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Principles and Practice of Explainable
Machine Learning
Vaishak Belle1,2 and Ioannis Papantonis1*

1School of Informatics, University of Edinburgh, Edinburgh, United Kingdom, 2Alan Turing Institute, London, United Kingdom

Artificial intelligence (AI) provides many opportunities to improve private and public life.
Discovering patterns and structures in large troves of data in an automated manner is a
core component of data science, and currently drives applications in diverse areas such as
computational biology, law and finance. However, such a highly positive impact is coupled
with a significant challenge: how do we understand the decisions suggested by these
systems in order that we can trust them? In this report, we focus specifically on data-driven
methods—machine learning (ML) and pattern recognition models in particular—so as to
survey and distill the results and observations from the literature. The purpose of this report
can be especially appreciated by noting that ML models are increasingly deployed in a
wide range of businesses. However, with the increasing prevalence and complexity of
methods, business stakeholders in the very least have a growing number of concerns
about the drawbacks of models, data-specific biases, and so on. Analogously, data
science practitioners are often not aware about approaches emerging from the academic
literature or may struggle to appreciate the differences between different methods, so end
up using industry standards such as SHAP. Here, we have undertaken a survey to help
industry practitioners (but also data scientists more broadly) understand the field of
explainable machine learning better and apply the right tools. Our latter sections build
a narrative around a putative data scientist, and discuss how she might go about
explaining her models by asking the right questions. From an organization viewpoint,
after motivating the area broadly, we discuss the main developments, including the
principles that allow us to study transparent models vs. opaque models, as well as
model-specific or model-agnostic post-hoc explainability approaches. We also briefly
reflect on deep learning models, and conclude with a discussion about future research
directions.

Keywords: survey, explainable AI, black-box models, transparent models, machine learning

1 INTRODUCTION

Artificial intelligence (AI) provides many opportunities to improve private and public life.
Discovering patterns and structures in large troves of data in an automated manner is a core
component of data science, and currently drives applications in diverse areas such as
computational biology, law and finance. However, such a highly positive impact is coupled
with significant challenges: how do we understand the decisions suggested by these systems in
order that we can trust them? Indeed, when one focuses on data-driven methods—machine
learning and pattern recognition models in particular—the inner workings of the model can be
hard to understand. In the very least, explainability can facilitate the understanding of various
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aspects of a model, leading to insights that can be utilized by
various stakeholders, such as (cf. Figure 1):

• Data scientists can be benefited when debugging a model or
when looking for ways to improve performance.

• Business owners caring about the fit of a model with
business strategy and purpose.

• Model Risk analysts challenging the model, in order to
check for robustness and approving for deployment.

• Regulators inspecting the reliability of a model, as well as
the impact of its decisions on the customers.

• Consumers requiring transparency about how decisions are
taken, and how they could potentially affect them.

Looking at explainability from another point of view, the
developed approaches can help contribute to the following
critical concerns that arise when deploying a product or taking
decisions based on automated predictions:

• Correctness: Are we confident all and only the variables of
interest contributed to our decision? Are we confident
spurious patterns and correlations were eliminated in our
outcome?

• Robustness: Are we confident that the model is not
susceptible to minor perturbations, but if it is, is that
justified for the outcome? In the presence of a missing or
noisy data, are we confident the model does not misbehave?

• Bias: Are we aware of any data-specific biases that unfairly
penalize groups of individuals, and if yes, can we detect and
correct them?

• Improvement: In what concrete way can the prediction
model be improved? What effect would additional training
data or an enhanced feature space have?

• Transferability: In what concrete way can the prediction
model for one application domain be applied to another
application domain? What properties of the data and model
would have to be adapted for this transferability?

• Human comprehensibility: Are we able to explain the
model’s algorithmic machinery to an expert? Perhaps

even a lay person? Is that a factor for deploying the
model more widely?

The purpose of this report can be especially appreciated by
noting that ML models are increasingly deployed in a wide range
of businesses. However, with the increasing prevalence and
complexity of methods, business stakeholders in the very least
have a growing number of concerns about the drawbacks of
models, data-specific biases, and so on. Analogously, data science
practitioners are often not aware about approaches emerging
from the academic literature, or may struggle to appreciate the
differences between different methods, so end up using industry
standards such as SHAP (Lundberg and Lee, 2017). In this report,
we have undertaken a survey to help industry practitioners (but
also data scientists more broadly) understand the field of
explainable machine learning better and apply the right tools.
Our latter sections particularly target how to distill and streamline
questions and approaches to explainable machine learning.

2 DEVELOPMENT AND CONTRIBUTIONS

Such concerns have motivated intense activity within the
community, leading to a number of involved but closely
related observations. Drawing on numerous insightful surveys
and perspectives [including (Lipton, 2016; Doshi-Velez and Kim,
2017; Arrieta et al., 2019; Weld and Bansal, 2019; Molnar, 2020)]
and a large number of available approaches, the goal of this survey
is to help shed some light into the various kind of insights that can
be gained, when using them. We distill concepts and strategies
with the overall aim of helping industry practitioners (but also
data scientists more broadly) disentangle the different notions of
explanations, as well as their intended scope of application,
leading to a better understanding of the field. To this end, we
first provide general perspectives on explainable machine
learning that covers: notions of transparency, criteria for
evaluating explainability, as well as the type of explanations
one can expect in general. We then turn to some frameworks
for summarizing developments on explainable machine learning.

FIGURE 1 | Concerns faced by various stakeholders.
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A taxonomic framework provides an overview of explainable ML,
and the other two frameworks study certain aspects of the
taxonomy. A detailed discussion on transparent vs. opaque
models, model specific vs. model agnostic approaches, as well
as post-hoc1 explainability approaches follows, all of which are
referred to in the taxonomic framework. Limitations and
strengths of these models and approaches are discussed
subsequently. We then turn to brief observations on
explainability with respect to deep learning models. Finally, we
distill these results further by building a narrative around a
putative data scientist, and discuss how she might go about
explaining her models. We conclude with some directions for
future research, including the need for causality-related
properties in machine learning models.

3 SCOPE

In the interest of space, we will focus on data-driven
methods—machine learning and pattern recognition models in
particular—with the primarily goal of classification or prediction
by relying on statistical association. Consequently, these engender
a certain class of statistical techniques for simplifying or otherwise
interpreting the model at hand.

Despite this scoping, the literature is vast.2 Indeed, we note that
underlying concerns about human comprehensibility and generating
explanations for decisions is a general issue in cognitive science, social
science and human psychology (Miller, 2019). There are also various
“meta”-views on explainability, such asmaintaining an explicitmodel
of the user (Chakraborti et al., 2019; Kulkarni et al., 2019). Likewise,
causality is expected to play a major role in explanations (Miller,
2019), but many models arising in the causality literature require
careful experiment design and/or knowledge from an expert (Pearl,
2018). They are, however, an interesting andworthwhile direction for
future research, and left for concluding thoughts. Our work here
primarily focuses on “mainstream” ML models, and the
corresponding statistical explanations (however limiting they may
be in a larger context) that one can extract from thesemodels. On that
note, we are not concerned with “generating” explanations, which
might involve, say, a natural language understanding component, but
rather extracting an interpretation of the model’s behavior and
decision boundary. This undoubtedly limits the literature in terms
of what we study and analyze, but it also allows us to be more
comprehensive in that scope. For simplicity, we will nonetheless
abbreviate this scoping of explainable machine learning as XAI in the
report, but reiterate that the AI community takes a broader view that
goes beyond (statistical) classification tasks (Chakraborti et al., 2019;
Kulkarni et al., 2019).

While we do survey and distill approaches to provide a high-
level perspective, we expect the reader to have some familiarity
with classification and prediction methods. Finally, in terms of
terminology, we will mostly use the term “model” to mean the
underlying machine learning technique such as random forests or
logistic regression or convolutional neural networks, and use the
term “approach” and “method” to mean an algorithmic pipeline
that is undertaken to explicitly simplify, interpret or otherwise
obtain explanations from a model. If we deviate from this
terminology, the context will make clear whether the entity is
a machine learning or an explainability one.

4 PERSPECTIVES ON EXPLAINABILITY

Before delving into actual approaches for explainability, it is
worthwhile to reflect on what are the dimensions for human
comprehensibility. We will start with notions of transparency, in
the sense of humans understanding the inner workings of the
model. We then turn to evaluation criteria for models. We finally
discuss the types of explanations that one might desire from
models. It should be noted that there is considerable overlap
between these notions, and in many cases, a rigorous definition or
formalization is lacking and generally hard to agree on.

