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Abstract: The adult liver contains a population of facultative progenitor cells (known variously as Oval Cells, 

Hepatic Progenitor Cells, HPCs, or proliferating Biliary Epithelial Cells, BECs) which, following injury, proliferate 

and differentiate into hepatocytes, thereby restoring liver function. Although previous studies have shown that 

Notch signalling is essential for bile duct formation from these cells, it has not been determined whether Notch 

signalling is required for BECs to replenish hepatocytes following injury in the mammalian liver. This limitation 

is largely due to the mammalian models used to study hepatic repair from BECs, which rely on chronic damage 

and continual proliferation of BECs. In this study, we use a strict model of hepatic repair where large-scale 

hepatocyte injury and regeneration is initiated through the acute loss of Mdm2 in hepatocytes. This results in a 

rapid, coordinated proliferation of BECs allowing us to dissect the role of Notch signalling in this process. We 

find that transient, early activation of Notch signalling and entrance into cell cycle precedes the phenotypic 

expansion of BECs. Notch1 and Notch3 mediate this process and accordingly Notch inhibition results in the 

reduction of BEC proliferation. This decrease in BEC number results in a failure of BECs to differentiate into 

hepatocytes, indicating that Notch-dependent expansion of BECs is essential for hepatocyte regeneration. 

Finally, we found that Notch signalling regulates insulin-like growth factor-1 receptor (IGF1R) levels and show 

that activation or inhibition of IGFR1 signalling regulates BEC number. Critically, increasing BEC number (by 

activating IGFR signalling) suppresses the differentiation of BECs into hepatocytes, suggesting that BEC 

expansion has different signalling mechanisms to hepatocyte differentiation.   

Introduction: 

Following injury, the adult liver is able to regenerate from a population of facultative Biliary Epithelial Cells (BECs) 

that proliferate and differentiate into hepatocytes in response to injury, thereby reconstituting damaged 

epithelial cells and restoring normal liver function(1, 2). Throughout regeneration, a cellular and acellular 

microenvironment surrounds BECs (also known as Hepatic Progenitor Cells, HPCs or Oval Cells) (3) and provides 

a number of developmental signals(4–7). These signals are responsible for maintaining a balance between BEC 

proliferation and differentiation, thereby ensuring that regeneration is sufficient, collectively, in human disease, 

BECs and this microenvironment are termed the ductular reaction (8). BECs are able to differentiate into two 

epithelial lineages, cholangiocytes that make up the bile duct, a tubular network that drains bile form the liver 

into the bowel and hepatocytes, which comprise the metabolically active parenchyma of the liver. Following bile 

duct injury, we and others have shown that Notch signalling is necessary for BECs to reconstitute the bile duct 



3 
 

and as such Notch signaling is considered a master-regulator of the ductular lineage(9, 10). Whether Notch 

signalling is required for BECs to regenerate hepatocytes following hepatic injury in the mammalian liver is not 

clear, although recent data from a number of studies in the Zebrafish, suggests that Notch signalling maintains 

BECs in a naïve state and that BECs can differentiate when the suppressive effects of Notch signalling are 

removed (11–13). These data from the fish suggest that contrary to evidence in mouse, Notch signaling does 

function in the replenishment of hepatocytes after injury. A limitation of previous murine studies investigating 

the signals that govern the proliferation and differentiation of BECs into hepatocytes, is that the majority of 

murine models rely on establishing chronic hepatic injury. This results in a continuous activation, proliferation 

and differentiation of BECs. Therefore in these models, BECs are at various stages of their lifecycle, making it 

difficult to resolve the signals that govern the various states of proliferation and differentiation(14–16).  

To overcome this, we used a model where largescale, liver-wide injury is induced by the acute genetic loss of 

Mdm2 in hepatocytes(2, 17). In this model, hepatocytes become senescent(18) and as a result BECs undergo 

coordinated activation and proliferation ultimately differentiating to reconstitute hepatocytes. Using this 

approach, we have been able to resolve in a temporal way the role of Notch signalling during hepatocyte 

regeneration from BECs and we describe how Notch signalling is activated prior to the overt expansion of BECs 

in the liver. In this model of acute hepatocyte Mdm2-loss we have found that Notch signalling promotes BEC 

proliferation by modulating the levels of IGF1R, thereby sensitising BECs to IGF1. Through modulating this Notch-

IGF1R pathway in vivo, using a combination of animal models (both of acute hepatocyte Mdm2-loss as well as 

classical dietary-induced injury models, MCD and CDE, where hepatocytes have been shown to arise from the 

differentiation of BECs or HPCs(2, 19)) we have found that the numbers of BECs can be altered. Importantly, 

suppression of BEC proliferation results in a failure of BECs to differentiate into hepatocytes indicating that in 

hepatic regeneration a sufficient number of BECs must be generated before differentiation can occur. To our 

surprise, we also found that increasing BEC number through IGF1 signalling inhibits differentiation, leading us to 

conclude that there is a fine balance between BEC generation and their differentiation into hepatocytes, that 

must be satisfied for repair from BECs to occur.  
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Results: 

Notch signalling is activated early in BECs following hepatic injury. The Notch signalling pathway is essential for 

the formation of bile ducts from embryonic hepatoblasts(20, 21) and is reactivated in adult bile duct 

regeneration where it directs BECs into a cholangiocyte lineage(9, 22, 23), therefore we sought to address 

whether Notch also regulates hepatocyte regeneration from BECs. We have previously described a mouse model 

of hepatic regeneration where large numbers of hepatocytes can be generated from BECs (2, 17). Known as the 

Ah-Cre::Mdm2fl/fl mouse, this model relies on the specific expression of Cre recombinase in hepatocytes 

following administration of β-napthoflavone, which activates the Cyp1a1 promotor to drive Cre expression. In 

these mice, both alleles of Mdm2 are also flanked by LoxP sites; as a result, following Cre activity Mdm2 is excised 

resulting in the stabilisation of TRP53 and upregulation of p21 in hepatocytes. In this model, large scale 

hepatocyte senescence (driven by p21 upregulation), results in liver injury (Supplementary Figure 1A), 

hepatocyte apoptosis (Supplementary Figure 1B) and BEC proliferation and differentiation in order to 

reconstitute the liver parenchyma(2, 17). As liver regeneration is initiated at a single time point (when β-

napthoflavone is administered) it is possible to track the temporal dynamics of BECs as they proliferate prior to 

their differentiation into hepatocytes.  

Following Mdm2-loss in Ah-Cre::Mdm2fl/fl mice, the number of panCK positive BECs begins to increase 

throughout the liver within 5-7 days following induction and by 14 days following induction, there are 

significantly higher numbers of panCK-positive BECs that invade into the parenchyma compared to mice that 

still have intact Mdm2 (Figure 1A). These cells are also positive for the BEC marker, SOX9 (Supplementary Figure 

1C). Given the rapid increase in BECs following hepatic injury, we hypothesised that biliary epithelial cells would 

continuously proliferate to generate large numbers of daughter cells in order to replenish lost hepatocytes; 

therefore we stained Mdm2-deleted livers for KI67, a marker of proliferation.   

Contrary to what we expected, the proportion of proliferating BECs is high early-on (between days 3-5) following 

initiation of injury, when we begin to see the emergence of BECs, however this is not maintained throughout 

regeneration and after 5 days, the proportion of BECs in the cell cycle decreases (Figure 1B). As Notch signaling 

is mitogenic in other progenitor cell systems(24, 25) and is required for bile duct regeneration (9, 10), we 

evaluated whether components of the Notch signalling pathway are expressed during hepatocyte repair. 

Following initiation of injury, there is a rapid increase in the mRNA expression of Notch receptors, Notch1 and 
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Notch3 (Figure 1C) between days 3-5 of regeneration but not Notch2 (Supplementary Figure 1D) and Notch 

ligands, Jagged1 and Jagged2 (Figure 1D). Dll1 was the only other Notch ligand detectable and this did not 

change throughout the time course (Supplementary Figure 1D).  To verify that the Notch signalling pathway is 

activated in proliferating BECs, used a transgenic mouse line, CBF::H2BVenus that reports active Notch signalling 

with single cell resolution(26) and crossed this into our AhCre::Mdm2fl/fl line, such that we could identify cells 

that have active Notch signaling during hepatocyte regeneration (known as AhCre::Mdm2fl/fl::CBFH2BVenus). We 

found that proliferating BECs were strongly positive for the Venus (eYFP) in the early phase (day 5) following 

hepatocyte Mdm2 recombination (Figure 1E), suggesting that in line with the expression of Notch receptors, this 

signaling pathway is also active. The transcriptional expression of Notch pathway components is reduced at later 

time points, having peaked at 3-5 days following hepatocyte Mdm2-loss. To validate independently that the 

Notch pathway is activated in BECs, we stained liver tissue from mice with hepatocyte Mdm2-deletion for Notch 

pathway components and found that NOTCH1 and NOTCH3 proteins are expressed by BECs at day 3 and day 5, 

respectively. Furthermore, NOTCH1 intracellular domain localises to the nucleus of BECs reiterating that the 

Notch-1 receptor is cleaved and the pathway is activated (Figure 1F, single stains available in Supplementary 

Figure 5). Previous work in ductular regeneration has shown that the Notch ligand, JAGGED1 is expressed by 

myofibroblasts surrounding proliferating ducts (9), however during hepatocyte regeneration from BECs, we 

could find little evidence indicating Notch ligands are expressed by fibroblasts or macrophages, rather JAGGED1 

is expressed by the BECs themselves (Figure 1G).  

