
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Deep Transfer Learning for Improved Detection of Keratoconus
using Corneal Topographic Maps

Citation for published version:
Al-Timemy, AH, Ghaeb, NH, Musa, ZM & Escudero, J 2021, 'Deep Transfer Learning for Improved
Detection of Keratoconus using Corneal Topographic Maps', Cognitive Computation.
https://doi.org/10.1007/s12559-021-09880-3

Digital Object Identifier (DOI):
10.1007/s12559-021-09880-3

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Cognitive Computation

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Jul. 2021

https://doi.org/10.1007/s12559-021-09880-3
https://doi.org/10.1007/s12559-021-09880-3
https://www.research.ed.ac.uk/en/publications/1244f01a-b4b6-4952-9334-4e5f8a688278


Vol.:(0123456789)1 3

Cognitive Computation 
https://doi.org/10.1007/s12559-021-09880-3

Deep Transfer Learning for Improved Detection of Keratoconus using 
Corneal Topographic Maps

Ali H. Al‑Timemy1  · Nebras H. Ghaeb1 · Zahraa M. Mosa2 · Javier Escudero3 

Received: 15 August 2020 / Accepted: 22 March 2021 
© The Author(s) 2021

Abstract
Clinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists 
must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and 
Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. 
We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and 
fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classi-
fier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision based on 
the fusion of probabilities. Individually, the classifier based on PI achieved 93.1% accuracy, whereas the deep classifiers 
reached classification accuracies over 90% only in isolated cases. Overall, the average accuracy of the deep networks over 
the four corneal maps ranged from 86% (SfN) to 89.9% (AN). The classifier ensemble increased the accuracy of the deep 
classifiers based on corneal maps to values ranging (92.2% to 93.1%) for SqN and (93.1% to 94.8%) for AN. Including in the 
ensemble-specific combinations of corneal maps’ classifiers and PI increased the accuracy to 98.3%. Moreover, visualization 
of first learner filters in the networks and Grad-CAMs confirmed that the networks had learned relevant clinical features. This 
study shows the potential of creating ensembles of deep classifiers fine-tuned with a transfer learning strategy as it resulted 
in an improved accuracy while showing learnable filters and Grad-CAMs that agree with clinical knowledge. This is a step 
further towards the potential clinical deployment of an improved computer-assisted diagnosis system for KCN detection to 
help ophthalmologists to confirm the clinical decision and to perform fast and accurate KCN treatment.

Keywords AlexNet · Computer-aided diagnosis (CAD) · Corneal topographic maps · Deep learning · Keratoconus · 
Probability fusion · Transfer learning

Introduction

Keratoconus (KCN) is a non-inflammatory disease that can 
cause protrusion and thinning at the thinnest location of the 
cornea [1]. This may initiate blurred vision and high degree 

of astigmatism, potentially leading to vision loss if it is not 
detected and treated at an early stage. The loss of thickness 
of the cornea is a result of lack of some structural compo-
nents, such as collagen fibrils [2]. The main signs of kerato-
conic cornea are having high keratoconic indices, myopia, 
and irregular astigmatism [3], caused by the changes in the 
geometry of the cornea [4]. The fundamental reasons of hav-
ing KCN are unknown; however, ophthalmologists associate 
it with eye rubbing, systematic disease, and genetic inherit-
ance. KCN progression can be fast or slow, and it may stop 
at certain stage [5].

Early detection and intervention of KCN will prevent 
patients from requiring complicated interventions, such as 
penetrating keratoplasty or corneal graft, which may lead 
to complications. Misdiagnosis or late detection of KCN 
may, in some extreme cases, cause vision loss [6]. Suspected 
eye with KCN is difficult to detect; therefore, a thorough 
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investigation is needed, before refractive surgery [7]. Hence, 
there is a need to diagnose a suspected KCN accurately to 
promote good case management and a primary treatment by 
surgery, if needed. This, in turn, reduces vision deterioration 
and keeps the refractive error within an acceptable range so 
that it can be corrected, after surgery, with simple methods 
such as vision lenses.

In order to achieve an accurate diagnosis, it is impor-
tant to examine the anterior surface as well as the posterior 
surface of the cornea when an ophthalmologist needs to 
diagnose KCN [8]. The most commonly used devices for 
measuring the parameters of anterior corneal surface are 
topographical imagining (Scheimpflug or Placido rings) 
and optical coherence tomography (OCT), providing topo-
graphic maps of the corneal surface and corneal thickness 
[6, 8, 9]. The generated corneal topographic maps, com-
monly known as four refractive maps [10], are utilized for 
KCN detection and include sagittal (SAG), corneal thickness 
(CT), elevation front (EF), and elevation back (EB) maps.

The process of early detection and diagnosis of KCN 
is very challenging task since it requires great experience 
and knowledge and it also needs significant period of train-
ing. The KCN detection procedure is also time-consuming 
and complicated for junior ophthalmologists, and even for 
expert ophthalmologists. This is because it involves assess-
ing the patient eye history, examining the topographic maps 
alongside derived indices, and, in some cases, utilizing the 

results of examinations from other instruments such as OCT 
to reach the final decision. The objective of this laborious and 
complex process is to provide an accurate decision towards 
the right treatment [11]. In particular, the ophthalmologist 
starts the process of KCN detection by subjectively examin-
ing the patient for eye redness, blurred vision, and having 
an itchy eye. Then, if needed, the ophthalmologist goes on 
to examine the eye with a Pentacam device (Scheimpflug 
imagining) resulting in four corneal topographic maps and 
derived Pentacam Indices (PI). A set of clinical signs and 
features has to be investigated in each of the four maps (SAG, 
CT, EF, and EB) of anterior corneal surface. Figure 1 shows 
examples of the 4 corneal topographic maps, for normal and 
KCN cases, with some of the main clinical investigations 
performed by a trained ophthalmologist to investigate KCN. 
Examples of the clinical features include (1) the irregularity 
of the bowtie shape and the bowtie’s axis angle in the sagittal 
map, where bowtie is used to assess the astigmatism type, 
as a sign of KCN; (2) the thinnest location point at 6 mm of 
the corneal diameter and point of the centre of the CT map; 
and (3) checking if the bowtie shape is open or close in the 
EF and EB maps. In addition, the ophthalmologist examines 
other measurements obtained by the Pentacam device, i.e. PI 
of the anterior surface of the cornea, Keratometry readings, 
astigmatism degree, thinnest location at 6 mm, pachymetry 
apex, anterior corneal depth (ACD), and eccentricity. Other 
details are also examined such as colour distribution of each 

Fig. 1  Example of the 4 corneal 
topographic maps, for normal 
(left) and KCN (right) cases, 
with the main clinical investiga-
tions performed by the ophthal-
mologist to check features and 
signs in the corneal topographic 
maps. SAG sagittal, CT corneal 
thickness, EF elevation front, 
EB elevation back, NOR nor-
mal, KCN keratoconus
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map. Then, it is decided if the patient has a KCN or not. In 
some cases, when the examination of the suspected case is 
not conclusive, other modalities are needed (e.g., OCT and 
specular microscopy) and consultation with additional oph-
thalmologists may also be required. This process requires 
considerable amount of training and great experience, and it 
is doctor-dependent and subjective [1]. The full details of the 
complicated clinical KCN detection procedure are explained 
in Sinjab [12].