4.1 Transparency
Transparency stands for a human-level understanding of the
inner workings of the model (Lipton, 2016). We may consider
three dimensions:

• Simulatability is the first level of transparency and it refers to a
model’s ability to be simulated by a human. Naturally, only
models that are simple and compact fall into this category.
Having said that, it is worth noting that simplicity alone is not
enough, since, for example, a very large amount of simple rules
would prohibit a human to calculate the model’s decision
simply by thought. On the other hand, simple cases of
otherwise complex models, such as a neural network with
no hidden layers, could potentially fall into this category.

• Decomposability is the second level of transparency and it
denotes the ability to break down a model into parts (input,
parameters and computations) and then explain these parts.
Unfortunately, not all models satisfy this property.

• Algorithmic Transparency is the third level and it
expresses the ability to understand the procedure the
model goes through to generate its output. For example,
a model that classifies instances based on some similarity
measure (such as K-nearest neighbors) satisfies this
property, since the procedure is clear; find the datapoint
that is the most similar to the one under consideration and
assign to the former the same class as the latter. On the other
hand, complex models, such as neural networks, construct
an elusive loss function, while the solution to the training
objective has to be approximated, too. Generally speaking,
the only requirement for a model to fall into this category is
for the user to be able to inspect it through a mathematical
analysis.

1The term post-hoc reflects the fact that explainability approaches inspect a model
after the training is completed, thus they do not influence or interfere with the
training process, they only audit the resulting model to assess its quality.
2A search on Google Scholar for “explainable machine learning” returns about one
thousand results; varying search to disjunctively include terms such as
“interpretable,” “artificial intelligence,” and “explanations,” returns an even
more extensive set of research papers, naturally.
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Broadly, of course, we may think of machine models as either
being transparent or opaque/black-box, although the above makes
clear this distinction is not binary. In practice, despite the nuances, it
is convention to see decision trees, linear regression, among others as
simpler, transparent models, and random forests, deep learning,
among others as opaque models, partly because current
applications rarely use a single perceptron neural network.

4.2 Evaluation Criteria
Although initially considered for rule extraction methods
(Craven and Shavlik, 1999), we might consider the following
dimensions to evaluating models in terms of explainability:

• Comprehensibility: The extent to which extracted
representations are humanly comprehensible, and thus
touching on the dimensions of transparency considered earlier.

• Fidelity: The extent to which extracted representations
accurately capture the opaque models from which they
were extracted.

• Accuracy: The ability of extracted representations to
accurately predict unseen examples.

• Scalability: The ability of the method to scale to opaque
models with large input spaces and large numbers of
weighted connections.

• Generality: The extent to which the method requires special
training regimes or restrictions on opaque models.

We reiterate that such concepts are hard to quantify
rigorously, but can nonetheless serve as guiding intuition for
future developments in the area.

4.3 Types of Explanations
For opaque models in particular, we might consider the following
types of post-hoc explanations (Arrieta et al., 2019):

• Text explanations produce explainable representations
utilizing symbols, such as natural language text. Other
cases include propositional symbols that explain the
model’s behavior by defining abstract concepts that
capture high level processes.

• Visual explanation aim at generating visualizations that
facilitate the understanding of a model. Although there are
some inherit challenges (such as our inability to grasp more
than three dimensions), the developed approaches can help
in gaining insights about the decision boundary or the way
features interact with each other. Due to this, in most cases
visualizations are used as complementary techniques,
especially when appealing to a non-expert audience.

• Local explanations attempt to explain how a model operates
in a certain area of interest. This means that the resulting
explanations do not necessarily generalize to a global scale,
representing themodel’s overall behavior. Instead, they typically
approximate the model around the instance the user wants to
explain, in order to extract explanations that describe how the
model operates when encountering such instances.

• Explanations by example extract representative instances
from the training dataset to demonstrate how the model

operates. This is similar to how humans approach
explanations in many cases, where they provide specific
examples to describe a more general process. Of course, for
an example to make sense, the training data has to be in a
form that is comprehensible by humans, such as images,
since arbitrary vectors with hundreds of variables may
contain information that is difficult to uncover.

• Explanations by simplification refer to the techniques that
approximate an opaque model using a simpler one, which is
easier to interpret. The main challenge comes from the fact
that the simple model has to be flexible enough so it can
approximate the complex model accurately. In most cases,
this is measured by comparing the accuracy (for
classification problems) of these two models.

• Feature relevance explanations attempt to explain a model’s
decision by quantifying the influence of each input variable.
This results in a ranking of importance scores, where higher
scores mean that the corresponding variable was more
important for the model. These scores alone may not always
constitute a complete explanation, but serve as a first step in
gaining some insights about the model’s reasoning.

We now turn to a distillation of the observations and techniques
from the literature in the following section. We will not always be
able to cover the entire gamut of dimensions considered in this
section, but they do serve as a guide for the considerations to follow.

5 EXPLORING EXPLAINABLE MACHINE
LEARNING

To summarize the rapid development in explainable machine learning
(XAI), we turn tofive “frameworks” that summarize or otherwise distill
the literature. These frameworks can be thought of as a comparative
exposition and/or visualization of sorts, which help us understand:

• the limitations of models that may already be deployed (at
least regarding explainability),

• what approaches are available for explaining such
models, and

• what models may be considered alternatively if the
application were to be redesigned with explainability n mind.

As should be expected, there will be overlap between these
frameworks.3 The first two frameworks are inspired by the
discussions in (Arrieta et al., 2019), adapted and modified
slightly for our purposes. The third and fourth framework are
based on an analysis on the current strengths and limitations of
popular realizations of XAI techniques. The fifth is a “cheat sheet”

3We note that without experimental comparisons and a proper deliberation on the
application domain, these frameworks purely provide an intuitive picture of model
capabilities. We also note that in what follows, we make the assumption that the
data is already segmented and cleaned, but it should be clear that often data pre-
processing is a major step before machine learning methods can be applied.
Dealing with data that has not been treated can affect both the applicability and the
usefulness of explainability methods.
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strategy and pipeline we recommend based on the development
of numerous libraries for the analysis and interpretation of
machine learning models [see, for example (Molnar, 2020)].

5.1 Taxonomy Framework
In Figure 2, we arrange models in terms of the kinds of
explainability that are enabled, to be seen as a taxonomy. The
subsequent frameworks will be based on this taxonomy, and can
be seen as elaborations on the distinction between transparent
and opaque ML models (Transparency framework), followed by a
description of the capabilities of explainability approaches (XAI
Capability framework).

5.2 Transparency Framework
In Table 1, we draw a comparison between models in terms of the
kinds of transparency that are enabled. This table demonstrates
the correspondence between the design of various transparent
ML models and the transparency dimensions they satisfy.
Furthermore, it provides a summary of the most common
types of explanations that are encountered when dealing with
opaque models.

5.3 Explainable Machine Learning
Capability Framework
In Table 2, we draw a comparison between XAI approaches in
terms of the type of explanations they offer, whether they are
model agnostic and whether they require a transformation of the
input data before the method can be applied. This summary can
be utilized to distinguish between the capabilities of different
explainability approaches, and whether the technical assumptions
made for applying the approach (e.g., assumptions about
independencies between variables, which is serious and
limiting) is a price worth paying for the application at hand.

5.4 Explanation Type Framework
In Table 3, we contrast the types of post-hoc explanations at a
conceptual level: for example, what might local explanations offer
in contrast to model simplification strategies?

5.5 Data Scientist Strategy Framework
In the penultimate section, we motivate a narrative for a putative
data scientist, Jane, and discuss how she might go about

FIGURE 2 | A taxonomic view on XAI.
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explaining her models by asking the right questions. We
recommend a simple strategy and outline sample questions
that motivate certain types of explanations.

In the following sections, we will expand on transparent
models, followed by opaque models and then to explainability
approaches, all of which are mentioned in the frameworks above.

6 TRANSPARENT MODELS

In this section we are going to introduce a set of models that are
inherently considered to be transparent. By this, we mean that
their intrinsic architecture satisfies at least one of the three
transparency dimensions that we discussed in a previous section.

• Linear\Logistic Regression refers to a class of models used
for predicting continuous\categorical targets, respectively,
under the assumption that this target is a linear
combination of the predictor variables. That specific
modeling choice allows us to view the model as a
transparent method. Nonetheless, a decisive factor of how a
explainable a model is, has to do with the ability of the user to
explain it, even when talking about inherently transparent
models. In that regard, although these models satisfy the
transparency criteria, they may also benefit from post-hoc
explainability approaches (such as visualization), especially
when non-expert audience needs to get a better
understanding of the models’ intrinsic reasoning. The
model, nonetheless, has been largely applied within Social
Sciences for many decades. As a general remark, we should
note that in order for the models to maintain their
transparency features, their size must be limited, and the
variables used must be understandable by their users.

