Rd×d is symmetric and positive-definite. “Preconditioning” refers to the idea of modifying this
system in a way that preserves the solution, but improves the convergence of iterative methods.
For example, given a positive-definite P ∈ Rd×d, we may consider the following systems (known as
left- or right-preconditioning, respectively):

P−1Ax = P−1b or AP−1y = b s.t. x = P−1y (6)

These have the same solution as the original, and if P−1A or AP−1 approximates the identity, then
iterative methods will converge faster. Indeed, for iterates of the conjugate gradients method (CG)
[26], 〈x− xi, A(x− xi)〉 converges linearly with a rate that varies monotonically with the condition
number κA = λAmax/λ

A
min, i.e., the ratio of the largest to the small eigenvalue of A [25, Chap. 3.1].

Smaller condition number is better, so if κA � κP
−1A, then left-preconditioned CG will converge

faster. Preconditioned methods typical solve a system with P at every iteration. Thus, P should
satisfy two criteria: κP

−1A should be small and Px = b should be easy to solve. It may seem difficult
to strike this balance, but it is possible in many cases. Wathen [46] gives an example due to Strang
for Toeplitz matrices that reduces the complexity of linear solves from O(d2) to O(d log d). More
generally, preconditioners are considered essential in solvers for very large, sparse, linear systems
[10, 39].
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Consider now the more general problem (P) for an unconstrained f . One can show that the
following are stationary conditions of Algorithm 1.1 or (3), respectively:

∇k(∇f(x)) = 0 or ∇f(∇h∗(y)) = 0 s.t. x = ∇h∗(y), (7)

where ∇h∗(y) = arg maxx∈Rd 〈x, y〉 − h(x). Clearly, (6) specializes (7) for appropriately chosen
quadratic f, k, h. Thus, our method and the Bregman gradient method (3) may be seen as a
generalization of left- and right-preconditioning for gradient descent, respectively. Moreover, for
symmetric, positive-definite A,P ∈ Rd×d, the existence of L, µ > 0 such that µP � A � LP
guarantees κP

−1A ≤ L/µ and an error bound on preconditioned CG. This is generalized by the
primal (4) and dual (5) relative conditions. However, in contrast to the linear case, the choice of
left (dual) vs. right (primal) in the non-linear case is much more consequential and the two methods
are not equivalent in general (left- and right-preconditioning for CG are equivalent [39, Chap. 9.1]).
The class of f satisfying the dual conditions (5) for a fixed k is closed under horizontal translations.
This is not true in general for f satisfying the primal conditions (4) for a fixed h. Thus, in general,
µ 6= µ∗, L 6= L∗, and the global information encoded in the dual reference function k is distinct
from the information encoded in the reference function h.

Non-linear preconditioning is far less studied, but has been considered in a number of works.
Non-linear preconditioning methods have recently been shown to stabilize Euler discretization
schemes of stochastic differential equations [27, 40]. In fact, the non-linear preconditioning of
[27] is the same as the one we consider for exponential penalty functions. Finally, recent work
[18, 22] developed non-linear preconditioning schemes for Newton’s method applied to problems
arising from the discretization of partial differential equations.

2 Convex analysis background

2.1 Essential smoothness and convex conjugates

In this section we review some basic facts of convex analysis that will be used throughout. Let
h : Rd → R ∪ {∞} be a proper closed convex function with domain domh = {x : Rd : h(x) <∞}.
To indicate domh = Rd, we simply define h : Rd → R as ranging only over the reals. ∂h(x) denotes
the subdifferential of h at x ∈ Rd. For a proper convex functions, being closed is equivalent to
being lower semi-continuous (lsc). Let ‖·‖ and 〈·, ·〉 indicate the Euclidean norm and inner product,
respectively, unless otherwise specified. The convex conjugate h∗ : Rd → R∪{∞} of a proper closed
convex function h is given by

h∗(x∗) = sup{〈x, x∗〉 − h(x) : x ∈ domh}. (8)

h∗ is also a proper closed convex function, and (h∗)∗ = h [38, Cor. 12.2.1]. For more on h∗, we
refer readers to [38, 15, 13].

In this work, we study the minimization of an essentially smooth convex function f [38, Chap.
25], which can be thought of as an assumption of differentiability. For constrained f , essential
smoothness comes with additional structure that prevents f from having sharp edges at the bound-
ary of its domain. In some cases, we will consider the additional assumption that f is strictly
convex on the interior of its domain.

Definition 2.1 (Essential smoothness and Legendre convexity). Let h : Rd → R∪{∞} be a proper
closed convex function. h is essentially smooth if,
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1. int(domh) is not empty.

2. h is differentiable on int(domh), with limi→∞ ‖∇h(xi)‖ = ∞ whenever xi ∈ int(domh) is a
sequence converging to the boundary of int(domh).

h is Legendre convex, if additionally

3. h is strictly convex on int(domh)

In this work, the assumption that h is essentially smooth carries with it the implied assumption that
h is proper and closed.

Essentially smooth convex functions can only be minimized in their interior.

Lemma 2.2. If h : Rd → R ∪ {∞} is an essentially smooth convex function that is minimized at
xmin ∈ domh, then xmin ∈ int(domh).

Proof. Suppose that xmin is a boundary point. Since int(domh) 6= ∅, by convexity there exists
a line segment connecting the boundary point xmin and any other interior point a. However, by
[38, Lem. 26.2], we know that the directional derivative converges to −∞ as we tend towards the
boundary point on this line segment, hence xmin could not be a minimum of h.

Legendre convex functions (essentially smooth, strictly convex functions) have even more conve-
nient structure. One consequence of Legendre structure, which will be used in our analysis to show
that k is radially unbounded, is that achieving a minimum is sufficient to imply that a Legendre
convex function grows without bound.

Lemma 2.3. Let h : Rd → R∪{∞} be a Legendre convex function that is minimized at 0 ∈ domh.
Then h is radially unbounded, i.e., if xi ∈ Rd is a sequence such that ‖xi‖ → ∞, then h(xi)→∞.

Proof. First, by Lemma 2.2 it follows that 0 ∈ int(domh). Because h is strictly convex, 0 is the
unique minimum of h. Thus, we can define the sphere S = {x ∈ Rd : ‖x‖ = r} for some r > 0
such that S ∈ int(domh). By continuity of h in the interior of its domain, and the uniqueness of
the minimum at zero, we have infx∈S h(x) > h(0). Now, assume without loss of generality that
‖xi‖ > r. By strict convexity of Legendre functions, property 3, we have

h(0) +
‖xi‖
r

(
h

(
rxi
‖xi‖

)
− h(0)

)
< h(0) + (h(xi)− h(0)) (9)

and thus

h(xi) > h(0) +
‖xi‖
r

(
inf
x∈S

h(x)− h(0)

)
. (10)

Our result follows by taking i→∞.

A second key consequence of Legendre structure is that the gradient map ∇h is invertible and
given by (∇h)−1 = ∇h∗, which also gives a characterization of the inverse of ∇2h(x). We summarize
both of these properties in Lemma 2.4.
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Lemma 2.4. Let h : Rd → R ∪ {∞} be Legendre convex. Then, h∗ is Legendre convex, the map
∇h is one-to-one and onto from the open set int(domh) onto the open set int(domh∗), continuous
in both directions, and for all x ∈ int(domh)

∇h∗(∇h(x)) = x. (11)

If h is C2 on an open set containing x and det∇2h(x) 6= 0, then

∇2h∗(∇h(x))∇2h(x) = ∇2h(x)∇2h∗(∇h(x)) = I. (12)

Proof. For the first part see Rockafellar [38, Thm. 26.5]. For (12), note that, by the inverse function
theorem, ∇h∗ is continuously differentiable at ∇h(x) under the assumption that ∇h is continuously
differentiable on an open set containing x. The remainder follows by the chain rule applied to
(11).

2.2 Relative smoothness and relative strong convexity

Analyses of first-order methods for differentiable optimization typically require that ∇f is Lipschitz
continuous (smooth). Recent generalizations of smoothness (and strong convexity) [7, 31] can be
used to guarantee convergence of first-order methods beyond the Lipschitz ∇f case. We will use
these in our analysis of dual preconditioning. Following [7], we define these relative conditions in
terms of zeroth-order properties.

Definition 2.5 (Relative smoothness and strong convexity). Let h, g : Rd → R ∪ {∞} be proper
closed convex functions, Q ⊆ domh ∩ dom g be a convex set, and L, µ ≥ 0. Define dL, dµ : Rd →
R ∪ {∞} for x ∈ Q by

dL(x) = Lg(x)− h(x) dµ(x) = h(x)− µg(x) (13)

and for x /∈ Q by dL(x) = dµ(x) = ∞. h is L-smooth relative to g on Q, if dL convex. h is
µ-strongly convex relative to g on Q, if dµ is convex.

