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MECHANISMS IN ENDOCRINOLOGY
Human brown adipose tissue as a therapeutic 
target: warming up or cooling down?
Ben T McNeill, Karla J Suchacki and Roland H Stimson

University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, 
Edinburgh, UK

Abstract

Excessive accumulation of white adipose tissue leads to obesity and its associated metabolic health consequences 
such as type 2 diabetes and cardiovascular disease. Several approaches to treat or prevent obesity including public 
health interventions, surgical weight loss, and pharmacological approaches to reduce caloric intake have failed to 
substantially modify the increasing prevalence of obesity. The (re-)discovery of active brown adipose tissue (BAT) in 
adult humans approximately 15 years ago led to a resurgence in research into whether BAT activation could be a 
novel therapy for the treatment of obesity. Upon cold stimulus, BAT activates and generates heat to maintain body 
temperature, thus increasing energy expenditure. Activation of BAT may provide a unique opportunity to increase 
energy expenditure without the need for exercise. However, much of the underlying mechanisms surrounding 
BAT activation are still being elucidated and the effectiveness of BAT as a therapeutic target has not been realised. 
Research is ongoing to determine how best to expand BAT mass and activate existing BAT; approaches include 
cold exposure, pharmacological stimulation using sympathomimetics, browning agents that induce formation 
of thermogenic beige adipocytes in white adipose depots, and the identification of factors secreted by BAT with 
therapeutic potential. In this review, we discuss the caloric capacity and other metabolic benefits from BAT activation 
in humans and the role of metabolic tissues such as skeletal muscle in increasing energy expenditure. We discuss the 
potential of current approaches and the challenges of BAT activation as a novel strategy to treat obesity and  
metabolic disorders.
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Introduction

The prevalence of obesity has increased dramatically over 
the past 40 years, with over a quarter of adults in the 
UK now classed as obese (1). During the same period of 
time, global obesity has increased more than three-fold 
and this is likely to continue (2, 3). Obesity (defined as a 
BMI ≥30 kg/m2) occurs when energy intake chronically 
exceeds energy expenditure (EE) with deposition of this 
excess energy primarily as triglycerides in white adipose 
tissue (WAT). Obesity substantially increases the risk of 
developing other diseases such as type 2 diabetes mellitus 
(T2DM), hypertension, dyslipidaemia and cardiovascular 
disease and decreases both life expectancy and quality (4, 
5). Public health interventions to promote weight loss 
through dietary caloric restriction and increased physical 
activity have failed to curb the rise in obesity due to lack 
of adherence (5). Pharmacological anti-obesity agents 
have focused on decreasing energy intake/appetite but 

have had limited success, in part due to serious adverse 
side effects leading to their withdrawal (most recently 
Lorcaserin) (6). Orlistat (a pancreatic lipase inhibitor) and 
naltrexone-bupropion are the only licensed medications in 
the UK for obesity and substantial side effects limit patient 
compliance; other agents are licensed in the USA but are 
not approved in Europe (Fig. 1) (7). Bariatric surgery can 
successfully treat obesity (8); however, these procedures 
are invasive, can cause significant complications and are 
not suitable for everyone.

There has been less effort on the development of 
pharmacotherapy to specifically increase EE (energy 
balance equation; Fig. 1). However, the use of 18F-fluoro-
deoxyglucose (18F-FDG) PET coupled with CT (PET/CT) to 
diagnose certain malignancies led to the incidental (re)-
discovery of brown adipose tissue (BAT) in adult humans 
approximately 15 years ago (9, 10). This finding has 
re-ignited interest in this approach to treat obesity (11), 
as BAT activation in rodents increases EE and improves 

Figure 1
The energy balance equation and current 
pharmacotherapy to achieve weight loss. 
Energy balance is governed by the 
relationship between energy input 
(calories consumed) and energy output 
(energy expended). Obesity results from a 
chronic imbalance of energy intake 
exceeding energy expenditure with 
storage of this excess energy as 
triglycerides mainly in white adipose 
tissue. All licensed anti-obesity 
medications primarily cause weight loss 
by reducing appetite/energy intake 
(*indicates licensed to treat obesity in US 
only, †indicates currently withdrawn). 
Basal metabolic rate, physical activity, 
diet-induced thermogenesis (DIT) and 
cold-induced thermogenesis (CIT) all 
contribute to total energy expenditure. 
Brown adipose tissue (BAT) is located in 
adult humans primarily in the cervical, 
supraclavicular, axillary, paravertebral and 
peri-renal regions. BAT activation is a key 
component of both CIT and DIT and is an 
attractive target to increase energy 
expenditure to treat obesity. 5HT, 
5-hydroxytryptamine; GLP-1, glucagon-like 
peptide 1; POMC, pro-opiomelanocortin.
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insulin sensitivity (12) and dyslipidaemia (13). Thereafter, 
a number of elegant studies have been undertaken to 
determine the role, importance and regulation of BAT in 
humans. This review will discuss the recent advances in 
our understanding of the physiology and pathophysiology 
of human BAT, potential approaches to activate BAT and 
discuss whether this tissue represents a viable therapeutic 
target for obesity and its associated metabolic disease.

