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Quantum Physical Unclonable Functions: Possibili-
ties and Impossibilities
Myrto Arapinis1, Mahshid Delavar1, Mina Doosti1, and Elham Kashefi1,2

1School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK
2Departement Informatique et Reseaux, CNRS, Sorbonne Université, 4 Place Jussieu 75252 Paris CEDEX 05,
France

A Physical Unclonable Function (PUF) is a device with unique behaviour
that is hard to clone hence providing a secure fingerprint. A variety of PUF
structures and PUF-based applications have been explored theoretically as well
as being implemented in practical settings. Recently, the inherent unclonabil-
ity of quantum states has been exploited to derive the quantum analogue of
PUF as well as new proposals for the implementation of PUF. We present the
first comprehensive study of quantum Physical Unclonable Functions (qPUFs)
with quantum cryptographic tools. We formally define qPUFs, encapsulating
all requirements of classical PUFs as well as introducing a new testability fea-
ture inherent to the quantum setting only. We use a quantum game-based
framework to define different levels of security for qPUFs: quantum exponen-
tial unforgeability, quantum existential unforgeability and quantum selective
unforgeability. We introduce a new quantum attack technique based on the
universal quantum emulator algorithm of Marvin and Lloyd to prove no qPUF
can provide quantum existential unforgeability. On the other hand, we prove
that a large family of qPUFs (called unitary PUFs) can provide quantum se-
lective unforgeability which is the desired level of security for most PUF-based
applications.

1 Introduction
Canetti and Fischlin’s result on the impossibility of achieving secure cryptographic proto-
cols without any setup assumptions [9] has motivated a rich line of research investigating
the advantages of making hardware assumptions in protocol design. The idea was first
introduced by Katz in [27], and attracted the attention of researchers and developers as
it adopts physical assumptions and eliminates the need to trust a designated party or
to rely on computational assumptions. Among different hardware assumptions, Physical
Unclonable Functions (PUFs) have greatly impacted the field [4].

PUFs are hardware structures designed to utilize the random physical disorder which
appear in any physical device during the manufacturing process. Because of the uncon-
trollable nature of these random disorders, building a clone of the device is considered
impractical. The behaviour of a PUF is usually equivalent to a set of Challenge-Response

Mina Doosti: m.doosti@sms.ed.ac.uk, This work has been presented at QCrypt 2019 (9th International Confer-
ence on Quantum Cryptography)
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Pairs (CRPs) which are extracted through physically querying the PUF and measuring
its responses. The PUF’s responses depend on its physical features and are assumed to
be unpredictable, i.e. even the manufacturer of the PUF, with access to many CRPs,
cannot predict the response to a new challenge [42]. This property makes PUFs different
from other hardware tokens in the sense that the manufacturer of a hardware token is
completely aware of the behaviour of the token they have built [7].

So far, the cryptographic literature has mainly considered what we will call classical
PUFs (or cPUFs) restricted to classical CRPs. Most cPUFs generate only a finite, albeit
possibly exponential (in some desired security parameters), number of CRPs [11]. However,
most of them remain vulnerable against different attacks like side-channel [50, 11] and
machine-learning [19, 44, 43, 28]. Thus, considering the importance of cPUFs as a hardware
security primitive in several real-world applications, on one hand, [11, 26, 15, 2, 33, 30, 36]1

and the recent advances in quantum technology, on the other hand, it is worth investigating
whether quantum technologies could boost the security of cPUFs or if they, on the contrary,
threaten their security. In the current work, we address the general and formal treatment
of PUFs in a quantum world for the first time by defining quantum PUFs (qPUFs) as a
quantum token that can be challenged with quantum states and respond with quantum
states. We identify the requirements a qPUF needs to meet to provide the main security
property required for most of the qPUF-based applications, that is unforgeability2. All prior
similar works [45, 46, 39, 54] (see related work paragraph below) considered the special
case of qPUFs where the encoding of the responses is known to the manufacturer and in
fact, the evaluation of the qPUF is public information. We provide a general and formal
mathematical framework for the study of qPUFs as a new quantum primitive inspired from
the theoretical literature of classical PUF while taking into account full capabilities of a
quantum adversary. However, it is worth mentioning that designing and implementing
concrete qPUFs satisfying our proposed level of security set up remains a challenging task
that we are exploring separately as a follow up of this work.

1.0.1 Our Contributions.

We first define qPUFs as quantum channels and formalize the standard requirements of
robustness, uniqueness and collision-resistance for qPUFs guided by the classical counter-
parts to establish the requirements that qPUFs should satisfy to enable their usage as a
cryptographic primitive. We then use the game-based framework to define three security
notions for qPUFs: quantum exponential unforgeability, quantum existential unforgeabil-
ity and quantum selective unforgeability capturing the strongest type of attack models
where the adversary has access to the qPUF and can query it with his chosen quantum
states. In this new model, we demonstrate how quantum learning techniques, such as the
universal quantum emulator algorithm of [34], can lead to successful attacks. In doing so
we establish several possibility and impossibility results.

• No qPUF provides Quantum Exponential Unforgeability. The presented attack is the
correct analogue of the brute-force attack for classical PUFs.

• No qPUF provides Quantum Existential Unforgeability. We show how the universal

1Recently SAMSUNG announced that in their new processor Exynox 9820 they have integrated SRAM
based PUF to store and manage personal data in perfect isolation. Also, a UK company, Quantum Base,
has started to mass-produce its patented optical quantum PUFs.

2Unpredictability and unclonability are other equivalent terms for this notion used often in the literature.
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quantum emulator algorithm (which is polynomial in the size of the qPUF’s dimen-
sion) can break this security property of any qPUFs.

• Any qPUF provides Quantum Selective Unforgeability. In other words, no QPT ad-
versary can, on average, generate the response of a qPUF to random challenges.

1.0.2 Other Related Works

The concept of Physical Unclonable Functions was first introduced by Pappu et al. [41] in
2001, devising the first implementation of an Optical PUF. Optical PUFs were subsequently
improved as to generating an independent number of CRPs [35]. Several structures of
Physical Unclonable Functions were further introduced including Arbiter PUFs [20], Ring-
Oscillator based PUFs [49, 16] and SRAM PUFs [24]. For a comprehensive overview of
existing PUF structures, we refer the reader to [32, 25].

Recently, the concept of “quantum read-out of PUF (QR-PUF)” was introduced in
[45] to exploit the no-cloning feature of quantum states to potentially solve the spoofing
problem in the remote device identification. The QR-PUF-based identification protocol
has been implemented in [22]. In addition to the security analysis of this protocol against
intercept-resend attack in [45], its security has also been analysed against other special
types of attacks targeting extracting information from an unknown challenge state [47, 53].
In another work, [39], the continuous variable encoding is exploited to implement another
practical QR-PUF based identification protocol. The security of this protocol has also been
analysed only against an attacker who aims to efficiently estimate or clone an unknown
challenge quantum state [38, 18]. Moreover, some other applications of QR-PUFs have
been introduced in [48] and [51].

In another independent recent work, Gianfelici et al. have presented a common theo-
retical framework for both cPUFs and QR-PUFs [21]. They quantitatively characterize the
PUF properties, particularly robustness and unclonability. They also introduce a generic
PUF-based identification scheme and parameterize its security based on the values obtained
from the experimental implementation of PUF.

2 Quantum Emulation Algorithm
In this section, we describe the Quantum Emulation (QE) algorithm presented in [34] as
a quantum process learning tool that can outperform the existing approaches based on
quantum tomography [14]. The main idea behind quantum emulation comes from the
question on the possibility of emulating the action of an unknown unitary transformation
on an unknown input quantum state by having some of the input-output samples of the
unitary. An emulator is not trying to completely recreate the transformation or simulate
the same dynamics. Instead, it outputs the action of the transformation on a quantum
state. The original algorithm was developed and proposed in the context of quantum
process tomography, thus the analysis did not consider any adversarial behaviour. For
our cryptanalysis purposes, we need to provide a new fidelity analysis for challenges not
fully lying within the subspace of the learning phase. We further optimise the success
probability of our attack by optimising the choice of the reference state.

2.1 The Circuit and Description
The circuit of the quantum emulation algorithm is depicted in Figure 1 also in [34] and
works as follows: Let U be a unitary transformation on a D-dimensional Hilbert space HD,
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Sin = {|φi〉 ; i = 1, ...,K} be a sample of input states and Sout = {|φouti 〉 ; i = 1, ...,K}
the set of corresponding outputs, i.e |φouti 〉 = U |φi〉. Also, let d be the dimension of the
Hilbert space Hd spanned by Sin and |ψ〉, a challenge state. The goal of the algorithm is
to find the output of U on |ψ〉, that is U |ψ〉.

Figure 1: The circuit of the quantum emulation algorithm. |φr〉 is the reference state and |φout
r 〉 is the

output of the reference state. R(∗) gates are controlled-reflection gates. In each block of Step 1, a
reflection around the reference and another sample state is being performed.

The main building blocks of the algorithm are controlled-reflection gates described as:

Rc(φ) = |0〉 〈0| ⊗ I + |1〉 〈1| ⊗ eiπ|φ〉〈φ| (1)

A controlled-reflection gate acts as the identity (I) if the control qubit is |0〉, and as
R(φ) = eiπ|φ〉〈φ| = I − 2 |φ〉 〈φ| if the control qubit is |1〉. The circuit also uses Hadamard
and SWAP gates and consists of four stages.
Stage 1. K number of sample states and a specific number of ancillary qubits are chosen
and used through the algorithm. We assume the algorithm uses all of the states in Sin.
The ancillary systems are all qubits prepared at |−〉. Let |φr〉 ∈ Sin be considered as the
reference state. This state can be chosen at random or according to a special distribution.
The first step consists of K − 1 blocks wherein each block, the following gates run on the
state of the system and an ancilla:

W (i) = Rc(φi)HRc(φr). (2)

In each block represented by equation (2), a controlled-reflection around the reference state
|φr〉 is performed on |ψ〉 with the control qubit being on the |−〉 ancillary state. Then a
Hadamard gate (H) runs on the ancilla followed by another controlled-reflection around the
sample state |φi〉. This is repeated for each of the K states in Sin such that the input state
is being entangled with the ancillas and also it is being projected into the subspace Hd in a
way that the information of |ψ〉 is encoded in the coefficients of the general entangled state.
This information is the overlap of |ψ〉 with all the sample inputs. By reflecting around
the reference state in each block, the main state is pushed to |φr〉 and the probability of
finding the system at the reference state increases. The overall state of the circuit after
Stage 1 is:

[W (K)...W (1)] |ψ〉 |−〉⊗K ≈ |φr〉 |Ω(anc)〉 (3)
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where |Ω(anc)〉 is the entangled state of K ancillary qubits. The approximation comes
from the fact that the state is not only projected on the reference quantum state but it is
also projected on other sample quantum states with some probability. We present a more
precise formula in the next subsection.