The special cases with g(x) = ‖x‖22 /2 are exactly the classical conditions of strong convexity and
smoothness. We now provide first- and second-order characterizations.

2.3 First-order characterizations for relative conditions

The first-order characterizations of relative smoothness and strong convexity are given in terms
of the Bregman divergence [16, 6], which for essentially smooth convex h : Rd → R ∪ {∞} and
x ∈ domh, y ∈ int(domh) is given by h(x)− h(y)− 〈∇h(y), x− y〉. Unfortunately, in our analysis,
we will require smoothness relative to f∗, which can fail to be differentiable when f is essentially
smooth. Thus, we will make use of a generalization of the Bregman divergence, which we define via
the one-sided directional derivative of h : Rd → R ∪ {−∞,∞} with respect to y ∈ Rd at a point x
where h is finite:

h′(x; y) = lim
ε↓0

h(x+ εy)− h(x)

ε
. (14)

This may take values in {∞,−∞}. The advantage of one-sided direction derivatives is that they
always exist at x ∈ domh for proper convex h [38, Thm. 23.1]. We are now prepared to define a
novel generalization of the Bregman divergence.
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Definition 2.6 (Generalized Bregman divergences). Let h : Rd → R ∪ {−∞,∞} be a function.
Let x, y ∈ Rd be points at which h is finite and h′(y;x− y) exists. Define the generalized Bregman
divergence,

Dh(x, y) = h(x)− h(y)− h′(y;x− y). (15)

If h is proper, closed, and convex, then Dh(x, y) is defined for all x, y ∈ domh [38, Thm. 23.1] and
is finite for y ∈ dom ∂h = {x ∈ Rd : ∂h(x) 6= ∅} [38, Thm. 23.2].

Clearly, Dh(x, y) coincides with the standard Bregman divergence if h is differentiable at y. The
advantage of the generalization is that it allows us to define the relative conditions in terms of
first-order properties without the assumption of differentiability.

Proposition 2.7 (First-order characterizations of relative conditions). Let h, g : Rd → R ∪ {∞}
be proper closed convex functions, Q ⊆ domh∩ dom g be a convex set, and L, µ ≥ 0. The following
are equivalent

1. h is L-smooth relative to g on Q.

2. For all x, y ∈ Q, Dh(x, y) ≤ LDg(x, y).

The following are equivalent

3. h is µ-strongly convex relative to g on Q.

4. For all x, y ∈ Q, µDg(x, y) ≤ Dh(x, y).

To prove these equivalences, we will use two lemmas, which extend the first-order characteriza-
tion of one-dimensional convexity to the non-differentiable case.

Lemma 2.8 (A variant of the mean value theorem). Let r : [0, 1] → R be a continuous function.
Define r′+(z) = limε↓0(r(z + ε) − r(z))/ε. Assuming that r′+(z) exists for z ∈ [0, 1), if s, t ∈ [0, 1]
and s < t, then there is exists z ∈ [s, t) such that r′+(z) ≥ (r(t)− r(s))/(t− s).

Proof. We can add a linear function to r without changing the difference between the two sides on
the inequality, so without loss of generality we may assume that r(s) = r(t) = 0. Then, we want to
prove that r′+(z) ≥ 0 for some z ∈ [s, t]. Since r is continuous, it has a minimum in [s, t], so there is
a z ∈ [s, t] such that r(u) ≥ r(z) for every u ∈ [s, t]. If z = t, then r(z) = r(s), so we could instead

take z = s. Thus we may assume that z ∈ [s, t). Then r′+(z) = limu↓z, u∈(z,t)
r(u)−r(z)
u−z ≥ 0, because

r(u) ≥ r(z), proving the claim.

Lemma 2.9 (Characterization of one-dimensional convexity). Let r : [0, 1] → R be a continuous
function. r is convex on [0, 1] if and only if r′+(z) (defined in Lemma 2.8) exists for all z ∈ (0, 1),
and for all s, t ∈ (0, 1) such that s < t,

r(t) ≥ r(s) + r′+(s)(t− s). (16)

Proof. Suppose that r is not convex on [0, 1]. Then by continuity, it is also not convex on (0, 1). After
adding a linear function, we can arrange that 0 = r(s) = r(t) < r(z) for some 0 < s < z < t < 1.
Since r is continuous, r achieves its maximum restricted to the interval [s, t], so we could choose
z ∈ (s, t) such that r(z) = maxu∈[s,t] r(u) > 0. Since r(z) > 0 and r is continuous, there is a
u ∈ (s, z) such that r(v) > 0 for every v ∈ [u, z]. By Lemma 2.8, there is a v ∈ [u, z) such that

7



r′+(v) ≥ r(z)−r(u)
z−u ≥ 0, and so 0 = r(t) ≥ r(v) + r′+(v)(t− v) ≥ r(v) > 0. This contradiction proves

that r is indeed convex.
Now suppose that r is convex and continuous on [0, 1]. By [38, Thm. 23.1] the difference quotient

r(z+ε)−r(z)
ε is a non-decreasing function of ε for ε > 0 and z ∈ [0, 1), and limit r′+(z) exists. Using

the fact that the difference quotient is non-decreasing in ε it follows that r(t) ≥ r(s) + r′+(s)(t− s)
for every s, t ∈ [0, 1], s < t.

We are now prepared to provide the proof of equivalence between the zeroth- and first-order
definitions of the relative conditions.

Proof of Proposition 2.7. We only show the equivalence of 1. and 2., the proof of the equivalence
of 3. and 4. is similar. First, suppose that 1. holds, i.e., dL is convex. Let x, y ∈ Q. Then for
xt = y + t(x− y), we have (after dividing by t and rearranging)

h(x)− h(y)− h(xt)− h(y)

t
≤ Lg(x)− Lg(y)− Lg(xt)− g(y)

t
(17)

Taking the limit t ↓ 0 gives us that Dh(x, y) ≤ LDg(x, y), with the existence of the limits following
from [38, Thm. 23.1].

For the other direction, suppose that Dh(x, y) ≤ LDg(x, y) for every x, y ∈ Q. Let x, y ∈ Q,
and xt = y+ t(x− y). Then for any 0 < s < t < 1, it is easy to check that both h′(xt;xs − xt) and
g′(xt;xs−xt) are finite (if one of the directional derivatives is non-finite, then this would contradict
the convexity or finiteness of these functions over Q). Thus Dh(xs, xt) and Dg(xs, xt) are finite and
satisfy Dh(xs, xt) ≤ LDg(xs, xt) . Thus, it follows that for any 0 < s < t < 1,

DdL(xs, xt) = LDg(xs, xt)−Dh(xs, xt) ≥ 0. (18)

Let r(t) = dL(xt) for t ∈ [0, 1] be the restriction of dL on the line segment between x and y, then
(18) implies that the condition (16) holds. r is a continuous function by [38, Thm. 10.2]. Thus, by
Lemma 2.9, r is a convex function on [0, 1]. This holds for all x, y ∈ Q, thus dL is convex.

2.4 Second-order characterizations of relative conditions

Verifying relative smoothness or strong convexity is typically done via second-order conditions. Just
as Lipschitz continuity of ∇h can be characterized by a bound on ∇2h, the relative conditions can
be characterized by the second derivatives of h and g [7, 31]. Proposition 2.10 allows ∇2h,∇2g to
be undefined at a point, a slight generalization of the standard result that is useful in our analysis
when ∇2f is undefined at xmin.

Proposition 2.10 (Second-order characterizations of relative conditions). Let h, g : Rd → R∪{∞}
be proper closed convex functions that are differentiable on the interior of their domains. Let
Q ⊆ int(dom g)∩ int(domh) be an open convex set, z ∈ Q, and L, µ ≥ 0. If h, g are C2 on Q \ {z},
then

1. h is L-smooth relative to g on Q if and only if,

∇2h(x) � L∇2g(x) ∀x ∈ Q \ {z}.
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2. h is µ-strongly convex relative to g on Q if and only if,

µ∇2g(x) � ∇2h(x) ∀x ∈ Q \ {z}.