The distribution and function of brown and 
beige adipose tissue

Predominantly an organ for energy storage, WAT is 
widely distributed throughout the body and divided 
into s.c. and visceral depots. Conversely, the primary 
function of BAT is to generate heat to maintain the body 
temperature through non-shivering thermogenesis (NST) 
during cold exposure (14) and is located in the cervical, 
supraclavicular, axillary, paraspinal, and perirenal regions 
(Fig. 1) (15, 16, 17). Unlike WAT, BAT contains multilocular 

lipid droplets and a high number of mitochondria 
expressing the thermogenic protein mitochondrial brown 
fat uncoupling protein 1 (UCP1) (18). When activated, 
UCP1 dissipates the proton electrochemical gradient 
across the inner mitochondrial matrix with the energy 
released as heat in a process termed 'uncoupling' (Fig. 2) 
(14). Cold exposure stimulates the sympathetic neurones 
innervating BAT to release noradrenaline which activates 
β-adrenergic receptors (AR) (classically β3-AR but also 
β1- and β2-AR (19, 20, 21, 22)). β-AR activation triggers a 
signalling cascade which results in the hydrolysis of local 
triglycerides, releasing fatty acids (FA) that activate UCP1 
(Fig. 2). In addition to triglyceride stores, BAT sequesters 
and utilises several circulating substrates such as glucose, 
fatty acids and some amino acids during thermogenesis 
(reviewed in (23)). Therefore, BAT activation may improve 
other metabolic health parameters such as hyperglycaemia 
and dyslipidaemia in addition to increasing energy 
expenditure.

In rodents, two distinct types of thermogenic adipose 
tissue have been identified, classical BAT and beige or 

Figure 2
Brown adipocyte activation and molecular mechanism of UCP1 function. Upon cold stimulus, sympathetic neurons innervating 
BAT release noradrenaline (NADR) from the synapse. NADR binds to various β-adrenergic receptors (β-AR) on the brown adipocyte 
which activates adenylyl cyclase (AC), converting ATP to cyclic adenosine monophosphate (cAMP). cAMP activates protein kinase A 
(PKA) which stimulates the lipolysis of triglyceride stores and release of fatty acids (FA). FAs are the primary substrate for 
thermogenesis but also bind and activate uncoupling protein 1 (UCP1) located in the mitochondria. UCP1 generates heat via 
transport of protons (H+) across the inner mitochondrial member using the electrochemical proton gradient generated by the 
electron transport train, uncoupling respiration from ATP synthase. Uptake of circulating free fatty acids (FFA) and glucose 
contribute to the regeneration of intracellular triglyceride stores, additionally glucose can be oxidised and enter the tricarboxylic 
acid (TCA) cycle. FFAs are transported into the cell by fatty acid transport protein (FATP, fatty acid binding protein (FABP), and 
cluster of differentiation 36 (CD36). Glucose is transported into the cell via the glucose transporters GLUT1 and 4. C1–4, complex 
1–4; CoQ, co-enzyme Q; Cyto C, cytochrome C; e−, electron.
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brite. Classical BAT is found mainly in the interscapular 
region and is derived from myogenic factor 5-positive 
precursors (24), whilst beige fat is found primarily in the 
inguinal depot and is derived from different progenitor 
cells (reviewed in (25)). Beige adipocytes are recruited in 
response to cold or β-adrenergic stimulation (26), express 
UCP1 (although levels are substantially lower than in 
BAT) (26) and contribute to thermogenesis (27, 28). Also 
thermogenic in nature, human BAT has comparable 
UCP1 function to rodent BAT (18) and interestingly, the 
molecular signature of human BAT shares similarities with 
both rodent classical BAT and beige adipose tissue (29).

The importance of brown adipose tissue in 
adult humans

Following the discovery of BAT in adults via clinical 
18F-FDG-PET/CT scans, healthy volunteer studies 
confirmed that cold exposure substantially increased 18F-
FDG uptake by BAT (17, 30, 31) and 18F-FDG-PET/CT has 
become the most commonly used technique to quantify 
the BAT mass and activity (32). During warm conditions, 
BAT remains metabolically active, with greater glucose 
and fatty acid uptake compared to that of WAT (33, 
34). Clinical 18F-FDG-PET/CT scans performed at room 
temperature demonstrate that ~5–10% of individuals 
have detectable 18F-FDG uptake by BAT (35); however, in 
dedicated studies when subjects are exposed to cold the 
prevalence is as high as 95% in young healthy men (17). 
BAT mass is substantially lower than WAT mass (~16–22 
kg) even in normal weight adults (36, 37). The quantity of 
detectable BAT in humans ranges from ~10–300 g (30, 38, 
39, 40), although this may be an underestimate as 18F-FDG-
PET may not identify all BAT depots and total BAT mass 
may be as high as ~2550 g (15). However, 11C-acetate PET 
(used to measure BAT oxidative activity) has not revealed 
novel BAT depots without substantial glucose uptake 
(41) indicating that 18F-FDG-PET/CT estimates may  
be accurate.