Inhibition of Notch signalling impairs BEC proliferation and hepatocyte differentiation. Whilst the expression of 

Notch pathway components correlates with an increased number of BECs entering the cell cycle, it is not clear 

whether Notch signalling drives proliferation of BECs per se. To determine whether this is the case, we induced 

Mdm2-loss in hepatocytes to induce BEC proliferation and gave a pharmacological inhibitor of Notch signalling, 

DAPT, that prevents the activity of γ-secretase, thereby preventing Notch receptor cleavage (from hereon-in 

known as Notch-i). As our model relies on a single genetic insult to initiate injury and hepatocyte regeneration, 

we were able to inhibit Notch signalling either early during regeneration or later in this process (Figure 2A). 

When we administered Notch-i early during regeneration (between days 2 and 4 following injury), the point 

where the Notch signalling is highly activated, the number of BECs that were proliferative and the total number 

of panCK positive BECs was significantly reduced (Figure 2B). When Notch-i was administered late, at a point 
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where Notch1 and Notch3 mRNA levels are lower (at 7-10 days following injury), the number of proliferative 

BECs remained the same, demonstrating that Notch signalling only drives BEC proliferation in the early phases 

of hepatocyte repair (Figure 2B and 2C). Given that inhibition of γ-secretase can influence a number of cleaved 

cell surface proteins along with Notch-receptors, we sought to verify that NOTCH1 and NOTCH3 specifically 

regulate BEC proliferation. Following hepatocyte Mdm2-loss and the activation of BECs, we inhibited NOTCH1 

and NOTCH2 receptors using receptor specific inhibitory antibodies (administered 1 day following Mdm2-loss) 

or NOTCH3 through genetic deletion using a Notch3-/- mutant mouse line. Inhibition of NOTCH1 and deletion of 

NOTCH3 significantly reduced the number of proliferative BECs and the total number of panCK-positive BECs 

following injury in vivo (Figure 2D) and are associated with a significant reduction in BEC proliferation and mRNA 

expression of Notch pathway target genes in vitro (Supplementary Figure 2A -2F). Inhibition of the Notch 

signalling pathway (either with DAPT, blocking antibodies or through receptor deletion) and reduction in BEC 

numbers did not appear to make liver injury worse (as determined by ALT levels, Supplementary Figure 2G-J). 

However, in the context of NOTCH1 inhibition or genetic NOTCH3 deletion (where BEC proliferation is reduced) 

we found that the levels of serum Bilirubin are significantly decreased, suggesting that the formation of a 

ductular reaction, in these models at least, contributes to cholestasis (Supplementary Figure 2K and 2L). 

Recent work has suggested that BECs differentiate into hepatocytes and that these differentiated cells then 

undergo proliferation to reconstitute the parenchyma(27). To determine whether inhibition of Notch signalling 

and reduced BEC numbers affected hepatocyte differentiation, we utilized an Osteopontin driven CreERT2 (OPN-

iCREERT2::R26ReYFP) to irreversibly label BECs and their progeny with eYFP such that we can monitor the 

differentiation of BECs into hepatocytes (19). In the healthy adult mouse liver, OPN- iCREERT2 only labels BECs. In 

injury, however, hepatocytes have also been shown to upregulate OPN, therefore to ensure we did not capture 

any other cells and that we only labelled BECs we dosed animals with tamoxifen and then left them for a 2-week 

“wash-out” prior to initiating injury(28).  Hepatocyte injury was induced by feeding OPN-iCREERT2::R26ReYFP mice 

a Choline Deficient, Ethionine Supplemented diet, CDE (Figure 2E), and the proportion of hepatocytes labelled 

with eYFP (Figure 2F) is significantly higher than in uninjured livers (Figure 2G), as previously described(19). 

Following Notch-i in these OPN-iCREERT2::R26ReYFP, CDE-fed mice, however, the number of proliferative eYFP+ 

BECs is reduced (Supplementary Figure 3A, left panel) as too are the number of lineage traced hepatocytes 

(Figure 2F and 2G).  We also confirmed that in a second dietary model of hepatocyte injury, the Methionine-
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Choline Deficient (2), MCD model that Notch-i consistently reduces the number of proliferating BECs 

(Supplementary Figure 3A, right panel) demonstrating that BECs proliferation driven by Notch signaling is not 

restricted to the CDE model. Collectively, our data indicate that Notch-dependent BEC proliferation is essential 

for normal hepatocyte reconstitution from a BEC origin. 

Notch signalling regulates the expresson of IGF1R by BECs. Notch signalling is involved in the expansion of 

progenitor cell pools in a range of developmental and adult tissues(29–31). It is widely accepted, however, that 

Notch does this by supressing differentiation and maintaining progneitor cells in a state that is receptive to 

mitogenic signals(32, 33). In Alagille syndrome, loss of Notch signalling due to mutations in Jagged1 results in 

the dysregulation of IGF1 signalling(34) therefore we sought to determine whether Notch signalling can regulate 

IGF1 signalling in adult BECs and define whether IGF1 induces BECs to proliferate.  

Following deletion of Mdm2 in hepatocytes and initiation of hepatic regeneration from BECs, both IGF1 and its 

activated receptor,  pIGF1RY1161 are expressed by BECs in vivo (Figure 3A) and throughout the timecourse 

following Mdm2-inactivation, the mRNA expression of Igf1r, maps closely with the expression of the Notch 

pathway target gene, HeyL (Supplementary Figure 3B). In vitro, the BEC cell line, BMOL produce their own IGF1, 

which they secrete into the media (Figure 3B).  Following treatment with Notch-i in vitro, BMOLs do not reduce 

their expression of Igf1 at the mRNA level (Supplementary Figure 3C), rather the levels of Igf1r transcript (Figure 

3C) and IGF1R protein (Figure 3D and Supplementary Figure 3D) are significantly decreased, suggesting that 

Notch inhibition can regulate signalling through the IGF1 pathway through modulation of the IGF1 receptor 

levels in vitro. Finally, consistent with this, we measued the transcript levels of both Igf1 and Igf1r in mice that 

had received Notch-i for three days during early hepatocyte regeneration (following Mdm2-deletion in the Ah-

Cre::Mdm2fl/fl line) when Notch1 and Notch3 are most highly expressed (Figure 2A) and found that expression 

of Igf1r mRNA, but not that of Igf1 was significantly reduced (Figure 3E). Furthermore, in these Ah-Cre::Mdm2fl/fl 

mice undergoing hepatcoyte regeneration, when treated with Notch-I the expression of pIGF1RY1161 is reduced, 

whereas in vehicle treated animals, pIGF1RY1161 is expressed and localises to the plasma membrane of BECs 

(Figure 3F).  

Signalling through the IGF1-receptor directly regulates BEC proliferation: Having identified that Notch signalling 

can regulate the expression of IGF1R in BECs and given that IGF1-IGF1R signalling is a potent mitogen for other 

cell types, we sought to address whether signalling through IGF1R promotes the proliferation of BECs. In vitro, 
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BECs treated with the IGF1R inhibitor AG1024, reduced their proliferation in a dose dependant manner 

(Supplementary Figure 4A), indicating that IGF1-IGF1R signalling is mitogenic in BECs. In vivo, IGF1R is expressed 

by a number of different cell types(35), therefore, to better undertand the role of IGF1 signalling in hepatic 

regeneration, we conditionally deleted Igf1r (using Igf1rflox mice) in BECs using the OPN-CreERT2 transgenic 

mouse line, whilst concurrently labelling them with eYFP (known as OPN-CreERT2::IGF1fl/fl::R26ReYFP mice) (Figure 

3G) and inducing liver injury by feeding mice a hepatotoxic CDE diet. Following CDE-induced hepatic injury, OPN-

CreERT2::IGF1fl/fl::R26ReYFP mice, which lack Igf1r in their BECs failed to amount a proliferative BEC response as 

determined through a reduced number of eYFP positive BECs, similarly the number of eYFP-positive BECs 

entering cell cycle was also significantly reduced (Figure 3H).  Given that IGF1-IGF1R signalling is a potent 

activator of the AKT/mTOR signalling pathway, we verified that phospho-mTOR was expressed by proliferating 

BECs in Ah-Cre::Mdm2fl/fl mice folloing Mdm2-deletion (Supplementary Figure 4B) and then inhibited this by 

treating Ah-Cre::Mdm2fl/fl mice undergoing BEC-mediated hepatcoyte regeneration with Rapamycin. In 

Rapamycin treated mice we found fewer proliferating BECs in vivo compared to vehicle treated animals 

(Supplementary Figure 4C and 4D), suggesting that mTOR can promote BEC proliferation.  

