Edinburgh Research Explorer

On The Cost of ASIC Hardware Crackers: A SHA-1 Case Study

Citation for published version:

Chattopadhyay, A, Khairallah, M, Leurent, G, Najm, Z, Peyrin, T & Velichkov, V 2021, On The Cost of ASIC
Hardware Crackers: A SHA-1 Case Study. in Topics in Cryptology — CT-RSA 2021. Lecture Notes in
Computer Science, vol. 12704, Springer International Publishing, pp. 657 — 681, The Cryptographer's Track
at the RSA Conference 2021, San Francisco, United States, 17/05/21. https://doi.org/10.1007/978-3-030-
75539-3 27

Digital Object Identifier (DOI):
10.1007/978-3-030-75539-3_27

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
Topics in Cryptology — CT-RSA 2021

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN (75 ACCESS

Download date: 23. Jul. 2021

https://doi.org/10.1007/978-3-030-75539-3_27
https://doi.org/10.1007/978-3-030-75539-3_27
https://doi.org/10.1007/978-3-030-75539-3_27
https://www.research.ed.ac.uk/en/publications/78aa87e1-4b18-473b-a18e-4eb89bd05ad0

On The Cost of ASIC Hardware Crackers:
A SHA-1 Case Study

Anupam Chattopadhyay', Mustafa Khairallah’*, Gaétan Leurent?,
Zakaria Najm!?, Thomas Peyrin’#, Vesselin Velichkov®

! Nanyang Technological University, Singapore, Singapore
2 Inria, Paris, France
3 TU Delft, Delft, Netherlands
4 Temasek Labs @ NTU, Singapore, Singapore
5 University of Edinburgh, Edinburgh, UK

Abstract. In February 2017, the SHA-1 hashing algorithm was practi-
cally broken using an identical-prefix collision attack implemented on a
GPU cluster, and in January 2020 a chosen-prefix collision was first com-
puted with practical implications on various security protocols. These
advances opened the door for several research questions, such as the
minimal cost to perform these attacks in practice. In particular, one may
wonder what is the best technology for software/hardware cryptanalysis
of such primitives. In this paper, we address some of these questions by
studying the challenges and costs of building an ASIC cluster for per-
forming attacks against a hash function. Our study takes into account
different scenarios and includes two cryptanalytic strategies that can be
used to find such collisions: a classical generic birthday search, and a
state-of-the-art differential attack using neutral bits for SHA-1.

We show that for generic attacks, GPU and ASIC poses a serious prac-
tical threat to primitives with security level ~ 64 bits, with rented GPU
a good solution for a one-off attack, and ASICs more efficient if the at-
tack has to be run a few times. ASICs also pose a non-negligible security
risk for primitives with 80-bit security. For differential attacks, GPUs
(purchased or rented) are often a very cost-effective choice, but ASIC
provides an alternative for organizations that can afford the initial cost
and look for a compact, energy-efficient, reusable solution. In the case of
SHA-1, we show that an ASIC cluster costing a few millions would be able
to generate chosen-prefix collisions in a day or even in a minute. This
extends the attack surface to TLS and SSH, for which the chosen-prefix
collision would need to be generated very quickly.

Keywords: SHA-1, Cryptanalysis, ASIC, Birthday Problem, Hash Functions

1 Introduction

Hardware cryptanalysis has always been an important part of modern cryptog-
raphy. It studies building application-specific electronic machines for performing

cryptanalytic attacks. These machines can use different technologies, starting
from mechanical computers during World War 11, to FPGA, GPU or ASIC in
the modern days. A full discussion of the history and state of the art of this
field can be found in [11]. A widely held belief is that FPGAs and GPUs are
suited for small-scale or low-budget computations, while ASIC is predicted to be
better for heavy computational tasks or if the attacker has an important budget
to spend. It is intuitive that a chip that is designed for a specific task is much
more efficient than a general-purpose chip for the same task. However, since
ASIC design has a huge non-recurring cost for fabrication, it is only competitive
when a huge amount of chips is required. Besides, unlike the cryptographic algo-
rithms themselves, which are usually optimized for hardware implementations,
the cryptanalytic algorithms are usually designed for general-purpose computing
machines. Hence, it is not necessarily true that ASIC implementations of such
algorithms are more efficient. In other words, ASIC can always be at least as
efficient as general-purpose CPUs or GPUS, as in the worst case the ASIC de-
signer can simply design a circuit that is similar to the general-purpose one, but
the gap in efficiency between the ASIC and the general-purpose circuit depends
on the algorithm being implemented.

In general, ASIC provides an unfair advantage to players with bigger bud-
gets. This has led to speculation that large intelligence entities may already
possess ASIC hardware crackers that can break some of the widely used crypto-
graphic schemes. In this paper, we address the question of the feasibility of such
machines and whether it is more beneficial to use ASIC for cryptanalysis. The
answer to this question is yes, but only for generic attacks of very large complex-
ities, e.g. > 264, For low scale or more complicated cryptanalytic attacks, GPUs
provide a very competitive option, due to re-usability, mass production and/or
the possibility of renting them.

A relevant topic to our study is blockchain mining. As discussed earlier, big
players can gain a huge advantage by using expensive ASICs. This has been a
trend for Bitcoin specifically, where the introduction of a new ASIC machine
lowers the profitability of older machines significantly. To maintain fairness of
blockchain and cryptocurrency mining, memory-bound and ASIC-resistant hash-
ing algorithms have been used, such as Ethash [24] for the Ethereum cryptocur-
rency and the X16R algorithm [25].

Related Work COPACOBANA [12] was introduced in CHES 2006 as an FPGA
cluster consisting on 120 FPGAs. It is considered to be the first publicly reported
configurable platform built specifically for cryptanalysis. The design philosophy
behind the architecture depends on three assumptions:

1. Cryptanalytic algorithms are parallelisable.

2. Different nodes need to communicate with each other only for a very limited
amount of time.

3. Since the target algorithms are computationally intensive, the communi-
cation with the host is very limited compared to the time spent on the
computational tasks.

These assumptions are satisfied by both brute force (generic) and a lot of
cryptanalytic attacks. Hence, the COPACOBANA has been used to accelerate
several attacks [6]. In our study we follow the same assumptions and add one
more assumption:

4. Each node requires a constant/low amount of storage. The overall attack
can be implemented using an almost memory-less algorithm.

This assumption needs to be satisfied by the attack algorithm in order to
make sure that the efficiency due to parallelisation is not lost due to memory
operations. For example, a naive approach to implementing a generic birthday
collision search on m nodes, can lead to only y/m speed up compared to a single
node if the algorithm doesn’t satisfy this assumption.

Our Contributions. This paper is an attempt at answering three important re-
search questions:

— Can the cost of the collision attacks against SHA-1 be reduced? There has
been major breakthroughs in the cryptanalysis of SHA-1 over the past few
years, with the first practical identical-prefix collision (IPC) found in Febru-
ary 2017 [17] and the first chosen-prefix collision (CPC) found in January
2020 [14]. While these attacks are practical on general-purpose GPUs, they
still take a few months to generate one collision, by both academic and indus-
trial entities. Interestingly, the authors of [14] remarked that TLS and SSH
connections using SHA-1 signatures to authenticate the handshake could be
attacked with the SLOTH attack [2] if the chosen-prefix collision can be gen-
erated quickly. Hence, we would like to check if ASIC can provide a better
alternative to speed up the attacks, using larger budgets. We actually show
that chosen-prefix collisions could be generated within a day or even a minute
using an ASIC cluster costing a few dozen Million USD (the amortized cost
per chosen-prefix collision is then much lower).

— What is the difference between generic attacks and cryptanalytic attacks in
terms of cost and implementation? When analyzing a new cipher, any algo-
rithm that has a theoretical time complexity lower than the generic attacks
is considered a successful attack and the cipher is considered broken. For
example, an n-bit hash function that is collision resistant up to the birthday
bound is considered insecure if there is a cryptanalytic attack that requires
less than 29-9%/2 hash calls. Most of the time, researchers only measure time
complexity in terms of function calls and ignore other operations required
to perform the attack if they are much smaller. However, in practice, it can
be a lot harder to implement a cryptanalytic attack compared to a generic
attack, even with lower theoretical complexity. There are countless attacks
published every year with a complexity very close to the generic one, but
a natural example of such scenarios is the biclique attack against AES [4],
where the brute force complexity is reduced only by a small factor from 2128
to 2126-1, However, one can question if implementing the simple brute force

attack would actually be much less complex in practice. In this paper, we
compare the generic 64-bit birthday CPC attack over a 128-bit hash function
to the cryptanalytic CPC attack against SHA-1 (which costs close to 2636
operations on GPUs, and of a lower complexity in theory) showing that
in practice, the generic attack cost is more than 5 times cheaper than the
ad-hoc CPC attack. Attacks like biclique or complex cryptanalysis are even
more difficult to implement than the ad-hoc CPC attack and might require
a huge memory, which probably makes the gap even larger. Hence, we argue
that for a cryptanalytic attack to be competitive against a generic algorithm
in practice, one must ensure a sufficiently large gap, at least of a factor 5,
if not more (only an actual hardware implementation testing or estimation
could give accurate bounds on that factor).