Stage 2. In this stage, first a reflection around |φr〉 is performed and after applying a
Hadamard gate on an extra ancilla, that ancilla is measured in the computational basis
{|0〉 , |1〉}. Based on the output of the measurement, one can decide whether the first step
was successful (i.e. the output of the measurement is 0) or not. If the first step is suc-
cessful, the main state has been pushed to the reference state. In this case, the algorithm
proceeds with Stage 3. If the output is 1, the projection was unsuccessful and the input
state remains almost unchanged. In this case, either the algorithm aborts or it goes back
to the first stage and picks a new state as the reference. This stage has a post-selection
role which can be skipped to output a mixed state of two possible outputs.

Stage 3. The main state is swapped with |φoutr 〉 = U |φr〉 that is the output of the reference
state. This is done by means of a SWAP gate. At this point, the overall state of the system
is:

(SWAP⊗ I⊗K) |φoutr 〉 |φr〉 |Ω(anc)〉 = |φr〉 |φoutr 〉 |Ω(anc)〉 . (4)

By tracing out the first qubit, the state of the system becomes |φoutr 〉 |Ω(anc)〉.

Stage 4. The last stage is very similar to the first one except that all blocks are run in
reverse order and the reflection gates are made from corresponding output quantum states.
The action of stage 4 is equivalent to:

W out(i) = Rc(φouti )HRc(φoutr ) = (U⊗ I)W (i)(U† ⊗ I). (5)

After repeating this gate for all the output samples, U is acted on the projected components
of |ψ〉 and by restoring back the information of |ψ〉 from the ancilla, the input state
approaches U |ψ〉. The overall output state of the circuit at the end of this stage is:

[W out(1)...W out(K)] |φoutr 〉 |Ω(anc)〉 ≈ U |ψ〉 |−〉⊗K (6)

where equality is obtained whenever the success probability of Stage 2 is equal to 1.

2.2 Output fidelity analysis
We are interested in the fidelity of the output state |ψQE〉 of the algorithm and the intended
output U |ψ〉 to estimate the success. In the original paper, the fidelity analysis is first
provided for ideal controlled-reflection gates and later a protocol is presented to implement
them efficiently. In this paper, as we are more interested in the theoretical bounds for
the fidelity, all the gates including the controlled-reflection gates are assumed to be ideal
keeping in mind that the implementation is possible [34, 31]. We recall the main theorem
of [34]:

Theorem 1 [34] Let EU be the quantum channel that describes the overall effect of the
algorithm presented above. Then for any input state ρ, the Uhlmann fidelity of EU(ρ) and
the desired state UρU† satisfies:

F (ρQE ,UρU†) ≥ F (EU(ρ),UρU†) ≥
√
Psucc−stage1 (7)
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where ρQE = |ψQE〉 〈ψQE | is the main output state(tracing out the ancillas) when the post-
selection in Stage 2 has been performed. EU(ρ) is the output of the whole circuit without the
post-selection measurement in Stage 2 and Psucc−stage1 is the success probability of Stage
1.

For the purpose of this paper, we need a more precise and concrete expression for the
output fidelity not covered in [34]. From the proof of Theorem 1 in [34], it can be seen
that the success probability of Stage 1 is calculated as follows:

Psucc−stage1 = | 〈φr|Tranc(|χf 〉 〈χf |) |φr〉 |2 (8)

where |χf 〉 is the final state of the circuit after Stage 1 and Tranc(·) computes the reduced
density matrix by tracing out the ancillas. The overlap of the resulting state and the
reference state equals the success probability of Stage 1. Now relying on Theorem 1, we
only use equation (8) for our analysis henceforward.

The fidelity of the output state of the circuit highly depends on the choice of the
reference state (equation (8)) such that it may increase or decrease the success probability
of the adversary in different security models as we will discuss in the Section 3. We establish
the following recursive relation for the state of the circuit after the i-th block of Stage 1,
in terms of the previous state:

|χi〉 = 1
2[(I −R(φr)) |χi−1〉 |0〉+R(φi)(I +R(φr)) |χi−1〉 |1〉]. (9)

Now by using this relation, we can prove the following theorem. The proof can be
found in Appendix B

Theorem 2 Let |χK〉 be the output state of K-th block of the circuit (Figure 1). Let |ψ〉
be the input state of the circuit, |φr〉 the reference state and |φi〉 other sample states. We
have:

|χK〉 = 〈φr|ψ〉 |φr〉 |0〉⊗K + |ψ〉 |1〉⊗K − 〈φr|ψ〉 |φr〉 |1〉⊗K

+
K∑
i=1

i∑
j=0

[fij2lij | 〈φr|ψ〉|xij | 〈φi|ψ〉|yij | 〈φr|φi〉|zij ] |φr〉 |qanc(i, j)〉

+
K∑
i=1

i∑
j=0

[gij2l
′
ij | 〈φr|ψ〉|x

′
ij | 〈φi|ψ〉|y

′
ij | 〈φr|φi〉|z

′
ij ] |φi〉 |q′anc(i, j)〉

(10)

where lij, xij, yij, zij, l′ij, x
′
ij, y

′
ij and z′ij are integer values indicating the power of the

terms of the coefficient. Note that fij and gij can be 0, 1 or -1 and qanc(i, j) and q′anc(i, j)
output a computational basis of K qubits (other than |0〉⊗K).

Having a precise expression for |χf 〉 from Theorem 2, one can calculate Psucc−step1 of
equation (8) by tracing out all the ancillary systems from the density matrix of |χf 〉 〈χf |.
Also, now it is clear that if |ψ〉 is orthogonal to the Hd, the only term remaining in
equation (10) is |ψ〉 |1〉⊗K . So, the input state remains unchanged after the first stage and
Psucc−step1 = 0.

For states projected in the subspace spanned by Sin, the overall channel describing the
quantum emulation algorithm has always a fixed point inside the subspace [34]. Hence,
Stage 1 is successful with probability close to 1 by assuming the gates to be ideal.
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3 Quantum Physical Unclonable Functions
We consider a set of quantum devices that have been created through the same manu-
facturing process. These devices respond with a general quantum state when challenged
with a quantum state. Similar to the classical setting (see Appendix A), we formalize the
manufacturing process of qPUFs by defining a QGen algorithm:

qPUFid ← QGen(λ) (11)

where id is the identifier of qPUFid and λ the security parameter.
We also need to define the QEval algorithm mapping any input quantum state ρin ∈

Hdin to an output quantum state ρout ∈ Hdout where Hdin and Hdout are the domain and
range Hilbert spaces of qPUFid, denoted as:

ρout ← QEval(qPUFid, ρin). (12)

For now, we allow for the most general form of trace-preserving quantum maps, i.e.
CPT maps for QEval. So, we have:

ρout = Λid(ρin) (13)

Apart from these common algorithms (that are analogue to the classical setting), we
also require qPUFs to include an efficient test algorithm T as we will formally define in
Definition 4 to test the equality between two unknown quantum states. We will also
need the concept of quantum state distinguishability, which can be defined with different
quantum distance measures such as trace distance or fidelity. Here we use the fidelity-based
definition as follows: Let F (·, ·) denote the fidelity, and µ and ν the distinguishability and
indistinguishability threshold parameters respectively such that 0 ≤ µ, ν ≤ 1. We say two
quantum states ρ and σ are µ-distinguishable if 0 ≤ F (ρ, σ) ≤ 1−µ and ν-indistinguishable
if ν ≤ F (ρ, σ) ≤ 1. Finally, we can define a Quantum Physical Unclonable Function as
follows.

Definition 1 (Quantum Physical Unclonable Function) Let λ be the security parameter, and
δr, δu, δc ∈ [0, 1] the robustness, uniqueness and collision resistance thresholds. A (λ, δr, δu, δc)-
qPUF includes the algorithms: QGen, QEval and T satisfying Requirements 1, 2, and 3
defined below:

Requirement 1 (δr-Robustness) For any qPUFid generated through QGen(λ) and evalu-
ated using QEval on any two input states ρin and σin that are δr-indistinguishable, the
corresponding output quantum states ρout and σout are also δr-indistinguishable with over-
whelming probability,

Pr[δr ≤ F (ρout, σout) ≤ 1] = 1− negl(λ). (14)

Requirement 2 (δu-Uniqueness) For any two qPUFs generated by the QGen algorithm,
i.e. qPUFidi and qPUFidj , the corresponding CPT map models, i.e. Λidi and Λidj are
δu-distinguishable with overwhelming probability,

Pr[ ‖ (Λidi − Λidj )i 6=j ‖�≥ δu ] = 1− negl(λ). (15)

Requirement 3 (δc-Collision-Resistance (Strong)) For any qPUFid generated by QGen(λ)
and evaluated by QEval on any two input states ρin and σin that are δc-distinguishable,
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the corresponding output states ρout and σout are also δc-distinguishable with overwhelming
probability,3

Pr[0 ≤ F (ρout, σout) ≤ 1− δc] = 1− negl(λ). (16)

In qPUF-based applications such as device authentication (or identification), it is nec-
essary that there be a clear distinction between different qPUF instances generated by the
same QGen algorithm running on the same parameters λ [3]. To this end, the following
conditions should be satisfied: δc ≤ 1− δr and δu ≤ 1− δr. So, we can drop δu and δc from
the notation and characterize the qPUF as (λ, δr)− qPUF.

We also need to mention that, δr and δc parameters can allow for some specific noise
models for each PUF device. More specifically, the collision resistance parameter i.e. δc
or the ratio of δoc/δic is directly related to the channel parameters of the qPUF evaluation.
Although, as the collision-resistance is an important requirement for achieving a secure
PUF, similar to classical PUFs, we choose the strong collision-resistance as the main re-
quirement for the quantum PUF. We specify that the strong collision-resistance parameter
can allow for noisy PUF evaluation under the coherent noise models. Such noise models
preserve distances between the input and output states of the qPUF and this property
makes them suitable candidates for quantum PUF. Also, it has been shown in [23] that a
general noise can be modelled as a combination of coherent and incoherent noises. Hence
only the class of noise model with an almost close to zero incoherent factor can be consid-
ered to satisfy the δc (strong) collision resistance. Hence for the rest of this work, aiming
to formalise the first general security framework, we consider a noiseless setting and leave
further investigation that would be linked to particular construction to future works.