Therapeutic modulation of BEC number with IGF1 does not result in increased hepatocyte regeneration: One of 

the ultimate aims of regenerative medicine is to identify small molecules that can alter the regenerative 

response and improve tissue repair. A core tenant of many therapies is that increasing the pool of endogenous 

stem or progenitor cells will ultimately improve the regenerative output of the tissue. Whether this is actually 

true in BEC mediated liver regeneration, however, has not been determined.  

Our data indicates that therapeutic modulation of Notch-IGF1 signalling could affect BEC number and ultimately 

alter how many hepatocytes are replenished following injury. As BEC number undergoes rapid expansion from 

day 5 following hepatocyte Mdm2-loss, and that this is the point at which Igf1r mRNA is most highly expressed, 

we treated Ah-Cre::Mdm2fl/fl mice with either AG1024 (known as IGF1R-i) to reduce signalling through IGF1R or 

recombinant IGF1 (rIGF1), to stimulate IGF1R activation 6-9 days following hepatocyte Mdm2-loss. Following 

treatment with IGF1R-i, the number of proliferating BECs is reduced, as is the total number of BECs throughout 

the liver, indicating that BECs respond to IGF1 signalling levels during hepatocyte regeneration (Figure 4A and 

4B). Conversely, treatment with rIGF1, significantly increases the number of BECs that enter cell cycle compared 
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to animals that received control treatment and the overall number of BECs within the liver is increased (though 

this does not reach statistical significance) (Figure 4C and 4D).  

Having determined that modulation of IGF1R through either therapeutic inhibition or activation can directly 

affect the number of BECs that are proliferative in the Ah-Cre::Mdm2fl/fl model following hepatic injury, we 

sought to determine whether increasing the pool of BECs in the liver would increase the number of BEC derived 

hepatocytes. To do this, we utilised a previously published model of regeneration where hepatocyte senescence 

is induced in the liver of Krt19CreERT::R26tdTomato transgenic mice by expressing p21 in hepatocytes (using an 

AAV8:TBG-p21, an adeno associated virus that is highly specific for hepatocytes) and injuring the liver using the 

hepatotoxic MCD diet (2). Recent work has shown that, in the context of injury, the Krt19CreERT mouse does not 

have ectopic activation of the Cre transgene in hepatocytes (28) and so represents the most robust tool for 

genetically labelling and lineage tracing BECs in order to assess BEC to hepatocyte differentiation, particularly 

when the number of hepatocytes arising from BECs could be limited.  As previous studies have shown that 

following the withdrawal of MCD-induced injury, hepatocytes can be lineage traced from K19-positive BECs (by 

staining for tdTomato) in this mouse line, we administered rIGF1 or vehicle alone to this model to determine 

whether stimulating IGF1R results in the formation of more lineage traced hepatocytes (Figure 4E). Following 

rIGF1 treatment, the number of proliferating BECs and total number of BECs within the livers of rIGF1 treated 

mice was increased at the end of this study (Figure 4F), reiterating that supplementing rIGF1 is able to increase 

BEC number in a range of murine models of hepatocyte regeneration. Finally, we stained and quantified tissue 

for lineage traced (tdTomato-positive), HNF4α-positive hepatocytes. Interestingly, we found that there was a 

significant reduction in tdTomato positive hepatocytes lineage traced from BECs (Figure 4G and 4H), indicating 

that increasing BEC number alone is insufficient to increase BEC to hepatocyte differentiation (summarised in 

Figure 4I). 

Together, our data show that the Notch signalling pathway is necessary for the proliferation of BECs destined to 

become hepatocytes and that Notch does this by promoting BECs to become sensitive to signalling through 

IGF1R, yet other factors are necessary to promote the differentiation of these cells into hepatocytes.  

Discussion: 
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The role of Notch signalling in bile duct development is well described(20, 34, 36) and recent work has shown 

that these developmental signalling pathways are reactivated in the adult when bile ducts are injured(9, 10). 

However, early data from us and others indicated that there was not a role for Notch signalling in hepatic 

regeneration; Biliary Epithelial Cells that were destined for hepatocyte differentiation had Notch pathway 

components transcriptionally down regulated and Notch’s function was suppressed in BECs through the 

expression of the E3-ligase, Numb(9, 12). Previous mammalian models of hepatic regeneration promoted BEC 

proliferation and differentiation(16). In these models, progenitor cells were continually generated; undergoing 

proliferation and differentiation at different rates, therefore identifying pathways that regulated BEC 

proliferation and differentiation in the mammalian liver has been difficult, though data form zebrafish has 

suggested that Notch signaling is required for BEC to hepatocyte differentiation(12, 13). Recent advances in 

mammalian models of liver regeneration, however, have provided new tools to answer fundamental questions 

about BEC biology(2). These types of models, where a single, timed insult results in the proliferation and 

differentiation of BECs into hepatocytes have been discussed elsewhere(37, 38), however they allow, for the 

first time, temporal resolution of the signalling pathways involved in hepatocyte regeneration from a progenitor 

cell. Single cell RNA (scRNA) sequencing from regenerating adult livers has found that the Yap signalling pathway 

is critically important for BEC proliferation. These studies have indicated that Yap signalling, through the 

upregulation of Notch, could promote the proliferation of BECs. Whether this is a direct action of Notch acting 

as a mitogen or whether Notch signalling allows BECs to become sensitised to other mitogenic signals was not 

investigated(6, 7).  

We hypothesised that Notch signalling sits at the centre of a signalling network (potentially regulated by Yap 

signalling) which then maintains BECs in a state permissive to proliferation. Here, we show that two Notch 

receptors (Notch1 and Notch3) are increased in a temporally restricted manner. Notch2 (which has an essential 

role in bile duct development during embryogenesis) does not change overtime and Notch4 was undetectable 

(Supplementary Figure 1D). In our model, activation of Notch1 or Notch3 signalling promotes the proliferation 

of BECs. However, specific inhibition or genetic deletion of these single receptors is sufficient to reduce the 

number of BECs in cell cycle, suggesting that signalling through Notch1 and Notch3 is not redundant and 

indicating that Notch1 and Notch3 might play different roles in the activation and subsequent proliferation of 

BECs. Of note, we found that in our model of large scale hepatocyte regeneration (using the AhCre::Mdm2fl/fl 
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line) that the proliferation of BECs precedes hepatocyte apoptosis. The proliferation of BECs has previously been 

associated with the formation of an inflammatory microenvironment(39–41) and indeed signalling from immune 

cells to BECs has been shown to initiate the formation of the ductular reaction(42, 43). At a tissue level, this 

temporal separation of BEC proliferation and differentiation, and the apoptosis of hepatocytes makes sense as 

the number of BECs-derived hepatocytes needs to be sufficicent to maintain liver function prior to the clearance 

of injured hepatocytes. However, what maintains this balance in regeneration is poorly defined.  

What is clear from our studies is that Notch signalling increases the sensitivity of BECs to stimulation with IGF1, 

through positivity regulating IGF1R signalling in BECs. Inhibiting Notch signalling or inhibiting signalling through 

the IGF1R axis, is sufficient to reduce the number of BECs cells in cycle. This has interesting implications for both 

liver cancer, which appears to rely on the activation of developmental signalling pathways, including Notch(44, 

45), and also in regenerative medicine, where relatively few therapeutically tractable signalling pathways have 

been identified that can increase the number of progenitor cells within a regenerating system. In this study, we 

identify IGF1 as one such factor, which increases the number of proliferating BECs and has the potential to 

improve progenitor-mediated regeneration. In our work in animal models of hepatocyte regeneration from 

BECs, however, we found that expansion of BECs was insufficient to regenerate more hepatocytes, instead, we 

found that increasing the number of BECs suppressed hepatocyte differentiation compared to control animals. 

The relationship between proliferation and differentiation in stem/progenitor systems is complex and requires 

the integration of a number of pro-proliferative factors (such as cyclin dependent kinases) with pro-lineage 

regulators (such as transcription factors). How these two states are reconciled in hepatic regeneration is not 

known, however recent work investigating the epigenetic landscape in BEC mediated liver regeneration could 

start to unpick the relationship between these two fundamental cellular states(46, 47). We cannot discount 

another outcome of course, that IGF1R signalling can directly suppress BEC-to-Hepatocyte differentiation, and 

further work is needed to understand this, particularly given the biphasic role of Notch in BEC differentiation in 

zebrafish models of hepatocyte regeneration(11, 12). 

This work highlights the importance of Notch-IGF1 signalling in hepatocyte regeneration and rather than being 

a strict signal, positioning BECs into the cholangiocyte lineage, Notch acts as a common signal to expand 

progenitor cells prior to their differentiation. Furthermore, these data suggest that increasing the number of 
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BECs in patients with hepatic injury maybe insufficient to promote regeneration, additional therapies that drive 

expansion and differentiation would be required.  
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Materials and Methods: 

Animal studies: AhCre MDM2 strains: AhCre::MDM2fl/fl were crossed with Notch3d1 (Notch3-/-) to give 

AhCre::MDM2fl/fl::Notch3+/+, AhCre::MDM2fl/fl::Notch3-/- strains. AhCre::MDM2fl/fl were also crossed with CBF-

H2BVenus  transgenic Notch reporter mice to give AhCre::Mdm2fl/fl::CBFH2BVenus. OPN-iCreERT2::R26RYFP mice were 

crossed with Notch3-/- as above to give OPN-iCreERT2::R26RYFP::Notch3+/+ and OPN- CreERT2::R26RYFP::Notch3-/-, 

and Igf1rfl/fl (Jackson Laboratories stock number 012252) to give OPN-iCreERT2::R26RYFP::Igf1rfl/fl and OPN-

iCreERT2::R26RYFP::Igf1rwt/wt.  