Proof. Again, we prove the relative smoothness equivalence, and relative strong convexity follows
similarly. For relative smoothness, (⇒) follows from part one of [35, Thm. 2.1.4] applied to dL at
x ∈ Q. For (⇐), it is sufficient to prove convexity of the restriction of dL to an open line segment
with endpoints x, y ∈ Q. Let xt = y+t(x−y) and r(t) = dL(xt) for t ∈ (0, 1). Let a ∈ (0, 1) be such
that xa = z, if it exists, or some arbitrary a ∈ (0, 1), otherwise. dL is continuously differentiable at
all x ∈ Q by [38, Thm 25.5]. Thus r′(t) = 〈∇dL(xt), x− y〉 is a continuous and finite function of
t ∈ (0, 1). If r′ is non-decreasing, then the argument of [38, Thm. 4.4] gives us our result. Thus,
with a slight abuse of notation,

r′(t) = r′(a) + r′(t)− r′(a) = r′(a) + lim
s→a

∫ t

s

〈
x− y,∇2dL(xt)(x− y)

〉
.

The limit is actually a one-sided limit, depending on t ≤ a or t > a. Either way, ∇2dL(xt) =
L∇2g(xt)−∇2h(xt) is positive semi-definite, so r′ is non-decreasing.

3 Analysis of the dual preconditioned scheme

3.1 Motivation and assumptions

Relative smoothness of f with respect to a reference function h is the key assumption under which [7,
42, 31] analyzed the convergence of Bregman gradient methods. We now build towards an analysis
of dual space preconditioned gradient descent method (Algorithm (1.1)) using the assumption that
k is smooth relative to f∗. As shorthand to distinguish these two assumptions, we use the terms
primal relative smoothness to refer to the condition that f is L-smooth relative to h and dual
relative smoothness to refer to the condition that k is L∗-smooth relative to f∗. To motivate our
assumption, consider the following idealizations.

Consider the Bregman gradient method update (3), which can be rewritten as,

xi+1 = arg min
x∈dom f

{〈∇f(xi)− L∇h(xi), x〉+ Lh(x)} . (19)

In this form, it is clear that, if h = f and L = 1, then the iteration would converge in a single
step to the minimizer of h = f . This is an idealization, because a single iteration would be as
expensive to compute as the original problem. The spirit behind primal relative smoothness is that
the condition h = f can be relaxed to admit h for which the update (19) is efficiently solvable and
the iterates still converge.

Now, consider the case that f is Legendre convex with a minimum at xmin, and let f∗c (x∗) =
f∗(x∗) − 〈x∗, xmin〉 for x∗ ∈ Rd. Notice that ∇f∗c (∇f(x)) = x − xmin by Lemma 2.4 and that
Algorithm 1.1 with k = f∗c and Li = 1 would converge in a single step to the minimizer xmin of f .
Thus, in analogy to the relative smoothness analysis of [7] in the primal space, the spirit behind
our analysis under dual relative smoothness is that the requirement k = f∗c can be relaxed while
maintaining the convergence of Algorithm 1.1. In particular, sufficient assumptions on k are that
it is minimized at 0 and smooth relative to f∗.

More precisely, our analysis of Algorithm 1.1 uses following assumptions.
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Assumption 3.1. 1. f : Rd → R ∪ {∞} is convex and essentially smooth.

2. k : Rd → R ∪ {∞} is Legendre convex and uniquely minimized at 0.

3. ∇f(int(dom f)) ⊆ int(dom k) and for all x, y ∈ int(dom f),

Dk(∇f(y),∇f(x)) ≤ L∗Df (x, y)

As we show in the following sections, Assumption 3.1.3 is a necessary condition of the relative
smoothness of k with respect to f∗. Assumption 3.1.3 is the assumption that requires the most
effort to verify, since the convexity of L∗f∗ − k will typically be difficult to check. For this reason,
we also provide second-order sufficient conditions expressed (mostly) in terms of conditions on f
and k.

3.2 Dual relative conditions for Legendre convex objectives

When f is essentially smooth and strictly convex (Legendre), we are able to provide clean character-
izations of the dual relative conditions. In particular, Assumption 3.1.3 is necessary and sufficient
for the smoothness of k relative to f∗ on int(dom f∗). We begin by linking Df and Df∗ in what is
a well-known identity for Legendre convex f .

Lemma 3.2. If f : Rd → R ∪ {∞} is an essentially smooth convex function, then

Df∗(∇f(y),∇f(x)) ≤ Df (x, y) (20)

for all x, y ∈ int (dom f). If f is Legendre convex, then this is an equality.

Proof. Note, by [38, Cor. 26.4.1], we have ∇f(int(dom f)) = dom ∂f∗. Thus, Df∗(∇f(y),∇f(x))
is finite for any x, y ∈ int(dom f). Note x ∈ ∂f∗(∇f(x)). Now,

Df∗(∇f(y),∇f(x)) = f∗(∇f(y))− f∗(∇f(x))− (f∗)′(∇f(x);∇f(y)−∇f(x))

(a)

≤ f∗(∇f(y))− f∗(∇f(x))− 〈x,∇f(y)−∇f(x)〉
(b)
= −f(y) + 〈∇f(y), y〉+ f(x)− 〈∇f(x), x〉 − 〈x,∇f(y)−∇f(x)〉
= f(x)− f(y) + 〈∇f(y), y − x〉 = Df (x, y)

where (a) follows from [38, Thm. 23.2], (b) follows from [38, Thm. 26.4]. If f is Legendre convex,
then by Lemma 2.4, f∗ is Legendre, f∗ is differentiable on int(dom f∗) = ∇f(int(dom f)), and (a)
is an equality [38, Thm. 23.4] .

We can now provide first-order characterizations of the dual relative conditions.

Proposition 3.3 (First-order characterization of dual relative conditions, Legendre convex case).
Let f, k : Rd → {R,∞} be Legendre convex functions. The following are equivalent.

1. k is L∗-smooth relative to f∗ on int(dom f∗).

2. ∇f(int(dom f)) ⊆ int(dom k), and for all x, y ∈ int(dom f),

Dk(∇f(y),∇f(x)) ≤ L∗Df (x, y).
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The following are equivalent.

3. k is µ∗-strongly convex relative to f∗ on int(dom f∗).

4. ∇f(int(dom f)) ⊆ int(dom k), and for all x, y ∈ int(dom f),

µ∗Df (x, y) ≤ Dk(∇f(y),∇f(x)).

Proof. We prove the relative smoothness results, and the relative strong convexity ones follow
similarly. First, notice that that ∇ f(int(dom f)) = int(dom f∗). by Lemma 2.4. For (1 ⇒
2), by the definition of relative smoothness, we have int(dom f∗) ⊆ dom k, and since this is an
open set, we necessarily have int(dom f∗) ∈ int(dom k). By Proposition 2.7 we have that for all
x∗, y∗ ∈ int(dom f∗),

Dk(y∗, x∗) ≤ L∗Df∗(y
∗, x∗). (21)

By Lemmas 2.4 and 3.2, this implies

Dk(∇f(y),∇f(x)) ≤ L∗Df∗(∇f(y),∇f(x)) = L∗Df (x, y), (22)

for all x, y ∈ int(dom f). For (2 ⇒ 1), by Lemma 3.2, we have for all x, y ∈ int(dom f),

Df (x, y) = Df∗(∇f(y),∇f(x)). (23)

Using this, Proposition 2.7 implies that k is L∗-smooth relative to f∗ on int(dom f∗).

If f is Legendre convex, then the dual relative conditions have a natural second-order character-
ization, which reveals the structure of the difference between them and primal relative conditions.
Again, typically it is easiest to prove dual relative smoothness (or strong convexity) via these
second-order conditions.

Proposition 3.4 (Second-order characterizations of dual relative conditions, Legendre convex
case). Let f : Rd → R∪{∞} be Legendre convex, minimized at xmin, and C2 on int(dom f)\{xmin}
such that det∇2f(x) 6= 0 at x ∈ int(dom f) \ {xmin}. Let k : Rd → R ∪ {∞} be Legendre convex,
C2 on int (dom f∗) \ {0} such that det∇2k(x∗) 6= 0 at x∗ ∈ int(dom f∗) \ {0}. Let L, µ ≥ 0.

1. k is L∗-smooth relative to f∗ on int(dom f∗) if and only if,

∇2f(x) � L∗[∇2k(∇f(x))]−1 ∀x ∈ int(dom f) \ {xmin}.

2. k is µ∗-strongly convex relative to f∗ on int(dom f∗) if and only if,

µ∗[∇2k(∇f(x))]−1 � ∇2f(x) ∀x ∈ int(dom f) \ {xmin}.