We have initially allowed for any CPT map as QEval algorithm. Now, we let the QEval
algorithm be a CPT map with the same dimension of domain and range Hilbert space, i.e.
din = dout. We show that under this assumption, only unitary transformations and CPT
maps that are negligibly close to unitary, can simultaneously provide the (strong)collision-
resistance and robustness requirements of qPUFs.

Theorem 3 Let E(ρ) be a completely positive and trace-preserving (CPT) map described as
follows:

E(ρ) = (1− ε)UρU † + εẼ(ρ) (17)

where U is a unitary transformation, Ẽ is an arbitrary (non-negligibly) contractive channel
and 0 ≤ ε ≤ 1. Then E(ρ) is a (λ, δr, δc)-qPUF for any λ, δr, and δc and with the same
dimension of domain and range Hilbert space, if and only if ε = negl(λ).

Proof: First, we note that The contractive property of trace-preserving operations [37]
states that CPT maps on the same Hilbert space, can only preserve or decrease distances
thus we have:

F (E(ρ), E(σ)) ≥ F (ρ, σ) (18)

Thus the robustness is generally satisfied. As a result, the proof of the theorem reduces
to proving for collision-resistance. Let ρ and δ be two δc-distinguishable challenge with
fidelity F (ρ, σ) ≤ 1− δc. Again with the above argument the fidelity of the outputs cannot

3A weaker variant of Collision-Resistance, with separate input/output bound can be also defined in
a similar fashion where the responses generated by QEval on any two δic-distinguishable input states ρin
and σin, should be at least δoc -distinguishable. In fact, if δic = δoc = δc we call the requirement a strong
collision-resistance. Note that this equality holds up to a negligible value in the security parameter, i.e.
if δic = δoc ± negl(λ), the strong collision-resistance requirement has still been satisfied. If δoc < δic (the
difference is non-negligible) then this is referred to as weak collision-resistance.
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be smaller than F (ρ, σ). Thus the δc requirement is satisfied if the fidelity of the response
density matrices are equal up to a negligible value.

Now let ρ1 = UρU †, σ1 = UσU †, ρ2 = Ẽ(ρ), and σ2 = Ẽ(σ). We use the joint concavity
of the fidelity [37] to obtain the following relation for the channel’s output fidelity:

F (E(ρ), E(σ)) = F ((1− ε)ρ1 + ερ2, (1− ε)σ1 + εσ2)
≥ (1− ε)F (ρ1, σ1) + εF (ρ2, σ2)

(19)

Since the first part of the channel is unitary which is distance preserving, we have F (ρ1, σ1) =
F (ρ, σ). Also due to contractive property of trace-preserving operations we know that
F (ρ2, σ2) ≥ F (ρ, σ). We have

F (E(ρ), E(σ))− F (ρ, σ) ≥ ε(F (ρ2, σ2)− F (ρ, σ)) (20)

Now since the channel Ẽ is non-negligibly contractive, the value F (ρ2, σ2)− F (ρ, σ) is not
necessarily negligible and in order for the LHS of 19 to be always negligible, ε has to be
negligible. So we have proved that CPT maps of the form 17 can be δc collision resistance
qPUFs only if ε = negl(λ).

Now we show that all channels of the form of Equation 17 where ε is negligible satisfy
the strong collision resistance property up to a negligible value. To show that we use the
relation between fidelity and trace distance which we denote as Dtr, which is Dtr(ρ, σ) ≤√

1− F (ρ, σ). We use this inequality to relate the distance between the states E(ρ) and
E(σ) and the original distance between ρ and σ and we subtract both sides to get the
following inequality:

F (E(ρ), E(σ))− F (ρ, σ) ≤ D2
tr(ρ, σ)−D2

tr(E(ρ), E(σ))
≤ (Dtr(ρ, σ)−Dtr(E(ρ), E(σ)))(Dtr(ρ, σ) +Dtr(E(ρ), E(σ)))
≤ 2(Dtr(ρ, σ)−Dtr(E(ρ), E(σ)))

(21)

In Appendix C, Lemma 2 we show that the difference between the trace distance of the
input and output for channels described as Equation 17, is bounded by εDtr(ρ, σ). Thus
we have:

F (E(ρ), E(σ))− F (ρ, σ) ≤ 2εDtr(ρ, σ) (22)

Now since ε = negl(λ) and 0 ≤ Dtr(ρ, σ) ≤ 1, we can conclude that the difference be-
tween the fidelity is also negligible and hence the δc collision-resistance is satisfied up to a
negligible value, and the proof is complete. �

The above theorem shows that only unitary or more generally, ε-disturbed unitary
maps where ε is small, are suitable candidates for qPUF, especially when strong collision
resistance is required. Thus, in the rest of the paper, we choose the QEval algorithm to
be a unitary map, and also for simplicity, we establish some of our theorems with pure
quantum states, noting that considering the mixed states would not affect the main results.
We call this type of qPUFs, Unitary qPUFs (or simply UqPUFs) and formally define them
in Definition 3. Nevertheless, we believe studying more general non-unitary qPUFs will be
interesting future research directions in this field.

Moreover, we require UqPUF transformations to be initially unknown (or exponentially
hard to recover) as we will formally define in Definition 2. This is a hardware assumption
that is also considered in the classical setting where the PUF behaviour is unknown even for
the manufacturer [42]. Although from a construction point of view, this may not seem an
easily achievable requirement, from a practical point of view this assumption is reasonable
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considering limited fabrication capabilities or the fact that simulating the same unitary
on a quantum computer is not technologically easy due to noise or accumulated errors in
each gate, even when the structure of the unitary is known. Moreover, there are promising
constructions such as the family of optical schemes implemented using crystals or optical
scattering media [39], where usually even the manufacturer does not know the underlying
unitary unless querying it. On the other hand, in gate-based construction, one cannot
avoid the fact that the manufacturer knows the underlying unitary. Hence this type of
constructions cannot provide security against an adversarial manufacturer. Nevertheless,
if predicting the evolution of a quantum state is difficult this is enough for security under
the usual PUF assumptions. Hence such devices are still useful and practical for many
applications as they can still provide security against any malicious adversary other than
the manufacturer. We also note that from the theoretical point of view, this requirement
is a minimal and pre-challenge requirement that can be achieved by sampling a family of
unitaries indistinguishable from the Haar family of unitary transformations in single-shot,
and we believe there are efficient ways to do this sampling [13, 1]. Finally, our framework
and results cover both adversarial models where the manufacturer could be trusted or not.

Definition 2 (Unknown Unitary Transformation) We say a family of unitary transforma-
tions Uu, over a D-dimensional Hilbert space HD is called Unknown Unitaries, if for all
QPT adversaries A the probability of estimating the output of Uu on any randomly picked
state |ψ〉 ∈ HD is at most negligibly higher than the probability of estimating the output of
a Haar random unitary operator on that state:

| Pr
U←Uu

[F (A(|ψ〉), U |ψ〉) ≥ non-negl(λ)]− Pr
Uµ←µ

[F (A(|ψ〉), Uµ |ψ〉) ≥ non-negl(λ)]| = negl(λ).

(23)
where µ denotes the Haar measure and the average probability has been taken over al; the
states |ψ〉.

Note that UqPUFs also satisfy a natural notion of unclonability, known as no-cloning of
unitary transformation [12] which states that two black-box unitary transformations O1
and O2 cannot be perfectly cloned by a single-use apart from the trivial cases of perfect
distinguishability or when O1 = O2. Thus, two UqPUFs, as long as they correspond to
different unitaries, which is satisfied by the uniqueness requirement, are unclonable by
quantum mechanics through a single-use. In the following section, we then show how this
unclonability property can be extended to the case where the transformation has been used
multiple times by formally introducing the notion of unforgeability. Thus, we define the
unitary qPUFs as follows.

Definition 3 (Unitary qPUF (UqPUF)) A Unitary qPUF ((λ, δr)−UqPUF) is a (λ, δr)−
qPUF where the QEval algorithm is modelled by an unknown unitary transformation Uid
over a D-dimensional Hilbert space, HD operating on pure input quantum states |ψin〉 ∈ HD
and returning pure output quantum states |ψout〉 ∈ HD,

|ψout〉 = QEval(UqPUFid, |ψin〉) = Uid |ψin〉 . (24)

As a result of the distance-preserving property of UqPUFs, we drop δr from the notation
and simply characterise UqPUF as λ-UqPUFs.

3.1 Security notion for qPUFs
The security of most PUF-based applications such as PUF-based identification protocols
relies on the unforgeability of PUFs [3]. Informally, unforgeability means that given a
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subset of challenge-response pairs of the target PUF, the probability of correctly guessing
a new challenge-response pair shall be negligible in terms of the security parameter. In this
section, we formally define this security notion for qPUFs in a game-based framework which
is a standard framework for defining security of cryptographic primitives and analysing
their security [3, 5, 15].

Accordingly, we define unforgeability as a game between an adversary who represents
the malicious party and a challenger who plays the role of the honest party. The game is
run in four steps: Setup, Learning, Challenge and Guess.

In the setup phase, the necessary public and private parameters and functions are
shared between the adversary and the challenger.

The learning phase models the amount of knowledge that the adversary can get from
the challenger. Similar to [3], we consider chosen-input attacks modelling an adversary
that has access to the qPUF and can query it with his own chosen inputs from the domain
Hilbert space. Because of the quantum nature of the adversary’s queries, the adversary
has to prepare two copies of each query, keep one in his database and send the other one
to the challenger.

The challenge phase captures the intended security notion. We consider here two
types of challenge phase: Existential and Selective. In an existential challenge phase, the
adversary chooses the challenge state while in a selective one, the challenge state is chosen
by the challenger. We characterize a "new" existential challenge by imposing the adversary
to choose a state that is µ-distinguishable from all the inputs queries in the learning phase.
In the selective case, to ensure the adversary has no knowledge about the challenge, we
impose the challenger to choose the challenge uniformly at random from the domain Hilbert
space.

Finally, in the guess phase, the adversary outputs his guess of the response correspond-
ing to the challenge chosen in the challenge phase. The challenger checks the equality
between the adversary’s guess and the correct response with a test algorithm. The adver-
sary wins the game if the output of the test algorithm is 1. Due to the impossibility of
perfectly distinguishing all quantum states, checking equality of two completely unknown
states is a non-trivial task. This is one of the major differences between classical and
quantum PUFs. Nevertheless, a probabilistic comparison of unknown quantum states can
be achieved through the simple quantum SWAP test algorithm [8], and its generalisation
to multiple copies introduced recently in [10]. Here we abstract from specific tests and
define necessary conditions for a general quantum test.