Regulation and dysregulation of human 
BAT activity

Clinical PET/CT studies identified that increased outdoor 
temperature and male sex were associated with reduced 
18F-FDG uptake by BAT (40, 42). However, dedicated 
cold exposure studies have not revealed substantial 
differences in BAT activity between sexes (43), potentially 
indicating that females activate their BAT at higher room 

temperature than males. Ethnicity may also alter BAT 
mass/activity, which has been implicated in the greater 
risk of metabolic disease in individuals of South Asian 
origin (44). Perhaps, the most interesting observation 
was that reduced 18F-FDG uptake by BAT was observed 
with increasing age, fasting glucose and body weight, 
implicating dysregulation of BAT activity in metabolic 
disease (17, 31, 42, 45). In addition, obese subjects have 
reduced fatty acid (using the PET tracer 18fluoro-6-thia-
heptadecanoic acid) uptake by BAT during both warm 
and cold exposure in keeping with decreased BAT mass 
and activity (34), although greater insulin resistance may 
also contribute to the reduced glucose/fatty acid uptake 
by BAT in obesity (46). Dysfunctional BAT in obese 
subjects could reduce EE and contribute to weight gain, 
as observed in mice with selective disruption of Ucp1 
that develop obesity when housed at thermoneutral 
conditions (47). However, Ucp1−/− mice housed below 
thermoneutrality have resistance to diet-induced obesity 
due to decreased metabolic efficiency, highlighting that 
dysfunctional BAT does not necessarily cause weight gain 
and is dependent on the environmental conditions (48). 
BAT mass and 18F-FDG uptake by BAT are also substantially 
reduced in older subjects (49) and in those with T2DM 
(49, 50), although interestingly oxidative metabolism is 
maintained, indicating that functional BAT is preserved in 
these cohorts (49). These data highlight a critical issue in 
the therapeutic potential of activating BAT, as the target 
patient groups require enough BAT mass and function to 
benefit from activation. Therefore, effective expansion of 
BAT mass will likely be required to obtain improvements 
in metabolic health.

There are substantial data that BAT mass can expand 
or regress in response to different stimuli. For example, in 
colder climates, greater BAT mass is found in individuals 
who work outdoors compared with indoor workers (51). 
Furthermore, repeated intermittent cold exposure for 
~7–10 days increased BAT mass and glucose uptake (using 
18F-FDG-PET/CT), BAT oxidative metabolism, NST and 
wider cold-induced thermogenesis (CIT) (38, 52). Rare 
diseases also highlight the plasticity of BAT, as previously 
mentioned BAT activation is under sympathetic control 
and patients with catecholamine-secreting tumours 
(called phaeochromocytomas) often have substantial BAT 
mass and function which regress upon surgical removal 
of the tumour (53, 54). Importantly, BAT function can be 
increased in obese subjects both with and without T2DM 
(the target patient group) by weight loss, which increased 
18F-FDG uptake by BAT, BAT volume and non-shivering 
thermogenesis in some subjects (50, 55, 56). These data 
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suggest that brown adipocyte precursors are present in 
individuals without detectable BAT and can differentiate 
into functional brown adipocytes upon appropriate 
stimulation. Therefore, treatments to increase BAT mass 
may be successful in patients with metabolic disease. 
These data also indicate that reduced BAT mass may be a 
consequence of obesity and it is to be determined whether 
activating BAT can cause weight loss in obese individuals. 
However, there are substantial differences in capacity 
and function of BAT even in healthy individuals, and 
further research is needed to determine the causes of this 
variability and whether reduced or absent BAT mass and 
function can be rescued in all subjects. In addition, it is 
important to consider other factors regulating BAT mass 
and function in individuals. For example, BAT activity 
demonstrates a circadian rhythm in both rodents and 
humans (57, 58) while dietary composition and timing of 
feeding/fasting have powerful effects on BAT activity and 
browning at least in rodents (59, 60, 61). Exercise may 
also regulate BAT activity, as seen in endurance-trained 
athletes who have reduced 18F-FDG uptake by BAT during 
cold exposure compared with sedentary adults (62, 63).

Quantification of cold-induced thermogenesis and 
energy expenditure by BAT

Determining the maximal capacity of BAT is key to 
understanding its therapeutic potential. Early research 
estimated that 50 g of activated human BAT could 
increase EE by 20% above basal metabolic rate (64). In 
addition, EE increases by ~250–300 kcal/24 h during mild 
cold exposure (Fig. 3) and CIT is higher in subjects with 
greater BAT mass in some (65, 66) but not in all studies 
(67). However, the use of 15O2-PET suggested that BAT 
only accounts for a very small contribution to CIT, <20 
kcal/24 h even in subjects with substantial BAT mass (67, 
68). Thus, unlike in rodents, non-shivering thermogenesis 
accounts for a small proportion (~1%) of CIT in humans, 
indicating approaches to activate BAT alone will not 
significantly increase whole body EE. However, it is 
interesting to note that the deep muscles (particularly 
in the neck) located adjacent to BAT are responsible for 
the majority of CIT (67, 69). It is possible that greater 
sympathetic activation in subjects with BAT also increases 
skeletal muscle thermogenesis, or that BAT secretes factors 
that enhance EE in skeletal muscle in a paracrine fashion, 
as seen in rodents (70). In addition, interventions that 
increase BAT mass also increase wider CIT, highlighting 
the potential benefits of this approach (38). For example, 
repeated cold exposure at 17°C for 2 h/day for 6 weeks 

increased cold-induced 18F-FDG uptake by BAT, CIT by 
~200 kcal/day and reduced fat mass (66). This substantial 
increase in EE during acute cold exposure highlights the 
potential benefits of activating this pathway, to put this 
into context increasing EE by 50–60 kcal/day for 1 year 
would result in weight loss of ~2.5 kg (71) if there was no 
compensatory increase in food intake. Further research to 
dissect the pathways regulating CIT may identify novel 
targets for manipulation to increase EE.