• Decision Trees form a class of models that generally fall
into the transparent MLmodels category. They contain a set
of conditional control statements, arranged in a hierarchical
manner, where intermediate nodes represent decisions and
leaf nodes can be either class labels (for classification
problems) or continuous quantities (for regression
problems). Supposing a decision tree has only a small
amount of features and that its length is not prohibitively
long to be memorized by a human, then it clearly falls into
the class of simulatable models. In turn, if the model’s length
does not allow simulating it, but the features are still
understandable by a human user, then the model is no
longer simulatable, but it becomes decomposable. Finally,
if on top of that the model also utilizes complex feature
relationships, then it falls into the category of
algorithmically transparent models.

Decision trees are usually utilized in cases where
understandability is essential for the application at hand, so in
these scenarios not overly complex trees are preferred. We should
also note that apart from AI and related fields, a significant
amount of decision trees’ applications come from other fields,
such as medicine. However, a major limitation of these models
stems from their tendency to overfit the data, leading to poor
generalization performance, hindering their application in cases
where high predictive accuracy is desired. In such cases,
ensembles of trees could offer much better generalization, but
these models cannot be considered transparent anymore4.

TABLE 1 | Comparing models on the kinds of transparency that are enabled.

Model Simulatability Decomposability Algorithmic transparency Post-hoc

Linear/Logistic
regression

Predictors are human readable and
interactions among them are kept to a
minimum

Too many interactions and predictors Variables and interactions are too
complex to be analyzed without
mathematical tools

Not needed

Decision trees Human can understand without
mathematical background

Rules do not modify data and are
understandable

Humans can understand the prediction
model by traversing tree

Not needed

K-nearest
neighbors

The complexity of the model matches
human naive capabilities for simulation

Too many variables, but the similarity
measure and the set of variables can be
analyzed

Complex similarity measure, too many
variables to be analyzed without
mathematical tools

Not needed

Rule based
learners

Readable variables, size of rules is
manageable by a human

Size of rules is too large to be analyzed Rules so complicated that mathematical
tools are needed

Not needed

General additive
models

Variables, interactions and functions
must be understandable

Interactions too complex to be
simulated

Due to their complexity, variables and
interactions cannot be analyzed without
mathematical tools

Not needed

Bayesian
models

Statistical relationships and variables
should be understandable by the
target audience

Relationships involve toomany variables Relationships and predictors are so
complex that mathematical tools are
needed

Not needed

Tree ensembles Not applicable Not applicable Not applicable Feature relevance, Model
simplification

Support vector
machines

Not applicable Not applicable Not applicable Feature relevance, Model
simplification

Multi–layer
neural networks

Not applicable Not applicable Not applicable Feature relevance, Model
simplification,
Visualization

4Although an ensemble of a small number of decision trees could still fall under the
category of transparent models, those employed in real-world applications typically
consist of a large number of trees so can be seen to lose transparency properties.
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• K-Nearest Neighbors (KNN) is also a method that
falls within transparent models, which deals with
classification problems in a simple and straightforward
way: it predicts the class of a new data point by inspecting
the classes of its K nearest neighbors (where the
neighborhood relation is induced by a measure of
distance between data points). The majority class is then
assigned to the instance at hand.

Under the right conditions, a KNN model is capable of
satisfying any level of transparency. It should be noted,
however, that this depends heavily on the distance function
that is employed, as well as the model’s size and the features’
complexity, as in all the previous cases.

• Rule-based learning is built on the intuitive basis of
producing rules to describe how a model generates its
outputs. The complexity of the resulting rules ranges from
simple “if-else” expressions to fuzzy rules, or propositional
rules encoding complex relationships between variables. As
humans also utilize rules in everyday life, these systems are
usually easy to understand, meaning they fall into the
category of transparent models. Having said that, the exact
level of transparency depends on some designing aspects,
such as the coverage (amount) and the specificity (length) of
the generated rules.

Both of these factors are at odds with the transparency of the
resulting model. For example, it is reasonable to expect that a

TABLE 2 | Comparing XAI methods.

XAI method Swapping Explanation Model
agnostic

Categorical/
Continuous
features

Intermediate
transformation

Independent
features

Shapley
values

Examples

KernelSHAP (Lundberg
and Lee, 2017)

No Feature
relevance

Yes Both Yes Yes Yes No

TreeSHAP (Lundberg
and Lee, 2017)

Yes Feature
relevance

No Both Yes No Yes No

LIME (Ribeiro et al.,
2016)

Yes Simplification Yes Both Yes No Not
necessarily

No

Anchors (Ribeiro et al.,
2018)

Yes Simplification Yes Both No No No No

QII (Datta et al., 2016) Yes Feature
relevance

Yes Both Yes No Not
necessarily

No

CNF rules (Su et al.,
2016)

Yes Simplification Yes Categorical No No No No

Influence function (Koh
and Liang, 2017)

Yes Feature
relevance

Yes Both No No No Yes

ASTRID (Henelius et al.,
2017)

Yes Feature
relevance

Yes Both No No No No

Distilation (Tan et al.,
2017)

Yes Simplification Yes Both No No No No

Counterfactual
(Wachter et al., 2018)

Yes Local Yes Both No No No Yes

InTrees (Deng, 2014) Yes Simplification No Both No No No No
Prototypes (Tan et al.,
2016)

Yes Simplification No Both No No No Yes

Feature tweaking
(Tolomei et al., 2017)

Yes Feature
relevance

No Both No No No Yes

TABLE 3 | Advantages and disadvantages of the various kinds of explanations.

Explanation Advantages Disadvantages

Local
explanations

Explains the model’s behaviour in a local area of interest. Operates on
instance-level explanations.

Explanations do not generalize on a global scale. Small perturbations might
result in very different explanations. Not easy to define locality. Some
approaches face stability issues.

Examples Representative examples provide insights about the model’s internal
reasoning. Some of the algorithms uncover the most influential training data
points that led the model to its predictions.

Examples require human inspection. They do not explicitly state what parts
of the example influence the model.

Feature
relevance

They operate on an instance level, calculating the importance of each
feature in the model’s decision. A number of the proposed approaches
come with appealing theoretical guarantees.

They are sensitive in cases where the features are highly correlated. In many
cases the exact solutions are approximated, leading to undesirable side
effects, such as the ordering affecting the outcome.

Simplification Simple surrogate models explain the opaque ones. Resulting explanations,
such as rules, are easy to understand.

Surrogate models may not approximate the original models well. Surrogate
models come with their own limitations.

Visualizations Easier to communicate to non technical audience. Most of the approaches
are intuitive and not hard to implement.

There is an upper bound on how many features we can consider at once.
Humans need to inspect the resulting plots in order to produce explanations.
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system with a very large amount of rules is infeasible to be
simulated by a human. The same applies to rules containing a
prohibiting number of antecedents or consequents. Including
cumbersome features in the rules, on top of that, could further
impede their interpretability, rendering system just
algorithmically transparent.

• Generalized Additive Models (GAMs) are a class of linear
models where the outcome is a linear combination of some
functions of the input features. The goal of these models is to
infer the form of these unknown functions, which may
belong to a parametric family, such as polynomials, or they
could be defined non-parametrically. This allows for a large
degree of flexibility, since at some applications they may
take the form of a simple function, or be handcrafted to
represent background knowledge, while in others they may
be specified by just some properties, such as being smooth.

These models certainly satisfy the requirements for being
algorithmic transparent, at least. Furthermore, in applications
where the dimensionality of the problem is small and the
functions are relatively simple, they could also be considered
simulatable. However, we should note that while utilizing non-
parametric functional forms may enhance the models fit, it comes
with a trade-off regarding its interpretability. It is also worth
noting that, as with linear regression, visualization tools are often
employed to communicate the results of the analysis [such as
partial dependence plots (Friedman and Meulman, 2003)].

• Bayesian networks refer to the designing approach where
the probabilistic relationships between variables are
explicitly represented using a directed graph, usually an
acyclic one. Due to this clear characterization of the
connection among the variables, as well as graphical
criteria that examine probabilistic relationships by only
inspecting the graphs topology (Geiger et al., 1990), they
have been used extensively in a wide range of applications
(Kenett, 2012; Agrahari et al., 2018).

Following the above, it is clear that they fall into the class of
transparent model. They can potentially fulfill the necessary
prerequisites to be members of all three transparency levels,
however including overly complex features or complicating
graph topologies can result into them satisfying just
algorithmic transparency. Research into model abstractions
may be relevant to address this issue (John, 2017; Belle, 2019).