Remark 3.5. It is well-known that the primal and dual relative conditions are equivalent in the case
of ∇2h(x) = I = ∇2k(x∗) (see, e.g., [48, 41, 28]). In particular, if f is µ-strongly convex and L-
smooth on int(dom f), then its convex conjugate f∗ is (1/L)-strongly convex and (1/µ)-smooth on
int(dom f∗). In fact, for twice continuously differentiable f , the equivalence is a simple consequence
of Propositions 2.10 and 3.4. However, this equivalence is not true in general.
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Given a Legendre convex g : R→ R ∪ {∞} define the following sets of functions

Fg = {Legendre convex f : f is smooth and strongly convex relative to g}, (24)

F ∗g = {Legendre convex f : g is smooth and strongly convex relative to f∗}. (25)

Let k(x∗) = |x∗|q/q for x∗ ∈ R and 1 < q < 2. A simple argument by contradiction shows that
F ∗k * Fh for all twice continuously differentiable h : R → R, implying that the primal and dual
relative conditions are not equivalent in general. Consider

fb(x) = |x− b|p/p, (26)

for p = q
q−1 and x ∈ R. First fb ∈ F∗k for all b, which follows from [k′′(f ′b(x))]−1 = (p − 1)|x −

b|p−2 = f ′′b (x) and Proposition 3.4. On the other hand, suppose there is some twice continuously
differentiable h : R → R such that fb ∈ Fh for all b. Then there exists µ > 0 such that µh′′(b) ≤
f ′′b (b) = 0 for all b. This implies that h′′(x) ≡ 0 and thus h(x) ≡ 0. However, this leads to a
contradiction, because smoothness is violated: f ′′b (b+ ε) > 0 = Lh′′(x) for any L, ε > 0.

Proof of Proposition 3.4. We prove the relative smoothness result, and the relative strong convexity
one follows similarly. By Lemma 2.4, if ∇f is continuously differentiable for x ∈ int(dom f)\{xmin},
then ∇f∗ is continuously differentiable for x∗ ∈ int(dom f∗) \ {0} by the inverse function theorem.
Thus, by Proposition 2.10 dual relative smoothness is equivalent to: for all x∗ ∈ int(dom f∗) \ {0},

∇2k(x∗) � L∗∇2f∗(x∗). (27)

By Lemma 2.4, (27) is equivalent to for all x ∈ int(dom f) \ {xmin},

∇2k(∇f(x)) � L∗[∇2f(x)]−1. (28)

Since A−1 � B−1 is equivalent to B � A for positive definite matrices, we are done.

A major difference between the primal and dual relative conditions is the fact that dual relative
conditions are invariant under horizontal translations of f . To see why, let k be L∗-smooth relative
to f∗ on a convex set Q. Define g(x) = f(x − z) for z ∈ Rd. Then, by [38, Thm. 12.3], g∗(x∗) =
f∗(x∗) + 〈z, x∗〉. Bregman divergences of functions that differ only in affine terms are identical
(see [6] for the differentiable case), so we have for all x∗, y∗ ∈ Q, Dk(x∗, y∗) ≤ L∗Df∗(x

∗, y∗) =
L∗Dg∗(x

∗, y∗). Thus k is L∗-smooth relative to g∗ on Q. Invariance under horizontal translation is
clearly easy to violate in the case of primal relative smoothness.

Even if h is allowed to translate with f , the primal and dual relative conditions can lead to
distinct conditioning. Given a positive definite A � 0, let

f(x) = ‖Ax− b‖p /p, h(x) =
∥∥x−A−1b

∥∥p /p, k(x∗) = ‖x∗‖q /q, (29)

for 1/p+ 1/q = 1 and p > 2. It can be shown that f satisfies both the dual (with respect to k) and
primal (with respect to h) relative conditions. Nonetheless, the condition numbers are distinct. A
simple calculation reveals that in this case

L

µ
= p2

(
σmax(A)

σmin(A)

)p
vs.

L∗

µ∗
= (p− 1)2

(
σmax(A)

σmin(A)

)4−q

, (30)
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where σmin and σmax are the smallest and largest singular values of A, respectively. Thus, the
primal condition number is larger than the dual number (since 4 − q = 3 − (p − 1)−1 < p when
p > 2). Similarly, the example f(x) = ‖Ax− b‖44/4 + ‖Cx− d‖22/2 of [31, p. 339] can be shown to
have better conditioning under the dual preconditioned method than under the Bregman gradient
method.

3.3 Dual relative conditions for essentially smooth objectives

We now show that the smoothness of k relative to f∗ on dom f∗ is a sufficient condition for As-
sumption 3.1.3. We also provide a sufficient, second-order condition.

Proposition 3.6. Let f, k : Rd → R ∪ {∞} be essentially smooth convex functions. If k is L∗-
smooth relative to f∗ on dom f∗, then ∇f(int(dom f)) ⊆ int(dom k) and for all x, y ∈ int(dom f),

Dk(∇f(y),∇f(x)) ≤ L∗Df (x, y). (31)

Proof. Note that by [38, Cor. 26.4.1], ∇f(int(dom f)) = dom ∂f∗ ⊆ dom f∗. We have dom f∗ ⊆
dom k by the definition of relative smoothness. By Proposition 2.7 and Lemma 3.2, for every
x, y ∈ int(dom f) we have

Dk(∇f(y),∇f(x)) ≤ L∗Df∗(∇f(y),∇f(x)) ≤ L∗Df (x, y) (32)

Now, we are going to show that ∇f(int(dom f)) ⊆ int(dom k). We argue by contradiction. Suppose
there is a x∗ ∈ ∇f(int(dom f)) such that x∗ /∈ int(dom k). So x∗ has to be in dom k \ int(dom k),
i.e., on the boundary of int(dom k). Using the essential smoothness of k, by [38, Lemma 26.2] it
follows that for any y∗ ∈ int(dom k), we have

k′(x∗ + λ(y∗ − x∗); y∗ − x∗) ↓ −∞ as λ ↓ 0. (33)

We fix an arbitrary y∗ ∈ int(dom k), and define the function h : [0, 1] → R as h(λ) = L∗f∗(x∗ +
λ(y∗ − x∗)) − k(x∗ + λ(y∗ − x∗)). Then relative smoothness implies that h is a finite, continuous
convex function on [0, 1]. However, for such a function we must have lim supλ↓0 h

′
+(λ) < ∞, since

otherwise it could not be finite on [0, 1] by Lemma 2.9. By combining this with (33), it follows that

f∗′(x∗ + λ(y∗ − x∗); y∗ − x∗)→∞ as λ ↓ 0.

Let r : [0, 1] → R be r(λ) = f∗(x∗ + λ(y∗ − x∗)), then this implies that r′+(λ) → ∞ as λ ↓ 0, and
by (16) of Lemma 2.9, this contradicts the assumption that f∗ is finite in dom f∗. Hence we must
have x∗ ∈ int(dom k), and ∇f(int(dom f)) ⊆ int(dom k).

The next proposition gives a second-order sufficient condition for Assumption 3.1.3.

Proposition 3.7. Let f : Rd → R ∪ {∞} be essentially smooth, and C2 on int(dom f). Let
k : Rd → R ∪ {∞} be Legendre convex, and C2 on int(dom k). If ∇f(int(dom f)) ⊆ int(dom k),
det∇2k(x∗) 6= 0 for all x∗ ∈ int(dom k), and

∇2f(x) � L∗[∇2k(∇f(x))]−1 ∀x ∈ int(dom f), (34)

then Dk(∇f(y),∇f(x)) ≤ L∗Df (x, y) for every x, y ∈ int(dom f).
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Proof. Let x, y ∈ int(dom f), and let W ⊆ Rd be a bounded open neighborhood of the segment
I = [∇ f(x),∇ f(y)] = {t∇ f(x) + (1 − t)∇ f(y) : 0 ≤ t ≤ 1} such that cl(W ) ⊆ int(dom k).
Let δ > 0. Let ε > 0, and let fε : Rd → R ∪ {∞}, fε(z) = f(z) + ε

√
1 + ‖z‖2. Then fε is a

Legendre convex function, and dom(fε) = dom(f). We have ∇fε(z) = ∇f(z) + ε(1 + ‖z‖2)−
1
2 z

and ∇2fε(z) = ∇2f(z) + ε(1 + ‖z‖2)−
3
2 ((1 + ‖z‖2)Id − zT z) � 0 for every z ∈ int(dom f). So

‖∇fε(z)−∇f(z)‖ ≤ ε and 0 � ∇2fε(z)−∇2f(z) � εId for every z ∈ int(dom f). Let Iε denote the
segment [∇fε(x),∇fε(y)] ⊆ Rd. Choose ε small enough so that

1. the 2ε-neighborhood of Iε is in W (so dist(Iε,Rd \W ) ≥ 2ε).

2. εId � δ
2 [∇2k(w)]−1 for every w ∈W .

3. ∀w1, w2 ∈ W s.t. ‖w1 − w2‖ ≤ ε, [∇2k(w1)]−1 � (1 + δ
2L∗ )[∇2k(w2)]−1 (uniform continuity

of (∇2k)−1 on compact set cl(W ) by Heine-Cantor theorem).