Computer-based methods are useful to aid in the diag-
nosis of KCN. Hybrid computer-aided diagnosis (CAD) for 
KCN detection was proposed in Issarti et al. [10], based on 
a neural network, mathematical model, and a Grossberg-
Runge Kutta architecture to detect clinical and suspect KCN. 
The accuracy of the hybrid CAD system was 96.56% com-
pared to 79.00% for the topographical KCN classification. 
CT, EF, and EB maps were utilized without using the SAG 
map. In addition, the model was developed for the right eye 
only and it is not known if the results can be generalized to 
detect KCN in the other eye. Machine learning (ML) may 
become a crucial tool to aid the ophthalmologist for a better 
KCN detection, with corneal topographic maps [11, 13]. It is 
worth mentioning that ML has utilized features and indices, 
extracted semi-manually with image processing from the 
topographic maps, to classify KCN with ML classifiers [11]. 
The features and indices are variable for each map and for 
each eye disease. Furthermore, extracting features from each 
individual map may not be an easy task since the number of 
maps is more than four for some systems.

In recent years, deep learning (DL) methods are becom-
ing rapidly adopted in healthcare sectors to play an impor-
tant role as an assistive diagnostic method for their reliable 
accuracy and precision [14]. Convolutional neural network 
(CNN) is a DL architecture inspired from the model of visual 
cortex [14] and is applied to healthcare sector [15–17]. DL 
methods can help ophthalmologists for improving the qual-
ity of patients’ care [18, 19], because of its ability to extract 
features which may not be detectable by human expert as 
well as no subjectivity in its decision making.

Deep learning can aid ophthalmologist by improving 
diagnosis and suggesting personalized treatments [20] in 
addition to save the ophthalmologist’s time in examining 
maps and images of the diseased eyes. Despite the fact that 
the general clinical acceptance of the ‘black-box’ model is 
still an existing challenge [19], FDA approval has recently 
been given to an ophthalmic device,1 the IDx-DR [21], 
that integrates a DL model for detection of diabetic retin-
opathy. This shows the potential of using DL in clinical 

practice when embedded into ophthalmic devices. Continu-
ing development and validation is being conducted aiming at 
advancing the clinical care of patients with other ophthalmic 
diseases with DL [22]. Therefore, DL has the potential to 
improve clinical decision support and modernize clinical 
ophthalmology practice in the upcoming years [19].

KCN detection with CNN has previously been investigated 
[23]; for instance, a CNN was used in Lavric and Valentin 
[24] to detect KCN using synthetic corneal topographic maps 
generated by SyntEyes KCN model. The obtained accuracy 
was equal to 99%. However, the performance was evaluated 
entirely with synthetic maps. The main challenges with train-
ing CNN include requiring large number of images to train the 
network, a common challenge in medical community. Moreo-
ver, the process of data collection, training, and tuning the 
network parameters is time-consuming. To tackle these chal-
lenges, pretrained CNNs on the ImageNet dataset of million 
images to classify large number of classes, such as AlexNet 
(AN) [25] and SqueezeNet (SqN) [26], ShuffleNet (SfN) [27], 
and MobileNet-v2 (MN) [28], can be utilized to learn a new 
task by fine tuning of the last fully connected layers with the 
process of transfer learning. Transfer learning is faster than 
designing a CNN and training it from scratch [29], where the 
new network can be used to classify small dataset of images 
without overfitting the model.

Few studies utilized transfer learning for KCN detection 
with corneal topographic maps. In Abdülhüssein et al. [30], 
VGG-16, a pretrained CNN, was utilized to detect indi-
vidual topographic maps. The results of the classification 
accuracy were 88.8%, 98.9%, 94.8%, and 94.5% for SAG, 
EF, EB, and CT maps, respectively. It should be noted that 
the performance was evaluated on training and testing sets 
without a validation set. Furthermore, all maps were not 
used together to evaluate the performance. Kamiya et al. 
[31] proposed a system for KCN grade detection based on 
the ResNet-18 network. They separately trained six neural 
networks to classify each of the six maps; then, the average 
of KCN grades of 1–4 for the six networks was taken to clas-
sify four KCN grades on a dataset of 543 eyes. The grade 
accuracy for four KCN grades was equal to 87.4% using 
six color-coded maps and 99% accuracy for KCN versus 
normal. However, SAG map was not used in their work. In 
addition, fivefold cross validation was used to evaluate the 
system performance which may indicate that only training 
and testing sets were utilized to train and test the networks 
without the use of a validation set, needed to optimize the 
network. From previous literature, either only 2-way data 
split was used, or no decision fusion was proposed to have 
the output decision from all four corneal topographic maps 
and the PI. Furthermore, topographic maps from a single eye 
side, either left or right, were utilized; having a system that 
can detect KCN in both sides would lead to a more difficult 

1 https:// www. fda. gov/ news- events/ press- annou nceme nts/ fda- permi ts- 
marke ting- artifi cial- intel ligen ce- based- device- detect- certa in- diabe tes- relat 
ed- eye

https://www.fda.gov/news-events/press-announcements/fda-permits-marketing-artificial-intelligence-based-device-detect-certain-diabetes-related-eye
https://www.fda.gov/news-events/press-announcements/fda-permits-marketing-artificial-intelligence-based-device-detect-certain-diabetes-related-eye
https://www.fda.gov/news-events/press-announcements/fda-permits-marketing-artificial-intelligence-based-device-detect-certain-diabetes-related-eye
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task, since the features extracted by CNN may be different 
for each eye side. However, this could be desirable in order 
to have a system that could work with images from either 
the left or right-side eye.

