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Abstract

Stochastic neural networks (SNNs) are currently topical,
with several paradigms being actively investigated including
dropout, Bayesian neural networks, variational information
bottleneck (VIB) and noise regularized learning. These neural
network variants impact several major considerations, includ-
ing generalization, network compression, robustness against
adversarial attack and label noise, and model calibration. How-
ever, many existing networks are complicated and expensive
to train, and/or only address one or two of these practical con-
siderations. In this paper we propose a simple and effective
stochastic neural network (SE-SNN) architecture for discrimi-
native learning by directly modeling activation uncertainty and
encouraging high activation variability. Compared to existing
SNNs, our SE-SNN is simpler to implement and faster to train,
and produces state of the art results on network compression
by pruning, adversarial defense, learning with label noise, and
model calibration.

Introduction
Stochastic neural networks (SNNs) have a long history. Re-
cently various stochastic neural network instantiations have
been topical in their applications to reducing overfitting (Gal
and Ghahramani 2016; Neelakantan et al. 2016) and training
data requirements (Garnelo et al. 2018), providing confi-
dence estimates on predictions (Gal and Ghahramani 2016),
enabling network compression (Dai et al. 2018), improving
robustness to adversarial attack (Alemi et al. 2017), improv-
ing optimization (Neelakantan et al. 2016), generative model-
ing (Kingma and Welling 2014), and inputting or producing
probability distributions (de Bie, Peyré, and Cuturi 2019;
Frogner, Mirzazadeh, and Solomon 2019).

One of the most theoretically appealing stochastic neural
network formulations is Bayesian neural networks, which
place a prior distribution on the network weights (Graves
2011; Blundell et al. 2015; Ritter, Botev, and Barber 2018).
However this usually leads to more complex learning and
inference procedures that rely on variational approximations
or sampling. Another line of work instead focuses on mod-
eling uncertainty in neural network activations. Notably the
variational information bottleneck (VIB) (Alemi et al. 2017)
is motivated by information theoretic considerations (Tishby,
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Pereira, and Bialek 1999) to learn a hidden representation that
carries maximum information about the output and minimum
information about the input. Evaluating the required mutual
information terms requires modeling probability distributions
over activations rather than weights. Deep VIB (Alemi et al.
2017) leads to improved generalization, adversarial robust-
ness and model compression algorithms (Dai et al. 2018).
Furthermore, modeling noisy stochastic activations is often
practically useful for improving exploration and local minima
escape during optimization, generalization and adversarial
robustness (You et al. 2019; Noh et al. 2017; Bishop 1995;
Gulcehre et al. 2016), and in some cases can be linked back
to Bayesian neural nets (Noh et al. 2017; Gal and Ghahra-
mani 2016) when the noise added at each activation can be
considered as a result of sampling from the weight posterior.

In this paper we propose a simple and effective stochastic
neural network (SE-SNN) that models activation uncertainty
through predicting a Gaussian mean and variance at each
layer, which is then sampled during the forward pass. This is
similar to the strategy used to model activation distributions
in VAE (Kingma and Welling 2014) and VIB (Alemi et al.
2017). Differently, we then place a non-informative prior on
the activation distribution and derive an activation regular-
izer that encourages high activation variability via preferring
high-entropy activations. In conjunction with a discriminative
learning loss, this means that the network is optimized for
activation patterns that have high uncertainty while simul-
taneously being predictive of the target label. The interplay
between these two objectives leads to several appealing ca-
pabilities in pruning, adversarial defense, learning with label
noise, and improving model calibration. Pruning: Pruning
aims to reduce the number of parameters in neural networks
(NNs) while maintaining accuracy. Simultaneously optimiz-
ing for high per-activation variability/uncertainty and predic-
tive accuracy leads to the network packing more entropy into
the least significant neurons – so that the most crucial neurons
are free to operate unperturbed. This leads to a simple pruning
criterion based on each neuron’s entropy value. Adversarial
defense: Adversarial defense methods aim to increase NNs
resilience to adversarial attack. By optimizing for both per-
activation uncertainty and the network’s predictive accuracy,
a representation-level data augmentation policy is trained that
perturbs the internal features during training for increased
robustness (Alemi et al. 2017; You et al. 2019). Label noise:



Label noise is common in real-world datasets and tends to
reduce learning performance. With SE-SNN, per-activation
uncertainty can be easily aggregated to produce per-instance
uncertainty. By optimizing for per-instance uncertainty and
predictive accuracy, the network allocates the uncertainty the
representation of the hard-to-classify instances so as to down-
weight their influence on parameter learning. Calibration:
In real-world decision-making, trustworthiness in the form
of correctly calibrated confidence estimates, is often more
critical than high accuracy – e.g., if the network is likely to
make a mistake on a given instance, the decision can be dele-
gated to a human. During inference, per-instance uncertainty
can be considered as an indicator of confidence, and provide
improved temperature scaling (Guo et al. 2017) to reduce
calibration error.