 

All AhCre MDM2fl/fl strains received 20mg/kg beta-naphthoflavone (BNF) (Sigma-Aldrich) in corn oil intra-

peritoneal (i.p.) for Cre induction. For Notch inhibition experiments mice received 50mg/kg/dose DAPT (N-[N-

(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester) (Sigma-Aldrich) or equivalent volume of vehicle 

daily for 3 days by i.p. injection. Notch1 (clone: aN1_E7 or aN1_E10) or Notch2 (clone: aN2_B6 or aN2_B9) 

blocking antibody or control antibody was administered by single dose of 10mg/kg by i.p. injection 24 hours 

after Cre-induction. AhCre::MDM2fl/fl::Notch3+/+ and AhCre::MDM2fl/fl::Notch3-/- mice received only BNF 

induction. Mice in experiments receiving inhibitors or agonists of the IGF1-mTOR axis received daily i.p. injection 

of: AG1024 (Santa Cruz Biotechnology) 30ug/dose or vehicle, rapamycin (Sigma-Aldrich) 10mg/kg/dose or 

vehicle or recombinant murine IGF1 (rIGF1) (Sigma-Aldrich) 0.5mg/dose or vehicle. OPN-iCreERT2::R26RYFP mice 

received the CDE-stop protocol (choline-deficient ethionine-supplemented diet, MP Biomedicals) as previously 

described, commencing Cre-induction with tamoxifen at 21 days and injury diet at least 14 days after final 

tamoxifen dose when the mice reached 20g. During the 2 week ‘STOP’ period DAPT (25mg/kg) or equivalent 

volume of vehicle was administered three times per week by i.p. injection. OPN-iCreERT2::R26RYFP strains OPN-

iCreERT2::R26RYFP::Notch3+/+, OPN-iCreERT2::R26RYFP::Notch3-/-, OPN-iCreERT2::R26RYFP::Igf1rfl/fl and OPN-

iCreERT2::R26RYFP::Igf1rwt/wt having been generated through crosses with mice on a C57/Bl6 background.  

 

To determine whether IGF1 affects the formation of lineage traced hepatocytes (Figure 4), a mixture of males 

and female 8-12 week old Keratin19-CreERT::R26RtdTomato mice were used.  

The Keratin19-CreERT::R26RtdTomato mice were induced by 3 individual i.p. injections of Tamoxifen (20mg/ml, 

Sigma) at the dose of 4mg. Mice received two weeks of normal diet after the last Tamoxifen injection. 5 x 1011 
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viral AAV8.TBG.p21 (Addgene) particles were reconstituted in 100µL and injected intravenously through tail vein 

injection with Ultra-Fine Insulin Syringes (BD). Mice receive one more week of normal diet before starting 

Methionine and Choline Deficient (MCD) diet (MP Biomedicals) for 14 days followed by four days of normal diet. 

Then the mice received two intraperitoneal daily doses of recombinant murine-IGF1 (Peprotech, prepared at 

0.05 mg per dose in 100 ul of sterile saline) or saline control during four consecutive days followed by four 

additional days of recovery on normal diet. In our lineage tracing study, one animal of the saline group did not 

have a tdTomato expression and was therefore excluded from the analysis of the tdTomato+ hepatocytes. 

All animal experiments were conducted in accordance to the UK Home Office PPL awarded to Prof Stuart Forbes. 

All mice were genotyped by Transnetyx (Memphis, TN, USA) and were maintained in 12h light/dark cycles on a 

predominantly C67Bl6/J genetic background. 

 

Cell culture: The BEC cell line BMOL was maintained in WilliamsE medium containing 2% foetal calf serum (FCS) 

(Life Technologies). Cells were tested for the presence of mycoplasma in-house at the beginning of the study 

and were found to be negative. For in vitro cell viability assays, cells were plated at 2x105/cm2 density and 

treated for 48 hours with DAPT or AG1024 or the relevant vehicle at the concentrations detailed in the figures. 

Anti-Notch antibodies or control were used at 10μg/ml. MTT assay was conducted using 3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide (5mg/ml) (Sigma-Aldrich) diluted in PBS (Sigma-Aldrich). Cells were 

treated for 12 hours, and MTT crystals were dissolved in DMSO and read at 570/690nm using a FluoStar Omega 

(BMG Labtech). EdU incorporation assay (ThermoFisher Scientific) was conducted as described in the 

manufacturer’s instructions after 24-hour treatment of cells with DAPT (10μM), or volume-matched DMSO. 

 

Immunohistochemistry: At sacrifice, livers were perfused with 5mls sterile PBS into the IVC before fixation 

overnight in 10% buffered formaldehyde. After paraffin embedding, tissue sections were cut at 4 μm. After de-

waxing sections were subject to heat-mediated antigen retrieval followed by blocks to peroxide (Vector), 

avidin/biotin (Life technologies) where appropriate prior to protein block (Vector). Sections were incubated 

overnight with primary antibodies at 4°C. After washing, sections were stained with species-appropriate 

secondary antibodies conjugated to Alexa 488, Alexa 555 (Life technologies), or Biotin (Vector). For colorimetric 

stains, sections were incubated with ABC reagent (Vector) and developed using DAB (Vector) before 
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counterstaining with Harris Haematoxylin and Scott’s tap water.  For a complete list of primary antibodies, see 

Supplementary Table1. 

 

Microscopy and cell counting: Images were obtained on a Nikon Eclipse E600 microscope. Cell counts were 

performed manually using Fiji ImageJ (EMBL) on blinded slides and more than 20 consecutive non-overlapping 

fields at x200 (colorimetric) or x400 (immunofluorescent) magnification. Interlobular bile ducts were excluded 

from quantification. Picrosirius red quantification was performed on 30 consecutive non-overlapping x200 fields 

by pixel analysis using Adobe Photoshop CS6. 

 

For analysis of PCNA positivity in RFP or YFP-expressing cells after performing immunofluorescent staining for 

the fluorescent reporter, PCNA and DAPI, slides were scanned using the Operetta high-content analysis system 

(PerkinElmer). A minimum of 30 10X long working distance objective fields (0.4cm2) liver tissue was analyzed 

using the Columbus image data storage and analysis system. Briefly, a sliding parabola was applied to the DAPI 

channel to remove variation in background level across and between samples. All nuclei were identified using 

method M standard settings and from this population, cells positive for the reporter were identified based on a 

common threshold. From this second population those with nuclear PCNA staining were again identified using 

a common threshold. Results are reported as % RFP or YFP positive cells also PCNA positive. Fields containing 

artefacts that affected image analysis were excluded manually.  

 

Quantification of the percentage of biliary-derived hepatocytes (Figure 4) was done in a semi-automated 

manner. 35 non-overlapping images (x20 magnification) were acquired per mouse using Operetta High Content 

Imaging System (Perkin Elmer). Total cell count (DAPI-positive nuclei) and total hepatocyte count (HNF4α-

positive nuclei) were quantified in an automated manner using a segmentation strategy and Columbus image 

analysis software (Perkin Elmer). Biliary-derived hepatocytes were quantified manually, identified by the co-

localisation of DAPI and HNF4α in the nucleus and tdTomato-positive cytoplasm. 

 

Real-time PCR and gene expression analysis: Cells and tissues were lysed into Tri-Reagent (Ambion) and 

homogenized. Lysates were mixed with 1:5 chloroform/TriReagent and the aqueous phase containing RNA was 

collected.  Cells were lysed directly into RLT lysis buffer (Qiagen). RNA was precipitated with isopropanol. The 
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precipitate was applied to an RNeasy Mini column (Qiagen) according to the manufacturer’s protocol. Isolated 

RNA was quantified using a NanoDrop 1000, and 1μg was reverse transcribed using the Quantitect RT kit 

(Qiagen) as per the manufacturer’s instructions. q-rtPCR was performed using SYBR green master mix (Qiagen) 

and Quantitect primers (Qiagen) (See Supplemental Table for complete primer list).  Data were analysed using 

the LightCycler system and normalized to the housekeeping gene Gapdh. All samples were run in triplicate. 

 

Elisa detection of IGF1 Conditioned medium from BMOL cells for 48 hours was tested for IGF1 concentration 

using an IGF1 Mouse ELISA kit (Abcam ab100695) following the manufacturer’s protocol. A standard curve was 

generated using protein standards within the kit and absorbance of this and test samples were read using a 

spectophotometer (SPECTROstar Omega). This was normalised to protein content of secreting cells (determined 

using a BSA standard and Pierce reagent) as a surrogate for cell number. 