Owing to their probabilistic semantics, which allows
conditioning and interventions, researchers have looked into
ways to augment directed and undirected graphical models
(Baum and Petrie, 1966) further to provide explanations,
although, of course, they are already inherently transparent in
the sense described above. Relevant works include (Timmer et al.,
2016), where the authors propose a way to construct explanatory
arguments from Bayesian models, as well as (Kyrimi et al., 2020),
where explanations are produced in order to assess the
trustworthiness of a model. Furthermore, ways to draw

representative examples from data have been considered, such
as in (Kim et al., 2014).

A general remark, even when utilizing the models discussed
above, is about the trade-off between complexity and
transparency. Transparency, as a property, is not sufficient to
guarantee that a model will be readily explainable. As we saw in
the above paragraphs, as certain aspects of a model become more
complex, it is not apparent how it operates internally, anymore.
In these cases, XAI approaches could be used to explain the
model’s decisions, while utilizing an opaque model could also be
considered.

7 OPAQUE MODELS

While the models we discussed in the previous section come
with appealing transparency features, it is not always that
they are among the better performing ones, at least as
determined by predictive accuracy on standard (say)
vision datasets. In this section we will touch on the class
of opaque models, a set of ML models which, at the expense
of explainability, achieve higher accuracy utilizing complex
decision boundaries.

• Random Forests (RF) were initially proposed as a way to
improve the accuracy of single decision trees, which inmany
cases suffer from overfitting, and consequently, poor
generalization. Random forests address this issue by
combining multiple trees together, in an attempt to
reduce the variance of the resulting model, leading to
better generalization (Hastie et al., 2008). In order to
achieve this, each individual tree is trained on a different
part of the training dataset, capturing different
characteristics of the data distribution, to obtain an
aggregated prediction. This procedure results in very
expressive and accurate models, but it comes at the
expense of interpretability, since the whole forest is far
more challenging to explain, compared to single trees,
forcing the user to apply post-hoc explainability
techniques to gain an understanding of the decision
machinery.

• Support Vector Machines (SVMs) form a class of models
rooted deeply in geometrical approaches. Initially
introduced for linear classification (Vapnik and Lerner,
1963), they were later extended to the non-linear case
(Boser et al., 1992), while a relaxation of the original
problem (Cortes and Vapnik, 1995) made it suitable for
real-life applications. Intuitively, in a binary classification
setting, SVMs find the data separating hyperplane with the
maxim margin, meaning the distance between it and the
nearest data point of each class is as large as possible. Apart
from classification purposes, SVMs can be applied in
regression (Drucker et al., 1996), or even clustering
problems (Ben-Hur et al., 2001). While SVMs have been
successfully used in a wide array of applications, their high
dimensionality as well as potential data transformations and
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geometric motivation, make them very complex and opaque
models.

• Multi-layer Neural Networks (NNs) are a class of models
that have been used extensively in a number of applications,
ranging from bioinformatics (Chicco et al., 2014) to
recommendation systems (van den Oord et al., 2013), due
to their state-of-the-art performance. On the other hand, their
complex topology hinders their interpretability, since it is not
clear how the variables interact with each other or what kind
of high level features the network might has picked up.
Furthermore, even the theoretical/mathematical
understanding of their properties has not been sufficiently
developed, rendering them virtual black-box models.

From a technical point of view, NNs are comprised of
successive layers of nodes connecting the input features to the
target variable. Each node in an intermediate layer collects and
aggregates the outputs of the preceding layer and then produces
an output on its own, by passing the aggregated value through a
function (called activation function).5 In turn, these values are
passed on to the next layer and this process is continued until the
output layer is reached.

An immediate observation is that as the number of layers
increases, the harder it becomes to interpret the model. In
contrast, an overly simple NN could even fall into the class of
simulatable models. But such a simple model is of very little
practical interest these days.

8 EXPLAINABILITY APPROACHES

In this section, we are going to review the literature and provide an
overview of the variousmethods that have been proposed in order to
produce post-hoc explanations from opaque models. The rest of the
section is divided into the techniques that are especially designed for
Random Forests and then we turn to ones that are model agnostic.
We focus on Random Forests owing to their popularity and to
illustrate an emerging literature on model-specific explainability
which often leverages technical properties of the ML model to
provide a more sophisticated or otherwise customized
explainability approach.

8.1 Random Forest Explainability
Approaches
As discussed above, Random Forests are among the best
performing ML algorithms, used in a wide variety of domains.
However, their performance comes at the cost of explainability, so
bespoke post-hoc approaches have been developed to facilitate the
understanding of this class of models. For tree ensembles, in
general, most of the techniques found in the literature fall into
either the explanation by simplification or feature relevance

explanation categories. In what follows, we review some of the
most popular approaches.

8.1.1 Simplifying and Extracting Rules
An attempt to simplify RFs can be found in (Hara and Hayashi,
2016), where the authors propose a way to approximate them
with a mixture of simpler models. The only requirement for the
user is to specify the number of rules that the new mixture of
models should contain, thereby providing a degree of freedom
regarding how many rules are required to distill the model’s
intrinsic reasoning. Then, the resulting mixture approximates the
original model utilizing only the amount of rules that the user
specified.

Other approaches, similar in spirit, can be found in (Van
Assche and Blockeel, 2007; Zhou and Hooker, 2016), where the
objective is to approximate the RF using a single decision tree. In
(Van Assche and Blockeel, 2007), the authors utilize a heuristic,
based on information gain, in order to construct a tree that is
compact enough to retain interpretability. On the other hand, the
approach in (Zhou and Hooker, 2016) was based on studying the
asymptotic behavior of the Gini index, in order to train a stable
and accurate decision tree.

Another approach to simplify RFs is discussed in (Deng,
2014). The main contribution of this work is proposing a
methodology for extracting the more representative rules a RF
has acquired. This approach remedies the fact that RFs consist of
thousands of rules: by selecting only themost prominent ones, the
amount is reduced drastically. In this case, too, the resulting rules
approximate the original model, but the difference is that now
rules are not learnt by a newmodel, but are extracted from the RF
directly. Furthermore, the obtained rules can easily be combined
in order to create a new rule based classifier.

The idea above, has been explored from other perspectives
as well. In (Mashayekhi and Gras, 2015), a different method
for extracting rules from a RF is proposed. In this case, a hill
climbing methodology is utilized in order to construct a set of
rules that approximates the original RF. This, again, leads to a
significantly smaller set of rules, facilitating the model’s
comprehensibility.

A line of research that has also been explored for producing
explanations when using RFs is by providing the user with
representative examples. The authors in (Tan et al., 2016)
examine ways to inspect the training dataset in order to
sample a number of data points that are representative
members of their corresponding class. This method comes
with some theoretical guarantees about the quality of the
examples, while it is also adaptive, in the sense that the user
specifies the number of total examples, and then the algorithm
decides how many examples to sample from each class.

8.1.2 Feature Relevance
Along with simplification procedures, feature relevance
techniques are commonly used for tree ensembles. One of the
first approaches can be found in Breiman (Breiman et al., 1984).
His method is based on permuting the values of a feature within
the dataset, and then utilizing various metrics to assess the

5It is worth noting that there are a number of options when it comes to specifying
the activation function, which along with the number of the intermediate layers
determine the quality of the resulting model.
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difference in quality between the original and the newly
acquired model.

The authors of (Palczewska et al., 2013) develop an approach for
assessing the importance of individual features, by computing how
much the model’s accuracy drops, after excluding a feature.
Furthermore, employing this method it is possible to extract a
prototypical vector of feature contributions, so we can get an idea
of how important each feature is, with respect to the instances
belonging in a given class. It is worth noting that extensions of this
method in service of communicating explainability have been
proposed as well, such as in (Welling et al., 2016), where, in
addition to slightly modifying the way a feature’s importance is
computed, graphical tools for visualizing the results are developed.

A different approach on measuring a feature’s importance can be
found in (Tolomei et al., 2017). The aim of this work is to examine
ways to produce “counterfactual” data points, in the following sense:
assuming a data point was classified as negative (positive), how can we
generate a newdata point, as similar as possible to the original one, that
themodel would classify as positive (negative)? The similaritymetric is
given by the user, so it can be application specific, incorporating expert
knowledge. A by-product of this procedure is that by examining the
extent to which a feature was modified, we get an estimate of its
importance, as well as the new counterfactual data point.