Definition 4 (Quantum Testing Algorithm) Let ρ⊗κ1 and σ⊗κ2 be κ1 and κ2 copies of two
quantum states ρ and σ, respectively. A Quantum Testing algorithm T is a quantum
algorithm that takes as input the tuple (ρ⊗κ1,σ⊗κ2) and accepts ρ and σ as equal (outputs
1) with the following probability

Pr[1← T (ρ⊗κ1 , σ⊗κ2)] = 1− Pr[0← T (ρ⊗κ1 , σ⊗κ2)] = f(κ1, κ2, F (ρ, σ))

where F (ρ, σ) is the fidelity of the two states and f(κ1, κ2, F (ρ, σ)) satisfies the following
limits: 

limF (ρ,σ)→1 f(κ1, κ2, F (ρ, σ)) = 1 ∀ (κ1, κ2)
limκ1,κ2→∞ f(κ1, κ2, F (ρ, σ)) = F (ρ, σ)
limF (ρ,σ)→0 f(κ1, κ2, F (ρ, σ)) = Err(κ1, κ2)

(25)

with Err(κ1, κ2) characterising the error of the test algorithm and F (ρ, σ) the fidelity of
the states.
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We also define another abstraction of the test algorithm in an ideal case which later
helps us to demonstrate the security of the UqPUF. We formalize the ideal test T idealδ as
follows:

Definition 5 (T idealδ Test Algorithm) We call a test algorithm according to Definition 4, a
T idealδ Test Algorithm when for any two state |ψ〉 and |φ〉 the test responds as follows:

T idealδ =
{

1 F (|ψ〉 , |φ〉) ≥ δ
0 otherwise

(26)

Now we are ready to formalize unforgeability through a formal security game.

Game 1 (Formal game-based security of qPUF) Let qPUF = (QGen,QEval, T ) and T be
defined as Definition 1 and 4, respectively. We define the following game GqPUF

c,µ (A, λ)
running between an adversary A and a challenger C:

Setup. The challenger C runs QGen(λ) to build an instance of the qPUF family,
qPUFid. Then, C reveals to the adversary A, the domain and range Hilbert space of
qPUFid respectively denoted by Hin and Hout as well as the identifier of qPUFid, id.
The challenger initialises two empty databases, Sin and Sout and shares them with
the adversary A. Also Hdin denotes adversary’s input subspace.

Learning. For i = 1 : k

– A prepares two copies of a quantum state ρi ∈ Hdin, appends one to Sin and
sends the other to C;

– C runs QEval(qPUFid, ρi) and sends ρouti , to A;
– A appends ρouti to Sout.

Challenge.4

– If c = qEx: A picks a quantum state ρ∗ ∈ Hdin at least µ-distinguishable from
all the states in Sin and sends κ1 copies of it to C;

– If c = qSel: C chooses a quantum state ρ∗ at random from the uniform distribu-
tion over the Hilbert space Hdin. The challenger keeps κ1 copies of ρ∗ and sends
an extra copy of ρ∗ to A.

Guess.

– A sends κ2 copies of his guess ρ′ to C;
– C runs QEval(qPUFid, ρ

∗)⊗κ1, and gets ρ∗⊗κ1
out ;

– C runs the test algorithm b ← T (ρ∗⊗κ1
out , ρ′⊗κ2) where b ∈ {0, 1} and outputs b.

The adversary wins the game if b = 1.5

4The parameter c specifies the type of the challenge phase.
5Note that all the learning phase queries and the challenges represented with ρ, ρ′, |φ〉, etc. are consid-

ered to be any general separable or entangled state of a D-dimensional Hilbert space. Moreover, κ1 and
κ2 are a choice of notation that enables us to include any desired quantum test algorithm according to
Definition 4 and are independent of the number of the copies that the adversary uses in the learning phase.
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Based on the above game, we define the security notions, quantum exponential unforge-
ability, quantum existential unforgeability and quantum selective unforgeability for qPUFs;
where the first one, models unforgeability of qPUFs against exponential adversaries with
unlimited access to the qPUF in the learning phase; the second one is the most common
and strongest type of unforgeability against Quantum Polynomial-Time (QPT) adver-
saries; finally the third one is a weaker notion of unforgeability that is sufficient for most
qPUF-based applications like qPUF-based identification protocols.

Definition 6 (Quantum Exponential Unforgeability) A qPUF provides quantum exponen-
tial unforgeability if the success probability of any exponential adversary A in winning the
game GqPUF

qEx,µ (A, λ) is negligible in λ

Pr[1← GqPUF
qEx,µ (A, λ)] = negl(λ) (27)

Definition 7 (µ-Quantum Existential Unforgeability) A qPUF provides µ-quantum exis-
tential unforgeability if the success probability of any Quantum Polynomial-Time (QPT)
adversary A in winning the game GqPUF

qEx,µ (A, λ) is negligible in λ

Pr[1← GqPUF
qEx,µ (A, λ)] = negl(λ) (28)

Definition 8 (Quantum Selective Unforgeability) A qPUF provides quantum selective un-
forgeability if the success probability of any Quantum Polynomial-Time (QPT) A in winning
the game GqPUF

qSel (λ,A) is negligible in λ

Pr[1← GqPUF
qSel (λ,A)] = negl(λ) (29)

3.2 Security analysis of Unitary qPUFs
Here, we show which security notions defined in Section 4.1 can be achieved by unitary
qPUFs (UqPUFs) over a D-dimensional Hilbert space operating on pure quantum states.

In the classical setting, cPUFs can be fully described by the finite set of CRPs, and
this suffices for breaking unforgeability. More precisely, an unbounded or exponential
adversary can extract the entire set of CRPs by querying the target cPUF with all possible
challenges [11]. If the challenges are n-bit strings, the number of possible challenges is 2n.
However, in the quantum setting, a UqPUF can generate an infinite number of quantum
challenge-response pairs such that extracting all of them is hard, even for exponential
adversaries. This, combined with limitations imposed by quantum mechanics such as no-
cloning [52] and the limits on state estimation [6], raise the question if UqPUFs could
satisfy unforgeability against exponential adversaries. We now prove that no UqPUF
provides quantum exponential unforgeability as defined in Definition 6.

Theorem 4 (No UqPUF provides quantum exponential unforgeability) For any
λ-UqPUF and any 0 ≤ µ ≤ 1, there exists an exponential quantum adversary A such that

Pr[1← GUqPUF
qEx,µ (λ,A)] = non-negl(λ) (30)

Proof: The key idea of the proof is based on complexity analysis of unitary tomography
and implementation of a general unitary by single and double qubit gates, since for an
exponential quantum adversary, it will be feasible to extract the unitary matrix by to-
mography and then build the extracted unitary by general gate decomposition method.
By using the Solovay-Kitaev theorem [37], we then show that the adversary can build the
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unitary matrix of the UqPUF performing on n-qubits, within an arbitrarily small distance
ε using O(n24n logc(n24n)) gates and hence win the game with any test algorithm T . Let
UqPUFid operate on n-qubit input-output pairs where n = log(D). In the learning phase,
A selects a complete set of orthonormal basis of HD denoted as {|bi〉}2

n

i=1 and queries
UqPUFid with each base 2n times. So, the total number of queries in the learning phase
is k1 = 22n.

Then, A runs a unitary tomography algorithm to extract the mathematical description
of the unknown unitary transformation corresponding to the UqPUFid, say Uid. It has
been shown in [37] that the complexity of this algorithm is O(22n) for n-qubit input-output
pairs. This is feasible for an exponential adversary. It is clear that once the mathematical
description of the unitary is extracted, A can simply calculate the response of the unitary
to a known challenge quantum state and wins the game GUqPUF

qEx,µ (λ,A) for any value of µ.
So, we have:

Pr[1← GUqPUF
qEx,µ (λ,A)] = 1. (31)

We can also show the exponential adversary wins even the weaker notion of the security,
i.e. quantum selective unforgeability, where he has only one copy of the challenge quantum
state. To win the game with the selective challenge phase, the adversary needs to implement
the unitary.

It is known that any unitary transformation over H2n requires O(22n) two-level unitary
operations or O(n222n) single qubit and CNOT gates [37] to be implemented. However,
according to Solovay-Kitaev theorem [37], to implement a unitary with an accuracy ε
using any circuit consisting of m single qubit and CNOT gates, O(m logc(m/c)) gates
from the discrete set are required where c is a constant approximately equal to 2. Thus,
an arbitrary unitary performing on n-qubit can be approximately implemented within an
arbitrarily small distance ε using O(n24n logc(n24n)) gates.

So, A implements the unitary U′id with error ε. Let A get the challenge state |ψ〉 in
the qSel Challenge phase. The adversary queries U′id with |ψ〉 and gets |ω〉 = U′id |ψ〉 as
output. Since the ε can be arbitrary small, then F (Uid |ψ〉 ,U′id |ψ〉) ≥ 1 − negl(λ). So,
A’s output |ω〉 passes any test algorithm T (|ψout〉⊗κ1 , |ω〉⊗κ2) with probability close to 1.
Again, an unbounded adversary wins the game GUqPUF

qSel,µ (λ,A) with probability 1. �
We note that this result is expected as any qPUF (same as a classical PUF), can in

principle, be simulated with enough computational resources. That is why the reasonable
and achievable security model is usually against a qPUF in hands of the adversary for
a limited time or limited query such as QPT adversaries. It is also worth mentioning
that from an engineering point of view, limiting the adversary to a certain number of
queries on a hardware level, can depend on the construction and it might be possible in
some qPUF implementations, while might not be feasible with some others. While this is
an interesting problem to be considered in qPUF implementations, from a cryptanalysis
point, our security analysis against a quantum adversary who is given polynomial time in
the security parameter, is independent of the construction.

Exploiting the quantum emulation algorithm introduced in Section 2 we now turn to
quantum existential unforgeability, and show that no UqPUF provides quantum existential
unforgeability for any µ 6= 1 as defined in Definition 7. Note that the case µ = 1 corresponds
to the existential challenge state being orthogonal to all the queried states in the learning
phase. With µ = 1, the adversary is prevented from taking advantage of its quantum
access to the qPUF to win the game.