To summarize, our contributions are: (1) A new simple
yet effective stochastic neural network formulation. (2) We
show that our SE-SNN has connections to VIB (Alemi et al.
2017), Dropout (Srivastava et al. 2014) and non-informative
activation priors while being simpler to implement and faster
to train, as well as impactful on a wider range of practical
problems. (3) Comprehensive evaluations show excellent per-
formance on pruning-based model compression, adversarial
defense, label noise robust learning, and model calibration.

Related Work
Connection to VIB and Sparse VD Though we derive
our max-entropy regularizer from the perspective of a non-
informative activation prior, our work is closely related to
VIB (Alemi et al. 2017) and sparse variational dropout (VD)
(Molchanov, Ashukha, and Vetrov 2017), despite their dif-
ferent perspectives. Specifically, if we replace our infinite-
variance Gaussian with a standard Gaussian, it becomes VIB
(see Eq. 17 in (Alemi et al. 2017)). The max-entropy regu-
larizer is also linked to Eq. 14 in Sparse VD (Molchanov,
Ashukha, and Vetrov 2017), which also encourages large vari-
ance/entropy (at a different rate). But Sparse VD (Molchanov,
Ashukha, and Vetrov 2017) is derived with a completely dif-
ferent motivation: It has an intuitive explanation that the
regularizer corresponds to a sparsity prior on the weights.
We note that enforcing uncertainty on activations rather than
weights has a number of advantages: (i) The weight prior is
intractable analytically, which leads to the fact that Sparse
VD regularization is itself an approximation. (ii) Deriving the
regularizer from a weight prior is unnecessarily complicated
for the purpose of sparsifying the model. In contrast, our
approach sidesteps the need to sample weights and avoids
keeping multiple copies of the network, which can potentially
improve efficiency (e.g., in memory usage).

Stochastic layers have been used in several other works in
order to achieve better classification or regression accuracy.
(Kingma, Salimans, and Welling 2015) proposes a generaliza-
tion of Gaussian dropout where the dropout rates are learned,
leading to higher classification accuracy. Natural-parameter
networks (NPN) (Wang, Xingjian, and Yeung 2016) is a
class of probabilistic neural networks where the input, target
output, weights, and neurons can all be modeled by arbi-
trary exponential-family distributions (e.g., Poisson distribu-