 

Serum analysis: Serum analysis used commercial kits according to the manufacturer’s instructions; serum 

albumin (Alb), bilirubin and alanine transaminase (ALT) (Alpha Laboratories); aspartate aminotransferase (AST) 

and alkaline phosphatase(ALP) (Randox laboratories); Cholesterol (Wako Chemicals GmbH). All kits were 

adapted for use on a Cobas Fara centrifugal analyser (Roche Diagnostics). 

 

Immunoblotting: Cells extracts were prepared from BMOL cells treated with DAPT (10μM) or vehicle for 48 

hours.  Protein content was quantified using a BSA standard and Pierce reagent before being resolved using SDS-

PAGE. Immunoblots were incubated at 4°C overnight with primary antibody rabbit anti-Igf1RY1161 (Abcam) or 

anti-beta-actin clone AC-74 (Sigma-Aldrich). Appropriate horseradish peroxidase labelled secondary antibodies 

were used (Cell Signaling Technologies) and signal detected with ECL reagent (Thermo Scientific).   

 

Statistical analysis: Prism software (GraphPad Software version 8) was used for all statistical analysis. Data are 

presented as mean ± s.e.m. n refers to biological replicates. Normal distribution of data was determined using 

the D’Agostino and Pearson omnibus normality test. For parametric data, data significance was analysed using 

a two-tailed unpaired Student’s t-test. In cases where more than two groups were being compared, then a one-

way ANOVA was used. In instances where the n was too small to determine normal distribution or the data were 
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non-parametric then a two-tailed Mann–Whitney U-test was used. Kruskall-Wallis test was used when 

comparing multiple non-parametric data.  

 

Normal distribution was determined by Shapiro-Wilk test. The data was normally distributed and statistical 

significance was determined using unpaired t-test. Statistical significance was assumed at p < 0.05. Data is 

presented as mean ± standard error of the mean (SEM). 

 

Study approval: All studies involving human tissue were approved by the University of Edinburgh and NHS 

Lothian Academic and Clinical Central Office for Research Development (ACCORD) tissue governance unit.  

Supplementary Material: 

Supplementary Figure 1: Deletion of Mdm2 in hepatocytes induced apoptosis and induces BECs to proliferate  

Supplementary Figure 2: In vitro inhibition of Notch signalling reduces BEC proliferation.  

Supplementary Figure 3: Supplementary Figure 3: Notch signalling regulates IGF1 sensitivity by regulating IGF1R 

activity  

Supplementary Figure 4: mTOR signalling can control BEC proliferation following hepatic injury. 

Supplementary Figure 5: Single channel images of immunohistochemical staining in this manuscript. 

 

Supplementary Table 1: Antibodies and Primers used in this study. 

  



18 
 

References: 

1. Huch, M., H. Gehart, R. Van Boxtel, K. Hamer, F. Blokzijl, M. M. A. Verstegen, E. Ellis, M. Van Wenum, S. A. 

Fuchs, J. De Ligt, M. Van De Wetering, N. Sasaki, S. J. Boers, H. Kemperman, J. De Jonge, J. N. M. Ijzermans, E. E. 

S. Nieuwenhuis, R. Hoekstra, S. Strom, R. R. G. Vries, L. J. W. Van Der Laan, E. Cuppen, and H. Clevers. 2015. Long-

term culture of genome-stable bipotent stem cells from adult human liver. Cell 160: 299–312. 

2. Raven, A., W. Y. Lu, T. Y. Man, S. Ferreira-Gonzalez, E. O’Duibhir, B. J. Dwyer, J. P. Thomson, R. R. Meehan, R. 

Bogorad, V. Koteliansky, Y. Kotelevtsev, C. Ffrench-Constant, L. Boulter, and S. J. Forbes. 2017. Cholangiocytes 

act as facultative liver stem cells during impaired hepatocyte regeneration. Nature 547: 350–354. 

3. Lorenzini, S., T. G. Bird, L. Boulter, C. Bellamy, K. Samuel, R. Aucott, E. Clayton, P. Andreone, M. Bernardi, M. 

Golding, M. R. Alison, J. P. Iredale, and S. J. Forbes. 2010. Characterisation of a stereotypical cellular and 

extracellular adult liver progenitor cell niche in rodents and diseased human liver. Gut 59: 645–654. 

4. Van Hul, N., N. Lanthier, R. Espaol Suer, J. Abarca Quinones, N. Van Rooijen, and I. Leclercq. 2011. Kupffer cells 

influence parenchymal invasion and phenotypic orientation, but not the proliferation, of liver progenitor cells in 

a murine model of liver injury. Am. J. Pathol. 179: 1839–1850. 

5. Jung, Y., K. D. Brown, R. P. Witek, A. Omenetti, L. Yang, M. Vandongen, R. J. Milton, I. N. Hines, R. A. Rippe, L. 

Spahr, L. Rubbia-Brandt, and A. M. Diehl. 2008. Accumulation of Hedgehog-Responsive Progenitors Parallels 

Alcoholic Liver Disease Severity in Mice and Humans. Gastroenterology 134. 

6. Pepe-Mooney, B. J., M. T. Dill, A. Alemany, J. Ordovas-Montanes, Y. Matsushita, A. Rao, A. Sen, M. Miyazaki, 

S. Anakk, P. A. Dawson, N. Ono, A. K. Shalek, A. van Oudenaarden, and F. D. Camargo. 2019. Single-Cell Analysis 

of the Liver Epithelium Reveals Dynamic Heterogeneity and an Essential Role for YAP in Homeostasis and 

Regeneration. Cell Stem Cell 25: 23-38.e8. 

7. Planas-Paz, L., T. Sun, M. Pikiolek, N. R. Cochran, S. Bergling, V. Orsini, Z. Yang, F. Sigoillot, J. Jetzer, M. Syed, 

M. Neri, S. Schuierer, L. Morelli, P. S. Hoppe, W. Schwarzer, C. M. Cobos, J. L. Alford, L. Zhang, R. Cuttat, A. Waldt, 

N. Carballido-Perrig, F. Nigsch, B. Kinzel, T. B. Nicholson, Y. Yang, X. Mao, L. M. Terracciano, C. Russ, J. S. Reece-

Hoyes, C. Gubser Keller, A. W. Sailer, T. Bouwmeester, L. E. Greenbaum, J. J. Lugus, F. Cong, G. McAllister, G. R. 

Hoffman, G. Roma, and J. S. Tchorz. 2019. YAP, but Not RSPO-LGR4/5, Signaling in Biliary Epithelial Cells 

Promotes a Ductular Reaction in Response to Liver Injury. Cell Stem Cell 25: 39-53.e10. 

8. Jessurun, J. 2018. Histopathologic Approach to Cholestatic Diseases of the Liver. AJSP Rev. Reports . 

9. Boulter, L., O. Govaere, T. G. Bird, S. Radulescu, P. Ramachandran, A. Pellicoro, R. A. Ridgway, S. S. Seo, B. 



19 
 

Spee, N. Van Rooijen, O. J. Sansom, J. P. Iredale, S. Lowell, T. Roskams, and S. J. Forbes. 2012. Macrophage-

derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat. Med. 

18: 572–579. 

10. Jörs, S., P. Jeliazkova, M. Ringelhan, J. Thalhammer, S. Dürl, J. Ferrer, M. Sander, M. Heikenwalder, R. M. 

Schmid, J. T. Siveke, and F. Geisler. 2015. Lineage fate of ductular reactions in liver injury and carcinogenesis. J. 

Clin. Invest. 125: 2445–2457. 

11. Russell, J. O., S. Ko, S. P. Monga, and D. Shin. 2019. Notch inhibition promotes differentiation of liver 

progenitor cells into hepatocytes via sox9b repression in zebrafish. Stem Cells Int. 2019. 

12. Huang, M., A. Chang, M. Choi, D. Zhou, F. A. Anania, and C. H. Shin. 2014. Antagonistic interaction between 

Wnt and Notch activity modulates the regenerative capacity of a zebrafish fibrotic liver model. Hepatology 60: 

1753–1766. 

13. He, J., H. Lu, Q. Zou, and L. Luo. 2014. Regeneration of liver after extreme hepatocyte loss occurs mainly via 

biliary transdifferentiation in zebrafish. Gastroenterology 146. 

14. Paku, S., J. Schnur, P. Nagy, and S. S. Thorgeirsson. 2001. Origin and structural evolution of the early 

proliferating oval cells in rat liver. Am. J. Pathol. 158: 1313–1323. 

15. Fickert, P., U. Stöger, A. Fuchsbichler, T. Moustafa, H. U. Marschall, A. H. Weiglein, O. Tsybrovskyy, H. 

Jaeschke, K. Zatloukal, H. Denk, and M. Trauner. 2007. A new xenobiotic-induced mouse model of sclerosing 

cholangitis and biliary fibrosis. Am. J. Pathol. 171: 525–536. 

16. Akhurst, B., E. J. Croager, C. A. Farley-Roche, J. K. Ong, M. L. Dumble, B. Knight, and G. C. Yeoh. 2001. A 

modified choline-deficient, ethionine-supplemented diet protocol effectively induces oval cells in mouse liver. 

Hepatology 34: 519–522. 