Theorem 5 (No UqPUF provides quantum existential unforgeability) For any λ-

Accepted in Quantum 2021-05-02, click title to verify. Published under CC-BY 4.0. 14



UqPUF, and 0 ≤ µ ≤ 1− non-negl(λ), there exits a QPT adversary A such that

Pr[1← GUqPUF
qEx,µ (λ,A)] = non-negl(λ). (32)

Proof: We show there is a QPT adversary A who wins the game GUqPUF
qEx,µ (λ,A) with

non-negligible probability in λ. The adversary A runs the learning phase of the game
GUqPUF

qEx,µ (λ,A) with |φ1〉 and |φ2〉 such that |φ1〉 can be any quantum state in HD and

|φ2〉 =


1√
2(|φ1〉+ |φ3〉) if 0 ≤ µ ≤ 1

2√
µ |φ1〉+

√
1− µ |φ3〉 if 1

2 < µ ≤ 1− non-negl(λ)
(33)

Without loss of the generality, we assume A chooses one of the computational basis of HD
as |φ1〉. Then, A chooses an orthogonal state to |φ1〉 as |φ3〉 and sets |φ2〉 the superposition
of these two states. In the existential challenge phase, A sets |φ3〉 as his chosen challenge.
Note that |φ3〉 satisfies the µ-distinguishability of the challenge state with both |φ1〉 and
|φ2〉. In the guess phase, to estimate the output of UqPUF to |φ3〉, the adversary A
runs the quantum emulation (QE) algorithm defined in Section 2 with the reference state
|φr〉 = |φ2〉.

Relying on Theorem 2, the output state of Stage 1 of the QE algorithm is:

|χf 〉 = 〈φ2|φ3〉 |φ2〉 |0〉+ |φ3〉 |1〉 − 〈φ2|φ3〉 |φ2〉 |1〉
− 2 〈φ1|φ3〉 |φ1〉 |1〉+ 2 〈φ2|φ3〉 〈φ2|φ1〉 |φ1〉 |1〉 .

(34)

Note that 〈φ1|φ3〉 = 0 and we set 〈φ2|φ3〉 = α and 〈φ2|φ1〉 = β based on the choice of
|φ2〉, the above equation can be simplified as:

|χf 〉 = α |φ2〉 |0〉+ |φ3〉 |1〉 − α |φ2〉 |1〉+ 2αβ |φ1〉 |1〉 . (35)

Now, according to Theorem 1, the final fidelity in terms of the success probability of Stage
1 can be obtained by calculating the density matrix of |χf 〉 and tracing out the ancillas:

Psucc−stage1 = | 〈φ2|Tranc(|χf 〉 〈χf |) |φ2〉 |2

= |α2(1 + 4α2β2)|2.
(36)

We have different choices for the reference state depending on the distinguishability pa-
rameter µ. For cases where the adversary is allowed to produce a new state with at least
overlap half with all the states in the learning phase, by choosing the uniform superposition
of the states where α = β = 1√

2 , the output fidelity will be:

F (|φout′3 〉 〈φout′3 | , |φout3 〉 〈φout3 |) ≥
√
Psucc−stage1 = 1. (37)

where |φout′3 〉 and |φout3 〉 are the output of the QE algorithm and UqPUF to |φ3〉, respec-
tively.

As can be seen, these two states are completely indistinguishable So, the success prob-
ability of A for any test according to Definition 4 is:

Pr[1← GUqPUF
qEx,µ (λ,A)] = Pr[1← T (|ψout〉⊗κ1 , |ω〉⊗κ2)] = 1 (38)

which is the optimal choice of the reference. On the other hand, for the cases where the
adversary is restricted to produce a challenge more than half distinguishable, we can still
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create a superposed state with α =
√

1− µ and β = √µ and end up with the following
fidelity of the emulation by setting µ = 1− non-negl(λ)

F (|φout′3 〉 〈φout′3 | , |φout3 〉 〈φout3 |) ≥ |α2(1 + 4α2β2)|
= |(1− µ)(1 + 4µ(1− µ))|
= non-negl(λ).

(39)

Recall that the security parameter λ includes the number of copies used in the test algo-
rithm (κ1, κ2), by increasing them the probability of accepting will converge to the above
fidelity thus for any 1

2 < µ ≤ 1− non-negl(λ):

Pr[1← GUqPUF
qEx,µ (λ,A)] = Pr[1← T (|φout3 〉

⊗κ1 , |φout′3 〉
⊗κ2)] = non-negl(λ) (40)

And the proof is complete. �
This theorem implies that the adversary can always generate the correct response to

his chosen challenge provided that he can query it in superposition with other quantum
states during the learning phase in terms of the parameter µ. Note that since output quan-
tum states in the learning phase are unknown to the adversary, the more straightforward
strategy of superposing the learnt output quantum states cannot be efficiently performed.
More precisely, the adversary cannot prepare the precise target superposition of the out-
put states that are completely unknown [40, 17]. Hence the proposed attack is general but
non-trivial.

We now further relax the level of security and consider quantum selective unforgeabil-
ity. We show that any UqPUF can provide this weaker notion of security. Note that in
most of the PUF-based applications such as PUF-based identification protocols, selective
unforgeability is sufficient.

We need the following lemma to prove the quantum selective unforgeability feature of
UqPUFs. The lemma implies the average probability of any state in HD to be projected
in a subspace Hd where d ≤ D. Based on this lemma, we calculate the probability of a
state chosen uniformly at random from HD to be projected in the orthogonal subspace of
the adversary’s database where the quantum emulation or similar attacks does not work.

Lemma 1 Let HD be a D-dimensional Hilbert space and Hd a subspace of HD with dimen-
sion d. Also, let Πd be a projector for any quantum state in HD into Hd. The average
probability that any state, chosen uniformly at random from HD, |ψ〉 ∈

R
HD to be projected

into Hd is equal to d
D

Pr
|ψ〉,Πd

[| 〈ψ|Πd |ψ〉 | = 1] = d

D
(41)

Proof: The proof is mainly based on the symmetry of the Hilbert space and the fact that
the probability of falling into each subspace is equal for any state uniformly picked at
random.

Note that Any state |ψ〉 ∈ HD can be written in terms of the orthonormal bases of HD
denoted by |bi〉, as follows:

|ψ〉 =
D−1∑
i=0

αi |bi〉 with
D−1∑
i=0
|αi|2 = 1 (42)

where αi are complex coefficients. A projection into a smaller subspace consists of choosing
d bases of HD in the form of

∑d−1
j=0 |bj〉 〈bj |. Without loss of generality, we can assume
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D = md where m is an integer. This assumption is always correct for qubit spaces. This
means that the larger Hilbert space can be divided into m smaller subspaces each with
dimension d. Let {|ei〉}d−1

i=0 be a subset of HD which makes a complete set of bases for one
of the d-dimensional subspaces. A projector projects |ψ〉 into one of the subspaces. As
|ψ〉 has been picked at random and the subspaces are symmetric, the probability of falling
into each subspace is the same and equal to 1

m which is d
D . Otherwise either the sum of

all probabilities would not be 1 or the |ψ〉 has not been picked uniformly at random from
HD. This shows that on average the probability of projecting a state ψ is d

D . This can
also be seen by the fact that the sum of all projectors in a complete set of projectors is
equal to one. In this case, we have

D−1∑
i=0

Πi = I (43)

By sandwiching |ψ〉 on both sides we have:

D−1∑
i=0
〈ψ|Πi |ψ〉 = 1. (44)

Each 〈ψ|Πi |ψ〉 is itself equal to
∑d−1
j=0 | 〈ψ| dij〉|2 where |dij〉s are the bases associated to the

subspace that the projector Πi projects into. This corresponds to all the permutations of d
number of the coefficient |αi|2 which will be 1

d on average. Since we have
∑D−1
i=0

PrΠi
d = 1,

we can conclude that the average probability PrΠ for all the projectors will be d
D and the

proof is complete. �
To establish our possibility result, we first present a preliminary theorem which demon-

strates the security of the UqPUF considering an ideal test algorithm which asymptotically
satisfies the notion of distance as defined in Definition 5.

Theorem 6 For any unitary qPUF characterised by UqPUF = (QGen,QEval, T idealδ ), and
any non-zero δ, the success probability of any QPT adversary A in the game GUqPUF

qSel (λ,A)
is bounded as follows:

Pr[1← GUqPUF
qSel (λ,A)] ≤ d+ 1

D
(45)

where D is the dimension of the Hilbert space that the challenge quantum state is picked
from, and 0 ≤ d ≤ D− 1 is the dimension of the largest subspace of HD that the adversary
can span in the learning phase of GUqPUF

qSel (λ,A).

Proof (Sketch): The complete proof can be found in Appendix D, here we only sketch
the main idea. We are interested in the average success probability of the adversary
running the game GUqPUF

qSel (λ,A). Let the subspace spanned by the learnt queries be a
d-dimensional subspace of HD denoted by Hd. We calculate the average fidelity of the
adversary’s estimated output state |ω〉 and the correct output |ψout〉, over all choices of
the qSel challenge state |ψ〉. We require this fidelity to be greater than a value δ imposed
by the T idealδ :

Pr[1← GUqPUF
qSel (λ,A)] = Pr

|ψ〉∈HD
[F (|ω〉 , |ψout〉) ≥ δ]. (46)

Note that because of the quantum nature of queries in the learning phase and the limited
number of queries that the QPT adversary A can make, A might not have the classical
description of the responses to his queries. So, we let A′ be another QPT adversary who
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has full knowledge of Hd. It is obvious that the success probability of A′ would be higher
than the success probability of A due to the extra knowledge that A′ has. So, we have

Pr[1← GUqPUF
qSel (λ,A)] ≤ Pr[1← GUqPUF

qSel (λ,A′)] (47)

In rest of the proof, We calculate the success probability of A′ which is the higher bound for
the success probability of A. We write this probability in terms of its partial probabilities
for the states orthogonal to Hd and the rest of the space:

Pr[1← GUqPUF
qSel (λ,A′)] = Pr

|ψ〉∈Hd⊥
[F ≥ δ]Pr[|ψ〉 ∈ Hd⊥ ] + Pr

|ψ〉6∈Hd⊥
[F ≥ δ]Pr[|ψ〉 6∈ Hd⊥ ].

(48)
The probability of projection into the orthogonal subspace and the conjugate subspace
can be obtained by calling Lemma 1:

Pr[|ψ〉 ∈ Hd⊥ ] = d⊥

D
(49)

where d⊥ = D − d; And

Pr[|ψ〉 6∈ Hd⊥ ] = 1− Pr[|ψ〉 ∈ Hd⊥ ] = d

D
(50)

We also assume there exists a QPT algorithm that its average probability over all
the states not in the orthogonal subspace to estimate their outputs with F ≥ δ is 1, i.e.
Pr

|ψ〉6∈Hd⊥
[F ≥ δ] = 1.