We will show that (L∗ + δ)f∗ε − k is convex when restricted to the segment Iε. Let w ∈ Iε and
z = (∇fε)−1(w) ∈ int(dom f). Then ∇fε(z) = w, and since ‖∇f(z)− w‖ ≤ ε, we get ∇f(z) ∈ W .
We have ∇ 2((L∗ + δ)f∗ε − k)(w) = (L∗ + δ)[∇ 2fε(z)]

−1 − ∇ 2k(∇fε(z)), and we would like to
show that this is � 0. So we want to show ∇2fε(z) � (L∗ + δ)[∇2k(∇fε(z))]−1. This follows
from ∇2fε(z) � ∇2f(z) + εId and εId � δ

2 [∇2k(∇fε(z))]−1 and ∇2f(z) � L∗[∇2k(∇f(z))]−1 �
(L∗ + δ

2 )[∇2k(∇fε(z))]−1. So for small enough ε’s (L∗ + δ)f∗ε − k is indeed convex when restricted
to Iε. Then Dk(∇fε(y),∇fε(x)) ≤ (L∗ + δ)Df∗ε

(∇fε(y),∇fε(x)) = (L∗ + δ)Dfε(x, y), using the
convexity of (L∗+δ)f∗ε −k on Iε combined with the same limiting argument as in (17), and Lemma
3.2. Taking ε ↓ 0, and then δ ↓ 0 we get Dk(∇f(y),∇f(x)) ≤ L∗Df (x, y).

3.4 Convergence rates for dual space preconditioned gradient descent

In this section we show that Assumption 3.1 is sufficient to provide convergence rates for Algorithm
1.1 on essentially smooth convex f . We find that k(∇f(xi))) − k(0) converges with rate O(i−1).
Under an additional dual relative strong convexity condition, we find that f(xi)−f(xmin) converges
with rate O((1− µ∗/L∗)i). We begin with the following descent lemma.

Lemma 3.8 (Descent lemma). Let f, k : Rd → R∪{∞} satisfy Assumption 3.1. If x0 ∈ int(dom f),
then for all i > 0, the iterates xi of Algorithm 1.1 are such that xi ∈ int(dom f) and for all
x ∈ int(dom f),

k(∇f(xi)) ≤ k(∇f(x))−Dk(∇f(x),∇f(xi−1)) + L∗Df (xi−1, x)− L∗Df (xi, x). (35)

Proof. Let C = int(dom f). We proceed by induction. For i = 0 we have x0 ∈ C by assumption.
Now, for i > 0, assume the induction hypothesis for xi−1. Define,

xλ = xi−1 −
1

λ
∇k(∇f(xi−1)) (36)

for λ > 0. Because xi−1 ∈ int(dom f) 6= ∅, the set S = {λ ≥ L∗ : xλ ∈ C} is not empty. Let x ∈ C.
Let x∗ = ∇f(x), x∗i−1 = ∇f(xi−1) and x∗λ = ∇f(xλ) for λ ∈ S. The following identities follow by
our definition of xλ and some algebra.〈

∇k(x∗i−1), x∗ − x∗λ
〉

= λ 〈xi−1 − xλ, x∗ − x∗λ〉 , (37)

〈xi−1 − xλ,∇f(x)−∇f(xλ)〉 = Df (xλ, x) +Df (xi−1, xλ)−Df (xi−1, x). (38)
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Combining (37) and (38), we get

λDf (xi−1, xλ) +
〈
∇k(x∗i−1), x∗λ − x∗i−1

〉
=

λDf (xi−1, x)− λDf (xλ, x) +
〈
∇k(x∗i−1), x∗ − x∗i−1

〉 (39)

Putting everything together, we have

k(x∗λ) = k(x∗i−1) +
〈
∇k(x∗i−1), x∗λ − x∗i−1

〉
+Dk(x∗λ, x

∗
i−1)

(a)

≤ k(x∗i−1) +
〈
∇k(x∗i−1), x∗λ − x∗i−1

〉
+ L∗Df (xi−1, xλ)

(b)

≤ k(x∗i−1) +
〈
∇k(x∗i−1), x∗λ − x∗i−1

〉
+ λDf (xi−1, xλ)

(c)
= k(x∗i−1) +

〈
∇k(x∗i−1), x∗ − x∗i−1

〉
+ λDf (xi−1, x)− λDf (xλ, x)

(d)

≤ k(x∗)−Dk(x∗, x∗i−1) + λDf (xi−1, x)− λDf (xλ, x). (40)

(a) follows from L∗-smoothness, (b) from L∗ ≤ λ and the non-negativity of the Bregman divergence,
(c) from (39), and (d) by definition and simple algebra. Taking x = xi−1 and recalling the definition
of x∗i−1 and x∗λ reveals that

k(∇f(xλ)) + λDf (xλ, xi−1) ≤ k(∇f(xi−1)). (41)

Now, our goal is to show that xi = xL∗ ∈ int(dom f) by showing that L∗ ∈ S. We proceed by
contradiction, so suppose L∗ /∈ S. Then xL∗ ∈ Rd \ int(dom f). Hence we can find Λ ≥ L∗ such
that xΛ ∈ ∂(dom f). Now take a sequence λj → Λ such that λj > Λ. By the above discussion for
all j ≥ 0 we have k(∇f(xλj )) ≤ k(∇f(xi−1)). k being minimized at 0 means it satisfied Lemma
2.3 and thus is radially unbounded. This implies that

∥∥∇f(xλj )
∥∥ ≤ c for some c > 0 and all j ≥ 0.

But this contradicts the requirement that
∥∥∇f(xλj )

∥∥ → ∞ since xλj → xΛ ∈ ∂(dom f) from the
assumption of essential smoothness. This completes the proof that xi = xL∗ ∈ int(dom f). Since
L∗ ∈ S, (40) ensures that (35) holds.

We can now provide convergence rates for our method.

Theorem 3.9. Let f, k : Rd → R ∪ {∞} satisfy Assumption 3.1. If x0 ∈ int(dom f), then for all
i > 0 the iterates of Algorithm 1.1 satisfy

k(∇f(xi))− k(0) ≤ L∗

i
(f(x0)− f(xmin)). (42)

In particular, ∇f(xi) → 0. If additionally f is Legendre convex and there exists µ∗ > 0 such
that µ∗Df (x, y) ≤ Dk(∇f(y),∇f(x)) for all x, y ∈ int(dom f), then for all i > 0 the iterates of
Algorithm 1.1 satisfy

f(xi)− f(xmin) ≤
(

1− µ∗

L∗

)i
(f(x0)− f(xmin)). (43)

Proof of Theorem 3.9. Let C = int(dom f). We have xi ∈ C and k(∇f(xi)) ≤ k(∇f(xi−1)) by
the Descent Lemma 3.8. We also have xmin ∈ C by Lemma 2.2. Finally, (35) of Lemma 3.8 with
x = xmin gives us,

k(∇f(xi))− k(0) ≤ L∗(f(xi−1)− f(xi))−Dk(0,∇f(xi−1))

≤ L∗(f(xi−1)− f(xi))
(44)
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Putting this together, we get

i(k(∇f(xi))− k(0)) ≤
i∑

j=1

k(∇f(xi))− k(0)

≤ L∗(f(x0)− f(xi)).

(45)

Dividing by i gives our first result. This implies that k(∇ f(xi)) → k(0), which implies that
∇f(xi) → 0 by continuity and the uniqueness of k’s minimum. Now, assume that f is Legendre
convex and there exists µ∗ > 0 such that µ∗Df (x, y) ≤ Dk(∇f(y),∇f(x)) for all x, y ∈ int(dom f).
For all i > 0,

L∗(f(xi)− f(xmin))
(a)

≤ L∗(f(xi−1)− f(xmin))−Dk(0,∇f(xi−1))

(b)

≤ L∗(f(xi−1)− f(xmin))− µ∗(f(xi−1)− f(xmin)),

(46)

where (a) follows from (44) and the non-negativity of k(x∗) − k(0). (b) follows from dual relative
strong convexity. This inequality implies our desired result.

Theorem 3.9 guarantees the convergence of the iterates of Algorithm 1.1 under the assumption
that dual relative smoothness hold globally for a fixed L∗. Unfortunately it may be difficult to to
derive a tight bound on L∗ or small L∗ may be appropriate locally. In this case, it may be useful to
use a line search to choose L∗. Consider the following generalization of the update rule of Algorithm
1.1,

xi+1 = xi −
1

L∗i
∇k(∇f(xi)) (47)

where L∗i > 0 is allowed to depend on the iteration. The next proposition shows that, under suitable
assumptions, (47) converges with rates analogous to Theorem 3.9.