17. Lu, W. Y., T. G. Bird, L. Boulter, A. Tsuchiya, A. M. Cole, T. Hay, R. V. Guest, D. Wojtacha, T. Y. Man, A. 

Mackinnon, R. A. Ridgway, T. Kendall, M. J. Williams, T. Jamieson, A. Raven, D. C. Hay, J. P. Iredale, A. R. Clarke, 

O. J. Sansom, and S. J. Forbes. 2015. Hepatic progenitor cells of biliary origin with liver repopulation capacity. 

Nat. Cell Biol. 17: 973–983. 

18. Bird, T. G., M. M ller, L. Boulter, D. F. Vincent, R. A. Ridgway, E. Lopez-Guadamillas, W. Y. Lu, T. Jamieson, O. 

Govaere, A. D. Campbell, S. Ferreira-Gonzalez, A. M. Cole, T. Hay, K. J. Simpson, W. Clark, A. Hedley, M. Clarke, 

P. Gentaz, C. Nixon, S. Bryce, C. Kiourtis, J. Sprangers, R. J. Nibbs, N. Van Rooijen, L. Bartholin, S. R. McGreal, U. 

Apte, S. T. Barry, J. P. Iredale, A. R. Clarke, M. Serrano, T. A. Roskams, O. J. Sansom, and S. J. Forbes. 2018. TGFβ 



20 
 

inhibition restores a regenerative response in acute liver injury by suppressing paracrine senescence. Sci. Transl. 

Med. 10. 

19. Español-Suñer, R., R. Carpentier, N. Van Hul, V. Legry, Y. Achouri, S. Cordi, P. Jacquemin, F. Lemaigre, and I. 

A. Leclercq. 2012. Liver progenitor cells yield functional hepatocytes in response to chronic liver injury in mice. 

Gastroenterology 143. 

20. Hofmann, J. J., A. C. Zovein, H. Koh, F. Radtke, G. Weinmaster, and M. L. Iruela-Arispe. 2010. Jagged1 in the 

portal vein mesenchyme regulates intrahepatic bile duct development: Insights into Alagille syndrome. 

Development 137: 4061–4072. 

21. Zong, Y., A. Panikkar, J. Xu, A. Antoniou, P. Raynaud, F. Lemaigre, and B. Z. Stanger. 2009. Notch signaling 

controls liver development by regulating biliary differentiation. Development 136: 1727–1739. 

22. Aimaiti, Y., X. Jin, Y. Shao, W. Wang, and D. Li. 2019. Hepatic stellate cells regulate hepatic progenitor cells 

differentiation via the TGF-β1/Jagged1 signaling axis. J. Cell. Physiol. 234: 9283–9296. 

23. Mao, Y., S. Tang, L. Yang, and K. Li. 2018. Inhibition of the notch signaling pathway reduces the differentiation 

of hepatic progenitor cells into cholangiocytes in Biliary Atresia. Cell. Physiol. Biochem. 49: 1115–1123. 

24. Duncan, A. W., F. M. Rattis, L. N. DiMascio, K. L. Congdon, G. Pazianos, C. Zhao, K. Yoon, J. M. Cook, K. Willert, 

N. Gaiano, and T. Reya. 2005. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. 

Nat. Immunol. 6: 314–322. 

25. Demitrack, E. S., G. B. Gifford, T. M. Keeley, N. Horita, A. Todisco, D. Kim Turgeon, C. W. Siebel, and L. C. 

Samuelson. 2017. NOTCH1 and NOTCH2 regulate epithelial cell proliferation in mouse and human gastric corpus. 

Am. J. Physiol. - Gastrointest. Liver Physiol. 312: G133–G144. 

26. Nowotschin, S., P. Xenopoulos, N. Schrode, and A. K. Hadjantonakis. 2013. A bright single-cell resolution live 

imaging reporter of Notch signaling in the mouse. BMC Dev. Biol. 13. 

27. Russell, J. O., W. Y. Lu, H. Okabe, M. Abrams, M. Oertel, M. Poddar, S. Singh, S. J. Forbes, and S. P. Monga. 

2019. Hepatocyte-Specific β-Catenin Deletion During Severe Liver Injury Provokes Cholangiocytes to 

Differentiate Into Hepatocytes. Hepatology 69: 742–759. 

28. Lesaffer, Verboven, Van Huffel, Moya, van Grunsven, Leclercq, Lemaigre, and Halder. 2019. Comparison of 

the Opn-CreER and Ck19-CreER Drivers in Bile Ducts of Normal and Injured Mouse Livers. Cells 8: 380. 

29. Chablais, F., and A. Jaźwińska. 2010. IGF signaling between blastema and wound epidermis is required for fin 

regeneration. Development 137: 871–879. 



21 
 

30. Van Landeghem, L., M. A. Santoro, A. T. Mah, A. E. Krebs, J. J. Dehmer, K. K. McNaughton, M. A. Helmrath, S. 

T. Magness, and P. K. Lund. 2015. IGF1 stimulates crypt expansion via differential activation of 2 intestinal stem 

cell populations. FASEB J. 29: 2828–2842. 

31. Osuka, S., O. Sampetrean, T. Shimizu, I. Saga, N. Onishi, E. Sugihara, J. Okubo, S. Fujita, S. Takano, A. 

Matsumura, and H. Saya. 2013. IGF1 receptor signaling regulates adaptive radioprotection in glioma stem cells. 

Stem Cells 31: 627–640. 

32. Van Es, J. H., M. E. Van Gijn, O. Riccio, M. Van Den Born, M. Vooijs, H. Begthel, M. Cozijnsen, S. Robine, D. J. 

Winton, F. Radtke, and H. Clevers. 2005. Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts 

and adenomas into goblet cells. Nature 435: 959–963. 

33. Schouwey, K., I. T. Aydin, F. Radtke, and F. Beermann. 2011. RBP-Jκ-dependent Notch signaling enhances 

retinal pigment epithelial cell proliferation in transgenic mice. Oncogene 30: 313–322. 

34. Andersson, E. R., I. V. Chivukula, S. Hankeova, M. Sjöqvist, Y. L. Tsoi, D. Ramsköld, J. Masek, A. Elmansuri, A. 

Hoogendoorn, E. Vazquez, H. Storvall, J. Netušilová, M. Huch, B. Fischler, E. Ellis, A. Contreras, A. Nemeth, K. C. 

Chien, H. Clevers, R. Sandberg, V. Bryja, and U. Lendahl. 2018. Mouse Model of Alagille Syndrome and 

Mechanisms of Jagged1 Missense Mutations. Gastroenterology 154: 1080–1095. 

35. Gatto, M., V. Drudi-Metalli, A. Torrice, G. Alpini, A. Cantafora, I. Blotta, and D. Alvaro. 2008. Insulin-like 

growth factor-1 isoforms in rat hepatocytes and cholangiocytes and their involvement in protection against 

cholestatic injury. Lab. Investig. 88: 986–994. 

36. Sparks, E. E., D. S. Perrien, K. A. Huppert, T. E. Peterson, and S. S. Huppert. 2011. Defects in hepatic Notch 

signaling result in disruption of the communicating intrahepatic bile duct network in mice. DMM Dis. Model. 

Mech. 4: 359–367. 

37. Dickson, I. 2017. Cholangiocytes regenerate hepatocytes during severe liver injury. Nat. Rev. Gastroenterol. 

Hepatol. 14: 503. 

38. Alison, M. R. 2017. Cholangiocytes: No Longer Cinderellas to the Hepatic Regenerative Response. Cell Stem 

Cell 21: 159–160. 

39. Lorenzini, S., T. G. Bird, L. Boulter, C. Bellamy, K. Samuel, R. Aucott, E. Clayton, P. Andreone, M. Bernardi, M. 

Golding, M. R. Alison, J. P. Iredale, and S. J. Forbes. 2010. Characterisation of a stereotypical cellular and 

extracellular adult liver progenitor cell niche in rodents and diseased human liver. Gut 59: 645–654. 

40. Knight, B., V. B. Matthews, B. Akhurst, E. J. Croager, E. Klinken, L. J. Abraham, J. K. Olynyk, and G. Yeoh. 2005. 



22 
 

Liver inflammation and cytokine production, but not acute phase protein synthesis, accompany the adult liver 

progenitor (oval) cell response to chronic liver injury. Immunol. Cell Biol. 83: 364–374. 

41. Carpino, G., L. Nevi, D. Overi, V. Cardinale, W. Y. Lu, S. Di Matteo, S. Safarikia, P. B. Berloco, R. Venere, P. 

Onori, A. Franchitto, S. J. Forbes, D. Alvaro, and E. Gaudio. 2020. Peribiliary Gland Niche Participates in Biliary 

Tree Regeneration in Mouse and in Human Primary Sclerosing Cholangitis. Hepatology 71: 972–989. 

42. Nguyen, L. N., M. H. Furuya, L. A. Wolfraim, A. P. Nguyen, M. S. Holdren, J. S. Campbell, B. Knight, G. C. T. 

Yeoh, N. Fausto, and W. T. Parks. 2007. Transforming growth factor-beta differentially regulates oval cell and 

hepatocyte proliferation. Hepatology 45: 31–41. 