Metabolic effects of BAT activation and cold-
induced thermogenesis

The metabolic benefits of BAT activation and wider CIT 
extend beyond burning calories. During warm exposure 
when thermogenesis is not required, BAT sequesters 
and utilises circulating metabolic substrates such as 
glucose and FAs to a greater extent than WAT (33, 34). 
However, uptake of these substrates and others such as 
glutamate by BAT increases substantially following cold 
activation, in addition to hydrolysis and oxidation of its 
own triglyceride stores (33, 72). CIT also leads to increased 
glucose and FA uptake by skeletal muscle and lipolysis in 
WAT (41, 49, 52, 67, 73). Highlighting the substantial 
metabolic activity of BAT, glucose and potentially FA 
uptake are greater per gram of tissue in BAT than in either 
skeletal muscle or WAT (Fig. 3). However, skeletal muscle 
mass (~30 kg) is substantially greater than BAT mass and 
accounts for ~50% of whole body glucose uptake during 
cold, compared with ~1% for BAT (72).

As mentioned previously, in line with increased 
substrate utilisation BAT activation improves glucose 
homeostasis. For example, acute cold exposure in 
overweight/obese men increased glucose disposal and 
oxidation in addition to insulin sensitivity in subjects 
with detectable BAT, these changes were not observed in 
the ‘BAT negative’ group (74). Furthermore, 4 weeks of 
mild cold exposure (19°C for 10 h/night) in lean healthy 
men improved postprandial insulin sensitivity, reduced 
leptin levels and increased adiponectin concentrations 
in addition to increasing 18F-FDG uptake by BAT (39). In 
T2DM subjects, cold exposure (~15°C for 2–6 h/day for 10 
days) improved whole body insulin sensitivity (primarily 
through increased glucose disposal) and increased 18F-
FDG uptake by BAT and skeletal muscle but not WAT (50).

BAT activation is also associated with changes in 
circulating lipids. For example, in overweight/obese 
men those with greater BAT activation had increased 
cold-induced lipolysis, FA oxidation and adipose tissue 
insulin sensitivity (75). In addition, acute cold exposure 
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decreased triglyceride and very low-density lipoproteins 
(VLDL)-cholesterol concentrations in those subjects 
the following day, suggesting BAT activation may have 
prolonged beneficial effects. This may be in part due to 
sequestration of fatty acids derived from triglyceride-rich 
lipoproteins (TRLs) (76). In addition, BAT thermogenesis 
is activated to a similar extent by a meal as by cold, this 
postprandial thermogenesis utilises TRL-derived FAs 
and glucose which may improve systemic FA oxidation 
in addition to glucose disposal (73). These data suggest 
that BAT activation and wider CIT may improve insulin 
resistance and dyslipidaemia in addition to increasing EE, 
making activation of this pathway an attractive prospect 
to treat metabolic disease. BAT activation may also have 

additional beneficial effects, for example short-term cold 
exposure reduced local inflammation within fat depots 
(77) and the wider benefits of BAT activation and CIT 
remain relatively unexplored.

Approaches to activating BAT

As described above, there are clear metabolic benefits from 
acute activation of BAT and wider CIT, questions remain 
as to whether these improvements will be maintained 
during chronic activation. In addition, a major challenge 
for the field is how to safely achieve long-term expansion 
and activation of BAT.

Figure 3
Whole body cold-induced thermogenesis and substrate utilisation. (A) Cold exposure stimulates WAT lipolysis to provide FAs for 
utilisation by both BAT and skeletal muscle (grey arrows). BAT uses FAs released from intracellular triglyceride stores to fuel 
non-shivering thermogenesis (orange arrow) but also sequesters circulating FAs and glucose. Skeletal muscle shivering accounts 
for the largest proportion of whole body heat production, glucose and FA uptake during cold-induced thermogenesis (CIT) (pink 
arrows). Muscles that contribute substantially to shivering thermogenesis include the longus colli, sternocleidomastoid, pectoralis 
major, and the rectus femoris. (B) During cold exposure, glucose uptake per gram of tissue is greater in BAT than skeletal muscle 
but with similar fatty acid uptake. However, whole body FA and glucose uptake by BAT is comparatively low due to substantially 
greater skeletal muscle mass. (C) Quantification of CIT varies greatly depending on the cooling method used and temperature, 
ambient air cooling protocols (orange columns) typically elicit a lower increase in energy expenditure compared to water cooling 
blanket/suit protocols (blue columns), but substantial CIT is induced by both methods. Additional references used for data in 
panel C (168,169).
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Cold exposure