In this paper, we propose an ensemble of deep transfer learn-
ing (EDTL) with four probability fusion methods, including 
majority voting, averaging, product, and median, to obtain a 
decision from each topographic map and PI, then combine the 
probabilities to decide what the output of the suspected case is. 
Our work is motivated by the clinical need to help in the detec-
tion of KCN. This study contributes a classification pipelines that 
considers images from right and left eyes in contrast with previ-
ous studies that analyzed only one side. Furthermore, we also 
seek to validate the clinical relevance of the features extracted 
by the DL classifiers by visualizing learnable filters for KCN 
and control cases and a Grad-CAM of finally chosen classifier. 
Methodologically speaking, we propose a transfer learning strat-
egy which is adopted to tackle the challenge of overfitting for the 

small privately collected dataset of KCN and normal cases. To 
the best of our knowledge, this is the first work to adopt multi 
information fusion to combine the decisions from the corneal 
topographic maps and the PI, as a CAD tool to assist the oph-
thalmologist for KCN detection, saving the time and efforts, 
compared to clinical KCN detection steps, described in Sinjab 
[12]. The proposed system is validated with four types of pre-
trained transfer learning networks, SqN, AN, SfN, and MN, and 
we employ a 3-way data split on 2136 corneal topographic maps.

Methodology

Proposed Ensemble of Deep Transfer Learning

Figure 2 presents the block diagram of our proposed EDTL 
method with corneal topographic maps and PI classifi-
ers. It illustrates the main phases of the system, training, 

Fig. 2  Block diagram of the 
proposed ensemble of deep 
transfer learning (EDTL) 
for KCN detection. A Train-
ing phase, where the training 
set will be used to train the 
5 networks/classifier and the 
validation set will be used to 
decide when to stop training; 
Input size is 227 × 227 × 3 for 
SqN and AN, 224 × 224 × 3 for 
MN and SfN.  B Testing phase 
where the unseen testing set will 
be used for performance evalu-
ation. Orange dashed rectangle 
indicates that classifiers are 
trained and tested with either 
with SqN or AN or MN or SfN, 
one at a time. Red rectangles 
around the maps illustrate sam-
ples of KCN maps, while green 
rectangles represent samples of 
normal maps. DL deep learn-
ing; PI Pentacam indices; NOR 
normal; KCN keratoconus; 
LRSGD-PI Logistic Regres-
sion with Stochastic Gradient 
Descent classifier for PI; K1, 
K2, Kmax, and Kmean keratometry 
readings; Pack pachymetry 
apex; Astig astigmatism degree; 
ACD anterior corneal depth; 
PNOR and PKCN classifier output 
probability for NOR and KCN 
classes, respectively
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and testing phases. Four types of pretrained deep learning 
networks were used in this study including SqueezeNet 
(SqN) [26], AlexNet (AN) [25], ShuffleNet (SfN) [27], 
and MobileNet-v2 (MN) [28]. We modified the last fully 
connected classification layers to detect normal and KCN. 
These networks were used to classify the corneal topo-
graphical maps (i.e., SAG, CT, EF, and EB). A logistic 
regression classifier with Stochastic Gradient Descent 
optimizer (LRSGD-PI) is used to classify the Pentacam 
indices (PI). We will test all pretrained DL networks with 
the proposed EDTL method, one at a time, and evaluate 
their performance, as shown in Fig. 2.

First, in the training phase shown in Fig. 2A, four net-
works and a PI classifier (LRSGD-PI) are trained individu-
ally, utilizing training set while the validation set is used to 
optimize the network. It is important to mention here that 
3-way data split is performed in this study into training, 
validation, and testing sets. The trained classifiers (deep 
networks with transfer learning for each type of map, plus 
the LRSGD-PI classifier) are saved for later use to evalu-
ate their performance on the unseen testing maps in the 
testing phase.

During the testing phase illustrated in Fig. 2B, the nor-
mal and KCN images are introduced to the saved networks 
in the form of sets of four maps. We obtain the output 
probability of each trained classifier, in sets of vectors 
Pnet = [PNOR, PKCN], where PNOR is classifier output prob-
ability for normal and PKCN is classifier output probability 
for KCN. The PI related to each subject will be introduced 
to the LRSGD-PI. A key element of the proposed EDTL 
method is the introduction of probability fusion step 
where all output probabilities from all four networks and 
PI classifier are concatenated P = [Pnet-SAG, Pnet-CT, Pnet-EF, 
Pnet-EB,, PLRSGD-PI], then fused as will be explained next.

In order to fuse the continuous output of the 5 net-
works/classifier illustrated in Fig. 2B, we utilized four 
probability fusion methods, described in Polikar [32]: 
majority voting (MV), averaging, product, and median. 
An illustrative example of the probability fusion meth-
ods with true numbers is displayed in Fig. 3. We apply 
the predefined fixed rules, without any additional modi-
fication or fine-tuning. The result of the fusion method 
(PF) will be calculated to obtain PF =  [PNOR, PKCN] 
where PFNOR is the result of the probabilities fusion for 
the normal class and PFKCN is the result of the prob-
abilities fusion for the KCN class. The output probabili-
ties of all classifiers are considered with equal weights. 
For each case introduced to the five trained classifiers, 
the values of (PFNOR) is compared against (PFKCN). If 
PFNOR > PFKCN, then the output of the case will be nor-
mal class. Instead, if PFNOR < PFKCN, then the output 
will be KCN. The evaluation of the proposed EDTL 

method will be presented in ‘Evaluation of the Proposed 
EDTL Method’.

Deep Transfer Learning Networks via SqN, AN, SfN, 
and MN

Transfer learning of pretrained CNN can help to address the 
challenge of having a reduced dataset to train a CNN and 
can help to avoid overfitting [16, 17]. Moreover, it reduces 
the time required for fine tuning the network [15]. In trans-
fer learning, a pretrained CNN is used where early network 
layers learn low-level features such as edges and colours, 
while the last layers learn class-specific features [29]. Then, 
the early layers are then transferred and the last layers are 
replaced to match the size of the new dataset [14], two 
classes in our work, normal and KCN. Figure 4 shows the 
process of transfer learning applied to the challenging task 
of KCN detection.

In the current study, four pretrained networks were uti-
lized with the proposed EDTL method, SqN [26], AN [25], 
SfN [27], and MN [28]. They have been applied in ophthal-
mic field; for instance, AN was used to improve diabetic 
retinopathy detection [33] and SqN was used for classifica-
tion of cataracts [34]. The two deep learning networks are 
pretrained on over 1 million images (ImageNet dataset) and 
can classify them into 1000 classes. These networks will 
take an input image of size 227 × 227 × 3 for AN and SqN, 
while the rest has an input of 224 × 224 × 3 and produce a 
class label as an output with probabilities output for each 
class. The last fully connected layers of SqN and AN have 
been replaced to match the number of classes in this study, 
i.e. two classes (normal and KCN), see Table 1.
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probabilities’ fusion for NOR and  KCN classes, respectively. MV 
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Data Collection

The dataset used in this study is based on pre-assessed KCN 
patients and normal participants referred to Al-Amal oph-
thalmic centre in Baghdad, Iraq. Each participant had under-
gone sets of measurements. One of these measurements is 
the topographical images using the Pentacam Scheimpflug 
measurements (Oculus GmbH, Wetzlar, Germany). The 
number of collected cases is 444 (226 right eye cases, 218 
left eye cases). The collected maps from the Pentacam are 

the four standard topographical refractive maps which are 
SAG, CT, EF, and EB maps for a diameter of 8 mm. PI 
of anterior surface of the cornea were also included for all 
cases, which are keratometry readings (mean, maximum, 
K1, and K2), astigmatism degree, thinnest location at 6 mm, 
pachymetry apex, anterior corneal depth (ACD), and eccen-
tricity; These indices have been utilized clinically in KCN 
detection alongside the corneal maps [9, 11]. For more infor-
mation about the four refractive maps, the reader is referred 
to Sinjab [12]. The experiment was done according to dec-
laration of Helsinki [35], and its later amendments and the 
privacy of all subjects were preserved.