Thus, the only remaining term to calculate is the probability that the average fidelity
be greater than δ in the orthogonal subspace, i.e. Pr

|ψ〉∈Hd⊥
[F ≥ δ]. We show in Appendix D

that since the qSel challenge is chosen uniformly at random from HD, the best attack
strategy to achieve the desired fidelity is choosing the output state uniformly at random
from HD.

Then, we calculate the average fidelity according to Haar measure and show the average
probability for non-zero fidelity is bounded by:

Pr
|ψout〉∈Hd⊥

out

[F 6= 0] ≤ 1
D − d

(51)

So, for non-zero δ we also have,

Pr
|ψout〉∈Hd⊥

out

[F ≥ δ] ≤ 1
D − d

(52)

As a result, the success probability of A is bounded by

Pr[1← GUqPUF
qSel (λ,A)] ≤ Pr[1← GUqPUF

qSel (λ,A′)] ≤ d+ 1
D

(53)

And the theorem is proved. �

Theorem 7 (Any UqPUF provides quantum selective unforgeability) Let the test
algorithm T be defined according to Definition 4 and satisfy the condition Err(κ1, κ2) =
negl(κ1, κ2). Then, for any UqPUF = (QGen,QEval, T ) and any QPT adversary, we
have:

Pr[1← GUqPUF
qSel (λ,A)] = negl(λ). (54)
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Proof: Let |ψ〉 be quantum state chosen by the challenger in the selective challenge
phase. Also, let |ψout〉 and |ω〉 be the output of the UqPUF and the adversary A to |ψ〉,
respectively. Note that the success probability of A in game GUqPUF

qSel (λ,A) is equal to the
probability of the test algorithm in outputting 1:

Pr[1← GUqPUF
qSel (λ,A)] = Pr[1← T (|ψout〉⊗κ1 , |ω〉⊗κ2)] (55)

We denote Pr[1← T (|ω〉⊗κ1 , |ψout〉⊗κ2)] with Pr[1← T ] for simplicity. To calculate this
probability, we consider two independent cases where leads the T outputs 1. We let δ be
the threshold for F (|ω〉 , |ψout〉) that helps us to write the Pr[1← T ] as sum of two terms,
i.e. the probability of T outputting 1 while F ≥ δ and the probability of T outputting 1
while F < δ:

Pr[1← T ] = Pr[1← T , F ≥ δ] + Pr[1← T , F < δ] (56)

Let δ = negl(λ) hence we have

Pr[1← T ] = Pr[1← T |F ≥ negl(λ)]Pr[F ≥ negl(λ)]
+ Pr[1← T |F < negl(λ)]Pr[F < negl(λ)]

(57)

and then from Theorem 6, it can be concluded that

Pr[F ≥ negl(λ)] ≤ d+ 1
D

(58)

where d is the dimension of the subspace spanned by the learnt queries and D is the
dimension of the Hilbert space that the UqPUF is defined over it. Thus, D = 2n where n
is the number of qubits in each input/output state. Since the adversary is a QPT adversary,
the number of learnt queries and as a result the value of d should be polynomial in n, i.e.
d = poly(n).

Also, according to Definition 4, we have,

Pr[1← T |F < negl(λ)] = Err(κ1, κ2) (59)

And,
Pr[1← T |F ≥ negl(λ)] ≤ F (60)

Considering the equality cases and due to the fact that Pr[F < negl(λ)] = 1 − Pr[F ≥
negl(λ)],

Pr[1← T ] = Err(κ1, κ2)(1− d+ 1
D

) + negl(λ)d+ 1
D

(61)

Recall that Err(κ1, κ2) = negl(κ1, κ2), d = poly(n) and D = 2n and hence d+1
D = negl(n)

and the probability that the test algorithm outputs 1 is computed as

Pr[1← T ] = negl(κ1, κ2)(1− negl(n)) + negl(λ)negl(n)
= negl(κ1, κ2) + negl(λ)negl(n)

(62)

Let λ = f(κ1, κ2, n), therefore we have

Pr[1← GUqPUF
qSel (λ,A)] = Pr[1← T ] = negl(λ) (63)

and the proof is complete. �
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4 Discussion and Future works
In this section, we briefly discuss the relationship between our proposal and other types of
PUFs, as well as the open questions and direction for future works.

Here, we briefly discuss how requirements and security properties defined for cPUFs
and QR-PUFs [45, 46] in the literature differ from or relate to what we have defined as
qPUF in this paper while leaving a concrete comparison between various PUF instances
for future studies.

Most of the available PUF structures use digital encoding as their inputs and outputs
so that they can easily be integrated with other functionalities in Integrated Circuits (ICs).
This means their input-output pairs are bit-strings. As we can encode the bit strings in
computational bases of the Hilbert space, the cPUFs can be considered as special types of
Unitary qPUFs (UqPUFs) that can only operate on the computational bases, i.e. map the
computational bases in their input domain to other computational bases in their output
range. So, our result stating that no UqPUF provides quantum existential unforgeability
also shows no cPUF, assuming that they can be queried by quantum states, can provide
this security notion for µ 6= 1.

According to [3], if a cPUF provides the min-entropy requirement (which imposes that
the cPUF responses are linearly independent) then it can provide existential unforgeabil-
ity [3] against classical adversaries with no quantum access to the cPUF. However, this
requirement cannot be satisfied with most of the common cPUF structures as shown in
[19, 44, 43, 28]. Instead of the min-entropy requirement that seems hard or impossible
to be achieved, we only consider the basic assumption on PUFs that let the behaviour of
PUF be unknown to anyone [42]; and instead of existential unforgeability property which
seems impossible to be achieved for both cPUFs and qPUFs, we consider the selective
unforgeability property which is a weaker, yet more relevant, notion than the existential
one.

To the best of our knowledge, there is no study on quantum security of cPUFs in the
literature. We emphasise given the speedy progress in quantum technology the investi-
gation of the security of cPUFs against quantum adversaries is crucial. The security of
silicon cPUFs and the other types of cPUFs that cannot be queried by quantum states can
be explored in the post-quantum (or standard) security model where the quantum adver-
sary has only classical interaction with the primitive while he has been equipped with a
powerful quantum computer. However, for the other types of cPUF structures like optical
PUFs that can naturally be queried with quantum states, the security of cPUFs need to be
analysed in the quantum security model where the adversary in addition to having a quan-
tum computer can have quantum access to the cPUF oracle. Note that quantum selective
unforgeability of this type of cPUF structures can be investigated in the aforementioned
model. We leave exploring these open questions for future studies.

Another main category of PUFs that can be represented via unitary transformations,
is Quantum Read-out PUFs (QR-PUFs). The original definition of QR-PUFs considered
cPUFs with quantumly-encoded challenge-response pairs. [45, 46]. The security of QR-
PUF-based identification protocols has been investigated in specific security models, such
as prepare-and-resend adversaries in [45, 46, 39, 22, 47, 38, 18] where either the full unitary
transformation or equivalently the classical description of QR-PUF responses for any known
challenge, is assumed to be public knowledge. The security of such PUF-based protocols
relies on the bounds on the ability of an adversary to estimate an unknown quantum
challenge sent by the verifier.

Although our current framework as it is, will not be directly applicable to all sorts
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of protocols and scenarios in which QR-PUFs are defined and used due to specific sets
of assumptions and adversarial models considered in these scenarios, we believe that an
extended variant of QR-PUFs can be studied as a stand-alone primitive in our proposed
framework. We call this extended class, Public-Database PUFs (or PDB-PUFs) which
include any PUF that can be queried with quantum (or quantumly encoded) challenges,
produce quantum states as responses and are modelled by a publicly known unitary trans-
formation or a public database equivalently. Our framework provides security notions
against general and quantum adversaries in the standard game-based model. Hence we
can also investigate the security of PDB-PUFs, by relaxing the unknownness condition for
this class.

It can easily be shown that in the case of PDB-PUFs the adversary has more knowledge
compared to qPUFs, so, these PUFs cannot provide quantum existential unforgeability,
either. But more interestingly, using our toolkit of the quantum emulation attack, one can
also show that, provided that the classical description of the unitary or the responses to
be known, PDB-PUFs do not even provide quantum selective unforgeability against QPT
adversaries, even if the adversary is unable to efficiently estimate the challenge quantum
state. To see why let us assume the challenger to be also an efficient quantum party. Hence
a QPT adversary having knowledge over the database can efficiently span a subspace,
including the challenge state, hence the approximate response can be produced with high
fidelity using the universal quantum emulator as has been discussed in Section 2. We should
mention that the feasibility of other quantum attacks with current technologies has been
discussed in [45, 46, 39, 22, 47, 38, 18]. However, it remains an interesting open question
when the quantum emulator attack presented in this paper can also be demonstrated on
emerging quantum devices.

Another interesting direction for future work is whether the assumptions of QR-PUFs
can be matched to the current framework to be able to study their provable security against
stronger quantum adversaries. It seems that if one can assume the classical description
of UQR to be private and the challenge state can be chosen uniformly at random from
the whole Hilbert space, the QR-PUFs like qPUFs can provide the quantum selective
unforgeability. Although this remains an interesting open problem.

An important complementary question that we left open is the design of concrete
qPUF construction based on the formal framework proposed in this work. Introducing
a proper construction for quantum PUF would be much more complicated than their
classical counterparts as one needs to deal with many complications of the quantum world
such as decoherence. Although similar to the case of classical PUF, optical devices still
remain good candidates for qPUFs and worth a formal study that would be able to show
whether they satisfy all the requirements and properties of a secure qPUF. Moreover, some
randomised circuit-based construction such as t-design can also be a suitable candidate for
qPUF as we have recently explored [29]. Another challenge in the way of industrialising
of the qPUFs is the need for quantum memory for some of the qPUF-based protocols. It
is an interesting question that how much this resource can be reduced or even removed in
different protocols. Finally, the current definition allows the study of unitary qPUFs while
as also mentioned in the paper, by relaxing some of the requirements the framework could
also allow for non-unitary qPUF which is another natural open question for the future
studies.
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A Background on Classical Physical Unclonable Functions
In this section, we briefly present the formal definition of Physical Unclonable Functions
(PUFs) as found in the classical literature [3, 42, 7]. Let a D-family be a set of physical
devices generated through the same manufacturing process. Due to unavoidable variations
during manufacturing, each device has some unique features that are not easily clonable.
A Physical Unclonable Function (PUF) is an operation making these features observable
and measurable by the holder of the device.