— How secure is an 80-bit collision-resistant hash function? In the NIST Lightweight

Cryptography Workshop 2019, Tom Brostéom proposed an application for
lightweight cryptography where the SIMON cipher [1] is used in the Davis-
Meyer construction as a secure compression function which is collision-resistant
at most up to 264 computations [19]. Besides, it remains a common belief
that SHA-1 is insecure due to the cryptanalytic attacks against it, but it
would have still been acceptable otherwise. Actually, it is only since 2011
that 80-bit security is not recommended anymore by the NIST, and 80-bit
security for data already encrypted with this level of protection is deemed ac-
ceptable as a legacy feature, accepting some inherent risk. Hence, we study
the cost of implementing the generic 280 birthday collision attack against
SHA-1, showing that it is within our reach in the near future, costing ~ 61
million USD to implement the attack in 1 month, which is not out of reach of
large budget players, e.g. large government entities, and with the decreasing
cost of ASICs, this will even be within reach of academic/industrial entities
in the near future.

Finally, we argue that ASIC provides the most efficient technology for imple-
menting high complexity and generic attacks, while GPU provides a competitive
option for cryptanalytic and medium/low cost attacks.

2 Hash Functions and Cryptanalysis

Cryptographic hash functions are one of the main and most widely used primi-
tives in symmetric key cryptography. One of their key applications is to provide
data integrity by ensuring each message will lead to a seemingly random digital
fingerprint. They are also used as building blocks of some digital signature and
authentication schemes. A cryptographic hash function takes a message of ar-
bitrary length as input and returns a fixed-size string, which is called the hash
value/tag. In order for the function to be considered secure, it must be hard to
find collisions, i.e. two or more different messages that have the same tag. More
specifically, a n-bit cryptographically secure hash function must satisfy at least
the security notion of collision resistance, i.e. finding a pair (M7, M>) of distinct
messages, such that H(M;) = H(M,) must require about 2"/? computations.

2.1 SHA-1 and Related Attacks.

The SHA-1 hash function defines a generalized-Feistel-based compression func-
tion used inside the Merkle-Damgard (MD) algorithm. It was selected in 1995
as a replacement for the SHA-0 hash function after some weaknesses have been
discovered in the latter. While the two functions are relatively similar, SHA-1
was considered collision resistant till 2005, when Wang et al. proposed the first
cryptanalytic attack on SHA-1 [23]. Since then, a lot of efforts have been targeted
towards making the attack more efficient. In 2015, the authors of [7] provided
an estimation for finding near collisions on SHA-1, which is a critical step in
the collision attacks. The authors provided a design of an Application-Specific
Instruction-set Processor (ASIP), named Cracken, which executes specific parts
of the attack. It was estimated that to execute the free-start collision and real
collision attacks from [16], the attacks will take 46 and 65 days and cost 15
and 121 Million Euros respectively. At Eurocrypt 2019, Leurent and Peyrin [13]
provided a chosen-prefix attacks which uses two parts: first a birthday search
to reach an acceptable set of differences in the chaining variable, and then a
differential cryptanalysis part that successively generate near-collision blocks to
eventually reach the final collision. The attack was implemented on GPUs and
a first chosen-prefix collision was published in January 2020 [14].

2.2 Birthday Search in Practice.

The efficient design of a collision search algorithm is not a trivial task, especially
if the attacker wants to use parallelization over a set of computing machines. This
issue is discussed in details in [21]. The collision search problem can be treated
as a graph search problem, where the attacker is looking for two edges with the
same endpoint but with different starting points. Pollard’s rho method [15] helps
finding a collision in the functional graph with a small memory requirement. The
underlying idea is to start at any vertex and perform a random walk in the graph
until a cycle is found. Unless the attacker is unlucky to have chosen a starting
point that is part of the cycle, he ends up with a graph that resembles the
Greek letter p and the collision is detected. Unfortunately, this method is not
efficiently parallelizable, as it provides only O(y/m) speed-up when m cores are
used. In [21], the authors proposed a method to achieve O(m) speed-up, using
limited memory and communication requirements. This algorithm leads to very
efficient parallel implementations, and is the basis for our study.

However, in the chosen-prefix collision attack against SHA-1, it is not applied
directly to the compression function of SHA-1, but to a helper function. Let IV
represent a chaining value to the compression function (reached after processing
a prefix), « a message block, and H(IV;,x) the application of the SHA-1 com-
pression function. The goal of the birthday phase of CPC attack is to find many
solutions x1 and xg such that L(H(IV1, 1)) = L(H(IVa,x2)), where L(z) is a
linear function applied to a word z, in order to select some of the output bits of

the compression function. The helper function is defined as:

flz) = (1)

L(H(IV1,z)), ifz=1 (mod 2)
L(H(IVs,z)), otherwise.

When a collision f(x1) = f(z2) is found, we have z1 # x2 (mod 2) with proba-

bility one half, and in this case we obtain L(H(IVy,x1)) = L(H(IV3,x2)).

2.3 Differential Cryptanalysis.

In this section we briefly describe the algorithms involved in the second part
of the chosen-prefix collision attack: the generation of successive near-collision
blocks to reach the final collision. The details of this differential attack can be
found in [23, 16,10, 18,17, 13, 14]. For each new near-collision block, the attacker
has to go through three main steps:

1. Preparing a fully defined differential path for the SHA-1 compression function
(in particular a non-linear part has to be generated for the first few steps of
the SHA-1 compression function)

2. Find base solutions for the first few steps of this differential path (a base
solution is simply two messages inputs that verify the planned differential
path in the internal state up to the starting step of the neutral bits).

3. Expand those solutions into many solutions using what is known as neutral
bits (in order to amortize the cost of the base solution), and check whether
any of these solutions verify the differential path until the output of the
compression function.

A neutral bit for a step 4 is a bit (or a combination of bits) of the message such
that when its value is flipped on a base solution valid until step 4, the differential
path is still satisfied with high probability until step 7. Most of the time, a neutral
bit is a single bit, but it can sometimes be composed of a combination of bits.
A neutral bit for a step i allows to amortize the cost of finding a solution to the
differential path until step <.

The hardware cluster we consider consists of one master node and many slave
nodes. The master builds a proper differential path for the compression function
steps, based on the incoming chaining values, and generates base solutions based
on this path. The slave is then required to expand these base solutions into a
wider set of potential solutions and find out which of them satisfy the differential
path until a certain step r (we selected r = 40 for ASIC for implementation
efficiency purposes, but we remark that » = 61 was selected for GPU even though
it does not have much impact) in the SHA-1 compression function. The master
then aggregates all the solutions that are valid up to step r and exhaustively
search for solutions that are valid up to step 80. This is repeated several times
until a valid solution for the differential path is found. Consequently, we define a
slave as a dedicated core that is responsible for extending a base solution found
by the master into a set of potential solutions by traversing the tree of solutions
defined by the neutral bits.

Unfortunately, this attack is not hardware-friendly and needs a lot of control
logic. The master has to send to the slave:

1. A base solution, which consists of two message blocks M; and Ms.

2. A set [DP)] of differential specifications for the slave to check conformance.

3. A group of neutral bit sets N;, where the neutral bits in N; are supposed to
be neutral up to step i.

Combining a base solution (M, Ms) valid at step ¢ and the set N;, we get
about 2/Vil new solutions that are valid up to step 4, simply by trying all the
possible combinations of the neutral bits in the set. In a naive approach, each
of these partial solutions is expended to 2/Vi+1l by applying combinations of the
next set. Eventually, we would end up with 22°: Vi partial solutions, organised in
a tree as shown in Figure 1. However, the neutral bits N;; are defined such that
they don’t impact the path up to step i+ 1. Therefore, if the partial solution does
not satisfy the conditions at step i+ 1, there is no need to apply the neutral bits
N;11, and we can instead cut the corresponding branch from the tree. Indeed,
there is a certain probability that a solution valid at step ¢ will be valid at step
1 4+ 1, according to the SHA-1 differential path selected. With the parameters
used in SHA-1 collision attacks, most subtrees fail.