Of the 444 cases, 266 cases bilateral with normal 
topography were included (subjects aged 31.4 ± 9.2 years, 
mean ± Standard Deviation, SD), with no other ocular, 
subjectively and slit lamp abnormality symptoms. The 
normal cases included 219 normal and 47 forme fruste 
cases where the readings were similar to normal and the 
disease is stopped and did not progress. Forme fruste cases 
can be regarded as a cornea with no abnormal findings 
which is confirmed by both corneal topography and slit-
lamp examinations [36].

Other cases included 178 keratoconic eyes (subjects aged 
32.95 ± 10.86 years, mean ± SD). The keratoconic eyes 
included 152 KCN and 26 ectasia cases. The decision of the 
KCN was supported also by subjective and slit lamp exami-
nations. The classification of the two groups was screened 

Fig. 4  The process of transfer 
learning applied to the problem 
of KCN detection, modified 
from [15]

1- Load Pretrained Network
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Table 1  The default and the new sizes of the last output layers of the 
networks used in the study. A. The five modified layers of SqN. B. 
The three modified layers of AN, SfN, and MN

No Layer name Default output size New output size

A
1 Convolution 14 × 14 × 1000 14 × 14 × 2
2 ReLU 14 × 14 × 1000 14 × 14 × 2
3 Average pooling 1 × 1 × 1000 1 × 1 × 2
4 Softmax 1 × 1 × 1000 1 × 1 × 2
5 Classification output 1000 classes Normal and KCN
B
1 Fully connected 1 × 1 × 1000 1 × 1 × 2
2 Softmax 1 × 1 × 1000 1 × 1 × 2
3 Classification output 1000 classes Normal and KCN
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by ophthalmologist and ophthalmology supervisor to reach 
an optimum decision. Any patient with other ocular diseases 
was excluded from the study. Details of the two groups with 
their Pentacam indices are given in Table 2. For some sub-
jects, there were more than one set of maps, but taken from 
different angles. Each additional set was diagnosed, and it 
was included in the study.

Since KCN is a bilateral disease and also because of 
the limited sample size, both right and left side cases were 
included which is a more difficult classification problem than 
that of a single sided eye. It is expected that the system to 
be able to detect KCN in both eyes, but probably with less 
performance than that of a single eye KCN detection system.

Evaluation of the Proposed EDTL Method

In the subsequent subsections, the evaluation of the proposed 
EDTL method will be presented. We include information 
about data collection, data augmentation, and preprocessing. 
The two key parts, training and testing phases, will also be 
presented. The proposed method will be tested with all four 
types of pretrained networks SqN, AN, SfN, and MN, one 
at a time. Matlab 2019b software (MathWorks, USA) was 
used to perform the analyses with Deep Learning Toolbox 
[29]. The analysis was performed on a single core, 2.6 GHz 
Core i5 computer with 16 GB RAM.

Data Augmentation and Preprocessing

Since there are 266 normal and 178 KCN cases, there is a 
case of class imbalance where the samples of one class in a 
dataset outnumber the samples of the other class. The class 
imbalance is a common issue with DL problems [37], and 
it can influence the results [10]. To deal with this issue, we 

exploited data augmentation, a common procedure to deal 
with class imbalance for DL [37]. Augmentation can be done 
where the minority class is augmented through operations 
such as rotation, scaling, translation, and flipping of images 
[37].

In this study, scaling and translation of the topographic 
maps can change the diagnosis of a specific KCN or nor-
mal case as discussed with the ophthalmology supervisor. 
In addition, rotation of the maps by a certain angle in either 
clockwise or anticlockwise directions can also affect the 
diagnosis of the case since the skew angle of certain maps 
(SAG, EF, and EB) is one of essential points in KCN detec-
tion. Therefore, augmentation via rotation was excluded. 
However, flipping can be done around the y-axis of each 
map. Vertical flipping around the y-axis is used in this study 
to perform augmentation of the KCN class to balance the 
data to that of normal class, as agreed with the ophthalmol-
ogy supervisor. Augmentation was performed on randomly 
selected 90 cases from the 178 KCN cases by vertical flip-
ping. The KCN group size after augmentation became 268 
KCN cases (178 + 90 augmented cases). Thus, 268 KCN 
cases and 266 normal cases will be used for performance 
evaluation, which makes the total number to be 534 cases; 
each has four topographic maps (2136 maps).

To tackle the issue of class imbalance for the Pentacam 
indices, we utilized Synthetic Minority Over-Sampling 
Technique (SMOTE) [38] to equalize the number of classes, 
by adding extra random 90 cases, similar to that of the aug-
mentation of the four corneal maps. In SMOTE, the size 
of the majority class is kept the same, whereas k-nearest 
neighbour (kNN) is utilized in to create synthetic instances 
to oversample the minority classes [38]. In this study, Weka 
filter ‘SMOTE’ [39] was used where the number of k-nearest 
neighbour was equal to 5.

To preprocess the topographic maps, first we extract each 
topographic map without the map measurements and colour 
code. Then, all the 2136 maps were resized with the default 
Matlab Bicubic interpolation (weighted average of pixels in 
the nearest 4-by-4 neighbourhood), with antialiasing filter, 
to 227 × 227 × 3 or 224 × 224 × 3, to match the input size 
of the pretrained networks.