To date, the most common method to activate BAT in 
humans is either to reduce ambient room temperature 
to ~16–19°C (30, 33) or use a cold water-infused suit/
jacket (41, 49). Both methods elicit similar levels of BAT 
activation at least as measured by glucose uptake (33, 41, 
46, 52). Repeated cold exposure for several hours per day 
for up to 6 weeks increased BAT mass/activity (as measured 
using 18F-FDG), CIT and decreased fat mass (38, 50, 66). 
Although it is possible that the increased 18F-FDG uptake 
demonstrates the activation of previously dormant BAT, 
in rodents repeated cold exposure leads to differentiation 
of new thermogenic beige adipocytes (78) and the 
same is most likely true in humans. Importantly, these 
studies reveal that short-term cold exposure improves 
cardiometabolic markers and potentially decreases fat 
mass in humans without the need for pharmacotherapy. 
However, this technique is time-consuming and may be 
uncomfortable for patients. It is also unclear whether 
these benefits are maintained over time and ongoing 
studies will determine whether chronic cold exposure (or 
repeated short-term cold exposure for several months) 
improves metabolic health (79, 80).

Increased ambient temperature is associated with 
the prevalence of obesity in some (81, 82) but not in 
all studies (83). Indoor housing temperatures in the UK 
have increased since the 1970s, potentially due to greater 
use of central heating including in more energy-efficient 
homes (84, 85, 86). The reduced requirement for CIT due 
to warmer ambient temperatures could lower EE (Fig. 3) 
and contribute to the increased prevalence of obesity. 
Therefore, a concerted effort to reduce room temperature 
through the reduced usage of central heating to increase 
EE may have metabolic benefits in addition to being the 
most cost-effective ‘therapeutic’ option in cold climates 
such as the UK. However, in rodents, intermittent cold 
exposure causes a compensatory increase in food intake 
to meet the increased thermogenic demands (12), while 
in humans increased EE during cold exposure results in a 
parallel increase inad libitum food intake (87). Therefore, 
while cold exposure may improve metabolic health this 
may not necessarily result in weight loss.

Pharmacotherapy for BAT activation

Pharmacotherapy to activate BAT (and potentially other 
tissues involved in CIT) is an attractive option as this 
would be a more comfortable method of activation. 
However, a subject must have enough BAT to respond 

to a ‘BAT activator’ particularly as the target patient 
group (typically obese subjects with T2DM who may be 
older) generally have very little BAT. Therefore, the ideal 
drug would expand BAT mass in addition to activating 
BAT. As BAT expansion and activation are both under 
sympathetic regulation (53, 88), the majority of research 
in this area has focused on the effect of sympathetic 
agonists.

Sympathomimetics

Activation of the β3-AR induces browning and BAT 
thermogenesis, while administration of β3-agonists 
induces weight loss and improves hyperglycaemia in 
rodents (89). Consequently, there was significant interest 
in β3-AR agonists in humans even prior to the recent 
identification of BAT in adult humans (90, 91). Β3-agonist 
administration for 4–8 weeks in humans improved lipids 
and insulin sensitivity although there was no effect on 
body weight (92, 93). More recently, a single high dose 
(200 mg) of the β3-AR agonist mirabegron (licensed for 
urinary frequency/incontinence) in humans housed at 
23°C increased 18F-FDG uptake by BAT and increased EE 
by ~200 kcal/24 h (19). In addition, an administration 
of 100 mg mirabegron daily for 4 weeks in healthy 
women increased BAT mass and volume (using 18F-FDG) 
and increased EE but did not alter body weight (94). In 
accordance with the earlier studies, mirabegron improved 
insulin sensitivity and increased high-density lipoprotein 
cholesterol in these subjects. However, a lower dose of 
mirabegron (50 mg) did not activate BAT thermogenesis 
(22) and the effects at higher doses may be due to off 
target activation of particularly the β2-AR and also β1-
AR that are more highly expressed in human BAT than 
β3-AR (21, 22). These data highlight the difficulties with 
developing selective adrenergic receptor agonists to 
activate BAT.

The mixed adrenoreceptor agonist ephedrine (which 
also inhibits noradrenaline re-uptake in post-synaptic 
neurons (95, 96)) also increased 18F-FDG uptake by BAT 
in lean (but not obese) adults at room temperature (97). 
However, ephedrine also increased heart rate and blood 
pressure, side effects also induced by mirabegron that limit 
the potential of this approach (19, 94, 97). In addition, 
lower dose ephedrine (1 mg/kg) did not acutely activate 
BAT in healthy humans (98) while chronic administration 
may in fact reduce BAT activity (99). These data suggest 
that chronic sympathetic stimulation may result in 
desensitisation in BAT.
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Thyroid hormones

Thyroid hormone receptor activation is crucial for BAT 
thermogenesis and adrenergic responsiveness in mice 
(100). Similarly, individuals with thyrotoxicosis have 
increased BAT glucose uptake, lipid oxidation, EE, and 
possibly improved insulin sensitivity; these changes are 
reversed once euthyroidism is restored (101, 102). A recent 
trial also demonstrated that administration of thyrotropin-
releasing hormone in healthy subjects increased glucose 
uptake by BAT but only during cold exposure (103). While 
these studies highlight the importance of the thyroid in 
BAT activation, the long-term effects of thyroid hormone 
administration on BAT function are unknown.