43. Bird, T. G., W. Y. Lu, L. Boulter, S. Gordon-Keylock, R. A. Ridgway, M. J. Williams, J. Taube, J. A. Thomas, D. 

Wojtacha, A. Gambardella, O. J. Sansom, J. P. Iredale, and S. J. Forbes. 2013. Bone marrow injection stimulates 

hepatic ductular reactions in the absence of injury via macrophage-mediated TWEAK signaling. Proc. Natl. Acad. 

Sci. U. S. A. 110: 6542–6547. 

44. Guest, R. V., L. Boulter, B. J. Dwyer, T. J. Kendall, T.-Y. Man, S. E. Minnis-Lyons, W.-Y. Lu, A. J. Robson, S. F. 

Gonzalez, A. Raven, D. Wojtacha, J. P. Morton, M. Komuta, T. Roskams, S. J. Wigmore, O. J. Sansom, and S. J. 

Forbes. 2016. Notch3 drives development and progression of cholangiocarcinoma. Proc. Natl. Acad. Sci. 113: 

12250–12255. 

45. Zender, S., I. Nickeleit, T. Wuestefeld, I. Sörensen, D. Dauch, P. Bozko, M. El-Khatib, R. Geffers, H. Bektas, M. 

P. Manns, A. Gossler, L. Wilkens, R. Plentz, L. Zender, and N. P. Malek. 2013. A critical role for notch signaling in 

the formation of cholangiocellular carcinomas. Cancer Cell 23: 784–795. 

46. Aloia, L., M. A. McKie, G. Vernaz, L. Cordero-Espinoza, N. Aleksieva, J. van den Ameele, F. Antonica, B. Font-

Cunill, A. Raven, R. Aiese Cigliano, G. Belenguer, R. L. Mort, A. H. Brand, M. Zernicka-Goetz, S. J. Forbes, E. A. 

Miska, and M. Huch. 2019. Epigenetic remodelling licences adult cholangiocytes for organoid formation and liver 

regeneration. Nat. Cell Biol. 21: 1321–1333. 

47. Li, W., L. Yang, Q. He, C. Hu, L. Zhu, X. Ma, X. Ma, S. Bao, L. Li, Y. Chen, X. Deng, X. Zhang, J. Cen, L. Zhang, Z. 

Wang, W. F. Xie, H. Li, Y. Li, and L. Hui. 2019. A Homeostatic Arid1a-Dependent Permissive Chromatin State 

Licenses Hepatocyte Responsiveness to Liver-Injury-Associated YAP Signaling. Cell Stem Cell 25: 54-68.e5. 

 

  



23 
 

Acknowledgements: SML is funded by a personal Medical Research Council (MRC) Clinical Fellowship. LB is 

funded by the The AMMF and the Wellcome Trust (207793/Z/17/Z) and Cancer Research UK (C52499/A27948). 

RVG is funded by a personal Wellcome Trust fellowship. JM, W-YL, BD and SJF are funded by the MRC 

(MR/K017047/1) and UK Regenerative Medicine Platform (MR/M007588/1). FL is supported by the Fondation 

contre le Cancer (2014-125), by the Interuniversity Attraction Pole Programme (Belgian Science Policy, PVII-47) 

and the FRS-FNRS (Belgium; T.0072.14). NVH and IL are funded by the Fund for Scientific Medical Research (FRS-

FNRS, Belgium); the Fondation contre le Cancer (PDR T.1067.14-P and C/2014/207); the Belgian Federal Science 

Policy Office (Interuniversity Attraction Poles program, network P7/83-HEPRO2). CRUK and the European 

Research Council fund OJS and TJ.   

SML, SFG, NA, TYM, VG, MJW, RVG, WYL, BJD, TJ, CN, NVH generated and analysed data for this study. PLM, JM, 

IL oversaw and directed the research done in their labs and provided reagents and resources to complete this 

study. OJS contributed to experimental design and project direction. LB analysed data, directed the project, 

contributed to experimental design, generated the figures and wrote the manuscript, SJF directed the project, 

provided funding for the project contributed to experimental design, manuscript writing and manuscript editing.  

 

The BMOL cell line was provided by George Yeoh University of Western Australia. The CK19 antibody Troma-III, 

developed by Rolf Kemler, was obtained from the Developmental Studies Hybridoma Bank, created by the 

NICHD of the NIH and maintained at The University of Iowa. 

 

All data presented in this manuscript is available from the authors on request and all tissues, samples and 

transgenic lines can be made available.   



24 
 

 

 

  