Proposition 3.10 (Adaptive step sizes). Let f : Rd → R∪{∞} be a proper closed convex function
that is differentiable on int(dom f) 6= ∅ and minimized at xmin. Let k : Rd → R ∪ {∞} be a proper
closed convex function that is differentiable on ∇f(int(dom f)). If x0 ∈ int(dom f) and for all i > 0
the iterates xi in (47) satisfy

1. xi ∈ int(dom f),

2. k(∇f(xi)) ≤ k(∇f(xi−1)),

3. k(∇f(xi))− k(0) ≤ L∗i−1(f(xi−1)− f(xi)),

then we have

k(∇f(xi))− k(0) ≤
max0≤j≤i−1 L

∗
j

i
(f(x0)− f(xmin)). (48)

Remark 3.11. In practice, a possible choice of step sizes is

L∗i−1 = min{2r, r ∈ Z : 1., 2., and 3. of Proposition 3.10 are satisfied}. (49)

If L∗ is the smallest real number such that f is dual L∗-smooth relative to k (see Lemma 3.6 for
an equivalent condition), then this scheme satisfies that L∗i−1 < 2L∗ for every i > 0 (hence we are
making steps that are almost as large or larger as if we would use the smallest possible fixed L∗,
without knowing the value of L∗ in advance). The search through the set in (49) for finding L∗i can
be initialized at L∗i−1.
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Proof of Proposition 3.10. The proof follows similar lines as in the previous case. First, by summing
up the inequalities from 3, we obtain that∑

1≤j≤i

[k(∇f(xj))− k(0)] ≤
∑

1≤j≤i

L∗i−1(f(xi−1)− f(xi)) ≤ (f(x0)− f(xmin)) max
0≤j≤i−1

L∗j ,

and using 2., it follows that
∑

1≤j≤i[k(∇f(xj)) − k(0)] ≥ i(k(∇f(xi)) − k(0)). The result follows
directly.

An important question that we do not address in this section is whether the sub-linear conver-
gence of k(∇f(xi))−k(0) implies specific rates of convergence of other quantities of interest. These
might be, for example, ‖xi − xmin‖ or f(xi)− f(xmin). Rates for these will likely depend on both
f and k.

4 Applications

4.1 Exponential Penalty Functions

Consider the following problem.
min
x∈Rd
{cTx : Ax ≤ b}, (LP)

where c ∈ Rd, b ∈ Rn, and A ∈ Rn×d. Associate with this linear program the following relaxation
into an unconstrained problem: minx∈Rd fτ (x) for

fτ (x) = cTx+ τ

n∑
i=1

exp((Aix− bi)/τ), (50)

where τ > 0 and Ai is the ith row of A (a row vector). This approximation of (LP) with exponential
penalty functions was studied by several authors (see [44, 21, 37, 5]) and is directly useful in the
machine learning literature for boosting (see, e.g., [32]). Here we design a dual reference function
for fτ under the following assumptions.

Assumption 4.1. Suppose that the following hold for problem (LP).

1. ‖Ai‖ = 1 for 1 ≤ i ≤ n.

2. A ∈ Rn×d is of full rank d ≤ n.

3. P = {x ∈ Rn : Ax ≤ b} is a polytope, which is contained in a Euclidean ball of radius R > 0
and contains a Euclidean ball of radius r > 0.

The dual reference function will be designed so that is smooth relative to f∗τ and Algorithm 1.1,
with appropriate step-size choices, converges with global guarantees.

Define the dual reference function k : Rd → R,

k(x∗) = ‖x∗‖ − log(‖x∗‖+ 1). (51)
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This behaves like a quadratic ‖x∗‖2/2 near its minimum x∗ = 0 and like ‖x∗‖, i.e., grows linearly,
at infinity. It is also possible to verify that k is Legendre convex. Furthermore, we have:

∇k(x∗) =
x∗

‖x∗‖+ 1
, ∇2k(x∗) =

I

‖x∗‖+ 1
− x∗x∗T

(‖x∗‖+ 1)2‖x∗‖ . (52)

Hence, [∇2k(x∗)]−1 � (1 + ‖x∗‖)I. From Proposition 3.4 and this inequality it follows that the fact
that k is L∗-smooth relative to f∗τ is implied by

∇2fτ (x) � L∗ [1 + ‖∇fτ (x)‖] I ∀x ∈ Rd. (53)

This is the strategy of the following theorem, which shows that fτ is dual smooth to this choice of
k under our assumptions.

Proposition 4.2. Under Assumption 4.1 for fτ defined in (50) and k defined in (51), we have
that

∇2fτ (x) � L∗τ [∇2k(∇fτ (x))]−1 ∀x ∈ Rd, (54)

where the dual relative smoothness constant is given by

L∗τ =
2R

r

∥∥ATA∥∥
τ

(η + ‖c‖). (55)

Here,
∥∥ATA∥∥ is the induced matrix norm, and

η = sup
‖s‖∞≤1

∥∥AT s∥∥ ≤ √n∥∥AT∥∥∞ . (56)

Because fτ and k are Legendre convex, k is smooth relative to f∗τ and Theorem 3.9 implies that
Algorithm 1.1 converges with k(∇f(xi)) converging at a rate O(1/i).

Remark 4.3. From Theorem 3.9, we have

k(∇fτ (x)) ≤ L∗τ (fτ (x0)− fτ (xmin))

i
. (57)

This suggests that, if we can start from an initial point within the polytope, then we can reach a
point where ‖∇fτ (x)‖ is significantly less than ‖c‖ (which is expected to be near the minimum) in
polynomial amount of steps, depending on the conditioning R/r and the value of τ . The step-size
1/L∗i can also be chosen adaptively, as explained in Proposition 3.10. Near the minimum, both fτ (x)
and k(x∗) behave like quadratic functions, so local linear convergence rates hold. We believe that
this iterative scheme is reasonably efficient for high dimensional well-conditioned polytopes, but in
other less well conditioned instances it is outperformed by existing algorithms such as multiplicative
weights [4] or [20], which is based on Newton’s method (hence uses second-order information).

Proof of Proposition 4.2. Note that 1 ≤ η ≤ n, because ‖Ai‖ = 1. Let α(x) := maxi∈[n](Aix− bi).
Then α(x) < 0 inside the polytope and α(x) > 0 outside of it. By differentiation, we have

∇fτ (x) =

n∑
i=1

Ai exp((Aix− bi)/τ) + c, (58)

∇2fτ (x) =

n∑
i=1

ATi Ai
τ

exp((Aix− bi)/τ). (59)
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Note that fτ is defined everywhere and differentiable. Furthermore, under our assumption that
rank(ATA) = rank(A) = d, it is evidently strictly convex and therefore Legendre.

The Hessian of fτ satisfies

∇2fτ (x) � exp(α(x)/τ)
ATA

τ
� exp (α(x)/τ)

∥∥ATA∥∥
τ

I. (60)

Because η ≥ 1, it is clear that the claim of the theorem holds for every x where α(x) ≤ 0 (i.e.
inside the polytope or on its boundary). From now on we will assume that x is such that α(x) > 0
(outside of the polytope). Let xc be a minimizer of α(x) (at least one exists since the polytope is
compact and α(x) is a continuous function), then using the assumption ‖Ai‖ = 1 it follows that
α(xc) = −r < 0. Hence x 6= xc. We are going to need an upper bound on ‖x− xc‖, which we will
obtain as follows. By the definitions, we have Aixc ≤ −r+ bi and Aix = Aix− bi + bi ≤ α(x) + bi,
hence

Ai

(
xc +

r

α(x) + r
(x− xc)

)
=

r

α(x) + r
Aix+

α(x)

α(x) + r
Aixc

≤ r

α(x) + r
(α(x) + bi) +

α(x)

α(x) + r
(−r + bi) = bi.

Therefore xc + r
α(x)+r (x− xc) ∈ P ⊂ Bxc(2R), so

0 < ‖x− xc‖ ≤ 2
α(x) + r

r
R and ‖x− xc‖−1 ≥ r

α(x) + r

1

2R
. (61)

Let I = {i ∈ [n]; Aix− bi > 0}, J = {i ∈ [n]; Aix− bi ≤ 0}, and

GI(x) =
∑
i∈I

e
1
r (Aix−bi)Ai GJ (x) =

∑
i∈J

e
1
r (Aix−bi)Ai. (62)

Then ∇fτ (x) = GI(x) +GJ (x) + c. We have

‖GI(x)‖ ≥ GI(x)T (x− xc)
‖x− xc‖

= ‖x− xc‖−1
∑
i∈I

e
1
r (Aix−bi)Ai(x− xc)

(a)

≥ ‖x− xc‖−1
e
α(x)
τ (α(x) + r)

(b)

≥ r

2R
e
α(x)
τ .