In a somewhat different, yet relevant, approach the authors in
(Petkovic et al., 2018) develop a series of metrics assessing the
importance of the model’s features. Apart from standard
importance scores, they also discuss how to answer more
complex questions, such as what is the effect on the model’s
accuracy, when using only a subset of the original features, or
which subsets of features interact together.

Other ways to identify a set of important features can be found
in the literature, as well. The authors in (Auret and Aldrich, 2012)
propose a way to determine a threshold for identifying important
features. All features exceeding this threshold are deemed
important, while those that do not are discarded as
unnecessary. Following this approach, apart from having a
vector with each feature’s importance, a way to identify the
irrelevant ones is also provided. In addition, graphical tools to
communicate the results to a non-expert audience are discussed.

8.2 Model-Agnostic Explainability
Approaches
Model-agnostic techniques are designed having the purpose of
being generally applicable, in mind. They have to be flexible
enough, so they do not depend on the intrinsic architecture of a
model, thus operating solely on the basis of relating the input of a
model to its outputs. Arguably, the most prominent explanation
types in this class are model simplification, feature relevance, as
well as visualizations.

8.2.1 Explanation by Simplification
Arguably the most popular is the technique of Local Interpretable
Model-Agnostic Explanations (LIME) (Ribeiro et al., 2016).
LIME approximates an opaque model locally, in the
surrounding area of the prediction we are interested in
explaining, building either a linear model or a decision tree

around the predictions of an opaque model, using the
resulting model as a surrogate in order to explain the more
complex one. Furthermore, this approach requires a
transformation of the input data to an “interpretable
representation,” so the resulting features are understandable to
humans, regardless of the actual features used by the model (this
is termed as “intermediate transformation,” in Table 2).

A similar technique, called anchors, can be found in
(Ribeiro et al., 2018). Here the objective is again to
approximate a model locally, but this time not by using a
linear model. Instead, easy to understand “if-then” rules that
anchor the model’s decision are employed. The rules aim at
capturing the essential features, omitting the rest, so it results
in more sparse explanations.

G-REX (Konig et al., 2008) is an approach first introduced in
genetic programming, in order to extract rules from data, but
later works have expanding its score, rendering capable of
addressing explainability (Johansson et al., 2004a; Johansson
et al., 2004b).

Another approach is introduced in (Su et al., 2016), where
the authors explore a way to learn rules in either
Conjunctive Normal Form (CNF) or Disjunctive Normal
Form (DNF). Supposing that all variables are binary, then
the algorithm builds a classification model that attempts to
explain the complex model’s decisions utilizing only such
propositional rules. Such approaches have the extra benefit
of resulting in a set of symbolic rules that are explainable by
default, as well as can be utilized as a predictive model,
themselves.

Another perspective in simplification is introduced in
(Krishnan and Wu, 2017). In this work, the objective is to
approximate an opaque model using a decision tree, but the
novelty of the approach lies on partitioning the training dataset
in similar instances, first. Following this procedure, each time a
new data point is inspected, the tree responsible for explaining
similar instances will be utilized, resulting in better local
performance. Additional techniques to construct rules
explaining a model’s decisions can be found in (Turner,
2016a; Turner, 2016b).

In similar spirit, the authors of (Bastani et al., 2017) formulate
model simplification as a model extraction process by
approximating a complex model using a transparent one. The
proposed approach utilizes the predictions of a black-box model
to build a (greedy) decision tree, in order to inspect this surrogate
model to gain some insights about the original one. Simplification
is approached from a different perspective in (Tan et al., 2017),
where an approach to distill and audit black box models is
presented. This is a two-part process, comprising of a
distillation approach, as well as a statistical test. So, overall,
the approach provides a way to inspect whether a set of
variables is enough to recreate the original model, or if extra
information is required in order to achieve the same accuracy.

There has been considerable recent development in the so-
called counterfactual explanations (Wachter et al., 2018). Here,
the objective is to create instances as close as possible to the
instance we wish to explain, but such that the model classifies
the new instance in a different category. By inspecting this new
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data point and comparing it to the original one we can gain
insights on what the model considers as minimal changes to the
original data point, so as to change its decision. A simple
example is the case of an applicant who was denied his loan
application, and the explanation might say that had he had a
permanent contract with his current employer, the loan would
be approved.

8.2.2 Feature Relevance
One of the most popular contributions here, and in XAI in
general, is that of SHAP (SHapley Additive exPlanations)
(Lundberg and Lee, 2017). The objective in this case is to
build a linear model around the instance to be explained, and
then interpret the coefficients as the feature’s importance. This
idea is similar to LIME, in fact LIME and SHAP are closely
related, but SHAP comes with a set of nice theoretical properties.
Its mathematical basis is rooted in coalitional Game Theory,
specifically on Shapley values (Shapley, 1952). Roughly, the
Shapley value of a feature is its average expected marginal
contribution to the model’s decision, after all possible
combinations have been considered. However, the
dimensionality of many complex real-world applications
renders the calculation of these values infeasible, so the
authors in (Lundberg and Lee, 2017) simplify the problem by
making various assumptions, such as independency among the
variables. Arguably, this is a strong assumption that can affect the
quality of the resulting Shapley values. Other issues exist as well,
for example while in its formulation all possible orderings of the
variables are considered, in practice this is infeasible, so the
ordering of the variable affects the computation of the Shapley
values (In Table 2, for example, we use the term “swapping” to
refer to whether a method is influenced by the features’ ordering).

Similar in spirit, in (Strumbelj and Kononenko, 2010), the
authors propose to measure a feature’s importance using its
Shapley value, but the objective function, as well as the
optimization approach, is not the same as in SHAP. A
different strategy is considered in (Datta et al., 2016), where a
broad variety of measures are presented to tackle the
quantification of the degree of influence of inputs on the
outputs. The proposed QII (Quantitative Input Influence)
measures account for correlated inputs, which quantifies the
influence by estimating the change in performance when using
the original data set vs. when using one where the feature of
interest is replaced by a random quantity.

In relation to the above, it is worth mentioning that the
concept of Shapley values has proven to be highly influential
within the XAI community. On the one hand, the popularity of
SHAP naturally led to further research, aiming to design
complimentary tools to better understand its outcomes. For
example (Kumar I. et al., 2020), presents a diagnostic tool that
can be useful when interpreting Shapley values, since these
scores alone can be misleading, as the authors argue.
Another interesting development can be found in (Joseph,
2019), where a series of statistical tests are developed,
allowing for producing confidence intervals for the resulting
Shapley values. Furthermore, such approaches are also
significant since they draw connections between well-known

statistical techniques and XAI, expanding the range of the latter,
while also opening the door for utilizing tools that could
possibly address current robustness issues.

On the other hand, research has also looked into connecting
Shapley values and statistics in alternative ways as well. A
representative example can be found in (Song and Barry,
2016; Owen and Prieur, 2017), where the authors demonstrate
how Shapley values can be used to quantify variable importance,
instead of functional ANOVA (Owen, 2013), which decomposes
a function into orthogonal components and defines importance
measures based on them. This is shown to be particularly
powerful when there is dependence between the variables,
alleviating a series of limitations of existing techniques
(Chastaing et al., 2012). Another recent development can be
found in (Giudici and Raffinetti,), where the authors combine
Lorenz Zonoids (Koshevoy and Mosler, 1996), a generalization of
ROC curves (Fawcett, 2006), with Shapley values. The result is a
technique that combines local attributions with predictive
accuracy, in a manner that is simple and relatively easy to
interpret, since it connects to various well studied statistical
measures.

Another approach that is based on random feature
permutations can be found in (Henelius et al., 2014). In this
work, a methodology for randomizing the values of a feature, or a
group of features, is introduced, based on the difference between
the model’s behavior when making predictions for the original
dataset and when it does the same for the randomized version.
This process facilitates the identification of important variables or
variable interactions the model has picked up.

Additional ways to assess the importance of a feature can also
be found, such as the one in (Adebayo and Kagal, 2016). The
authors introduce a methodology for computing feature
importance, by transforming each feature in a dataset, so the
result is a new dataset where the influence of a certain feature has
been removed, meaning that the rest of the attributes are
orthogonal to it. By using several modified datasets, the
authors develop a measure for calculating a score, based on
the difference in the model’s performance across the various
datasets.