Other drugs known to activate BAT

Capsaicin and capsinoids are substances naturally present 
in chilli peppers that are agonists of the transient receptor 
potential vanilloid type 1 (TRPV1) receptor (104). In 
rodents, capsinoids stimulate sympathetic activation 
of BAT and increase UCP1 expression in both BAT and 
WAT (104, 105). In healthy humans, acute ingestion of 
capsinoids (9 mg) significantly increased whole body 
EE only in subjects with detectable BAT (106). Chronic 
capsinoid supplementation (9 mg daily for 6 weeks) 
increased CIT in healthy subjects (66) and potentially 
increased resting EE in overweight individuals (107), 
although whether these effects are mediated by BAT is 
unclear. These data provide proof-of-concept that dietary 
supplementation could be a relatively safe method to 
increase EE and BAT activity.

Produced by the liver and modified by gut microbiota, 
bile acids (BA) are released into the intestinal lumen 
and circulation in the postprandial period and regulate 
metabolism (reviewed in (108)). In rodents, BAs increase 
BAT thermogenesis and induce browning of WAT through 
the G-protein-coupled bile acid receptor TGR5 and the 
cyclic-AMP-dependent thyroid hormone activating 
enzyme type 2 iodothyronine deiodinase (109, 110, 111). 
In humans, administration of the BA chenodeoxycholic 
acid (CDCA) for 2 days increased BAT activation and whole 
body EE in vivo (112) and CDCA increased mitochondrial 
uncoupling in human brown (but not white) adipocytes 
through TGR5 (112).

In rodents, acute and chronic glucocorticoid excess 
decreases UCP1 expression and reduces BAT thermogenesis, 
conversely in humans acute glucocorticoid excess increases 
UCP1 and oxygen consumption in vitro and increases 18F-
FDG uptake and heat production by BAT and CIT in vivo 
(113, 114, 115). However, chronic glucocorticoid excess 

reduces BAT function so would not be an appropriate 
therapeutic agent (114, 116), but importantly, these data 
highlight the species-specific regulation of BAT activation.

Browning agents to enhance thermogenesis

Due to the relatively small quantity of BAT in adult humans, 
upon activation, the systemic clearance of glucose and 
caloric capacity is substantially lower than skeletal muscle 
(69, 72). Therefore, therapeutic strategy is to expand the 
thermogenic adipose tissue mass in a process termed 
'browning' (Fig. 4). Increasing WAT thermogenesis could 
have profound metabolic effects as, in obese subjects, 
WAT accounts for over one-quarter of total body weight 
(117). Cold exposure is a powerful inducer of browning 
in rodents (78) and increases supraclavicular BAT mass 
in humans; however, studies have not demonstrated 
increased glucose uptake (118) or oxidative capacity (52) 
(measured by 11C-acetate) in classical WAT depots in vivo 
following repeated cold exposure. These data suggest either 
that repeated cold exposure is not a sufficient stimulus 
to increase WAT thermogenesis or that classical WAT 
depots have a low browning capacity. Pharmacotherapy 
may hold greater promise, browning agents such as β3-
agonists can induce formation of UCP1-positive ‘beige’ 
thermogenic adipocytes in WAT depots in both rodents 
and humans, although as discussed above their adverse 
effects limit their potential (26, 119, 120).

Numerous browning agents have been identified 
in rodents, some of which have been investigated in 
humans. For example, fibroblast growth factor-21 (FGF21) 
release is induced by cold and increases UCP1 expression 
in murine WAT and BAT, and in human adipocytes 
(121, 122, 123). FGF21 is expressed in BAT (123, 124), 
although hepatic FGF21 primarily accounts for circulating 
levels and the beneficial metabolic effects (125). FGF21 
analogue administration to obese humans with T2DM 
improved circulating lipids and reduced body weight 
(potentially by reducing food intake although this was 
not measured) ,although it did not improve glucose levels 
(126, 127). However, BAT activity and WAT browning were 
not measured in these studies so it is unclear if adipose 
thermogenesis contributed to the observed metabolic 
improvements, further research is needed to determine 
if FGF21 administration in vivo induces browning in 
humans. FGF21 also induces bone loss, which lessens the 
therapeutic potential of this approach (128).

Several bone morphogenic proteins (BMPs, members 
of the transforming growth factor superfamily) drive 

Downloaded from Bioscientifica.com at 07/12/2021 03:46:31PM
via free access

https://eje.bioscientifica.com


Eu
ro

pe
an

 Jo
ur

na
l o

f E
nd

oc
ri

no
lo

gy
184:6 R251Review B T McNeill and others Brown adipose tissue as a 

therapeutic target

https://eje.bioscientifica.com

brown adipogenesis, notably BMP7. Transgenic disruption 
of Bmp7 in mice substantially reduced UCP1 expression 
and BAT mass, while its overexpression increased UCP1 
and EE and reduced body mass (129). In addition, BMP7 
(and BMP4) induces browning in human adipocyte 
cell models (130, 131). However, BMP7 may only work 
as a browning agent below thermoneutrality, which is 
an important consideration for any therapeutic agent 
(132). The effect of BMP7 on metabolic health has not 
been studied in vivo in humans, although BMP7 has been 
FDA approved for bone fracture treatment in clinical  
trials (133).