Here, (a) follows from the facts that there is a j ∈ I such thatAj(x−xc) = α(x)+bj−Ajxc ≥ α(x)+r
and the fact that Ai(x − xc) ≥ bi + r − bi > 0 holds for every i ∈ I. (b) follows from (61). From
(60) we obtain that

∇2fτ (x) � exp (α(x)/τ)

∥∥ATA∥∥
τ

I

� 2R

r

∥∥ATA∥∥
τ

‖GI(x)‖ I

� 2R

r

∥∥ATA∥∥
τ

(‖∇fτ (x)‖+ ‖GJ (x)‖+ ‖c‖)I.

(63)

Hence (53) follows from the facts that ‖GJ (x)‖ ≤ η and η + ‖c‖ ≥ 1. As discussed (54) follows
from [∇2k(x∗)]−1 � (1 + ‖x∗‖)I.
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4.2 p-norm Regression

Consider the following p-norm regression problem,

min
x∈Rd

‖Ax− b‖pp , (pnorm)

where A ∈ Rn×d, d� n, b ∈ Rn, and p ≥ 1. This problem is a useful abstraction for some important
graph problems, including Lipschitz learning on graphs [29] and `p-norm minimizing flows [1].
Algorithms specialized for p-norm regression have recently been studied in the theoretical computer
science literature by several authors (see, e.g., [17, 2] and references therein). In this subsection,
we design an appropriate dual reference function for (pnorm) under the following assumptions. Let
Ai denote the rows of A (as row vectors).

Assumption 4.4. Suppose that the following hold for problem (pnorm).

1. 2 ≤ p <∞.

2. A is full rank d, and for all x ∈ Rd there is a subset I(x) ⊂ [n] such that Aix 6= bi for all
i ∈ I(x), and span{Ai : i ∈ I(x)} = Rd.

3. cG = inf‖s‖=1 ‖As‖pp > 0.

4. cH = infu,v∈Rd:‖u‖=1,‖v‖=1

∑n
i=1 |Aiu|

p−2
(Aiv)2 > 0.

Remark 4.5. Although these assumptions seem restrictive, we can show that, if n ≥ 2d − 1 and
(Ai)1≤i≤n and (bi)1≤i≤n are chosen as independent random variables with densities that are abso-
lutely continuous with respect to the Lebesgue measure on Rd and R, then the assumptions hold
with probability 1. Assumption 2 is implied by the stronger assumption that any d rows of A define
a full rank d matrix, and the maximal number of equalities Aix = bi that hold for any x is no more
than d. This stronger version of Assumption 2, and Assumption 3 holds with probability 1 under
the random allocation due to the fact that the set of real valued d× d matrices with determinant 0
has Lebesgue-measure 0 in Rd×d (due to the fact that the determinant is a multivariate polynomial
of the entries, and the zero set of such polynomials has Lebesgue measure zero unless they are
constant 0, see [19]). The minimum in Assumption 4 is achieved for some umin and vmin due to
continuity and compactness of the unit sphere. Since any d rows of A form an independent basis
with probability 1, it follows that u and v can be orthogonal to at most d− 1 of them, respectively,
so using n ≥ 2d− 1 there exists an i in the sum

∑n
i=1 |Aiumin|p−2

(Aivmin)2 that is non-zero, hence
Assumption 4 holds.

Consider the dual reference function k : Rd → R,

k(x∗) = 1
q

(
‖x∗‖2 + 1

) q
2 − 1

q , (64)

for q = p
p−1 (hence 1

p + 1
q = 1). This behaves like a quadratic ‖x∗‖2/2 near its minimum x∗ = 0

and like ‖x∗‖q/q at infinity. For this k, we have

∇k(x∗) = x∗(1 + ‖x∗‖2)
q−2
2 (65)

As the next theorem shows dual relative strong convexity and smoothness of k relative to the
conjugate of (pnorm) hold under our assumptions.
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Figure 1: Convergence rates for p-norm regression are mostly unaffected by the dimension d for
these random instances with p = 4.

Proposition 4.6. Let f(x) = ‖Ax− b‖pp be the p-norm objective. Under Assumption 4.4 for k
defined in (64), there exists µ∗, L∗ > 0 such that

µ∗[∇2k(∇f(x))]−1 � ∇2f(x) � L∗[∇2k(∇f(x))]−1 ∀x ∈ Rd. (66)

See (76) and (77) for the definitions of µ∗ and L∗. Because f and k are Legendre convex, k is
smooth and strongly convex relative to f∗ and Theorem 3.9 implies that Algorithm 1.1 converges
with f(xi)− f(xmin) converging at a linear rate O((1− µ∗/L∗)i).

To test the empirical performance of this method, we have implemented it with Ai, b, and x0

i.i.d. as standard normals for power p = 4, d ∈ {102, 103, 104}, and n = 10d. The inverse step-size
L∗0 was chosen to be L∗0 = 1 initially, and multiplied by 2 if the function value would increase due to
too large steps (hence this was chosen adaptively in the beginning, but L∗i was never decreased later
on). As Figure 1 shows, empirically our method seems to be performing well, with high precision
achieved after 50-80 gradient evaluations, and the convergence rate seems to be mostly unaffected
by the dimension d. Hence in this random setting dual space preconditioning is indeed very efficient,
and competitive with previous works [17, 2, 1] which had dimension dependent convergence rates.
We think that based on Proposition 4.6, it can be shown that with high probability, dimension-free
convergence rates hold in this random scenario when the number of vectors n tends to infinity
(the proof would be based on concentration inequalities for empirical processes, see e.g. [14] for an
overview of such inequalities). Note however that we do not believe this always to be the case for
general non-random A and b, and there could be instances of very poor conditioning (such as when
n ≈ d) where the homotopy method of [17] or the IRLS method of [3] could perform better. The
proof of Proposition 4.6 is based on the following two lemmas.

Lemma 4.7 (Bounds on the gradient). Let f(x) = ‖Ax− b‖pp be the p-norm objective for (pnorm).
Under Assumption 4.4, we have

LG‖x‖p−1 − CG ≤ ‖∇f(x)‖ ≤ UG‖x‖p−1 +DG (67)

21



for all x ∈ Rd, with constants

LG = 2−p+1cG = 2−p+1 inf
‖s‖=1

‖As‖pp , CG =

(
n∑
i=1

|bi|p
)(p−1)/p

· c1/pG ,

UG = 2p−2(p+ 1) sup
‖s‖=1

‖As‖pp , DG = 2p−2(p− 1)

(
n∑
i=1

|bi|p
)
.

Proof. By differentiation, we have

∇f(x) = p

n∑
i=1

|Aix− bi|p−2
(Aix− bi)Ai, (68)

thus

‖∇f(x)‖ = p

∥∥∥∥∥
n∑
i=1

|Aix− bi|p−2
(Aix− bi)Ai

∥∥∥∥∥
≥ max

(
p

‖x‖
n∑
i=1

|Aix− bi|p−2
(Aix− bi)Aix, 0

)

= max

(
p

‖x‖
n∑
i=1

[
|Aix− bi|p−2

(Aix− bi)2 + |Aix− bi|p−2
(Aix− bi)bi

]
, 0

)

≥ max

(
p

‖x‖
n∑
i=1

(
|Aix− bi|p − |Aix− bi|p−1 |bi|

)
, 0

)
,

now by Young’s inequality |Aix− bi|p−1 |bi| ≤ |Aix− bi|p p−1
p + |bi|p

p , hence

≥ max

(
1

‖x‖
n∑
i=1

(|Aix− bi|p − |bi|p) , 0
)

using the fact that |a+ b|p ≤ (|a| + |b|)p =
(

2|a|+2|b|
2

)p
≤ 2p−1(|a|p + |b|p) by convexity (this is

so-called the Cp inequality), so |Aix− bi|p + |bi|p ≥ 2−p+1 |Aix|p, hence

≥ max

(
1

‖x‖
n∑
i=1

(
2−p+1 |Aix|p − 2|bi|p

)
, 0

)

≥ max

(
2−p+1

[
inf
‖s‖=1

‖As‖pp
]
· ‖x‖p−1 − 2

∑n
i=1 |bi|p
‖x‖ , 0

)
,

and the lower bound follows from Assumption 4.4 by straightforward rearrangement. For the upper
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bound, notice that

‖∇f(x)‖ ≤ p sup
‖v‖=1

n∑
i=1

|Aix− bi|p−1 |Aiv|

≤ 2p−2p sup
‖v‖=1

n∑
i=1

(
|Aix|p−1 |Aiv|+ |bi|p−1 |Aiv|

)
≤ 2p−2p

[
‖x‖p−1 sup

‖s‖=1,‖v‖=1

n∑
i=1

(
|Ais|p−1 |Aiv|

)
+ sup
‖v‖=1

n∑
i=1

|bi|p−1 |Aiv|
]

≤ 2p−2p

[
p+ 1

p
sup
‖s‖=1

‖As‖pp +
p− 1

p

n∑
i=1

|bi|p
]
,

hence the result follows. The last step uses Fenchel-Young, and rearrangement.