25 
 

Figure 1: Notch pathway activation precedes BEC proliferation. A. Quantification of panCK positive BECs between 
day 0 (initiation of injury) and d14 following injury and the proportion of panCK positive BECs that are 
proliferating, immunostained with Ki67.  B. Immunohistochemistry of panCK positive bile ducts and BECs (green) 
and Ki67 (red) following initiation of injury. Yellow arrows denote nuclear positivity of Ki67 and white denotes 
DNA. C. mRNA expression of Notch1 and Notch3 in whole liver tissue following injury induction. D. Notch ligands, 
Jagged-1 and Jagged-2 mRNA expression over the injury time course. E. Immunostaining of Ah-
Cre::Mdm2fl/fl::CBFH2Bvenus mice five days following induction. (Keratin-19, green, Venus (reporting Notch 
activity), magenta). Yellow box denotes zoomed in region in lower panel. F. Immunofluorescent staining of 
NOTCH1 (3 days following injury) and NOTCH3 (five days following injury), pink, and Keratin-19 (demarcating 
BECs), left hand panels. G. Immunofluorescent staining of the Notch-ligand, JAGGED-1 (green) and either F4-80, 
αSMA or Keratin-19 (magenta), all five days post-injury. Yellow arrows denote Jagged-1 negative cells. White 
arrows denote Jagged-1 positive cholangiocytes. In all immunofluorescent staining, DNA is stained white. Scale 
Bar = 50μm. p.v. denotes portal vein.  N=6 per group. Each point represents a biological replicate. Data was 
analysed using an ANOVA and a Dunnett’s multiple comparison test.   
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Figure 2: Inhibition of specific Notch receptors alters BEC proliferation and differentiation in vivo. A. Schematic 
representation of early and late inhibition of Notch signalling during hepatocyte regeneration from BECs in the 
Mdm2 model. B. Quantification of proliferative (Ki67 positive) BECs (red dots) and total number of panCK 
positive BECs (blue dots) following Notch inhibition with DAPT either early in regeneration (left panel) or late in 
regeneration (right panel).  C. Immunohistochemistry for BECs (stained with panCK) following inhibition of Notch 
signalling with DAPT either early or late following injury. D. Quantification of the number of proliferating (Ki67 
positive) BECs (red dots) and total number of panCK positive BECs (blue dots) following inhibition with a blocking 
antibody targeting Desmin (an intermediate filament protein that serves as a control) and receptor specific 
blocking antibodies targeting either NOTCH1 or NOTCH2 (left panel). Individual groups represent distinct 
antibody clones. Right panel, proportion of proliferating (Ki67 positive) BECs (red dots) and total number of 
panCK positive BECs (blue dots) following Mdm2-loss induced injury in mice with either wild-type 
(Notch3WT/WT)or null for Notch3 (Notch3-/-). E. Schematic representation of lineage tracing BECs into hepatocytes 
using OPN-iCreERT2::R26ReYFP transgenic mice treated with a Choline Deficient, Ethionine Supplemented (CDE) 
diet. F. Immunohistochemistry showing eYFP positive cells during hepatic repair in control and Notch-i treated 
mice. G. Quantification of the number of eYFP (lineage-traced) hepatocytes following Notch-i treatment. Scale 
Bar = 50μm. p.v. denotes portal vein.  N≥4 per group. Each point represents a biological replicate. For data with 
two groups, a Student’s t-test was performed where multiple groups are analysed an ANOVA and a Dunnett’s 
multiple comparison test were used.   
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Figure 3: Notch signalling regulates IGFR1 expression in BECs, to regulate their proliferation. A. 
Immunofluorescent staining of IGF1 (pink) in BECs (stained with Keratin-19, green), left panel and 
phosphorylated IGF1RY1161 (pink) in BECs (green), right panel at day 7 following injury. DNA is in white. Yellow 
arrows denote co-positivity. Inset images represent area of interest at an increased magnification. B. ELISA for 
IGF-1 secreted into the media by the BMOL BEC cell lines. C. mRNA expression of Igfr1 in BECs treated with 
vehicle or Notch-i, DAPT in vitro. D. Protein levels of total IGF1R normalised to β-actin levels following Notch-i 
treatment. E. mRNA expression of IGF1 and IGF1R in liver tissue undergoing hepatocyte regeneration treated 
with vehicle or Notch-i, DAPT. F. Immunohistochemical staining for phosphorylated IGF1RY1161 in animals 
undergoing hepatocyte regeneration treated with either vehicle or Notch-i. Black arrows denote membrane 
staining. G. Schematic detailing the strategy to delete Igf1r in BECs using the OPN-iCreERT combined with an 
Igf1flox allele treated and with CDE to induce hepatocyte injury, regeneration and BEC proliferation. H. Proportion 
of eYFP positive BECs that are proliferative, determined through co-positivity with PCNA (left dot plot) and total 
number of BECs following loss of IGF1R (right dot plot). Immunohistochemistry panels show representative eYFP 
staining (brown) of BECs in IGF1RWT and IGF1Rflox mice at week five. Scale Bar = 50μm. p.v. denotes portal vein.  
N=6 per group. Each point represents a biological replicate. For data with two experimental groups, a Student’s 
t-test was used to determine significance.   
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Figure 4: Therapeutic IGF1R modulation regulates BEC number in vivo but does not promote reconstitution of 
the parenchyma. A. Proportion of Ki67 (proliferative) BECs (left dot plot) and total number of BECs (right dot 
plot) in vehicle treated or IGF1R-inhibitor (AG1024) treated mice, and B immunohistochemistry showing panCK-
positive BECs following hepatocyte Mdm2-loss and treatment with IGF1R-inhibitor or vehicle alone. C. 
Proportion of Ki67 (proliferative) BECs (left dot plot) and total number of BECs (right dot plot) in vehicle treated 
or rIGF1 treated mice, and D. immunohistochemistry showing panCK-positive BECs following hepatocyte Mdm2-
loss and treatment with rIGF1 or vehicle alone. E. Schematic detailing the approach taken to determine whether 
rIGF1-induced BEC expansion results in the formation of more parenchymal hepatocytes. F. Proportion of PCNA-
positive (proliferative) BECs (left dot plot) and total number of BECs (right dot plot) in vehicle treated or rIGF1 
treated mice following injury. G. Proportion of HNF4α positive hepatocytes that are also positive for tdTomato 
(lineage traced) in vehicle and rIGF1 treated animals having received hepatocyte injury with MCD and H. 
Immunofluorescence of tdTomato (yellow) and HNF4α (magenta) at day 52 following MCD injury and rIGF1 
treatment. Blue arrows denote tdTomato positive BECs and white arrows denote tdTomato positive, lineage 
traced hepatocytes. Lower panels demonstrate tdTomato positive hepatocytes detected with DAB (black 
arrows), red arrows denote tdtomato positive BECs. I. Diagram showing our model, in which Notch signalling 
promotes BEC proliferation by rIGF1, yet differentiation into hepatocytes is not increased. Scale Bar = 50μm. p.v. 
denotes portal vein.  N≥3 per group. Each point represents a biological replicate. For data with two experimental 
groups, a Student’s t-test was used to determine significance.   
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Supplementary Figure 1: Deletion of Mdm2 in hepatocytes induced apoptosis and induces BECs to proliferate. 
A. Blood serum biochemistry for liver function at baseline (d0) and d3 and d7 following Mdm2 inactivation. B. 
Immunohistochemistry showing positivity for cleaved Caspase-3 (red) following inactivation of Mdm2 in 
hepatocytes. DNA is shown in white. Yellow box denotes region of high magnification image, inset. White arrows 
denote Caspase-3 positive hepatocytes.  C. Immunohistochemical staining of BECs using the markers Keratin-19 
(upper panels) and SOX9 (lower panels) following hepatocyte loss of Mdm2. D. mRNA expression following the 
recombination of Mdm2 in hepatocytes, for Notch2 and Dll1, a Notch receptor ligand. mRNA expression is 
normalised to the housekeeping gene Gapdh. Notch4 and Dll3 and Dll4 were not detectable by qRT-PCR. Scale 
bar = 50μm. N=4-6 per group. Each point represents a biological replicate. For data with two groups, a Student’s 
t-test was performed where multiple groups are analysed an ANOVA and a Dunnett’s multiple comparison test 
were used. 
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Supplementary Figure 2: In vitro inhibition of Notch signalling reduces BEC proliferation. A. MTT assay showing 
the response of BECs in vitro when treated with a scaling dose of Notch-i, DAPT or vehicle alone. B. The number 
of Edu-positive (proliferating) BECs in vitro when treated with the Notch-i, DAPT or vehicle alone. C. mRNA 
expression of Notch pathway target genes Hey1 and Hes1 following Notch pathway inhibition. D. MTT assay of 
BECs following treatment with a control blocking antibody targeting the intermediate filament protein, Desmin 
or targeting either NOTCH1 or NOTCH2 specifically. Individual groups represent distinct antibody clones. E. 
mRNA expression of Notch3 in BECs in vitro following treatment with two RNAi targeting Notch3 normalised to 
cells treated with a scrambled RNAi. F. Number of Ki67 positive BECs in vitro following knock-down of Notch3 
compared to untransfected and scrambled RNAi transfected cells. G. Blood serum biochemistry for ALT following 
Mdm2 inactivation and early (days 2-4) treatment with the Notch-i, DAPT H. Blood serum biochemistry for ALT 
following Mdm2 inactivation and late (days 7-9) treatment with the Notch-i, DAPT. I. Blood serum biochemistry 
for ALT following Mdm2 inactivation and treatment with either NOTCH-1, NOTCH-2 or Desmin (an intermediate 
filament protein that acts as a control) blocking antibodies. J. Blood serum biochemistry for ALT following Mdm2 
inactivation in mice harboring wild-type Notch3 or null for Notch3 (Notch3-/-).  K. Blood serum biochemistry for 
Bilirubin following Mdm2 inactivation and treatment with either NOTCH-1, NOTCH-2 or Desmin (an intermediate 
filament protein that acts as a control) blocking antibodies. L. Blood serum biochemistry for Bilirubin following 
Mdm2 inactivation in mice harboring wild-type Notch3 or null for Notch3 (Notch3-/-).  N=4-6 per group. Each 
point represents a biological or experimental replicate. For data with two groups, a Student’s t-test was 
performed where multiple groups are analysed an ANOVA and a Dunnett’s multiple comparison test were used. 
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Supplementary Figure 3: Notch signalling regulates IGF1 sensitivity by regulating IGF1R activity. A. Dot plots 
showing that the Notch-i, DAPT reduces proliferation of BECs in the Choline Deficient Ethionine-Supplemented 
(CDE), left graph, and Methionine-Choline Deficient, MCD diet, right graph. B. mRNA expression of Igf1 in pBECs 
following treatment with the Notch-i, DAPT. C. mRNA expression of Igf1R and the Notch target gene, HeyL in 
whole liver tissue following induction of hepatic injury. D. Protein expression of IGF1R in vehicle treated pHPCs, 
compared to pHPCs treated with Notch-i, DAPT. N≥5 per group. Each point represents a biological replicate. For 
data with two groups, a Student’s t-test was performed where multiple groups are analysed an ANOVA and a 
Dunnett’s multiple comparison test were used. 
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Supplementary Figure 4: mTOR signalling can control BEC proliferation following hepatic injury. A. MTT assay of 
HPC growth with escalating concentrations of AG1024, an IGF1R-i or vehicle alone. B. Immunohistochemistry of 
phosphorylated mTOR in HPCs undergoing hepatocyte regeneration. C. Quantification of total Keratin-19 
positive BEC number, left graph, and Ki67 positive (proliferating) BECs, right graph, following induction of 
hepatocyte regeneration and subsequent treatment with the mTOR inhibitor, Rapamycin. D. 
Immunohistochemistry of panCK positive BECs in livers where Mdm2 has been inactivated and animals have 
been treated with either vehicle or Rapamycin, images represent animals that were culled at 10 days following 
initiation of injury and which were treated with Rapamycin or vehicle from days 6-9. N≥3 per group. Each point 
represents a biological replicate or experimental replicate. Scale bar = 50μm For data with two groups, a 
Student’s t-test was used. 
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Supplementary Figure 5: Single channels of immunofluorescence presented within this study. A-C. Single 
fluorescent channels from Figure 1: Notch pathway activation precedes BEC proliferation. D Single fluorescent 
channels from Figure 3: Notch signalling regulates IGFR1 expression in BECs, to regulate their proliferation. 
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Supplementary Table 1: Antibodies and Primers used in this study. 

Antibodies used in this study 
Caspase-3 Cell Signalling 9662 

CK19 
Developmental studies hybridoma 
bank 

Troma-III 

Hnf4α R&D systems H1415 
IGF1 Abcam ab40657 
IGF1 receptor β Cell Signalling Technologies 9750 
Jagged-1 Abcam ab109536 
Ki67 Abcam ab16667 
mCherry Sicgen #AB0081 
Notch1-ICD Abcam Ab8925 
Notch3 Abcam Ab23426 
panCK DAKO Z0622 
PCNA Abcam ab29 
YFP Abcam ab6673 
Primers used in this study 
Dll1 Qiagen QT00113239 
Dll3 Qiagen QT00113477 
Dll4 Qiagen QT01053598 
Gapdh Qiagen QT01658692 
Hes1 Qiagen  QT00313537 
Hey1 Qiagen QT00115094 
Igf1 Qiagen QT00154469 
Igf1r Qiagen  QT00155351 
Jagged1 Qiagen  QT00115703 
Jagged2 Qiagen  QT01043819 
Notch1 Qiagen  QT00156982 
Notch2 Qiagen  QT00153496 
Notch3 Qiagen  QT01051729 
Notch4 Qiagen  QT00135653 

 

 