We can generate the partial solutions using a graph search algorithm to start
navigating the tree from its root, and neglect complete subtrees that are failing.
In this paper we choose Depth-First Search (DFS) graph search, with some
modifications to suit our specific problems, in order to satisfy our assumptions
for the cryptanalytic algorithm, as DFS has low memory requirements.

M
MNSENY AfNS+NY ppNGENY AgNG+NT AfNGHND pgNG+NT pgNGHND g NG+NE

Fig. 1: Building partial solutions with neutral bits

Our attack scenarios. In this paper we consider three attack scenarios:

1. A plain 254 birthday search: a generic birthday attack against a 128-bit hash
function, constructed by selecting only 128 bits out of the 160 output bits
of the SHA-1 compression function.

2. A plain 2% birthday search: a generic birthday search over the full space of
the SHA-1 compression function.

3. The chosen-prefix collision attack on SHA-1 from Leurent and Peyrin [13,
14].

These three scenarios cover two generic attacks against two security levels
used in practice and one cryptanalytic attack.

3 Hardware Birthday Cluster

In this section, we describe the hardware core that handles the birthday attack.
First, we define the nodes used in the proposed cluster. Then, we describe the
design of the slave nodes and the communication requirements.

3.1 Cluster Nodes

The cluster used to apply the parallel birthday search attack consists of two
types of nodes:

1. Master: a software-based CPU that manages the attack from high level and
performs some jobs including choosing the initial prefixes, distributing the
attack loads among slaves, sorting of the outputs and identifying colliding
traces.

2. Birthday Slaves: dedicated cores that can perform different parts of the par-
allel birthday search. Specifically, it compute traces in the functional graph of
the function in question, and once the master has identified colliding traces,
the core also can locate the exact collision in these traces.

3.2 Hardware Design of Birthday Slaves

The design of the proposed birthday slave is shown in Figure 2. It’s main role is
to iterate the helper function of Equation 1. It consists of a reconfigurable ROM,
where the initial trace value xg, IV} and I'V; are loaded, a logic SHA-1 core which
performs the step function of SHA-1, a comparator to compute L(x), z (mod 2)
and check whether a given x is a distinguished point (see [21]) or not, a memory
to store distinguished points and a control unit to handle the communications
with the master, and measure the lengths of different traces.

In order to estimate the cost of the proposed core, the area and speed are
compared to a single, step-based SHA-1 core, which is a standard practice in
estimating the cost of SHA-1 cryptanalytic attacks. We have implemented a
full SHA-1 core and it has an area of 6.2 KGE and 0.21 ns critical path. The
implementation of the core in Figure 2 using a step-based SHA-1 core requires

xg ROM SHA-1 ——
Trace
v Memory

SPI Interface<—l Comparator

Control Unit

Fig. 2: Birthday slave for the parallel collision algorithm

at least twice this area. Moreover, its critical path is dominated by the memory
and counters in the control logic. Besides, it is not expected that a huge ASIC
cluster will run at a speed higher than 1 GHz, due to the power consumption.
Hence, in order to regain the efficiency lost due to the extra control logic and
memories, it is a good approach to try to use this logic with as many SHA-1 steps
as possible. Given these experiments and the huge cost of the control overhead,
we increase the efficiency by cascading 4 SHA-1 steps instead of one in the SHA-1
core. This makes the critical path around 1ns, but a full SHA-1 computations
takes only 20 cycles instead of 80, and the overhead 25% instead of 100%.

4 Verification

We have verified the attack by finding collisions on a small number of bits using
functional simulation of the hardware implementations. Specifically, we found
collisions on 20 ~ 330 bits of the output. We have also generated traces for
larger number of bits and compared them to traces generated using software
implementations.

5 Hardware Differential Attack Cluster Design

In this section we discuss the challenges and different trade-offs when imple-
menting the neutral bit search algorithm in ASIC and give a description of the
circuit. The cluster architecture uses 3 types of nodes: master nodes, birthday
slaves (BC), and neutral bit slaves (NB).

5.1 Neutral Bits

One of the trade-offs when implementing the attack is whether to consider neu-
tral bits as only single-bits or to use the more general sets of multi-bits. The
first approach leads to a very small circuit, but it strongly limits the number of
usable neutral bits. This increases the overall work load, as more base solutions

need to be generated, and more time is spend applying neutral bits. The second
approach is more complex, because multi-bit neutral bits must be represented by
a bit-vector. However, the single-bit neutral bits are not sufficient to implement
an efficient attack, and we have to use the second option:

1. Our simulation results show that the success probability of single-bits is very
low. Hence, any gain achieved by using them is offset due to the huge work
load and high communication cost between the master and slave.

2. In order to achieve significant results, multi-bits are inevitable. In particu-
lar, boomerangs [9] (which can be seen as multi-bit neutral bits with extra
conditions to reach a later step) are crucial cryptanalytic tools for a low-
complexity attack against SHA-1. Hence, avoiding multi-bits can lead to a
drastic loss in terms of attack efficiency.

5.2 Storage

Each multi-bit neutral bit is represented by a 512-bit vector, which indicates
the location of the involved bits in the message block (a SHA-1 message block is
indeed 512-bit long). However, we noticed that almost all the neutral bits involve
bits only in the last 6 32-bit words of the message block. Therefore, we reduced
the representation to only 192 bits. Yet, since the original chosen-prefix collision
attack against SHA-1 uses ~ 60 neutral bits, including boomerangs, this requires
a representation of ~ 11,520 bits. Besides, the last few levels of the tree requires
320 bits per neutral bits as the boomerangs can be located as early as step 6. In
addition, for each level of the tree search we need a counter to trace which node
we are testing. The tree used in the attack has ~ 10 levels, and our experiments
show that the maximum number of neutral bits in one level is ~ 26 bits. Hence,
the overall size of the counters is ~ 260 bits. In order to design the circuit that
handles this tree search algorithm, we tried out four different approaches:

1. Generic approach: we assume that each tree level can have ~ 28 neutral bits
(slightly higher than our experiments for tolerance). Also, assume that these
levels can be related to any step of the SHA-1 compression function between
10 and 26, i.e. 16 possible steps. In total, this requires ~ 63,670 memory
locations (Flip-Flops).

2. Statistical approach: from the software experiments and simulations, we
identified an average number of neutral bits per level. In the design, we
use the maximum number of neutral bits we observe for each level (in ad-
dition to two extra bits for tolerance). We observed that only the first few
levels require such a huge storage, while the later levels usually have 3 ~ 7
bits per level. In addition, boomerangs are usually 3 ~ 4 per level. This
reduces the memory requirement by about 50%. However, it remains a huge
requirement.

3. Configurable approach: our experiments showed that not only the number
of neutral bits per level can be predicted, but also the values of these bits. In
other words, very few bits have different values for different blocks. Hence, we

can fix each neutral bit to two or three choices and use flip-flops to configure
which choice is selected during execution. This reduces the cost significantly.
However, the cost is still high as a multiplexer has an area only ~ 50% of a
flip-flop. Besides, we still need flip-flops for configuring these multiplexers.

4. Another approach is to reduce the cost by fixing the the neutral bit values
to a set of statistically dominant values. Indeed, [14] reports using the same
neutral bits for each near-collision bloc. This eliminates the need to store
the neutral-bit reference values.

At the end, we chose the third approach, since our analysis shows that it
captures the reality, while allowing some level of freedom for the attacker to
adjust the attack parameters after fabrication.

5.3 Architecture

Figure 3 shows the architecture of the neutral-bit slave. It consists of a register
file to store the differential path for comparison, a configurable ROM to store
the base solution, a unit to enumerate the different neutral bit patterns and
maintains the tree level for the graph search algorithm, and the SHA-1 step
logic.

Base Solution P > SHA-1

.

Differential
Y Path
() » SHA-1 — Comparator <—
Success T
Report
Configurable _
—

Enumerator

Fig. 3: Neutral-bit slave hardware architecture

6 Chip Design

In this section, we describe our process for simulating the proposed chips and
the results in terms of power, area and performance for each.