Different from the above threads, in (Cortez and Embrechts,
2011), the authors extend existing SA (Sensitivity Analysis)
approaches in order to design a Global SA method. The
proposed methodology is also paired with visualization tools
to facilitate communicating the results. Likewise, the work in
(Henelius et al., 2017) presents a method (ASTRID) that aims at
identifying which attributes are utilized by a classifier in
prediction time. They approach this problem by looking for
the largest subset of the original features so that if the model
is trained on this subset, omitting the rest of the features, the
resulting model would perform as well as the original one. In
(Koh and Liang, 2017), the authors use influence functions to
trace a model’s prediction back to the training data, by only
requiring an oracle version of the model with access to gradients
and Hessian-vector products. Finally, another way to measure a
data point’s influence on the model’s decision comes from
deletion diagnostics (Cook, 1977). The difference this time is
that this approach is concerned with measuring how omitting a
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data point from the training dataset influences the quality of the
resulting model, making it useful for various tasks, such as model
debugging.

8.2.3 Visual Explanations
Some popular approaches to visualizations can be found in
(Cortez and Embrechts, 2011), where an array of various
plots are presented. Additional techniques are discussed in
(Cortez and Embrechts, 2013), where some new SA
approaches are introduced. Finally (Friedman, 2001;
Goldstein et al., 2013), presents ICE (Individual
Conditional Expectation) and PD (Partial Dependence)
plots, respectively. The former, operates on instance level,
depicting the model’s decision boundary as a function of a
single feature, with the rest of them staying fixed to their
observed values. This way it is possible to inspect that
feature’s effect on the model’s decisions, under the specific
context that is formed by the remaining variables. In contrast,
the latter plots the model’s decision boundary as a function of
a single feature when the remaining features are averaged out,
so this shows the average effect of that feature to the model’s
outcome. PDPs provide insights about the form of the
relationship between the feature of interest and the
outcome, such as whether it is linear, monotonic, or more
complex (Molnar, 2020). On the other hand, average effects
can be potentially misleading, hindering the identification of
interactions among the variables. In turn, a more complete
approach would be to utilize both plots, due to their
complementary nature. This is also enforced by observing
there is an interesting relationship between these two plots, as
averaging the ICE plots of each instance of a dataset, yields
the corresponding PD plot.

Along with the three frameworks, the above exposition covers
the main observations and properties of XAI trends.

9 BRIEF OVERVIEW OF DEEP LEARNING
MODELS

In this section we provide a brief summary of XAI approaches
that have been developed for deep learning (DL) models,
specifically multi-layer neural networks (NNs). NNs are highly
expressive computational models, achieving state-of-the-art
performance in a wide range of applications. Unfortunately,
their architecture and learning regime corresponds to a
complex computational pipeline, so they do not satisfy any
level of transparency, at least when we go beyond simple
models, such as single layer perceptron as mentioned
previously, although, of course such models do not fall within
“deep” learning. This has led to the development of NN-specific
XAI methods, utilizing their specific topology. The majority of
these methods fall into the category of eithermodel simplification
or feature relevance.

In model simplification, rule extraction is one of the most
prominent approaches. Rule extraction techniques that operate
on a neuron-level rather than the whole model are called
decompositional (Özbakundefinedr et al., 2010). proposes a

method for producing if-else rules from NNs, where model
training and rule generation happen at the same time. CRED
(Sato and Tsukimoto, 2001) is a different approach that utilizes
decision trees to represent the extracted rules. KT (Fu, 1994) is a
related algorithm producing if-else rules, in a layer by layer
manner. DeepRED (Zilke et al., 2016) is one of the most
popular such techniques, extending CRED. The proposed
algorithm has additional decision trees as well as intermediate
rules for every hidden layer. It can be seen as a divide and conquer
method aiming at describing each layer by the previous one,
aggregating all the results in order to explain the whole network.

On the other hand, when the internal structure of a NN is not
taken into account, the corresponding methods are called
pedagogical. That is, approaches that treat the whole network
as a black-box function and do not inspect it at a neuron-level in
order to explain it. TREPAN (Craven and Shavlik, 1994) is such
an approach, utilizing decision trees as well as a query and sample
approach. Saad and Wunsch (Saad and Wunsch, 2007) have
proposed an algorithm called HYPINV, based on a network
inversion technique. This algorithm is capable of producing
rules having the form of the conjunction and disjunction of
hyperplanes. Augusta and Kathirvalavakumar (Augasta and
Kathirvalavakumar, 2012) have introduced the RxREN
algorithm, employing reverse engineering techniques to
analyze the output and trace back the components that cause
the final result.

Combining the above approaches leads to eclectic rule
extraction techniques. RX (Hruschka and Ebecken, 2006) is
such a method, based on clustering the hidden units of a NN
and extracting logical rules connecting the input to the resulting
clusters. An analogous eclectic approach can be found in
(Kahramanli and Allahverdi, 2009), where the goal is to
generate rules from a NN, using so-called artificial immune
system (AIS) (Dasgupta, 1999) algorithms.

Apart from rule extraction techniques, other approaches have
been proposed to interpret the decisions of NNs. In (Che et al.,
2016), the authors introduce Interpretable Mimic Learning, which
builds on model distillation ideas, in order to approximate the
original NN with a simpler, interpretable model. The idea of
transferring knowledge from a complex model (the teacher) to a
simpler one (the student) been explored in other works, for
example (Bucila et al., 2006; Hinton et al., 2015; Micaelli and
Storkey, 2019).

An intuitive observation about NNs is that as the number of
layers grows larger, developing model simplification algorithms gets
progressively more difficult. Due to this, feature relevance techniques
have gained popularity in recent years. In (Kindermans et al., 2017),
the authors propose ways to estimate neuron-wize signals in NNs.
Utilizing these estimators they present an approach to superposition
neuron-wize explanations in order to produce more comprehensive
explanations.

In (Montavon et al., 2017) a way to decompose the prediction
of a NN is presented. To this end, a neuron’s activation is
decomposed and then its score is backpropagated to the input
layer, resulting in a vector containing each feature’s importance.

DeepLIFT (Shrikumar et al., 2017) is another way to assign
importance scores when using NNs. The idea behind this method
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is to compare a neuron’s activation to a reference one and then
use their difference to compute the importance of a feature.

Another popular approach can be found in (Sundararajan
et al., 2017), where the authors present Integrated Gradients. In
this work, the main idea is to examine the model’s behavior when
moving along a line connecting the instance to be explained with
a baseline instance (serving the purpose of a “neutral” instance).
Furthermore, this method comes with some nice theoretical
properties, such as completeness and symmetry preservation,
that provide assurances about the generated explanations.

10 VIEWS AND SUGGESTIONS

XAI is a broad and relatively new branch of ML, which, in turn,
means that there is still some ambiguity regarding the goals of the
resulting approaches. The approaches presented in this survey are
indicative of the range of the various explainability angles that are
considered within the field. For example, feature relevance
approaches provide insights by measuring and quantitatively
ranking the importance of a feature, model simplification
approaches construct relatively simple models as proxies for
the opaque ones, while visual explanations inspect a model’s
inner understanding of a problem through graphical tools. At this
point we should note that choosing the right technique for the
application at hand depends exactly at the kind of insights the
user would like to gain, or perhaps the kind of explanations he/
she is more comfortable interpreting.

In applications where explainability is of utmost importance, it
is worth considering using a transparent model. The downside of
this, is that these models often compromise performance for the
sake of explainability, so it is possible that the resulting accuracy
hinders their employment in crucial real-world applications.

In cases where maintaining high accuracy is a driving factor,
too, employing an opaque model and pairing it with some XAI
techniques, instead of using a transparent one, is probably the most
reasonable choice. Subsequently, identifying the right technique for
explaining the resulting model is the next step in the quest to
understand its internal mechanisms. Each of them comes with its
own strong points, as well as limitations. More specifically:

• Local explanations approximate the model in a narrow area,
around a specific instance of interest. They offer information
about how themodel operates when encountering inputs that
are similar to the one we are interested in explaining. This
information can attain various forms, such as importance
scores or rules. Of course, this means that the resulting
explanations do not necessarily reflect the model’s
mechanism on a global scale. Other limitations arise when
considering the inherent difficulty to define what a local area
means in a high dimensional space. This could also lead to
cases where slightly perturbing a feature’s value results in
significantly different explanations.

• Representative examples allow the user to inspect how the
model perceives the elements belonging in a certain category.
In a sense, they serve as prototype data points. In other related
approaches, it is possible to trace the model’s decision back to

the training dataset and uncover the instance that influenced
the model’s decision the most. Deletion diagnostics also fall
into this category, quantifying how the decision boundary
changes when some training datapoints are left out. The
downside of utilizing examples is that they require human
inspection in order to identify the parts of the example that
distinguish it from the other categories.