As in [3, 7], we formalize the manufacturing process of a PUF by defining the Gen
algorithm that takes the security parameter λ as input and generates a PUF with an
identifier id. Note that each time the Gen algorithm is run, a new PUF with new id is
built. So, we have:

PUFid ← Gen(λ). (64)

Also, we define the Eval algorithm that takes a challenge x and PUFid as inputs and
generates the corresponding response yid as output:

yid ← Eval(PUFid, x). (65)

Due to variations in the environmental conditions, for any given PUFid, the Eval algorithm
may generate a different response to the same challenge x. It is required that this noise
be bounded as follows; if Eval(PUFid, x) is run several times, the maximum distance
between the corresponding responses should at most be δr. This requirement is termed
the robustness requirement.

Consider a family of PUF generated by the same Gen algorithm, and assume the
algorithm Eval is run on all of them with a single challenge x. To be able to distinguish
each PUFid, it is required that the minimum distance between the corresponding responses
be at least δu. This requirement is termed the uniqueness requirement.

The other requirement considered in [3] is collision-resistance. This imposes that when-
ever the Eval algorithm is run on PUFid with different challenges, the minimum distance
between the different responses must be at least δc. The parameters δr, δu, δc are deter-
mined by the security parameter λ. Robustness, uniqueness and collision-resistance are
crucial for correctness of cryptographic schemes built on top of PUFs. The conditions
δr ≤ δu and δr ≤ δc must be satisfied to allow for distinguishing different challenges and
PUFs [3].

According to the above, a (λ, δr, δu, δc)-PUF is defined as a pair of algorithms: Gen and
Eval that provides the robustness, uniqueness and collision-resistance requirements. We
call a (λ, δr, δu, δc)-PUF a Classical PUF (cPUF), if the Eval algorithm runs on classical
information such as bit strings. Any classical function f : {0, 1}n → {0, 1}m, including a
cPUF’s Eval, can be modelled as a unitary transformation as follows

∀x ∈ {0, 1}n,∀y ∈ {0, 1}m : Uf |x, y〉 := |x, f(x)⊕ y〉 (66)

and thus a quantum adversary can query Uf on any desired quantum states such as the
superposition of all the classical inputs.

B Proof of Theorem 2: Quantum Emulation Output
Here we give the full proof of Theorem 2 as follows.
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Proof: We prove the theorem by induction. For the first block (K = 1), according to
equation (9) and letting |χ0〉 = |ψ〉 we have:

|χ1〉 = 1
2[(I −R(φr)) |ψ〉 |0〉+R(φi)(I +R(φr)) |ψ〉 |1〉] (67)

where the term I−R(φr) = 2 |φr〉 〈φr| projects the previous state to |φr〉 with the coefficient
〈φr|ψ〉 and the term R(φi)(I +R(φr)) is equal to:

R(φi)(I +R(φr)) = 2[I − |φr〉 〈φr| − 2 |φi〉 〈φi|+ 2 〈φi|φr〉 |φi〉 〈φr|]. (68)

Thus, the final relation between all the parameters in the first block is as follows.

|χ1〉 = 〈φr|ψ〉 |φr〉 |0〉+ |ψ〉 |1〉−〈φr|ψ〉 |φr〉 |1〉−2 〈φ1|ψ〉 |φ1〉 |1〉+2 〈φr|ψ〉 〈φr|φ1〉 |φ1〉 |1〉
(69)

As can be seen, it satisfies the form of equation (10) where the first sum is zero and in
the second sum g10 = −1, g11 = +1, l′10 = l′11 = 1, x′10 = z′10 = 0, y′10 = 1, x′11 = z′11 = 1
and y′11 = 0.

Now we write |χK〉 according to equation (9), assume |χK−1〉 is written in form of
equation (10) and show |χK〉 also satisfies this equation.

|χK〉 = 〈φr|χK−1〉 |φr〉 |0〉+ |χK−1〉 |1〉 − 〈φr|χK−1〉 |φr〉 |1〉 − 2 〈φK |χK−1〉 |φK〉 |1〉
+ 2 〈φr|χK−1〉 〈φr|φK〉 |φK〉 |1〉

(70)

By substituting |χK−1〉 with its equivalent based on equation (10), we calculate each term
in the above formula. Note that the coefficient in the third term is the same as the first
one with a minus sign, and the ancillary state for the first term is |0〉 while for the third
term is |1〉. Thus, we only show the details of the calculation for the first term:

〈φr|〉χK−1 |φr〉 |0〉 =
〈φr|ψ〉 |φr〉 |0〉⊗K + 〈φr|ψ〉 |φr〉 |1〉⊗K−1 |0〉 − 〈φr|ψ〉 |φr〉 |1〉⊗K−1 |0〉+

+
K−1∑
i=1

i∑
j=0

[fij2lij | 〈φr|ψ〉|xij | 〈φi|ψ〉|yij | 〈φr|φi〉|zij ] |φr〉 |qanc(i, j)〉 |0〉

+
K−1∑
i=1

i∑
j=0

[gij2l
′
ij | 〈φr|ψ〉|x

′
ij | 〈φi|ψ〉|y

′
ij | 〈φr|φi〉|z

′
ij+1] |φi〉 |q′anc(i, j)〉 |0〉 .

(71)

The second term is calculated as follows:

|χK−1〉 |1〉 = 〈φr|ψ〉 |0〉⊗K−1 |1〉+ |ψ〉 |1〉⊗K − 〈φr|ψ〉 |φr〉 |1〉⊗K +

+
K−1∑
i=1

i∑
j=0

[fij2lij | 〈φr|ψ〉|xij | 〈φi|ψ〉|yij | 〈φr|φi〉|zij ] |φr〉 |qanc(i, j)〉 |1〉

+
K−1∑
i=1

i∑
j=0

[gij2l
′
ij | 〈φr|ψ〉|x

′
ij | 〈φi|ψ〉|y

′
ij | 〈φr|φi〉|z

′
ij ] |φi〉 |q′anc(i, j)〉 |1〉 .

(72)

The forth term −2 〈φK |χK−1〉 |φK〉 |1〉 has the coefficient −2 〈φK |χK−1〉, which produces
the same sigma terms while only l′i,j , x

′
i,j , y

′
i,j and z′i,j are increased by one. The fifth

term 2 〈φr|χK−1〉 〈φr|φK〉 |φK〉 |1〉 has the coefficient 2 〈φr|χK−1〉 〈φr|φK〉 and similarly
produces the same sigma terms where li,j , xi,j , yi,j and zi,j are increased by one (Note that
the 〈φr|φK〉 is itself one of the terms of the sigma). Finally by adding all these terms the
equation (10) is obtained and the proof is complete. �
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C Lemma for the Proof of Theorem 3
We establish the following lemma that we have used in the proof of theorem 3.

Lemma 2 Let E be a CPT map of the for E(ρ) = (1− ε)UρU †+ εẼ(ρ) where U is a unitary
and Ẽ is a strictly contractive CPT map. Let ρ and σ be two arbitrary density matrices
with trace distance D = Dtr(ρ, σ). Then the following inequality holds:

Dtr(ρ, σ)−Dtr(E(ρ), E(σ)) ≤ εD (73)

Proof: We note that the first part of the channel E , which outputs density matrix UρU †

with probability (1 − ε)2, is a unitary and preserves the distance. As a result, for a fixed
value of ε and fixed arbitrary states ρ and σ, the difference between the trace distances
of the output of E and the input states increases as Ẽ becomes more contractive. As the
maximum contractivity of Ẽ occurs when Ẽ = I

d , then the maximum difference between
the output and input trace distances is satisfies for this instance of the channel. Let
E ′(ρ) = (1− ε)UρU † + ε Id . Then for a fixed ε we will have:

Dtr(ρ, σ)−Dtr(E(ρ), E(σ)) ≤ Dtr(ρ, σ)−Dtr(E ′(ρ), E ′(σ)) (74)

Now we calculate Dtr(E ′(ρ), E ′(σ)) using the definition of the trace distance which is
Dtr(ρ, σ) = 1

2 tr(|ρ − σ|). And |A| =
√
A†A for a positive semidefinite matrix A. We

calculate the trace distance as:

Dtr(E ′(ρ), E ′(σ)) = 1
2 tr[|E

′(ρ), E ′(σ)|] = 1
2 tr[|(1− ε)UρU

† + ε
I

d
− (1− ε)UσU † − εI

d
|]

= (1− ε)(1
2 tr[|UρU

† − UσU †|]) = (1− ε)Dtr(UρU †, UσU †)

= (1− ε)Dtr(ρ, σ)
= (1− ε)D

(75)

Finally, we can relate the desired trace distance with the above value as:

Dtr(ρ, σ)−Dtr(E(ρ), E(σ)) ≤ D − (1− ε)D = εD (76)

And the lemma has been proved. �

D Full Proof of Theorem 6
Proof: Let A be a QPT adversary playing the game GUqPUF

qSel (λ,A) where UqPUF is defined
over HD. Let Sin and Sout be the input and output database of the adversary after the
learning phase both with size k1, respectively. Also, Let Hd be the d-dimensional Hilbert
space spanned by elements of Sin where d ≤ k1 and Hdout be the Hilbert space spanned by
elements of Sout with the same dimension. A receives an unknown quantum state |ψ〉 as
a challenge in the qSel challenge phase and tries to output a state |ω〉 as close as possible
to |ψout〉. We are interested in calculating the average probability that the fidelity of A’s
output state |ω〉 and |ψout〉 be larger or equal to δ. We calculate this probability over all
the possible states chosen uniformly at random from HD.

Pr[1← GUqPUF
qSel (λ,A)] = Pr

|ψ〉∈HD
[F (|ω〉 , |ψout〉) ≥ δ] (77)
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We calculate this probability over all the possible states chosen uniformly at random from
HD. We will show, for any δ 6= 0, the success probability of A is negligible in λ.

According to the game definition, as the adversary selects states of the learning phase,
the classical description of these states are known for him while the corresponding responses
are unknown quantum states. Let A′ be the adversary who also receives the classical
description of the outputs, or the complete set of bases of Hd and Hdout. So, he will have a
complete description of the map in the subspace; and as a result A′ has a greater success
probability than A.

Pr[1← GUqPUF
qSel (λ,A)] ≤ Pr[1← GUqPUF

qSel (λ,A′)] (78)

Therefore from now on throughout the proof, we calculate the success probability of A′
who has full knowledge of the subspace.