6.1 Chip Architecture

A challenge when designing this cluster is the communication overhead between
the master and the slaves. A 100MHz SPI bus interface is used as a one-to-
one communication interface with the attack server. A set of ASICs can also

be daisy-chained, thanks to this interface, in such a way to lower the number
of interconnects with the master. It provides enough bandwidth to handle the
data exchanges between the BD/NB slave cluster and the attack server. The
CU (Control Unit) is responsible for dispatching the 32-bit de-serialized packets
sent by the attack sever to configure the BD/NB slaves. It is also responsible
for daisy-chaining and demultiplexing the output traces of the different BD/NB
slaves to the SPI bus interface before the serialization. Each ASIC also outputs
an asynchronous interrupt signal. The interrupt signal is 1 when at least one
BD/NB slave is done, and an output trace is available. Those interrupt signals
are managed by a set of ZYNQ board cluster interfaces.

INTERRUPT

SYS_CLK

n_RESET i

: dvldlreadldonel
sys_clk

-aNB/BDF | |..NB/BDT|

SPI_CLK e
- core core .
SS | [=iEregrie | [ZorRegFie |
n_ _| dvldlreadldonel * duid readdone]
sys_clk_ sys_clk
+=NB/BD T | | ~NB/BDT] s
| -
COre wmmm= core _:_
LN | | |
MOSI_i . ., =,
,k . n
Sstj_kdvdl dld | .syuﬁd 1d] read|done| = .
M I SO_| n,rEse_tN B/BD niresiN B/BD
4_._ core core

Fig. 4: System architecture of the ASIC cluster chip

6.2 ASIC Fabrication and Running Cost

Estimating the cost of fabricating and running an ASIC cluster can be challeng-
ing as many parameters are confidential to the fabs. In order to estimate the
costs of the attacks considered, we developed a methodology based on the in-
formation available publicly. We considered the FD-SOI 28nm technology from
ST-Microelectronics. For small scale academic projects, the price of a small batch
of up to 100 die, the fabrication cost in US $ can be estimated by:

125400 + (A — 12) * 7700, if A > 12mm?
P100°=9 90000 + (4 — 2) 9900, if 2mm? < A < 12mm?

where A is the die area in mm? and pigg is the price of the first 100 die in
US Dollars (USD). For small scale projects with more than 100 die, the price
for a lot of 100 extra die is between 21,120 and 38,500 USD depending on the
die area and the number of reticules in a wafer. MPW runs uses Multi Layer
Reticule technic to reduce the overall cost of the mask and additional dies. For
our purposes, we consider a small scale project to be a project with at most 25
wafers [20] . For large scale projects, a market study published at the FDSOI
Forum in 2018 showed that the die manufacturing cost per 40 mm? is 0.9 USD
for the 28nm technology [8]. Hence, our methodology for estimating the costs
consists of the three parts we explained. In reality, a more accurate methodology
is probably available for the fabs to fill in the gaps. However, we believe that the
overall cost will be in the same range.

On top of the fabrication cost, we need to consider the running cost of the
ASIC cluster, which includes the energy consumption and cooling. We have
performed post-layout extraction and simulation in order to estimate the power
consumption of the different chips. In order to simplify the cost analysis, we
use a figure of 18 cents/KWh, which is higher than the electricity consumption
price in most countries [5]. Hence, we only consider the energy consumption
of the chips and not the cooling cost or other factors that will be added after
fabrication. The performances and power result are provided in Table 1.

6.3 Results

Two different architectures of SHA-1 crackers are compared here. The first ar-
chitecture is based on 2 separate ASIC slaves that handle the two parts of the
attack, i.e., the birthday search (BD) and the neutral bits part (NB). The two
phases are performed sequentially. Figure 5 depicts the overall cost required to
build the machine and find the first chosen-prefix collision depending on the
time ratio between the two phases. For ASIC, the overall minimum cost is not
perfectly at 50% ratio. Hence, we consider a two-stage pipeline architecture at
the cost of slightly more hardware to balance the birthday and neutral-bit parts.

Our birthday (BD) core uses 16927.1 gate equivalents (GEs) per SHA-1
rounds., while our neutral-bit core (NB) uses 170442.7 GEs. Our best imple-
mentation is a 4-round SHA-1 unrolled compression function that can be clocked
at 900 MHz at Viore=0.92V and V5, =0V. Using body biasing and LVT tran-
sistors for the critical path, we can further decrease the threshold voltage and
increase the running frequency. With Vi, =+2.0V we can increase the running
frequency of our fastest core by 40%, reaching 1262 MHz with a 2% increase in
dissipated power. The chip can be further over-clocked by increasing V.. but at
the cost of a quadratic increase in the dissipated power, so a more costly cooling
system. The results of our implementations are shown in Table 1. As shown in

6000000

Our 28nm ASIC @909MHz Vcore 0.9V
GTX 750 Tl 28nm GPU buy

5000000 GTX 1060 16nm GPU buy

GTX 1060 16nm GPU rent

GTX 1080TI 14nm GPU buy

GTX 1080TI 14nm GPU rent

Our 28nm ASIC @1262MHz FBB=+2V

4000000

3000000

LOG10 [Price in USD]

2000000

Total Price (Energy + Hardware) in USD

1000000

0 20 40 60 80 100 0 5 20 25

10 15
BD Attack rate / Total time in % Attack rate in 2**64 hash log2(#seconds)

Fig. 5: Impact of the BD/NB time ratio Fig. 6: Impact of the die size and la-

on the cost tency on the HW cost (4 to 100 mm?
28nm FD-SOI). The top left line in
blue represents 4 mm? and the bottom
left is 100 mm?.

Figure 21, a BD slave contains up to ~ 15 BD cores per mm? while an NB slave

contains ~ 1.5 NB cores per mm?.

900 MHz 1262 MHz
Viep=0V Viep=—42V
BD | NB | BD | NB
Power (in mW) | 71.1 289 72.6 294
CP delay (in ps)| 1110 1110 792 792
Area (in mm2) 0.0650 | 0.6545 | 0.0650 | 0.6545

Version

Table 1: ASIC implementation performances for 2 corners cases : high perfor-
mance at 900 MHz and high performance with FBB at 1262 MHz.

In our study, the overall cost is calculated without the cooling and infras-
tructure. Note that as shown in Figure 6, the total cost required to build an
ASIC-based cracker greatly depends on the die size. This is due to the fact that
the initial cost is predominant when the die size is large. The overall hardware
cost tends to the same for any die size when the attack is fast.

6.4 Attack Rates and Execution Time

As shown in Table 2, a single NB slave of 16mm? contains up to 24 NB cores
and can generate up to 976 solutions up to step 40 of SHA-1 per second. Each

solution A4g requires 31 Million cycles, on average. A single BD slave of 16mm?
contains up to 245 BD cores and provides a hash rate of 20.6 GH/s for the fastest
version of our design. As a comparison, as shown in Table 3 and taken from [14],
a single GTX 1060 GPU provides a hash rate of 4.0GH/s and can generate 2000
Ay solutions per second. If we take the birthday part of the attack as a reference,
the neutral bit part is ten time less efficient in hardware than on GPU.

Parameter 900 MHz 1262 MHz
SHA-1/core/sec 2258 2263
SHA-1/core/month 2171 2176
SHA-1/chip/month 2551 2556
Ayo Solutions/core/sec 249 253
A4o Solutions/core/month 926.1 926.7
Ayo Solutions/chip/month 2308 931:2

Table 2: Our best 16mm? ASIC implementation performances for 2 corners

GPU arch Hash Rate Asz rate Ay rate Price Power Rental

GTX 750 Ti Maxwell 0.9GH/s 62k/s 250/s $144 60W
GTX 1060 Pascal 4.0GH/s 470k/s 2k/s $300 120W $35/month
GTX 1080 Ti Pascal 12.8GH/s 1500k/s 6.2k/s $1300 250W

Table 3: SHA-1 hash rate from hashcat for various GPU models, as well as
measured rate of solutions at step 33 (Ass-solutions). Data taken from [14].

The second architecture is based on GPU. For GPU, it is cost-wise more
interesting to take advantage of its reconfigurability to minimize the cost. Hence,
we consider in our cost analysis that the chosen-prefix collision is performed
serially by reusing the same GPU for the two attack phases. In Table 4, the cost
of the three attack scenarios is provided. We give in this table the cost to build
the ASIC- and GPU-based clusters for 3 different speeds, i.e., one attack per
month, one attack per day and one attack per minute. The latency corresponds to
the delay to get the first collision. For instance, a two-stage ASIC-based machine
able to generate one SHA-1 collision every months, will generate the first collision
in two months. A GPU-based machine generates the first collision in one month
for the same attack rate. Our ASIC-based two stage pipelined architecture has
twice the latency of a sequential GPU-based machine for the same attack rate.