• Feature relevance explanations aim at computing the
influence of a feature in the model’s outcome. This could
be seen as an indirect way to produce explanations, since
they only indicate a feature’s individual contribution,
without providing information about feature interactions.
Naturally, in cases where there are strong correlations
among features, it is possible that the resulting scores are
counterintuitive. On the other hand, some of these
approaches, such as SHAP, come with some nice
theoretical properties [although in practice they might be
violated (Merrick and Taly, 2019; Kumar I. E. et al., 2020)].

• Model simplification comes with the immediate advantage
and flexibility of allowing to approximate an opaque model
using a simpler one. This offers a wide range of
representations that can be utilized, from simple “if-then”
rules to fitting surrogate models. This way explanations can
be adjusted to best fit a particular audience. Of course, there
are limitations as well, with perhaps the most notable one
being the quality of the approximation. Furthermore,
usually, it is not possible to quantitatively assess it, so
empirical demonstrations are needed to illustrate the
goodness of the approximation.

• Visualizations provide for a way to utilize graphical tools to
inspect some aspects of a model, such as its decision boundary.
In most cases they are relatively easy to understand for both
technical and non technical audiences. However, when
resorting to visualizations, many of the proposed
approaches make assumptions about the data (such as
independence) that might not hold for the particular
application, perhaps distorting the results.

Overall, we summarize some of the salient properties to
consider in Table 3.

Taking a close look at the various kinds of explanations
discussed above, makes clear that each of them addresses a
different aspect of explainability. This means that there is no
approach suitable for each and every scenario. This is in tune
with how humans perceive explainability as well, since we know
that there is not a single question whose answer would be able to
communicate all the information needed to explain any situation.
Most of the times, one would have to ask multiple questions, each
one dealing with a different aspect of the situation in order to
obtain a satisfactory explanation.

The same approach should be utilized when inspecting the
reasoning of ML models. Relying on only one technique will only
give us a partial picture of the whole story, possibly missing out
important information. Hence, combining multiple approaches
together provides for a more cautious way to explain a model.

At this point we would like to note that there is no established
way of combining techniques (in a pipeline fashion), so there is
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room for experimenting and adjusting them, according to the
application at hand. Having said that, we think that a reasonable
base case could look like this:

• If explainability is essential for the application, first try
transparent models.

• If it doesn’t perform well, and particularly if the complexity
of the model is escalating and you lose the explainability
benefit, use an opaque one.

• Employ an feature relevance method to get the an instance-
specific estimate of each feature’s influence.

• A model simplification approach could be used to inspect
whether the important features, will turn out to be
important on a global scale, too.

• A local explanation approach could shed light into how
small perturbations affect the model’s outcome, so pairing
that with the importance scores could facilitate the
understanding of a feature’s significance.

• A visualization technique to plot the decision boundary as a
function of a subset of the important features, so we can get
a sense of how the model’s predictions change.

11 JANE, THE DATA SCIENTIST

In this section we will discuss a concrete example of how a data
scientist could apply the insights gained so far, in a real-life
scenario. To this end, we would like to introduce Jane, a data
scientist whose work is on building ML models for loan approvals.
As a result, she would like to consider things like the likelihood of
default given some parameters in a credit decision model.

Jane’s current project is to employ a model to assess whether a
loan should be approved, that maximizes performance while also
maintaining explainability (cf. Figure 3).6 This leads to the challenge
of achieving an appropriate trade-off between these two things.
Broadly, we can think of two possible choices for Jane (cf. Figure 4):

• She can go for transparent models, resulting in a clear
interpretation of the decision boundary, allowing for
immediately interpreting how a decision is made. For
example, if using logistic regression, the notion of defaulting
can seen as a weighted sum of features, so a feature’s coefficient
will tell you this feature’s impact on predicting a loan default.

• Otherwise, she can go for an opaque model, which usually
achieves better performance and generalizability than its
transparent counterparts. Of course, the downside is that
in this case is it will not be easy to interpret the model’s
decisions.

Jane decides to give various transparent models a try, but the
resulting accuracy is not satisfactory, so she resorts to opaque
models. She again tries various candidates and she finds out that
Random Forests achieve the best performance among them, so this
is what she will use. The downside is that the resulting model is not
immediate to explain anymore (cf. Figure 5). In turn, after training
themodel, the next step is to come upwith ways that could help her
explain how the model operates to the stakeholders.

The first thing that came to Jane’s mind was to utilize one of the
most popular XAI techniques, SHAP. She goes on applying it to
explain a specific decision made by the model. She computes the
importance of each feature and shares it with the stakeholders to help
them understand how the model operates. However, as the
discussion progresses, a reasonable question comes up (Figure 6):
could it be that the model relies heavily on an applicant’s salary, for
example, missing other important factors? How would the model
perform on instances where applicants have a relatively low salary?
For example, assuming that everything else in the current application
was held intact, what is the salary’s threshold that differentiates an
approved from a rejected application?

These questions cannot been addressed using SHAP, since they
refer to how the model’s predictive behavior would change, where
SHAP can only explain the instance at hand, so Jane realizes that
she will have to use additional techniques to answer these
questions. To this end, she decides to employ Individual
Conditional Expectation (ICE) plots, to inspect the model’s
behavior for a specific instance, where everything except salary
is held constant, fixed to their observed values, while salary is free to
attain different values. She could also compliment this technique
using Partial Dependence Plots (PDPs) to plot themodel’s decision
boundary as a function of the salary, when the rest of the features
are averaged out. This plot allows her to gain some insights about
the model’s average behavior, as the salary changes (Figure 7).

Jane discusses her new results with the stakeholders,
explaining how these plots provide answers to the questions
that were raised, but this time there is a new issue to address.
In the test set there is an application that the model rejects, which
comes contrary to what various experts in the bank think should
have happened. This leaves the stakeholders in question of why the
model decides like that and whether a slightly different application
would have been approved by themodel. Jane decides to tackle this
using counterfactuals, which inherently convey a notion of
“closeness” to the actual world. She applies this approach and
she finds out that it was the fact that the applicant had missed one
payment that led to this outcome, and that had he/shemissed none
the application would had been accepted (Figure 8).

The stakeholders think this is a reasonable answer, but now
that they saw how influential the number of missed payments
was, they feel that it would be nice to be able to extract some kind of
information explaining how the model operates for instances that
are similar to the one under consideration, for future reference.

Jane thinks about it and she decides to use anchors in order to
achieve just that, generate easy-to-understand “if-then” rules that
approximate the opaque model’s behavior in a local area
(Figure 9). The resulting rules would now look something like
“if salary is greater than 20 k £ and there are no missed payment,
then the loan is approved.”

6Note that this informal view encourages a notional plot of explainability versus
accuracy, as is common in informal discussions on the challenge of XAI (Gunning,
2017; Weld and Bansal, 2019). However, this informal view has been criticized
(Rudin, 2019) as being misleading. Since we are concerned primarily with
mainstream ML models and the interpretability that emerges when applying
statistical analysis to such models, we will continue using this notional idea for
the sake of simplicity.
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Following these findings, the stakeholders are happy with
both the model’s performance and the degree of explainability.
However, upon further inspection, they find out that there
are some data points in the training dataset that are too
noisy, probably not corresponding to actual data, but rather
to instances that were included in the dateset by accident.
They turn to Jane, in order to get some insights about
how deleting these data points from the training dataset
would affect the models behavior. Fortunately, deletion
diagnostics show that omitting these instances would not
affect the models performance, while they were able to

identify some points that could significantly alter the
decision boundary, too (Figure 10). All of these helped the
stakeholder understand which training data points were more
influential for the model.

Finally, as an extra layer of protection, the stakeholders
ask Jane if it is possible to have a set of rules describing the
model’s behavior on a global scale, so they can inspect it to find
out whether the model has picked up any undesired functioning.
At this point, Jane thinks that they should utilize the Random
Forest’s structure, which is an ensemble of Decision Trees. This
means, that they already consist of a large number of rules, so it

FIGURE 3 | Jane’s agenda and challenge: which model offers the best trade-off in terms of accuracy vs. explainability?

FIGURE 4 | Jane’s choices: should she go for a transparent model or an opaque one?
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FIGURE 5 | As transparent models become increasingly complex they may lose their explainability features. The primary goal is to maintain a balance between
explainability and accuracy. In cases where this is not possible, opaque models paired with post hoc XAI approaches provide an alternative solution.

FIGURE 6 | Jane decides to use SHAP, but cannot resolve all of the stakeholder’s questions. Its also worth noting that although SHAP is an important method for
explaining opaque models, users should be aware of its limitations, often arising from either the optimization objective or the underlying approximation.
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makes sense to go for an approach that is able to extract the
more robust ones, such as in Trees (Figure 11).