Training Phase

In order to train our DL networks (SqN, AN, SfN, and MN) 
and the PI with the proposed EDTL method, the dataset 
of 534 cases were randomly divided into 3-way data split, 
training set (66%, 355 cases), validation set (12%, 63 cases), 
and testing set (22%, 116 cases). It should be noted that the 
augmented images and PI with SMOTE were only used dur-
ing the training phase and the unseen test set consisted only 
of non-augmented cases. The training set is used to train the 

Table 2  The Pentacam indices of the cases accompanying the topo-
graphic maps for normal and KCN groups (mean ± SD) used for the 
LRSGD-PI classifier

KCN keratoconus, Kmean mean keratometry, Kmax maximum keratom-
etry, Astig anterior corneal astigmatism, D dioptre

Group Normal (266) KCN (178)

Kmean (D) 43.47 ± 1.48 45.98 ± 3.74
Kmax (D) 44.87 ± 1.6 51.73 ± 5.2
Pachymetrymin (µm) 536.3 ± 34.0 471.54 ± 49.8
Astig. (D) − 1.55 ± 1.45 − 1.73 ± 3.4
K1 (D) 42.6 ± 1.58 44.58 ± 3.62
K2 (D) 44.4 ± 1.6 47.57 ± 4.3
Eccentricity 0.43 ± 0.14 0.34 ± 0.63
Pachymetry apex 540.4 ± 34.9 484.2 ± 48.9
Anterior corneal chamber 

depth (ACD)
3.14 ± 0.4 3.19 ± 0.6
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classifiers, and validation set is used to decide when to stop 
the training based on the validation accuracy, the loss value, 
and testing accuracy.

The pretrained networks (SqN, AN, SfN, and MN) were 
imported with the add-on Matlab explorer, then the last lay-
ers were replaced with new layers to match our KCN detec-
tion problem of two classes, KCN and normal as explained 
in ‘Deep Transfer Learning Networks via SqN, AN, SfN, 
and MN’. All topographic maps were pre-processed to 
match the input size as explained in ‘Data Augmentation 
and Preprocessing’.

Four SqN networks were trained on each of the four maps 
(SAG, CT, EF, and EB), using the training set. In addition, 
LRSGD-PI classifier was implemented in Weka [39], and 
it was utilized as the PI classifier, see Fig. 2, with utilizing 
training and validation sets. After training was finished, the 
four trained SqN classifiers were saved to be used later in 
the evaluation phase. The same was repeated for AN, SfN, 
and MN, and the five networks/classifier were saved to be 
used in the evaluation phase including the LRSGD-PI clas-
sifier. The network optimizer Stochastic Gradient Descent 
with Momentum (SGDM) was utilized for optimizing the 
loss function for the pretrained networks. Various iterations 
and epoch numbers have been investigated and performed 
in order to train the networks and to find the optimal epoch 
number. For the best trained networks, the training time for 
each network of SqN was between 6 and 12 min, while it 
was shorter for AN of about 4–8 min and longer for SfN, and 
MN because of the big size of these networks. The number 
of epochs for SqN was equal to 3, 11, 6, and 5 for SAG, CT, 
EF, and EB maps, respectively while it was equal to 4, 3, 4, 
and 5 for AN.

Testing Phase

To evaluate the performance of the proposed EDTL 
method, the unseen test set (56 normal and 60 KCN cases, 
each has 4 topographic maps and the PI) is used. First, the 
four trained SqN are tested by introducing each case, then, 
the output probabilities for each map, and also, the PI clas-
sifiers are calculated. Afterwards, we utilized the prob-
ability fusion step to combine the five output probabilities 
vectors. The product of the probabilities is then obtained, 
PF = [PFNOR, PFKCN], and the case output is determined 
either normal or KCN based on the comparison of PFNOR 
and PFKCN as explained in ‘Proposed Ensemble of Deep 
Transfer Learning’. The same steps above were repeated 
for AN, SfN, and MN. To examine the robustness of our 
proposed method with other classifiers’ combinations, dif-
ferent fusion of three classifiers were investigated with 
the probabilities fusion to find the best three classifiers’ 
fusion. The results will be presented and discussed in the 
next sections.

The performance of the proposed EDTL was evaluated 
with the following classification performance measures 
which include accuracy, sensitivity, specificity, and preci-
sion, given by

where TP (True Positive) is the number of KCN cases identi-
fied correctly, TN (True Negative) is the number of normal 
cases identified correctly, FN (False Negative) is the number 
of KCN cases classified as normal, and FP (False Positive) 
is the number of normal cases classified as KCN. We also 
calculated the confusion matrix for the two classes (normal 
and KCN). In a confusion matrix, the diagonal line repre-
sents the correctly classified cases, while the off diagonal 
represents the wrong classifications.

Visualization

To better understand the networks capability in capturing 
clinically relevant features from the topographic maps, (1) 
we plotted the learnable filters for AN and SqN and Grad-
CAM for SqN. The learnable filters will be plotted for 
‘pool1’ layer in SqN and AN for the best single map per-
formed, for normal and KCN cases, as examples. Further-
more, we also plotted Gradient-weighted Class Activation 
Map (Grad-CAM) [40], which has been used in the medical 
field [41, 42] to better understand the capability of the SqN 
in capturing the relevant features from corneal maps. Expert 
ophthalmology supervisor will examine the learnable filters 
of SqN and AN and also the Grad-CAM for normal and 
KCN cases, to check if there is any relevant clinical features 
in the visualizations of the networks.

Results

Testing of Individual Maps with the Unseen Testing 
Set

Table 3 displays the results for each individual input to the 
network (SAG, CT, EF, and EB maps) when evaluated on 
the unseen test set, for all deep transfer learning networks 

(1)Accuracy =
TP + TN

TP + FP + FN + TN

(2)Sensitivity =
TP

TP + FN

(3)Specificity =
TN

TN + FP

(4)Precision =
TP

TP + FP
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investigated in this study: SqN, AN, SfN, and MN. EF 
map was the best performer map for SqN (93.1%) and MN 
(91.4%), while SAG map was the best map for AN (95.7%). 
CT map was the topographic map with the lowest classifi-
cation accuracy. As for the  5th classifier—LRSGD-PI, dis-
played in Fig. 2—the classification accuracy was equal to 
93.1%. The average of the classification accuracy for all four 
maps’ classifiers, illustrated in Table 3, was equal to 89.9% 
for AN compared to 89.2% to SqN and 86.4% for MN.

Testing of the Proposed EDTL Method with Multiple 
Probability Fusion Methods

In Table 4, the classification accuracy is illustrated for the 
proposed EDTL for all networks when using the unseen test-
ing set with all types of fusion methods. It is noteworthy to 
mention that fusion techniques do not require fine-tuning 
and, therefore, they were applied directly to the test set. MV 
and median fusion methods outperformed other fusion meth-
ods for AN, SfN, and MN, while for SqN, averaging and 
product were the best performers. The highest best fusion 
accuracies were 93.1% for SqN, 94.8% for AN, 87.9% for 
SfN, and 90.5% for MN.

An example of the proposed EDTL’s output can be seen 
in Fig. 5 for probabilities fusion methods for a normal and 
KCN cases. For the normal case, the probability fusion of 
CT map (low performance map in Table 3) indicted the case 
is KCN. However, the EDTL predicted the case as normal 
with all fusion rules. For the KCN case, all fusion methods 
detected the case as KCN.