Our benchmark (Figures 15 and 16) provides a comparison between our ASIC
cluster and two of the most widely spread GPU based machines, i.e., the GTX
1080TT (CMOS 14nm) and the GTX 1060 (CMOS 16nm) for different attack
rates. The numbers for the GTX 750 TI (CMOS 28nm technology) are also
added to the benchmark as it provides an idea of the performance obtained with
a GPU based on a similar technology node as our ASIC.

Platform ASIC GPU rent GPU buy

Attack 64 |CPC| 80 64 |CPC| 80 64 |CPC| 80

Energy Cost $776 | $1.6k [850.9M - - - $18k | $12k ($1.2B
Cluster for 1 attack per month

Latency (month) 1 2 1 1 1 1 1 1 1

Hardware Cost $257k[$1.1M| $11M || - - - ||$715k|$490k| $47B

First Attack Cost |[$257k|$1.1M[$61.9M| $61k | $43k | $4B ||$733k|$502k| $48B
Amortized Cost $7.9k [$32.1k$51.2M] $61k | $43k | $4B || $38k | $26k |$2.5B

Cluster for 1 attack per day
Latency (day) 1 2 1 1 1 1 1 1 1
Hardware Cost $1.4M|$3.7M|$218M]| - - - $22M | $15M [$1.4T
First Attack Cost ||$1.4M|$3.7M$269M]| $61k | $43k | $4B || $22M |$15M [$1.4T
Amortized Cost $2k | $5k [$51.1M] $61k | $43k | $4B || $38k | $26k |$2.5B

Cluster for 1 attack per minute
Latency (minute) 1 2 1 1 1 1 1 1 1
Hardware Cost $8.5M| $48M |$263B|| - - - $31B | $21B | $2Q
First Attack Cost ||$8.5M|$48M |$263B|| $61k | $43k | $4B || $31B | $21B | $2Q
Amortized Cost $781 | $1.6k |$51M || $61k | $43k | $4B || $38k | $26k |$2.5B

Table 4: Comparison of attack costs with various parameters. Costs are given
in USD (k stands for thousand, M for Million, B for Billion, T for Trillion,
Q for Quadrillion). Amortized cost is the cost per attack assuming that the
hardware is used continuously during three years. Note that it is possible to
get slightly more energy efficient platforms and implementations at the cost of
more expensive hardware. We list the cheapest platform after one attack, energy
included.

Note on the use of FPGAs Our ASIC design have been tested on FPGA plat-
form. FPGA can be considered as a good alternative to ASIC thanks to its re-
configurability property. However, one of the largest FPGAs from Xilinx, namely
the Virtex 7 xc7vx330t-3ffg1157 can fit only 20 instances of the Birthday core
running at 135MHz in one chip. The same FPGA can fit only 16 instances of
the Neutral Bit core running at 133MHz. In order to do the 264 generic birthday

search, we need 2356 FPGA-seconds, i.e., in order to do it in one month we need
215-3 FPGAs. As a single FPGA costs around 8000 USD, this attack would cost
around 319 Million USD. This is more than one thousand times the cost of the
same attack on ASIC and 440 times the cost on GPU, making it irrelevant for
the purpose of analyzing SHA-1. Even if FPGAs can be rented, a similar factor is
expected compared to renting GPUs. It is worth mentioning that FPGA-based
clusters, such as COPACABANA, use cheaper FPGAs. However, they are usu-
ally used for smaller projects and will face the same challenge to scale up to the
level of attacks awe are considering.

7 Cost Analysis and Comparisons

As explained throughout the paper, we have performed several experiments to
identify the different implementation trade-offs for the attack scenarios we con-
sider. In this section, we analyze the cost estimates of implementing these attacks
in ASIC vs. consumer GPU. We consider three attack scenarios that fall into
two categories: generic birthday attacks and differential cryptanalysis of SHA-1.
Before discussing the analysis in more details, here are a few general conclusions
that we reached through our experiments, which can be helpful for building
future hardware crackers:

1. The cost of implementing memoryless generic attacks, such as the parallel
collision search of [21], in hardware can range from 20% to 50% of the overall
ASIC implementation, while the rest is dedicated to the attacked primitive,
e.g. the SHA-1 hash function.

2. For iterative cryptographic algorithms, such as hash functions and block
ciphers, a way to reduce the attack cost is to use unrolling. This approach is
similar to using memoryless algorithms. Instead of computing one step of the
function every clock cycle, we compute several steps in the same cycle. This
amortizes the costs of the attack logic among several steps. For example,
implementing the birthday attack using a single-step iterative SHA-1 core
leads to a circuits where only 20% of the area is used by the SHA-1 logic
and 80% of the area is due to the attack logic, registers and comparisons.
On the other hand, using a core that computes 4 steps every clock cycles
leads to a circuit with a 50%/50% ratio. While this technique may increase
the critical path of the circuit and reduce the frequency, it also reduces the
overall number of cycles, so the overall time to compute a single SHA-1 per
core is almost constant.

3. For cryptanalytic attacks, the cost is dominated by the attack logic, which
may include a huge number of comparisons, modifications and registers.
These extra operations are usually different from one step to another, so they
consume a huge area. Besides, the state machine of these attacks can be very
costly. In such scenarios, the advantage of using ASICs becomes diminished
compared to consumer GPUs, except for very high budgets, especially as the
GPUs are reusable and can be rented.

7.1 254 Birthday Attack

The first attack scenario we consider is attacking a hash function with 264 birth-
day collision complexity. The hash function used is the SHA-1 compression func-
tion reduced to only 128 output bits, as explained in Section 2. A single ASIC
core is described in Section 3. The time to finish such an attack depends on the
number of chips fabricated and the size of each chip. A single ASIC core running
at 1262 MHz contributes 226-33 SHA-1 computations per second. The attack costs
237-67 core-seconds. To reach this complexity, Figure 6 shows the price required
vs. the estimated time needed to finish the attack, including the fabrication cost
of chips of different sizes and the energy consumption.

To put these numbers into perspective, the NVIDIA GeForce GTX 1080 TI
GPU (14nm technology) can do about 2336 SHA-1 computations per second, so
implementing the attack on GPU would require 23%4 GPU-seconds. In order to
implement this attack in one month, we need to buy around 550 GPUs costing
around 715k USD and around 18k USD in energy. As shown in Figure 7, a GTX
1060-based machine is a bit less expensive, costing 525k USD but consuming
around 28k in energy for the same job (using 1750 GPUs).

Besides, as shown in Figure 7, for any attack rate it is cheaper to buy an ASIC
cluster than a GPU-based cluster. The difference reaches 1 order of magnitude
from a rate of 1 attack per week. Furthermore, the ASIC-based cluster consumes
1 to 2 order of magnitude less energy than any GPU-based solution. As shown in
Table 4, the minimum cost in energy per attack on ASIC is as low as 776 USD.
An ASIC-based cracker able to generate one collision per month would cost 257k
USD. For an attack rate of 1 attack per minute, it would cost 8.5 million USD.

An alternative option is to rent the GPUs. This would cost around $61k per
attack, assuming a rental price of $209/month for a machine with 6 GTX 1060
GPUs. This makes the GPU rental very competitive for a single attack, around 4
times cheaper than an ASIC cluster. However, the ASIC cluster quickly become
much more cost effective when the attack is repeated (see Figure 9).

11 5.0
GTX 1080TI 14nm GPU buy !

— GTX 1060 16nm GPU buy
— GTX 750TI 28nm GPU buy

~— GTX 1080TI 14nm GPU rent I
— GTX 1060 16nm GPU rent

— Our 28nm ASIC @909MHz Vicore 0.9V
— Our 28nm ASIC @1262MHz FBB=+2V

&~
o

1
GTX 1080T1 14nm GPU buy

— GTX 1060 16nm GPU buy

— GTX 750TI 28nm GPU buy

~—— GTX 10807 14nm GPU rent

— GTX 1060 16nm GPU rent

— Our 28nm ASIC @909MHz Vcore 0.9V

— Our 28nm ASIC @1262MHz FBB=+2V

&
o

w
o

LOG10[Price in USD]
LOG10[Price in USD]

L
5 10 15 20 30 5 10 15 20

25 25 30
Attack rate in Collisions per 2**(#) seconds Attack rate in Collisions per 2**(#) seconds

Fig. 7: 264 BD machine price for dif- Fig.8: Energy cost per 264 BD at-
ferent attack rates: ASIC vs GPU tack: ASIC vs GPU

GTX 1080TI 14nm GPU buy
GTX 1060 16nm GPU buy

GTX 750TI 28nm GPU buy

GTX 1080TI 14nm GPU rent

GTX 1060 16nm GPU rent

Our 28nm ASIC @909MHz Vcore 0.9V
Our 28nm ASIC @1262MHz FBB=+2V

®

95]

T
|
I
|
I s
| GTX 1080TI 14nm GPU buy

! GTX 1060 16nm GPU buy

GTX 75071 28nm GPU buy

GTX 1080TI 14nm GPU rent

GTX 1060 16nm GPU rent.