Note that the adversary cannot enhance his knowledge of the subspace by entangling
its local system to the challenges of the learning phase since the reduced density matrix
of the challenge/response entangled state lies in the same subspace Hd and Hdout. Hereby
upper-bounding the success probability of A with the success probability of A′ who has
the full knowledge of the subspace we have also included the entangled queries. Thus
without loss of generality and to avoid complicated notations, we consider the adversary’s
estimated state as a pure state |ω〉.

Now, we partition the set of all the challenges to two parts: the challenges that are
completely orthogonal to Hd subspace, and the rest of the challenges that have non-zero
overlap with Hd. We denote the subspace of all the states orthogonal to Hd as Hd⊥ . We
calculate the success probability of A′ in terms of the following partial probabilities:

Pr
|ψ〉∈Hd⊥

[F ≥ δ] and Pr
|ψ〉6∈Hd⊥

[F ≥ δ]. (79)

Because the probability of |ψ〉 being in any particular subset is independent of the adver-
sary’s learnt queries, the success probability of A′ can be written as:

Pr[1← GUqPUF
qSel (λ,A′)] = Pr

|ψ〉∈Hd⊥
[F ≥ δ]×Pr[|ψ〉 ∈ Hd⊥ ]+ Pr

|ψ〉6∈Hd⊥
[F ≥ δ]×Pr[|ψ〉 6∈ Hd⊥ ]

(80)
where Pr[|ψ〉 ∈ Hd⊥ ] = 1 − Pr[|ψ〉 6∈ Hd⊥ ] denotes the probability of |ψ〉 that is picked
uniformly at random from HD being projected into the subspace of Hd⊥ . From lemma 1,
we know that this probability for any subspace, is equal to the ratio of the dimensions. As
Hd⊥ is a D − d dimensional subspace, Pr[|ψ〉 ∈ Hd⊥ ] = D−d

D and respectively Pr[|ψ〉 6∈
Hd⊥ ] = d

D . Also the probability is upper-bounded by the cases that the adversary can
always win the game for |ψ〉 6∈ Hd⊥ . So, we have,

Pr[1← GUqPUF
qSel (λ,A′)] ≤ Pr

|ψ〉∈Hd⊥
[F ≥ δ]× (D − d

D
) + d

D
(81)

Finally, the only term that should be calculated is Pr
|ψ〉∈Hd⊥

[F ≥ δ].

Note that any |ψ〉 ∈ HD can be written in any set of full bases of HD as |ψ〉 =∑D
i=1 ci |ei〉. For any |ψ〉 ∈ Hd⊥ , the set of {|ei〉}Di=1 can be the a union of the bases of
Hd, i.e. {|eini 〉}di=1 and the bases of Hd⊥ , i.e. {|e′i〉}Di=d+1. Note that any state in Hd⊥ is
orthogonal to all the |eini 〉s. Thus, we write as follows

|ψ〉 =
d∑
i=1

cini |eini 〉+
D∑

i=d+1
c′i |e′i〉 (82)
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Recall that |ψ〉 ∈ Hd⊥ , so, 〈ψ| eini 〉 = 0 and as a result cini = 0. So,

|ψ〉 =
D∑

i=d+1
c′i |e′i〉 (83)

Similarly for the output state |ψout〉 =
∑d
i=1 c

out
i |eouti 〉 +

∑D
i=d+1 αi |bi〉, as the unitary

preserves the inner product, couti = 〈eouti |ψout〉 = 〈eini |U †U |ψ〉 = 〈eini |ψ〉 = 0, and the
correct output state can be written as

|ψout〉 =
D∑

i=d+1
αi |bi〉 (84)

where {|bi〉}D−di=1 are a set of bases for Hd⊥
out. The output estimated by the adversary A′ can

be written as

|ω〉 =
d∑
i=1

βi |eouti 〉+
D∑

i=d+1
γi |qi〉 (85)

where the first term represents part of the output state, that has been produced by A from
the his learnt output subspace and the second term denotes the part lies in Hd⊥

out with the
set of bases {|qi〉}D−di=1 . Based on the above argument, the fidelity of the first part is always
zero as 〈bi| eouti 〉 = 0.

Note that the normalization condition implies
∑d
i=1 |βi|2 +

∑D
i=d+1 |γi|2 = 1. Thus

for any state |ω〉 that has a non-zero overlap with the learnt outputs, the fidelity with the
correct state decreases. To make the A′’s strategies optimal we assume

∑D−d
i=1 γi |qi〉 ∈ Hd

⊥
out

where the normalization condition is
∑D−d
i=1 |γi|2 = 1.

Since there are infinite choices for set of bases orthogonal to {|eouti 〉}di=1, there is no way
to uniquely choose or obtain the rest of the bases to complete the set. Also, another input
of the adversary is the state |ψ〉 which according to the game definition, is an unknown state
from a uniform distribution. As a result, the choice of the |qi〉 bases are also independent
of |e′i〉 or |bi〉. Thus knowing a matching pair of (|qi〉 , |bi〉) increases the dimension of the
known subspace by one that means the adversary has more information that it is assumed
to have.

So, for each new challenge, A′ produces a state |ω〉 =
∑D−d
i=1 γi |qi〉 with a totally

independent choice of bases. Without loss of generality we can fix the bases |qi〉 for different
|ω〉. To calculate the success probability of A′, we calculate the fidelity averaging over all
the possible choices of ψ. As the unitary transformation preserves the distance, it maps a
uniform distribution of states to a uniform distribution. This leads to a uniform distribution
of all the possible |ψout〉. As a result, the average probability over all possible |ψ〉 is equal
to the average probability over all possible |ψout〉.

Pr
|ψ〉∈Hd⊥

[F ≥ δ] = Pr
|ψout〉∈Hd⊥

out

[F ≥ δ]. (86)

Now, we show that the adversary A′ also needs to output |ω〉 according to the uniform
distribution to win the game in the average case.

Let A′ output the states according to a probability distribution D which is not uniform.
Then, by repeating the experiment asymptotically many times, the correct response |ψout〉
covers the whole Hd⊥

out while |ω〉 covers a subspace of Hd⊥
out. This decreases the average

success probability of A′. So, the best strategy for A′ is to generate the states |ω〉 such
that they span the whole Hd⊥

out, i.e. generating them according to the uniform distribution.
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Based on the above argument, and the fact that all the |ω〉s are produced independently,
we show that the average fidelity over all the |ψout〉 is equivalent to average fidelity over
all the |ω〉.

There are different methods for calculating the average fidelity [55], but most commonly
the average fidelity can be written as:∫

|ψout〉∈Hd⊥
out

| 〈ω|ψoutx 〉|2dµx (87)

where dµ is a measure based on which the reference state has been produced and param-
eterized. According to our uniformity assumption, the dµ here is the Haar measure. Note
that |ω〉 can be different for any new challenge. Now we rewrite the above average with
the new parameters as:∫

|ψout〉∈Hd⊥
out

F (|ω〉 , |ψoutx 〉)dµx =
∫

|ψout〉∈Hd⊥
out

| 〈ω|ψoutx 〉|2dµx

=
∫

|ψout〉∈Hd⊥
out

|
D−d∑
i=1

γi 〈qi|ψoutx 〉|2dµx

=
∫

|ψout〉∈Hd⊥
out

|
D−d∑
i=1

γix 〈qi|ψout〉|2dµx

=
∫

|ω〉∈Hd⊥
out

| 〈ωx|ψout〉|2dµx

=
∫

|ω〉∈Hd⊥
out

F (|ωx〉 , |ψout〉)dµx

(88)

The above equality holds since the fidelity is a symmetric function of two states and
the measure of integral is the same for both cases. We use this equality for averaging
all the possible outputs for one |ψout〉. Recall that we aim to calculate the probability of
the average fidelity being greater than δ. To this end, we first calculate a more general
probability that is the probability of the average fidelity to be non-zero. As we have

Pr
|ω〉∈Hd⊥

out

[F 6= 0] + Pr
|ω〉∈Hd⊥

out

[F = 0] = 1, (89)

we calculate the probability of the zero fidelity for simplicity. So,

Pr
|ω〉∈Hd⊥

out

[F = 0] = Pr
|ω〉∈Hd⊥

out

[| 〈ω|ψout〉|2 = 0]

= Pr[(
∫
|
D−d∑
i=1

γix 〈qi|ψout〉|2dµx) = 0]

= Pr
x

[(
D−d∑
i,j=1

γixαj 〈qix | bj〉)2 = 0]

(90)

Based on the Cauchy–Schwarz inequality we have the following inequality:

[
D−d∑
i,j=1

γixαj 〈qi| bj〉]2 ≥
D−d∑
i,j=1
|γixαj |2| 〈qi| bj〉|2 (91)
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where,

D−d∑
i,j=1
|γixαj |2| 〈qi| bj〉|2 =

D−d∑
i,j=1
|γixαj |2| 〈qi| bj〉 〈bj | qi〉| =

D−d∑
i,j=1
|γixαj |2| 〈qi|Πj |qi〉 | (92)

So, we have,

Pr
|ω〉∈Hd⊥

out

[F = 0] ≥ Pr
x

[
D−d∑
i,j=1
|γixαj |2| 〈qi|Πj |qi〉 | = 0] (93)

The smaller term is the probability of |ω〉 being projected into the orthogonal subspace of
a space that only includes |ψout〉 averaging over all the projectors. We call again Lemma 1.
As the target subspace includes only one vector of the Hilbert space, the dimension of the
orthogonal subspace is always one dimension less. Recall that d⊥ = D − d, the dimension
of the intended orthogonal subspace is equal to D − d− 1. So,

Pr
x

[(
D−d∑
i,j=1
|γixαj |2| 〈qi|Πj |qi〉 |) = 0] = D − d− 1

D − d
⇒

Pr
|ω〉∈Hd⊥

out

[F = 0] ≥ D − d− 1
D − d

(94)

And as a result,

Pr
|ψout〉∈Hd⊥

out

[| 〈ω|ψout〉| 6= 0] ≤ 1
D − d

(95)

So, for any non-zero δ we have,

Pr
|ψ〉∈Hd⊥

[| 〈ω|ψout〉| ≥ δ] ≤ 1
D − d

(96)

Thus, the success probability of A′ is

Pr[1← GUqPUF
qSel (λ,A′)] = 1

D − d
× (D − d

D
) + d

D
= d+ 1

D
(97)

And the success probability of A is bounded by d+1
D ,

Pr[1← GUqPUF
qSel (λ,A)] ≤ d+ 1

D
(98)

and the theorem has been proved. �
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