The next part of the analysis was to investigate different 
classifiers’ combinations with the proposed EDTL to find 
the results for best fusion of three network/classifier among 
the five trained classifiers, i.e. SAG, CT, EF, and EB, and 
LRSGD-PI classifier. We evaluated different combinations 
of three networks (odd number) with different probability 
fusion methods, for SqN, AN, SfN, and MN, since median 
and MV methods require odd number of probabilities to 
get a decision. The LRSGD-PI classifier was included in 
all combination as it is an essential part of the process of 

clinical KCN detection [9]. The accuracy results are illus-
trated in Table 5.

In Table 5, classifiers tested with SqN for EF, EB maps, 
and the LRSGD-PI classifier achieved an accuracy of 93.1% 
better than other combinations, for all fusion methods. The 
number of misclassifications was equal to eight KCN cases 
out of 60 KCN cases being misclassified as normal, for prob-
abilities’ fusion of the best three maps. All 56 normal cases 
were classified correctly. As for AN result (Table 5), the 
fusion of SAG and EB maps and also LRSGD-PI classi-
fier outperformed other combinations with an accuracy of 
98.3% with product fusion. It is worth to mention that the 
best three combinations achieved an accuracy of 98.3% bet-
ter than using all classifiers with AN (94.8%; Table 4), and 
also better than the average of 5 classifiers (89.9%; Table 3), 
in addition to an improvement of around 8% (Table 3) for 
MN and SfN (SAG, EF, and LRSGD-PI), which shows 
the improvements with the proposed EDTL method. From 
Table 5, the EB and the LRSGD-PI classifier are shared 
among the best classifiers for AN and SqN and SAG and EF 
for SfN and MN.

We further investigate the performance of the 3 classifier 
combinations, when using the unseen testing set, with SqN 
and AN (best performers in Table 4), with other parameters 
precision, sensitivity, specificity, and accuracy where the 
results are illustrated in Table 6, respectively. In Table 6, 
the results were similar for all fusion methods where all 
normal cases were classified correctly and 8 KCN cases 

Table 3  The classification 
accuracy rates in percentage 
estimated on the testing 
set (116 cases) of the four 
individual trained networks 
and LRSGD-PI classifier, as 
detailed in Fig. 2, for SqN, AN, 
SfN, and MN. The best map is 
shown with bold

SAG sagittal, CT corneal thickness, EF elevation front, EB elevation back

No Network name Classification accuracy (%) for input 
map

Average of 4 
maps’ accuracy 
(%)

LRSGD-PI classifier 
accuracy (%)

SAG CT EF EB

1 SqN 90.5 84.5 93.1 88.8 89.2 93.1
2 AN 95.7 83.6 87.0 93.1 89.9
3 SfN 85.34 85.3 86.2 87 86
4 MN 87 80.2 91.4 87 86.4

Table 4  The classification accuracy rates in percentage of the EDTL 
method for each type of the SqN, AN, SfN, and MN transfer learning 
networks (Fig.  2b) for fusion of all outputs, for the testing set with 
four probability fusion methods

Transfer learning 
network

Classification accuracy (%) for probability fusion 
method

MV Averaging Product Median

SqN 92.2 93.1 93.1 92.2
AN 94.8 94.0 93.1 94.8
SfN 87.9 87.1 87.9 87.9
MN 90.5 88.8 88.8 90.5
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were misclassified as normal, see corresponding confu-
sion matrix in Table 7 for SqN. As for AN, the product 
fusion method outperformed other fusion methods, for the 
case of 3 classifier’ combinations. The confusion matrix in 
Table 7 shows that when using AN, only 2 KCN cases were 
misclassified as normal and all normal cases were classi-
fied correctly with an accuracy of 98.3%, which shows the 
importance of our proposed EDTL method.

Learnable Filters and Grad‑CAM Visualizations

Figure 6 shows examples of learnable filters for ‘pool1’ layer 
in SqN for EF map (best single map performed for SqN; 
Table 3) for a normal and KCN cases, while in Fig. 7, exam-
ples of learnable filters for ‘pool1’ layer in AN for SAG map 
for a normal and KCN cases are shown.

As for the Grad-CAM visualization, Fig. 8 shows the 
visualization of Grad-CAM for a normal case for the 4 
refractive maps, SAG, CT, EF, and EB maps, respectively. 
In Fig. 9, the Grad-CAM plots are shown for the 4 refractive 
maps of a KCN case.

Discussion

A new method for KCN detection with EDTL method 
was proposed and validated in this study based on corneal 
topographic maps dataset and derived PI. From the results 

illustrated in Table 3 for testing each individual map, with 
the trained SqN and AN, SAG map was the best performer 
for AN and the second best performer for SqN and MN. We 
utilized 3-way data split into training, validation, and testing 
sets in our study. The training set was used to train and opti-
mize the networks, where the validation set is used to decide 
when to stop training, while the unseen test set was used for 
performance evaluation of our proposed EDTL. In Lavric 
and Valentin [24], 3-way data split was used and achieved 
an accuracy of 99.3%. However, their work was based on 
synthetic maps generated by a SyntEyes model [43].

Learnable filters showed that discriminative features 
can be observed, similar to the features of clinical impor-
tance illustrated in Fig. 1, such as regularity of bowtie 
shape (Fig. 6A and B). The ophthalmology supervisor 
confirmed clear area of the superior and inferior bowtie 
(Fig. 6A), while a tongue-like bowtie shape is starting 
to be isolated (Fig. 6B) for KCN case. Very clear bowtie 
shape, that can be used to estimate the weight of astig-
matism, can be observed for the normal case (Fig. 7A) 
and irregular and total inferior bowtie shape can be seen 
(Fig. 7B), as confirmed by ophthalmology supervisor, 
which reflects an advanced KCN case. Overall discus-
sions with the ophthalmology supervisor on Figs. 6 and 
7 showed that there are many important clinical features, 
obtained with SqN and AN, that are not seen in the origi-
nal image such as irregularity of the bowtie shape. AN and 
SqN are simple networks and require low computational 
power—even allowing running on a CPU machine—which 

Output probabilities
PNOR =0.99
PKCN =0.01

PFNOR PFKCN

MV 0 5
Averaging 0.01 0.99 
Product 0 0.98

Median 0 1

Pentacam
Indices (PI)
K1,K2, Kmax,Kmean

Pack., Pach. Apex,
Astig., ACD, Age, 

Eccentricity

Case output: KCN

Case output: NOR

Output probabilities
PNOR =0.18
PKCN =0.81

Output probabilities
PNOR =0.99
PKCN =0.01

Output probabilities
PNOR =0.99
PKCN =0.01

Pentacam
Indices (PI)
K1,K2, Kmax,Kmean

Pack., Pach. Apex,
Astig., ACD, Age, 

Eccentricity

Output probabilities
PNOR =0.87
PKCN =0.13

SAG CT EF EB Indices classifier

PNOR =0
PKCN =1

PNOR =0.01
PKCN =0.99

PNOR =0.01
PKCN =0.99

PNOR =0.01
PKCN =0.99

PNOR =0.02
PKCN =0.98

PFNOR PFKCN

MV 4 1
Averaging 0.81 0.19 

Product 0.16 0
Median 0.99 0.01

Fig. 5  An example of the EDTL output with different fusion methods for normal and KCN cases
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may be relevant for resource-limited settings as well as 
performing well on the problem of KCN detection.