Our 28nm ASIC @909MHZ Vcore 0.9V
Our 28nm ASIC @1262MHz FBB=+2V.

LOG10[Price in USD]
LOG1O0[Price in USD]

)
i
.
i
I
I
i '
i !

H h

5 10 15 20 25 30 10 1 20 25 30
Attack rate in Collisions per 2**(#) seconds Attack rate in Collisions per 2**(#) seconds

Fig. 9: Total cost (HW+E) for 100 Fig.10: Total cost (HW+E) for 100k
264 BD attack at a given attack rate: 2°% BD attack at a given attack rate:

ASIC vs GPU ASIC vs GPU

7.2 28° Birthday Attack

In this section, we look at the cost of implementing a generic birthday collision
search for the full SHA-1 output, which requires around 23° SHA-1 computations.
The algorithm is the same as the previous attack, except that we use the full
output of the SHA-1 compression function. Since a single ASIC core performs
226-33 SHA-1 computations per second, the birthday collision search costs 2°3:67
core-seconds, or around 454 million years on a single core. Fortunately, for a
powerful attacker with enough money, the cost for producing ASICs grows slowly
for large number of chips. The fabrication cost of a hardware cluster to perform
the attack in one month costs only 11 million USD, as opposed to around 34
billion USD for GTX 1060. Hence in this case, for any attack rate as shown in
Graphs 13 and 14 the only realistic option is to build an ASIC cluster.
Running the attack costs around 50.9 million USD in energy, which matches
the order of magnitude estimated from the bitcoin network: the network cur-
rently computes about 2702 SHA-256 every ten minutes, for a reward of 12.5
bitcoin, or roughly $85k at the time of writing. This would price a 28° compu-
tation at 75 million USD.

GTX 1080TI 14nm GPU buy

T
GTX 1060 16nm GPU buy H
GTX 750T1 28nm GPU buy i
Our28hm ASIC @909MHz Veore 0.0V || | s
Our 28nm ASIC @1262MHz FBB=+2V 95 !
|

GTX 1080TI 14nm GPU rent
GTX 1060 16nm GPU rent
T

i
GTX 1080TI 14nm GPU buy

— GTX 1060 16nm GPU buy

— GTX 750TI 28nm GPU buy

— GTX 1080TI 14nm GPU rent

— GTX 1060 16nm GPU rent

— Our 28nm ASIC @909MHz Vcore 0.9V

— Our 28nm ASIC @1262MHz FBB=+2V

LOG10[Price in USD]
LOG10[Price in USD]

5 10 15 20

75 10 15 20 25
Attack rate in Collisions per 2*¥(#) seconds Attack rate in Collisions per 2**(#) seconds

Fig.11: 289 BD machine price for Fig.12: Energy cost per 280 BD at-
different attack rates: ASIC vs GPU tack: ASIC vs GPU

GTX 1080TI 14nm GPU buy
— GTX 1060 16nm GPU buy

— GTX 750TI 28nm GPU buy

— Our 28nm ASIC @909MHz Vicore 0.9V
— Our 28nm ASIC @1262MHz FBB=+2V
~— GTX 1080TI 14nm GPU rent

— GTX 1060 16nm GPU rent

T

145 '

GTX 1080TI 14nm GPU buy.
— GTX 1060 16nm GPU buy

— GTX 750TI 28nm GPU buy

— Our 28nm ASIC @909MHz Vicore 0.9V
— Our 28nm ASIC @1262MHz FBB=+2V
135 — GTX 1080TI 14nm GPU rent

— GTX 1060 16nm GPU rent

LOG10[Price in USD]
LOG1O0[Price in USD]

. 5 L
5 10 15 20 25 30 10 15 20 25 30
Attack rate in Collisions per 2**(#) seconds Attack rate in Collisions per 2**(#) seconds

Fig. 13: Total cost (HW+E) for 100 Fig. 14: Total cost (HW—I—E) for 100k
280 BD attack at a given attack rate: 280 attack at a given attack rate:
ASIC vs GPU ASIC vs GPU

7.3 Chosen Prefix Differential Collision Attack

The chosen-prefix collision attack proposed by Leurent and Peyrin [14] consists
of two main parts: a birthday search attack, and a differential collision attack.
The authors provide different trade-offs between the complexity of the two parts.
In their paper, the number of solutions required for the neutral bits up to step
33 is provided. This number of solutions corresponds to the number of solutions
required to get a valid solution with high probability. Step 33 is chosen because
there is a zero difference at this state, so there is a single path at this step, and
solutions are generated fast enough to measure the rate easily. This configuration
requires to generate about 262:05 SHA-1 computations for the birthday part and
249-78 golutions up to step 33. In this paper, it is cost-wise more interesting for
ASIC to generate solutions for the neutral bits up to step Ayg.There is a factor
2791 difference in the number of solutions to generate between step Asz and step
Ayo. Hence a chosen-prefix collision requires to generate 2487 solutions. Table 3
provides the hash rates and solution rates numbers used in our estimate for the
cost on GPU. This gives 38 GPU-years for the birthday, and 65 years for the
neutral bits. The estimated cost per attack using GTX 1060 GPU, assuming
209 USD per month for 6 GPU is about 43k USD. The cost of running the
attack in GPU is dominated by the energy consumption. ASIC is much more
energy efficient, as shown in Figure 16. It can be up to 2 order of magnitude
less than using common consumer GPU. As shown in Figure 15, ASIC-based
SHA-1 cracker that generate one collision per month, costs about 1.1 million
USD, about the same as the cheapest GPU-based cracker from our benchmark.
However, a single attack on GPU costs about 19000 USD in energy. Hence from
100 attacks as shown in Figure 17 and 18 as well as for attack rates greater than
1 attack per week, an ASIC-based SHA-1 cracker is the only realistic option.

GTX 1080TI 14nm GPU buy
GTX 1060 16nm GPU buy
GTX 750T1 28nm GPU buy PR

GTX 1080TI 14nm GPU rent
GTX 1060 16nm GPU rent

Our 28nm ASIC @909MHz Vcore 0.9V 4.4
Our 28nm ASIC @1262MHz FBB=+2V

|
I
I
1
|

T
GTX 108071 14nm GPU buy
GTX 1060 16nm GPU buy
GTX 750TI 28nm GPU buy

@
-~
N

»
o

GTX 1080TI 14nm GPU rent

GTX 1060 16nm GPU rent

Our 28nm ASIC @909MHz Vcore 0.9V

Our 28nm ASIC @1262MHz FBB=+2V.
|

<

o
w
©

LOG10[Price in USD]
LOG10[Price in USD]

)
w
o

IS

5 10 15 20 25 30 i 10 15 20 25
Attack rate in CPC per 2**(#) seconds Attack rate in CPC per 2**(#) seconds

Fig.15: CPC machine price for dif- Fig.16: Energy cost per CPC at-
ferent attack rates: ASIC vs GPU tack: ASIC vs GPU

1 11.0
GTX 1080TI 14nm GPU buy
GTX 1060 16nm GPU buy
GTX 750TI 28nm GPU buy
Our 28nm ASIC @909MHz Vcore 0.9V 10.5
Our 28nm ASIC @1262MHz FBB=+2V
GTX 1080TI 14nm GPU rent
GTX 1060 16nm GPU rent

T

e

»-
o
°

L
GTX 1080TI 14nm GPU buy.
GTX 1060 16nm GPU buy

GTX 75071 28nm GPU buy [—

©
o

GTX 1080TI 14nm GPU rent
GTX 1060 16nm GPU rent.

Our 28nm ASIC @909MHz Vcore 0.9V
Our 28nm ASIC @1262MHz FBB=+2V.

LOG10[Price in USD]
LOG1O0[Price in USD]

©
s
LErrnd

|
T
|
I
L

5 10 15 20 25 30 10 15 20 25 30
Attack rate in CPC per 2**(#) seconds Attack rate in CPC per 2*¥(#) seconds

Fig. 17: Total cost (HW+E) for 100 Fig. 18: Total cost (HW+E) for 100k
CPC attack at a given attack rate: CPC attack at a given attack rate:
ASIC vs GPU ASIC vs GPU

7.4 Limitations

While we did our best to estimate the price of the attacks as accurately as pos-
sible, our figures should only be considered as orders of magnitude because the
pricing of hardware and energy can vary significantly. ASIC pricing is not com-
pletely public, and energy prices depend on the country. Moreover, our estimate
only include hardware cost and energy, neglecting other operating costs such as
cooling and servers to control the cluster (however, the energy price we use is
somewhat high, so it can be considered as including some operating costs).