Thiazolidinediones are peroxisome proliferator-
activated receptor-γ (PPARγ) agonists used as insulin-
sensitising drugs for the treatment of T2DM, although 
adverse side effects have reduced their use substantially 
(134). In rodents, PPARγ-agonists are powerful browning 
agents, both in vivo and in vitro (135, 136). In humans, 
PPARγ-agonists also induce browning in adipocytes but 
in vivo in fact reduce cold-induced 18F-FDG uptake by 
BAT (137). Another anti-diabetic drug, the dipeptidyl 
peptidase-4 (DPP-IV) inhibitor sitagliptin decreased body 
weight, increased energy expenditure and increased UCP1 
protein expression in BAT in obese mice (138). However, 
DPP-IV inhibition using sitagliptin in overweight pre-
diabetic subjects for 12 weeks increased 18F-FDG uptake 
slightly by subcutaneous WAT but not by BAT during 
cold exposure (139). Therefore, it is unlikely that DPP-IV 
inhibitors induce substantial browning in humans.

Irisin is another browning agent that has received 
substantial attention. Irisin is secreted from skeletal 
muscle during exercise and substantially increases 
UCP1 expression in inguinal WAT, increases EE and 
protects against weight gain in mice (140). In humans, 
irisin induced browning in white adipocytes in vitro 
while circulating irisin concentrations are increased by 
exercise and cold exposure (122, 140). However, irisin 
had no effect on brown adipocytes and may also induce 
osteogenesis (141). Data in humans on the effects of 
exercise programmes on circulating irisin levels and 
induction of browning are inconsistent, calling into 
question whether irisin mediates any of the beneficial 
effects of exercise, although methodologies often vary 
widely between studies (142, 143). Despite differences in 
methodology to quantify irisin concentrations, systemic 
irisin levels are increased in obesity which may reduce 
the potential of using irisin as a therapeutic agent, 
although levels are likely decreased in T2DM (144). 
The effect of irisin administration in vivo in humans 
is yet to be tested. While numerous factors have been 
identified as browning agents in rodents (145), the above 
data highlight the importance of assessing the effect of 
browning agents in vivo in humans and at present there 
are very limited data on the majority of these factors 
in humans. Β-agonists have successfully demonstrated 
proof-of-concept but further work is necessary to dissect 
the mechanisms regulating adipose tissue browning in 
humans and the thermogenic capacity of various WAT 

Figure 4
Factors that induce browning of typical 
WAT depots. An illustration of factors that 
induce thermogenic beige adipocyte 
formation in vivo and in vitro with greater 
UCP1 expression and uncoupled 
respiration compared to white adipocytes. 
The small number of factors that induce 
browning of white adipose tissue in vivo in 
humans are highlighted in red and 
underlined. *BMP8b is classed additionally 
as a BATokine. 12,13-diHOME, 
12,13-dihydroxy-9Z-octadecenoic acid; 
β-AR, β-adrenoreceptor; BMP, bone 
morphogenic protein; BNP, brain 
natriuretic peptide; FGF21, fibroblast 
growth factor-21; IL, interleukin; NRG4, 
neuregulin-4; PPARγ, peroxisome 
proliferator-activated receptor-γ.

Downloaded from Bioscientifica.com at 07/12/2021 03:46:31PM
via free access

https://eje.bioscientifica.com


Eu
ro

pe
an

 Jo
ur

na
l o

f E
nd

oc
ri

no
lo

gy
184:6 R252Review B T McNeill and others Brown adipose tissue as a 

therapeutic target

https://eje.bioscientifica.com

depots to determine the therapeutic potential of this 
approach.

Secreted factors from BAT

As previously discussed, the presence of BAT is associated 
with favourable metabolic profiles (74) and there is recent 
evidence BAT secretes factors (often termed 'BATokines', 
although most if not all of these factors are also secreted 
from other tissues) with beneficial paracrine and endocrine 
functions. Consequently, there is substantial interest in 
identifying BATokines with therapeutic potential. Many 
factors have been identified, the vast majority in rodents. 
BMP8b has gained interest as a BATokine as its expression 
is induced in BAT by cold exposure and BMP8b directly 
enhances sympathetic-stimulated BAT thermogenesis 
(146). In addition, secreted BMP8b increased adipose tissue 
browning through enhanced sympathetic innervation and 
vascularisation even at thermoneutrality in mice through 
secretion of another BATokine neuregulin-4 (NRG4) 
(147). NRG4 also exerts beneficial metabolic effects in 
other tissues such as the liver where it inhibits de novo 
lipogenesis (148) and increases FA oxidation, while NRG4 
also increases glucose uptake in skeletal muscle (149). In 
humans, NRG4 expression in WAT is reduced in obese 
subjects and circulating levels are lower in non-alcoholic 
fatty liver disease (150). However, the contribution of 
BAT to total serum NRG4 is unknown and therapeutic 
administration has not been tested in humans.