Grad-CAM visualizations illustrated that the activation 
maps point towards areas of clinical interest in the KCN 
case depicted in Fig. 9, including the localized composi-
tion of conus (cornea) in Fig. 9A; the thinning area that 
starts to clear in Fig. 9B; and the localized tongue position 

in Fig. 9C. An ophthalmologist supervisor confirmed the 
clinical relevance of these features. As for Fig. 8 for the nor-
mal case, the activations were away from the 6-mm central 
clinical circle, which is the main area of clinical interest. 
Therefore, the locations are not pathologically driven in the 
case of Fig. 8.

It is worth to mention here that the average of classifica-
tion accuracies for using each individual map illustrated in 
Table 3 was equal to 89.9% for AN compared to 89.2% for 
SqN and 86% for SfN and MN. When applying our pro-
posed EDTL for each case of the unseen testing set, the 

Table 5  The results of proposed 
EDTL for SqN, AN, SfN, and 
MN, in terms of accuracy 
(%), for different probability 
fusion methods of the three 
classifiers. The results for the 
best classifiers’ combination are 
shown in bold font

Net network, ind. indices, class. classification, MV majority voting

Net Classifiers’ combinations Accuracy (%) for different probability fusion 
methods

MV Averaging Product Median

SqN Net.1-SAG, Net.2-CT and LRSGD-PI class 92.2 91.4 89.7 92.2
Net.1-SAG, Net.3-EF and LRSGD-PI class 93.1 92.2 92.2 93.1
Net.1-SAG, Net.4-EB and LRSGD-PI class 91.4 91.4 92.2 91.4
Net.2-CT, Net.3-EF and LRSGD-PI class 92.2 92.2 91.4 92.2
Net.2-CT, Net.4-EB and LRSGD-PI class 92.2 91.4 90.5 92.2
Net.3-EF, Net.4-EB and LRSGD-PI class 93.1 93.1 93.1 93.1

AN Net.1-SAG, Net.2-CT and LRSGD-PI class 96.6 96.6 95.7 96.6
Net.1-SAG, Net.3-EF and LRSGD-PI class 94.8 94.8 93.1 94.8
Net.1-SAG, Net.4-EB and LRSGD-PI class 96.6 97.4 98.3 96.6
Net.2-CT, Net.3-EF and LRSGD-PI class 89.7 91.4 91.4 89.7
Net.2-CT, Net.4-EB and LRSGD-PI class 94.0 92.2 92.2 94.0
Net.3-EF, Net.4-EB and LRSGD-PI class 94.0 92.2 92.2 94.0

SfN Net.1-SAG, Net.2-CT and LRSGD-PI class 93.1 90.5 89.7 93.1
Net.1-SAG, Net.3-EF and LRSGD-PI class 94.0 94.0 93.1 94.0
Net.1-SAG, Net.4-EB and LRSGD-PI class 92.2 89.7 89.7 92.2
Net.2-CT, Net.3-EF and LRSGD-PI class 87.9 87.1 86.2 87.9
Net.2-CT, Net.4-EB and LRSGD-PI class 87.9 87.1 87.1 87.9
Net.3-EF, Net.4-EB and LRSGD-PI class 88.8 90.5 90.5 88.8

MN Net.1-SAG, Net.2-CT and LRSGD-PI class 90.5 89.7 88.8 90.5
Net.1-SAG, Net.3-EF and LRSGD-PI class 94.0 93.1 94.0 94.0
Net.1-SAG, Net.4-EB and LRSGD-PI class 91.4 90.5 90.5 91.4
Net.2-CT, Net.3-EF and LRSGD-PI class 89.7 88.8 88.8 89.7
Net.2-CT, Net.4-EB and LRSGD-PI class 87.1 87.1 87.9 87.1
Net.3-EF, Net.4-EB and LRSGD-PI class 90.5 89.7 89.7 90.5

Table 6  The results of proposed EDTL for SqN and AN, in terms of 
precision, sensitivity, specificity, and accuracy for the best 3 combi-
nation (A. SqN: Net.3-EF, Net.4-EB, and LRSGD-PI classifier, B. 
AN: of Net.1-SAG, Net.4-EB, and LRSGD-PI classifier) with differ-
ent fusion methods

Performance measure MV Averaging Product Median

A. SqN Precision (%) 100 100 100 100
Sensitivity (%) 86.6 86.6 86.6 86.6
Specificity (%) 100 100 100 100
Accuracy (%) 93.1 93.1 93.1 93.1

B. AN Precision (%) 98.3 100 100 98.3
Sensitivity (%) 95 95 96.6 95
Specificity (%) 98.2 100 100 98.2
Accuracy (%) 96.6 97.4 98.3 96.6

Table 7  Confusion matrix for the best 3 probabilities’ fusion com-
binations with product fusion for A. SqN, EF, and EB maps and 
also the LRSGD-PI classifier. B. AN, SAG, and EB maps and the 
LRSGD-PI classifier

A B

Actual KCN NOR Actual KCN NOR

Predicted Predicted

KCN 52 0 KCN 58 0
NOR 8 56 NOR 2 56
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classification accuracy increased by approximately 5% for 
AN and 4% for SqN and MN, as illustrated in Table 4. Since 
four fusion methods were included, the median and MV 
fusion methods outperformed other fusion methods for AN.

The second part of the analysis was to investigate dif-
ferent input maps’ combinations with the proposed EDTL 
to find the results for best fusion of three classifiers among 
the trained classifiers explained in ‘Proposed Ensemble of 
Deep Transfer Learning’. In Table 5, classification accuracy 
of 94% was obtained with the proposed EDTL method using 
SfN and MN with SAG and EF maps and LRSGD-PI com-
pared to 86% (Table 3) when using the proposed method on 
all four input maps and LRSGD-PI classifier. As for the AN 
result displayed in Table 5, SAG, EB maps, and PI achieved 
an accuracy of 98.3% with the proposed EDTL method 
against 94.8% when using all classifiers. It should be noted 
that the average of 4 individual maps was equal to 89.9% 
(Table 3), which shows the importance of the proposed 
EDTL method. This is potentially due to the fact that CT 
map has small values of output probabilities for KCN class 
compared to that of the other maps, as the performance of 
CT map was low (Table 3). Adding the probabilities of the 
CT map to the other probabilities in the fusion step reduced 

the fused probability value (PFKCN), thus reducing classifica-
tion accuracy. This may explain why including CT map in 
the full set reduced the classification accuracy compared to 
the best three classifiers.