Another caveat is that we only consider the computation part of the attacks.
In reality, there is some need for communication between the nodes, and some
steps of the attacks must be done sequentially. Concretely, the generic birthday
attacks must sort the data after computing all the chains, and the CPC attack
must compute several near-collision blocks sequentially. This will likely add some
latency to the computation, and running the attack in one minute will be be a
huge challenge, even when the required computational power is available.

8 Conclusion

Our paper provides a precise comparison between ASIC-based and GPU-based
solutions for cryptanalysis, with a case study on generic birthday search and a
case study on the recent chosen-prefix collision on SHA-1. For the former, we
show that generic birthday attacks can be performed very easily with ASICs
against a 128-bit hash function, and that even a 160-bit hash function would not
stand against a huge, yet potentially affordable, ASIC cluster. For the latter,
we created two independent ASICs that handle the two parts separately. Our
comparisons with GPU-based solutions show a clear advantage of ASIC-based
solutions. In particular, we remark that the chosen-prefix collisions for SHA-1
can be generated in under a minute, with an ASIC cluster that costs a few
dozen Millions dollars. Such ability would allow an attacker to apply the SLOTH
attack [2] on TLS or SSH connections using SHA-1.

In the introduction, we posed three research questions; the first question is
related to the cost of attacks on SHA-1. Our study showed that ASIC is clearly
the best choice for very high complexities attacks, or for attacks that need to be
performed in a short amount of time. However, for proof-of- concept or crypto-
graphic research in general, where complexities of 264 or less can be computed
in a month or so, renting a set of GPUs seems to be the best solution. If the
attack needs to be repeated multiple times, or if the speed of the attack is criti-
cal, then the initial hardware cost might be amortized and the energy cost per
attack might become important. We note that the energy cost will be very high
on GPU compared to a dedicated ASIC solution. For a chosen-prefix collision
on SHA-1, the energy cost per attack for our speed-optimized ASIC is 1.6k USD.
The best GPU based solution from our benchmarks consumes about 12k USD
per attack. Hence, the cost of the ASIC-based solution is amortized. Further-
more, when the CPC attack rate becomes higher than 100 attacks per month,
the ASIC solution is cheaper than any GPU-based solution in our benchmarks.
In this case, the cost of the GPU rent is prohibitive and the ASIC is the only
realistic threat.

In the second question, we target the comparison between generic attacks and
cryptanalytic attacks for similar theoretical level of numeric complexity. In our
study, we show that for a similar level of ~ 254 computations, it is ~ 75 ~ 82%
cheaper to implement a generic birthday search, compared to the differential
CPC attack on SHA-1. This means that for these two attacks, the generic attack
has an advantage of 5x. One can study more advanced brute force attacks, such
as the biclique technique, in order to compare with generic ones. A preliminary
study have been published on this topic [3], where the authors compare the cost
of building a brute force machine for AES vs. implementing the biclique. They
find that the cost of implementing the biclique attack is cheaper than brute
force, but slightly worse than what is theoretically expected. However, they only
consider one extreme architecture for the brute force machine, and we believe
that this can be optimized bringing the cost of brute force down to lower than
the biclique attack. However, we leave this hypothesis for future work.

Last but not least, the third question is whether the 80-bit security level is
still adequate for practical use in less demanding applications. Our study is a
warning, showing that not only SHA-1 is indeed practically fully broken, but also
that search-based and memory-less generic attacks with complexity < 280 are
within practical reach.

References

1. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The simon and speck lightweight block ciphers. In: Proceedings of the 52nd Annual
Design Automation Conference. DAC ’15, Association for Computing Machinery,
New York, NY, USA (2015), https://doi.org/10.1145/2744769.2747946

2. Bhargavan, K., Leurent, G.: Transcript collision attacks: Breaking authentication
in TLS, IKE and SSH. In: NDSS 2016. The Internet Society (Feb 2016)

3. Bogdanov, A., Kavun, E., Paar, C., Rechberger, C., Yalcin, T.: Better than brute-
force—optimized hardware architecture for efficient biclique attacks on aes-128. In:
ECRYPT Workshop, SHARCS-Special Purpose Hardware for Attacking Crypto-
graphic Systems (2012)

4. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full
aes. In: Lee, D.H., Wang, X. (eds.) Advances in Cryptology — ASTACRYPT 2011.
pp. 344-371. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

5. globalpetrolprices.com: https://www.globalpetrolprices.com

6. Gilineysu, T., Kasper, T., Novotny, M., Paar, C., Rupp, A.: Cryptanalysis with
COPACOBANA. IEEE Transactions on Computers 57(11), 1498-1513 (2008)

7. Hassan, M., Khalid, A., Chattopadhyay, A., Rechberger, C., Giineysu, T., Paar,
C.: New asic/fpga cost estimates for sha-1 collisions. In: Digital System Design
(DSD), 2015 Euromicro Conference on. pp. 669-676. IEEE (2015)

8. Jones, H.: FINFET AND FD SOI:MARKET AND COST ANALYSIS.
FDSOI Forum 2018. http://soiconsortium.eu/wp-content/uploads/2018/08/MS-
FDSOI9.1818-cr.pdf (2018)

9. Joux, A., Peyrin, T.: Hash Functions and the (Amplified) Boomerang Attack. In:
Menezes, A. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 4622, pp.
244-263. Springer (2007)

10. Karpman, P., Peyrin, T., Stevens, M.: Practical free-start collision attacks on 76-
step sha-1. In: Annual Cryptology Conference. pp. 623—-642. Springer (2015)

11. Khairallah, M., Najm, Z., Chattopadhyay, A., Peyrin, T.: Crack me if you
can: Hardware acceleration bridging the gap between practical and theo-
retical cryptanalysis?: A survey. In: Proceedings of the 18th International
Conference on Embedded Computer Systems: Architectures, Modeling, and
Simulation. pp. 167-172. SAMOS °18, ACM, New York, NY, USA (2018),
http://doi.acm.org/10.1145/3229631.3239366

12. Kumar, S., Paar, C., Pelzl, J., Pfeiffer, G., Schimmler, M.: Breaking ciphers with
COPACOBANA-a cost-optimized parallel code breaker. In: International Work-
shop on Cryptographic Hardware and Embedded Systems. pp. 101-118. Springer
(2006)

13. Leurent, G., Peyrin, T.: From collisions to chosen-prefix collisions application to
full sha-1. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 527-555. Springer (2019)

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Leurent, G., Peyrin, T.: Sha-1 is a shambles - first chosen-prefix collision on sha-
1 and application to the pgp web of trust. Cryptology ePrint Archive, Report
2020/014 (2020), https://eprint.iacr.org/2020,/014

Pollard, J.M.: Monte carlo methods for index computation. Mathematics of com-
putation 32(143), 918-924 (1978)

Stevens, M.: New collision attacks on sha-1 based on optimal joint local-collision
analysis. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 245-261. Springer (2013)

Stevens, M., Bursztein, E., Karpman, P., Albertini, A., Markov, Y.: The first col-
lision for full sha-1. In: Annual International Cryptology Conference. pp. 570-596.
Springer (2017)

Stevens, M., Karpman, P., Peyrin, T.: Freestart collision for full sha-1. In: An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques. pp. 459-483. Springer (2016)

Tom Brostém: Lightweight Trusted Computing. https://www.nist.gov/news-
events/events/2019/11/lightweight-cryptography-workshop-2019 (2019)

Tu, Y.M., Lu, C.W.: The influence of lot size on production performance in wafer
fabrication based on simulation. In: Procedia Engineering. vol. 174, pp. 135 — 144
(2017), http://www.sciencedirect.com/science/article/pii/S1877705817301807,
13th Global Congress on Manufacturing and Management Zhengzhou, China
28-30 November, 2016

Van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic ap-
plications. Journal of cryptology 12(1), 1-28 (1999)

Vivek, D., Narendra, S., Haycock, M., Govindarajulu, V., Erraguntla, V., Wilson,
H., Vangal, S., Pangal, A., Seligman, E., Nair, R., et al.: 1. 1 v 1 ghz communica-
tions router with on-chip body bias in 150 nm cmos. In: DIG TECH PAP IEEE
INT SOLID STATE CIRCUITS CONF. pp. 270-271+ 466+ 263. 2002 (2002)
Wang, X., Yao, A.C., Yao, F.: Cryptanalysis on sha-1. In: Cryptographic Hash
Workshop hosted by NIST (2005)

Wiki, E. Ethash. GitHub Ethereum Wiki. https://github.
com/ethereum/wiki/wiki/Ethash (2017)

X16R: https://en.bitcoinwiki.org/wiki/X16R

A Verification

In order to verify the functionality of the ASIC implementation of the neutral
bit algorithm, we have implemented it also in software and we have checked that
the outputs and the intermediate values from the two implementations match.
This process is described in more detail next.