The above example showcases how different XAI
approaches can be applied to a model to answer various types
of questions. Furthermore, the last point highlights an interesting
distinction, as SHAP, anchors and counterfactuals that are model
agnostic, while in Trees are model-specific, utilizing the model’s
architecture to produce explanations. There are some points to
note here (cf. Figure 12): model agnostic techniques apply to any
model, and so if benchmarking a whole range of models,
inspecting their features, model agnostic methods offer
consistency in interpretation. On the other hand, since these
approaches have to be very flexible, a significant amount of

assumptions and approximations may be made, possibly
resulting in poor estimates or undesired side-effects, such as
susceptibility to adversarial attacks (Slack et al., 2020). Model-
specific could also facilitate developing more efficient algorithms
or custom flavored explanations, based on the model’s
characteristics.

Another factor to take into consideration has to do with the
libraries, since model-agnostic approaches are usually widely
used and compatible with various popular libraries, whereas
model-specific ones are emerging and fewer, with possibly
only academic libraries being available. Overall, attempting to
use a larger set of XAI methods allows for deeper inquiry (cf.
Figure 13).

FIGURE 7 | Visualizations can facilitate understanding the model’s reasoning, both on an instance and a global level. Most of these approaches make a set of
assumptions, so choosing the appropriate one depends on the application.

FIGURE 8 | Counterfactuals produce a hypothetical instance, representing a minimal set of changes of the original one, so the model classifies it in a different
category.
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These insights are summarized in terms of a “cheat sheet.”
Figure 14 discuss a sample pipeline in terms of approaching
explainability for machine learning, and Figure 157 and
Figure 168 discusses possible methods.

12 FUTURE DIRECTIONS

This survey offers an introduction in the various developments
and aspects of explainable machine learning. Having said that,
XAI is a relatively new and still developing field, meaning that
there are many open challenges that need to be considered, not all
of them lying on the technical side. Of course, generating accurate
and meaningful explanations is important, but communicating
them in an effective manner to a diverse audience, is equally
important. In fact, a recent line of work addressing the
interconnection between explanations and communication has
already emerged within the financial sector.

Considering the risks of financial investments, it should
probably come as no surprise that the importance of
employing XAI when using opaque ML models in finance, has

FIGURE 9 | Local explanations as rules. High precision means that the rule is robust and that similar instances will get the same outcome. High coverage means
that large number of the points satisfy the rule’s premises, so the rule “generalizes” better.

FIGURE 10 | The quality of a ML model is vastly affected by the quality of the data it is trained on. Finding influential points that can, for example, alter the decision
boundary or encourage the model to take a certain decision, contributes in having a more complete picture of the model’s reasoning.

7Links to packages (in Python and R): shap.readthedocs.io/en/latest/, cran.r-project.
org/web/packages/shapper/index.html, scikit-learn.org/stable/modules/partial_
dependence.html, bgreenwell.github.io/pdp/articles/pdp.html, docs.seldon.io/
projects/alibi/en/latest/
8Links to packages (in Python and R): docs.seldon.io/projects/alibi/en/latest/,
github.com/viadee/anchorsOnR, www.statsmodels.org/stable/generated/statsmodels.
stats.outliers_influence.OLSInfluence.html, www.rdocumentation.org/packages/
stats/versions/3.6.2, github.com/IBCNServices/GENESIM/blob/master/construc-
tors/inTrees.py, cran.r-project.org/web/packages/inTrees/index.html
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been already identified (FSB, 2017; Croxson et al., 2019; Joseph,
2019). However, the traits that render an explanation satisfying
are not independent of the audience’s characteristics and
expectations. To this end, a series of recent papers address this
exact question (van den Berg and Kuiper, 2020; Langer et al.,
2021), highlighting the need to consider the point of view of the
various stakeholders. As a consequence, explanations should be
tailored to the specific audience they are intended for, aiming at
conveying the necessary information in a clear way. This
observation has naturally led to the development of XAI
approaches that specifically target financial applications
(Philippe et al., 2019; Bussmann et al., 2020; Misheva et al.,
2021), but further research could lead to more significant
advances.

It is interesting to note that approaches from the broader AI
community, eg (Kulkarni et al., 2019; Chakraborti et al., 2019),
mentioned in Section 3, also attempt to tackle this problem, but
by means of a formal approach. Indeed, in the area of human-
aware AI, there is an increasing focus on explicitly modeling the
mental state, beliefs and expectations of the user and reconciling
that with the system’s model of the world. See, for example,
discussion in (Kambhampati, 2020). Admittedly, such
frameworks do not yet consider general stakeholder concerns
in complex environments and so it would be interesting to see if
such frameworks might eventually be helpful in areas such as
finance.

Another non-technical matter that has is getting increasing
attention is concerned with the incorporation of XAI in

FIGURE 12 | A short comparison of model agnostic vs. model specific approaches.

FIGURE 11 | Extracting rules from a random forest. Frequency of a rule is defined as the proportion of data instances satisfying the rule condition. The frequency
measures the popularity of the rule. Error of a rule is defined as the number of incorrectly classified instances determined by the rule. So she is able to say that for 80% of
the customers with 100% accuracy (ie. 0% error), when income >20 k and there are zero missed payments, the application is approved.
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regulatory frameworks. The European GDPR [EU Regulation
(EU), 2016] regulation can be seen as an early attempt toward this
objective, since it requires automated models to be able to provide
meaningful information about their rationale, which in turn
motivated additional XAI related research. Apart from GDPR,
the European Commission has recently published an ethics
guideline for trustworthy AI (High-Level Expert Group on AI,
2019), where the need of being able to explain a model’s decisions
is deemed an essential requirement for establishing trust between
human users and AI systems. On top of that, an even more recent
paper by the European Commission (European Commission, 2020)
has touched upon this issue, and how explainability can be a key
element for developing a future regulatory framework. However, the
regulatory integration of XAI is still an ongoing process, where

additional interdisciplinary research is needed in order to develop a
framework that fulfills all the necessary requirements.

When it comes to the technical side of XAI, there are many
research and operational open problems that need to be
considered, as research progresses (cf. Figure 17).

One of the first things that comes tomind is related to theway that
different explanation types fit with each other. If we take a close look
at the presented approaches, we will find out that while there is some
overlap between the various explanation types, for the most part they
appear to be segmented, each one addressing a different question.
Moreover, there seems to be no clear way of combining them to
produce a more complete explanation. This hinders the development
of pipelines that aim at automating explanations, or even reaching an
agreement on how a complete explanation should look like.

FIGURE13 | A list of possible questions of interest when explaining amodel. This highlights the need for combiningmultiple techniques together and that there is no
catch-all approach.

FIGURE 14 | A sample pipeline, that is, a “cheat sheet” of sorts for approaching explainability.
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On a more practical level, there are only a few XAI approaches
that come with efficient implementations. This could be justified
by the fact that the field is still young and emerging, but it impedes
the deployment of XAI in large scale applications, nonetheless.

Another aspect that could receive more attention in the future,
is developing stronger model-specific approaches. The advantage
of exploring this direction is that the resulting approaches would
be able to utilize a model’s distinct features to produce
explanations, probably improving fidelity, as well as allowing
to better analyze the model’s inner workings, instead of just
explaining its outcome. Furthermore, a side note related to the
previous point is that this would probably facilitate coming up
with efficient algorithmic implementations, since the new
algorithms would not rely on costly approximations.

This last point leads to a broader issue that needs to be
resolved, which is building trust toward the explanations
themselves. As we mentioned before, recent research has
showcased how a number of popular, widely used, XAI
approaches are vulnerable to adversarial attacks (Slack et al.,
2020). Information like that raises questions about whether the
outcome of a XAI technique should be trusted or it has been
manipulated. Furthermore, other related issues about the fitness
of some of the proposed techniques can be found in the literature
(Kumar I. E. et al., 2020). A promising way to address robustness
issues is through exploring additional ways of establishing
connections between XAI and statistics, opening up the door
for utilizing a wide array of well studied tools.

Another line of research that has recently gained traction is
about designing hybrid models, combining the expressiveness of
opaque models with the clear semantics of transparent models, as
in (Munkhdalai et al., 2020), where linear regression is combined
with neural networks, for example. This direction could not only
help bridge the gap between opaque and transparent models, but
could also aid the development of state-of-the-art performing
explainable models.

Finally, as XAI matures, notions of causal analysis should be
incorporated to new approaches (Pearl, 2018; Miller, 2019). This
is already a major driver in fundamental problems in other areas,
such as fairness and bias in machine learning (Dwork et al., 2012;
Kusner et al., 2017), so we should expect it to play an integral part
in the future of the XAI literature.
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