It is noteworthy to mention that 100% specificity rate was 
obtained in this study, for both AN and SqN (Table 6), where 
all normal cases were detected correctly. This is potentially 
useful to the ophthalmologists since it may allow them to label 
the KCN cases, with our proposed EDTL method trained on 
an external dataset, where they could be very precise that a 
case is KCN when the proposed EDTL tells them so.

The four refractive maps (SAG, CT, EF, and EB) are clin-
ically the first line of decision that should be reviewed by 
the ophthalmologist to recognize the patient state: normal or 
KCN. Each one of the four maps has an important role that 
may be changed according to the patient complicated state. 
The SAG map appears abnormal when values of keratometry 
exceed 46 D. The CT is considered as abnormal when the 
thickness is less than 450 µm; the elevation maps (EF and 
EB) are considered as abnormal when the thickness exceeds 
15 µm. These values are clinical standards and are inter-
changed; it is not easy to be defined or appears in one case 
study. This may be the reason behind the variable accuracies 

Fig. 6  Learnable filters from 
the first ‘pool1’ layer of SqN 
for Elevation Front (EF) map 
for  A normal case and  B KCN 
case. Discriminative images 
with clear clinical features are 
enclosed with yellow squares

Fig. 7  Learnable filters from 
the first ‘pool1’ layer of AN 
for Sagittal (SAG) map for A  
normal case and B  KCN case. 
Discriminative images are 
enclosed with yellow squares
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when utilizing different maps, but still the accuracy is above 
94.8% when fusing the outputs.

SqN and AN are trained on wide range of many general 
natural images, including animals and everyday objects 
from the ImageNet dataset [25]. The networks learned 
rich feature representations from these images. The early 
network layers learned low-level features, such as edges, 
borders, curves, and colours, from the general images [29]. 
In contrast, the last layers learned class-specific features 
of the corneal topographic maps for KCN detection. In our 

case, this corresponds to features related to the corneal 
topographic maps for KCN detection. Thus, the networks 
tested in our study can detect general shapes and patterns 
in the images of the corneal topographic maps such as 
the bowtie shape in the SAG map, circles and curves in 
the CT map, and curves and islands shapes in EF and EB 
maps (Fig. 1). This is potentially the reason of the good 
performance of the networks tested in this study on the 
corneal topographic maps even though the original pre-
trained  networks were not trained on them.

Fig. 8  Grad-CAM plot of NOR  
case for the 4 refractive maps: 
(A) SAG, (B) CT, (C) EF, and 
(D) EB

Fig. 9  Grad-CAM plot of KCN 
case for the 4 refractive maps: 
(A) SAG, (B) CT, (C) EF, and 
(D) EB
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Unlike our work where SAG map was one of the best 
performer maps, it achieved the lowest performance in 
Abdülhüssein [30], compared to the other three maps, i.e. 
CT, EF, and EB. Moreover, SAG map was one of the best 
3 classifiers when tested with our proposed method using 
AN (98.3% accuracy for SAG, EB maps, and PI), and also 
SqN, SfN, and MN which show the importance of this map 
for KCN detection. This map was not utilized in previous 
studies [10, 31].

In this study, data was included from both groups, normal 
and KCN from both right and left eyes, and our trained net-
works achieved an accuracy of 98.3% for the best three maps 
tested with the proposed EDTL method. In Issarti et al. [10], 
96.56% accuracy was obtained with their proposed CAD 
system trained with topographic maps from only right eye. 
Having a trained network to detect KCN versus normal from 
topographic maps in both eye sides is a more complicated and 
challenging classification task than having maps that belong 
to one eye side, as KCN characteristics and features in the 
four topographic maps for one side are different from that 
of the other side, such as skewing angle of the bowtie shape.

Table 8 displays a comparison with the previous lit-
erature for KCN detection with deep learning applied to 
corneal topographic maps. It is noteworthy to mention that 
the comparison is made for illustrative purposes, since 
each study utilized different image database and different 
type of device to obtain the corneal maps.

The sample size in the current study was limited to 534 
cases (with augmentation) of both left and right eyes. This 
number is still small despite being larger than previous 
studies for KCN detection with machine learning (40 right 
eye cases only) [11]. The proposed EDTL was evaluated 
with SqN, AN, SfN, and MN. Other DL network designs 
such as Capsule network proposed in Sabour et al. [45] and 
VGG [44] can also be explored in a future study.

Future work will focus on recruiting more sample size 
for different grades of KCN (mild, moderate, and severe 
KCN) and classify them with pretrained transfer learning 

networks. Graphical User Interface (GUI)-based standalone 
application can be developed that accepts an input of the 
four corneal topographic maps and PI. Then, decide if the 
case has a KCN or not, based on the proposed method, with 
a confidence level calculated from averaging the output 
probabilities of all maps/indices.

Conclusion

This study proposed EDTL method based on the corneal 
topographic maps and Pentacam index classifiers to give a 
decision supporting ophthalmologist’s diagnosis and rais-
ing the confidence of the KCN detection. Four pretrained 
transfer learning networks were investigated, SqN, AN, SqN, 
and MN. An improved accuracy of 98.3% was obtained with 
AN with only two refractive maps: SAG and EB and PI clas-
sifiers. It should be noted that the accuracy of the proposed 
EDTL method was achieved without the aid of any other 
imaging modalities, slit lamp, or OCT. The outcome of this 
study can help in potential deployment of clinical CAD sys-
tem for KCN detection that aids ophthalmologists for better 
KCN diagnosis and management.
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Table 8  Comparison to the previous literature on KCN detection from corneal topographic images

CV cross-validation
*SyntEyes and SyntEyes KTC [43] models

Study Device name Dataset/number of maps Evaluation method Network used Accuracy

Lavric and Valentin [24] Synthetic maps SyntEyes and SyntEyes 
KTC models/1 map

Training/validation/testing KeratoDetect 99.3%

Zéboulon et al.[42] Orbscan 3000 cases/4 maps Ten-fold CV CNN 99.3%
Kamiya et al. [31] CASIA 543 cases/6 maps Five-fold CV ResNet-18 99%
Kuo et al. [44] Tomy TMS-4

Topographer
354 cases/1 map Training, test, and subclinical test VGG16

InceptionV3
ResNet152

931%
93.1%
95.8%

This study Pentacam 534 cases/4 maps Training/validation/testing EDTL with AlexNet 
and product fusion

98.3%
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