In both rodents and humans, circulating 
concentrations of the BATokine 12,13-dihydroxy-
9Z-octadecenoic acid (12,13-diHOME) are increased 
following cold exposure (151) and exercise (152). In mice, 
12,13-diHOME administration increased fatty acid uptake 
by brown/beige adipocytes and skeletal muscle (151, 152). 
In addition, plasma 12,13-diHOME concentrations in 
humans were inversely associated with fat mass, fasting 
insulin and triglyceride concentrations (153); however, 
the effect of 12,13-diHOME administration to humans is 
currently unknown. Adenosine is an another BATokine 
that activates BAT and induces browning in vivo in mice 
and in vitro in humans, via activation of the A2A receptor 
(154). Intravenous adenosine administration in lean 
healthy men in vivo increased BAT but not WAT perfusion 
in keeping with increased BAT oxidative metabolism (155). 
Further work is required to determine whether prolonged 
activation of A2A receptors induces browning in humans 
in vivo. Recent work has focused on identifying BATokines 
in humans. For example, comparative analysis of the 

human brown and white adipocyte secretome recently 
identified ~100 human BATokines (156), and through 
this ependymin-related protein 1 was identified as an 
important regulator of both thermogenic differentiation 
and noradrenaline-stimulated thermogenesis in human 
brown adipocytes (156). Further work investigating 
the role of the BAT secretome in humans is needed to 
determine if any BATokines offer a therapeutic potential.

Potential concerns with BAT activation as a 
therapeutic strategy

The metabolic benefits of BAT activation and cold 
exposure make increasing EE an attractive target for 
obesity and metabolic disease; however, there are 
concerns with this approach that must be taken into 
consideration. For example, selective activation of BAT 
may prove difficult to achieve or even be desired, as 
evidenced by selective β3-AR agonists that may in fact 
require activation of other β-receptor subtypes in BAT, and 
part of their beneficial effects may be mediated by other 
tissues (19, 21, 22, 94). Chronic sympathetic activation 
(e.g. from β3-AR agonists (19, 94), thyrotoxicosis (101) or 
from supraphysiological thyroid hormone replacement 
(157)) causing tachycardia and hypertension may result 
in unacceptable cardiovascular side effects such as 
myocardial infarction or stroke (158). It is also possible 
that elevated heart rate is essential for increased EE and 
additional research is required to identify whether there 
is a safe threshold of heart rate that does not increase 
cardiovascular risk (159). Further research to identify 
pharmacological mechanisms to safely activate BAT and/
or wider cold-induced thermogenesis is urgently required.

Another potential issue is dissipation of the heat 
generated by pharmacological BAT activation. BAT 
activation prevents reduced body temperature during cold 
exposure, however, when activated chronically at room 
temperature or above thermoneutrality there is a risk of 
inducing hyperthermia. For example, 2,4-Dinitrophenol 
(DNP) was used as a weight loss medication as early as 
the 1930s (160). DNP caused generalised uncoupling of 
oxidative phosphorylation, leading to hyperthermia 
particularly during overdose that could be fatal (161, 162). 
Whilst selective BAT activation is unlikely to cause such 
thermal stress due to its low quantity, any pharmacological 
approach to activate BAT will have to be specific and avoid 
off target effects.

Finally, an approach to increase EE may cause a 
compensatory hyperphagic response, as observed in mice 
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and potentially humans during cold exposure, to meet the 
increased metabolic demands (12, 87, 163). However, not 
all pharmacotherapy that activates BAT in rodents causes 
hyperphagia (164), so it is unclear whether weight loss 
from increased EE by BAT may be neutralised by increased 
caloric consumption. Synergistic combination therapy 
with appetite suppressants may be required to maintain 
the benefits of BAT activation (165).

Perspective and conclusion

Since the identification of BAT in adult humans, there has 
been a resurgence in investigation of BAT activation and 
wider thermogenesis as a therapeutic strategy for obesity 
and metabolic disease. Thanks largely to PET imaging 
and to other novel in vivo techniques for measuring 
human BAT activity, significant progress has been made 
in understanding the role and regulation of human BAT, 
although to date most of the metabolic benefits from 
BAT activation have occurred in the context of acute cold 
exposure. In addition, pharmacological activation of BAT 
has been demonstrated at room temperature in important 
proof-of-concept studies but more research is required to 
fully understand the pathways regulating adipose tissue 
thermogenesis in order to develop treatments to safely 
activate BAT. Recent innovative approaches in rodents 
have identified the therapeutic potential of increasing 
BAT mass to treat metabolic disease, as evidenced by 
transplantation of either BAT (166) or beige adipocytes 
(167) which improves weight loss, glucose homeostasis 
and insulin sensitivity. While this approach remains 
untested in humans, it provides a clear proof of principle 
that increasing BAT mass improves metabolic health, 
which justifies further research to increase BAT mass 
and activity in humans. Pharmacological browning 
of white adipose tissue offers a larger adipose depot to 
increase EE and act as a glucose and lipid sink, although 
it remains unknown how much browning of these depots 
is possible. These current data suggest that selective BAT 
activation without significant expansion of BAT mass 
would not increase EE sufficiently to induce weight loss 
in humans and the most effective use of BAT activators 
may be as treatments for the comorbidities associated 
with obesity such as hyperglycaemia and dyslipidaemia 
rather than obesity itself. Further research into chronic 
BAT activation, potentially in combination with 
other approved weight loss therapies such as appetite 
suppressants, will determine whether BAT activation can 
complement current treatment options.
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