In Algorithm 1, we give a description of the neutral bit search algorithm
in pseudo-code as implemented in software. It follows the high-level description
given in Section 2. In more detail, all neutral bits are provided as an input to
the algorithm in the form of 512-bit masks. Each mask selects one or more bits
from the original 16 byte message, resulting resp. in a single neutral bit or a set
of neutral bits (multibits). Note that the latter also include the boomerangs.

The set of all neutral bit (NB) masks is partitioned in n subsets, such that
all NB from the ng-th subset are neutral up to step k inclusive. Such order allows
to apply the neutral bits recursively in a breadth-first manner from ny to ng41.
If a neutral (multi)bit from subset ny, fails (i.e. results in a message that does not
follow the differential path), then the search does not explore any neutral bits
from subset ng1 for the particular failing combination at ny. In this way failing
branches of the search tree (Fig. 1) are abandoned early during the search.

An equivalent implementation as the one described above was developed also
in hardware. The verification of the equivalence of the two implementations was
performed as follows. The execution of the software program is stored in the
form of a trace containing the following information: step k, neutral bit mask
my, from subset nj applied at step k and a list of all differential pairs of modified
internal states (A;, A}) at steps i = k,k+1,...,k’, where step &k’ is the step at
which the pair of internal states (Axs, A},) has failed to follow the differential
path. The hardware implementation takes as input the trace produced by the
software together with a list of all neutral bit masks and verifies that the values
of all internal state pairs (A, A}) match the ones produced by the hardware
and fail at the same step k' given in the software trace.

B Chip design

Early studies [22] demonstrated the effectiveness of body biasing in reducing
leakage, improving performances, and worst case power consumption. This is an
interesting feature for high performance computing, and practical cryptanalysis.
Indeed this feature allows to get the best possible performance at given desired
energy point. For a single targeted attack, the energy cost is not the critical factor
in the overall attack cost. However it has a direct impact on the complexity of
the cooling infrastructure when the attack complexity gets high. Moreover, for
multiple attacks scenario, the energy becomes a critical factor.

The STMicroelectronics CMOS FD-SOI 28nm technology has been chosen for
our simulations for its very good power X performance x cost product capability
compared to the its earlier predecessors CMOS 40nm and 65nm, its availability
in our testing environment and the availability of enough public information

Algorithm 1 Apply neutral bits.

Input: —

i: Message step ¢ > 13 (correspond to internal state step ¢ + 1)

P: Path (composed of internal state A and expanded message W)

S;: Base solution with fully instantiated first 16 message words Wy, ..., Wis

and following path P up to and including message step ¢ > 13

Nil0...ng —1]: an array of ny 512-bit masks. Each mask is a single bit or a
multibit neutral bit (NBit) combination that is neutral up to and including message
step k : 13 < k < 18. (Note: a multibit is a collection of several bits that

have to be flipped together)

Output: —

= e e e
© 0PI WY OP

NN
N

23:
24:
25:
26:
27:
28:
29:
30:

o
ey

S;: Base solution following path P up to and including message step j > i
apply_neutral_multibits(¢, S;, P)
// If no more NBits to assign, keep computing step by step until solution fails P
if i > 18 then
while S; follows P up to step i inclusive do
compute S;;1
1 1+1
end while
return S;_1
end if

: // Get the original 16 message words to be modified by the NBbits

¢ (Wol|[Whll...][Wis) < Ss

: // For all 2™ combinations of (multi)bits neutral up to step ¢ inclusive

: foralll=0,1...,(2" — 1) combinations of NBits up to message step ¢ do

// Apply the I-th combination of NBits up to step i by XOR-ing all masks

// that compose it to the initial 16 message words

for all (N;[g] : 0 < g < n;) that belong to combination ! do
(Wol[Wil]...|[Wis) <= Ni[q] & (Wol[Will...[[Wis)

end for

// Store the modified 16 message words back to the solution

Si +— (Wol|Whall...||Wis)

// Neutral bit probability

if S; follows P up to message step ¢ inclusive then
// Compute next message step and call recursively the function
compute S;;1
// Differential step probability
if S;11 follows P up to message step ¢ + 1 inclusive then

apply_neutral_multibits(i + 1, Si11, P)

end if

end if

end for

regarding its pricing. The ASIC chip in Figure 4 is composed of slave cores,
which can either be birthday or neutral-bit slaves. Our digital design flow is
shown in below Figure 19. Each slave has been synthesized with a top-down
strategy using cadence RTL-compiler v14.8, while placement and routing were

done using Cadence Innovus. A Power-Aware Synthesis and Placement-And-
Routing are used. Power simulations are performed with the pre- and post-
placement and routing back-annotated netlist using Cadence Voltus. The slave
is then imported as hard macro in Cadence Virtuoso and instantiated from the

top-level RTL. The slave and the interface are then placed and routed in Virtuoso
GXL.

SV, .V

v

Constraints Modelsim /irun

.sdc\ ved Y vy RVT .lib

Constraints Cadence RC LV hib
.Sdc\

Reports <———[Cadence Innovus

RVT/LVT .d

PowerGrid lib

RN
.spef ods Voltus/Tempus |<|

Reports é——[Mentor Calibre DRV] Static / Dynamic

w Power .wavef
.gds

R 10 ring libs .gds
Virtuoso GXL

.gds

LCMOS FDSOI 28nm Standard Cell Library 1

Reports <___[Mentor CalibreDRV]

v

.gds

Fig. 19: Our Bottom-Up ASIC digital design flow

The power rail and clock tree are routed with large tracks from the closest
power supply and clock pins so as to reduce local voltage drop effect. The RC
parasitic extraction of the NB/BD core GDS and final layout is done using
Cadence QRC.

Mentor CalibreDRYV is then used for the sign-off DRC and LVS checks. Our
design mixes both Regular-Vt (RVT) and Low-Vt (LVT) cells. LVT cells are used
without poly-biasing (PBO0) for the critical path. RVT cells with poly-biasing up
to PB16 are used for the rest of the circuit in order to minimize the leakage
power.

Nominal process variation for both PMOS and NMOS for the pre/post-
placement-and-routing power simulations with 0.92V supply voltage at 25 degree
Celcius are used as parameter for the high performance version of our design. The
circuit is first synthesized to reach the maximal operating frequency. Our high

speed version reaches 909MHz with Vi, =0V and 1262MHz with Vipp=+42V.
LVT cells have then been chosen for the critical path of the NB/BD core. The
rest of the circuit have been synthesized with RVT cells so that to balance the
performance and power consumption. Each slave is isolated using triple-well iso-
lation to reduce parasitic substrate noise between the slaves that reduces the
overall performances. Power simulations show that our 16mm? die requires 140
power supply pins and a plastic-ceramic package to dissipate the power. The ef-
fect of body biasing on power and delay after place and route is simulated using
Cadence Genus and Voltus. Parasitic extraction with QRC is done with typical
parameters. The performances and power result are provided in Table 1.

C Chip layout

Adddddd LLLLLLLLLLLLLLLLLLLLLLLLLA_‘

AAAAAAAAAAAAAAAAARAARAALAL

b
4
4
4
4
4
9
4
4
19
4
"
9
9
"
9
9
>
>
9
>
>
9
>
>
9
o
>
9
>
>
>
=
>
4
>
>
4
>
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

AAAAAAAAAAALARALLAARAARARAAAI

Processor A
Locate Coll

Processor B

YYXXXRAAAAL

Comply AB

[XX)

NB Slave ASIC CMOS 28nm FD- Layout Birthday core.
SOI layout.

8 B

EEEEEEEEEEEEER

i
=
i
]
o
i
=
i
i)
o
=

L ¥

Sample 1mm?. asic layout with 1 Sample 1mm? ASIC layout with
NB core. 12 BD core.

Fig. 21: SHA-1 cryptanalysis accelerator ASIC Layouts