Lemma 4.8 (Bounds on the Hessian). Let f(x) = ‖Ax− b‖pp be the p-norm objective. Suppose
that Assumption 4.4 holds, and let

RH =

∥∥∥∥∥
n∑
i=1

|bi|p−2ATi Ai

∥∥∥∥∥
1/(p−2)

/(cH2−p)1/(p−2), (69)

ρH = inf
‖x‖≤RH

λmin(∇2f(x)) = inf
‖x‖≤1,‖u‖=1

p(p− 1)

n∑
i=1

|Aix− bi|p−2
(Aiu)2. (70)

Then ρH > 0, and we have

(LH‖x‖p−2 + CH)I � ∇2f(x) � (UH‖x‖p−2 +DH)I (71)

for all x ∈ Rd, with constants

LH = min

(
p(p− 1)2−p−1cH ,

ρH

2Rp−2
H

)
,

UH = 2p−3p(p− 1) sup
‖u‖=1,‖v‖=1

n∑
i=1

|Aiu|p−2
(Aiv)2,

CH = min
(ρH

2
, p(p− 1)2−p−1cHR

p−2
H

)
, DH = p(p− 1)2p−3

∥∥∥∥∥
n∑
i=1

|bi|p−2ATi Ai

∥∥∥∥∥ .
Proof. We have by differentiation

∇2f(x) = p(p− 1)

n∑
i=1

|Aix− bi|p−2
ATi Ai. (72)

23



Notice that using the fact that |a− b|p−2 + |b|p−2 ≥ 2−(p−1)|a|p−2, we have

∇2f(x) = p(p− 1)

n∑
i=1

|Aix− bi|p−2
ATi Ai

� p(p− 1)

n∑
i=1

(
2−(p−1)|Aix|p−2 − |bi|p−2

)
ATi Ai

� p(p− 1)2−(p−1)cH‖x‖p−2 − p(p− 1)

∥∥∥∥∥
n∑
i=1

|bi|p−2ATi Ai

∥∥∥∥∥ .
Let RH be as in (69), then using the above bound, we can see that for ‖x‖ ≥ RH , we have

∇2f(x) � p(p− 1)2−pcH‖x‖p−2I

� p(p− 1)2−p−1cH‖x‖p−2 + p(p− 1)2−p−1cHR
p−2
H .

(73)

Since the minimum of the continuous function λmin(∇2f(x)) is achieved on the compact set BRH ,
and by the second part of Assumption 4.4, it cannot be zero, and hence ρH > 0 and ∇2f(x) � ρHI
for every x ∈ BRH . The lower bound in (71) follows by combining this with (73). For the upper
bound, using the inequality |a+ b|p−2 ≤ 2p−3(|a|p−2 + |b|p−2), we obtain that

∇2f(x) � p(p− 1)2p−3 sup
‖s‖=1

∥∥∥∥∥
n∑
i=1

|Ais|p−2
ATi Ai

∥∥∥∥∥ · ‖x‖p−2

+ p(p− 1)2p−3

∥∥∥∥∥
n∑
i=1

|bi|p−2ATi Ai

∥∥∥∥∥ .
Now we are ready to prove our main result in this section.

Proof of Proposition 4.6. First, both f and k are Legendre convex in this case. This is easy to
verify for k, and evidently f is differentiable everywhere. To verify strict convexity of f , note that
∇2f(x) � 0 under part two of Assumption 4.4. Since both f and k are twice differentiable, by
Proposition 3.4, it suffices to check that (66) holds for the linear convergence of Algorithm 1.1. We
have by differentiation,

∇2k(x∗) = (1 + ‖x∗‖2)
q−2
2 I + (q − 2)(1 + ‖x∗‖2)

q−4
2 x∗x∗T . (74)

Now it is easy to see that for p ∈ [2,∞), we have q = p/(p − 1) ∈ (1, 2] and it is not difficult to
verify that ∇2k satisfies that for all x∗ ∈ Rd,

(1 + ‖x∗‖2)
1
2
p−2
p−1 I �

[
∇2k(x∗)

]−1 � (p− 1)(1 + ‖x∗‖2)
1
2
p−2
p−1 I. (75)

The claim of the theorem now follows by some straightforward rearrangement using Lemmas 4.7
and 4.8, with constants

µ∗ = min

(
CH

2(p− 1)(2 + 2DG)
,

LH

4(p− 1)U
(p−2)/(p−1)
G

)
, (76)

L∗ = min

(
UH

(LG/2)(p−2)/(p−1)
, 4UH

(
CG
LG

)(p−2)/(p−1)

+ 2DH

)
. (77)
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5 Discussion

In this paper we introduced a non-linear preconditioning scheme for gradient descent on Legendre
convex functions f that converges under generalizations of the standard Lipschitz assumption on
∇f . There are at least two interpretations of this method. The first is as a generalization of
gradient descent in which the update direction is preconditioned by the gradient map ∇k of a
designed dual reference, Legendre convex function k. The second interpretation is as a Bregman
gradient method in the dual space, which minimizes the designed k while the conjugate f∗ plays
the role of the “reference function”. The choice of k affects the conditioning of our method, which
is made explicit in our analysis through a relative smoothness condition between k and f∗. The
dual relative conditions admit non-smooth f and k, and are provably distinct dual cousins of the
relative smoothness conditions introduced by [7]. k serves as a model of the convex conjugates f∗

in a certain problem class. In section 4, we show how this method can be applied to exponential
penalty functions (see, e.g., [21, 20]) and p-norm regression (see [17, 2] and references therein) with
global convergence rate guarantees.

Algorithm 1.1 is related to a number of existing methods, some of which are subject to the
analysis we provide. The most notable of these is the method of steepest descent with respect
to a given norm ‖·‖ (now not necessarily Euclidean). Here we follow the exposition of Boyd and
Vandenberghe [15, sect. 4.9]. The steepest descent iteration is given by

xi+1 = xi +
1

L
‖∇f(xi)‖∗ d, where d ∈ arg max

‖x‖≤1

〈−∇f(xi), x〉 , (78)

and ‖x∗‖∗ = sup‖x‖≤1 〈x, x∗〉 is the dual norm of ‖·‖. The identity ∂(‖x∗‖2∗ /2) = ‖x∗‖∗ arg max{〈x∗, x〉 :

‖x‖ ≤ 1} for all x∗ ∈ Rd implies that for strictly convex and differentiable ‖·‖∗, the steepest descent

method (78) is a special case of dual preconditioned gradient descent with k(x∗) = ‖x∗‖2∗ /2. Our
analysis does not apply in the case of other norms or normalized steepest descent [15]. Algorithm
1.1 also generalizes the rescaled gradient method of [47, sect. 2.2]. Thus, our method may be
seen as a generalization of the steepest descent method and rescalings of gradient descent. Dual
preconditioning is more distantly related to the dual gradient methods [43, 9]. These methods are
designed for problems with non-smooth, but strongly convex structure. They exploit the duality
between classical smoothness and strong convexity by applying smooth minimization algorithms
to a dual problem. Similarly, Algorithm 1.1 can be seen as a move to the dual space, in which a
dual problem k(x∗) ≈ f∗(x∗) − 〈x∗, xmin〉 (dual to f(x) + δx=xmin(x)) is minimized by a Bregman
gradient method. Thus, dual gradient methods and dual preconditioning are most easily applied
when the dual structure is relatively more benign to model than the primal structure, e.g., when f
has super-quadratic growth.

There are a couple natural questions that arise from this work. First, it may be useful to pursue
the analogy with dual gradient methods further and to design methods for the general composite
model that exploit dual relative smoothness. Second, there is still considerable difficulty in the
design of k. Thus, it may be productive to investigate whether methods from linear preconditioning
(see [10] for a review), such as incomplete factorizations or sparse approximate inverses, can be
generalized to the non-linear setting for the design of k. Nonetheless, the dual relative conditions
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studied in this work provide new avenues for improving the conditioning of optimizers via hard-won
domain-specific knowledge.
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