tions for word counts) instead of being limited to Gaussian
distributions, in order to help classification, regression, and
representation learning tasks. To reduce computational cost,
(Postels et al. 2019) approximates uncertainty estimates using
a sampling-free approach and obtains better results on classi-
fication and regression tasks. Comparing to these, SE-SNN
is again simpler and has wider-reaching impact.
Network Compression Network compression based on
pruning typically uses heuristics based on pruning low-
importance weights or low-activation neurons (Molchanov
et al. 2017; Wen et al. 2016), often assisted by sparsity-
enhancing priors such as lasso (Wen et al. 2016), log-
uniform (Neklyudov et al. 2017), Jefferys and horse-
shoe (Louizos, Ullrich, and Welling 2017). `0 (Louizos,
Welling, and Kingma 2018) and `1 (Liu et al. 2017) norm-
based regularizers get similar pruning effects. We avoid the
complication of Bayesian learning of weights by proposing a
simpler and direct activation prior that predisposes neurons
towards deactivation unless necessary to solve the supervised
task.
Adversarial Defense Our method is related to existing
randomization-based defense methods (Liu et al. 2018a; Xie
et al. 2018; Alemi et al. 2017; Ye and Zhu 2018; Liu et al.
2019). However unlike these studies which use a fixed dis-
tribution for noise (Liu et al. 2018a; Alemi et al. 2017), a
learned model distribution for effective randomization (Liu
et al. 2019), image perturbations (Xie et al. 2018) or a learned
adversarial data-generating distribution (Ye and Zhu 2018),
our randomization-based defense is both learned, and data-
dependent since the variance at each layer is generated based
on the output of the previous layer. The most relevant work to
ours is RSE (Liu et al. 2018b), which adds Gaussian noise lay-
ers to the NN to thwart gradient-based attacks. However, RSE
uses a fixed constant noise variance. We introduce learned
and data-dependent noise, which leads to improved perfor-
mance.
Label Noise Robustness A number of existing label noise-
robust deep learning approaches require a subset of noisy data
to be reliably re-annotated (cleaned) to verify which samples
contain noise (Lee et al. 2017; Jiang et al. 2018). In contrast,
some others, similar to our SE-SNN, do not rely on additional
human noise annotation. These methods address label noise
by either iterative label correction via bootstrapping (Reed
et al. 2015), adding additional layers on top of a softmax
classification layer to estimate the noise pattern (Sukhbaatar
et al. 2015; Goldberger and Ben-Reuven 2017), or loss cor-
relation (Patrini et al. 2017). By allocating large uncertainty
to outlying samples, our SE-SNN offers an effective solution
to learning with label noise. This approach to label noise
robustness is appealingly simple in that it requires neither
explicit detection of noisy samples, nor additional annotation.
It is worth noting that label noise robustness has been largely
ignored by existing SNNs such as VIB (Alemi et al. 2017)
and sparse VD (Molchanov, Ashukha, and Vetrov 2017).
Calibration Modern neural networks for classification of-
ten suffer from poor calibration (Guo et al. 2017). I.e., the
probabilities assigned to outputs are not reflective of the ac-
tual accuracy. While regularizers such as label-smoothing
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Figure 1: An illustration of the stochastic learning module in a SE-
SNN. The output of layer l is sampled from the learned distribution
defined by fµ(hl−1) and fσ(hl−1).

(Müller, Kornblith, and Hinton 2019) improve calibration,
they do not outperform calibrating the temperature of the
output softmax based on a validation set (Guo et al. 2017).
Dropout has also been used to model (Gal and Ghahramani
2016) uncertainty and improve predictive log-likelihood and
RMSE. We show that the SE-SNN’s uncertainty estimate
can be leveraged to improve existing model calibration tech-
niques in (Guo et al. 2017; Gal and Ghahramani 2016) .

Methodology
Stochastic Layers We consider a neural network discrim-
inatively trained for a predictive task such as object recogni-
tion. Instead of computing fixed point estimates of feature
vectors, we propose to use stochastic neurons. More specifi-
cally, for an input h, a layer will output a series of univariate
distributions. By sampling from those distributions indepen-
dently, we get a random output z. Finally we apply the non-
linear activation function ψ(·) to z and get the input for the
next layer. In this study, we choose to use Gaussian distribu-
tion with parameterized mean and variance, which has been
popularized by VAE (Kingma and Welling 2014) and VIB
(Alemi et al. 2017) due to the ease of reparameterization.
Formally, for the l-th layer, this forward-pass process can be
written as (omitting neuron index for notation simplicity),

µ(l) = fµ(h(l−1)),

σ(l) = fσ(h(l−1)),

z(l) ∼ N (µ(l), σ2(l)),

h(l) = ψ(z(l)). (1)

The above process is illustrated in Figure 1, where each
standard deviation predictor fσ uses softplus activation
f(x) = log(1 + exp(x)) to ensure positivity.
Supervised Learning Loss We can choose to replace
some or all intermediate layers of a vanilla neural network
with such stochastic layers. For the final layer (i.e., the classi-
fier) we opt for a standard linear layer, and the classification
loss Lcl is the same as that of a vanilla neural network, e.g.,
cross-entropy. Since a Gaussian distribution is fully reparame-
terizable, the network can be trained end-to-end as long as the
sampling process z ∼ N (µ, σ2) is realized by z = µ+ ε · σ
where ε ∼ N (0, 1).
Max-entropy Regularization We place a non-
informative prior on the produced Gaussian (denoted
as N (µ2, σ

2
2)). The non-informative prior is a Gaussian with

arbitrary mean (µ2) and infinite variance (σ2
2). This reflects

the prior that none of neurons is meaningful for predictive
purposes. We minimize the KL divergence of the produced
Gaussian from the prior Gaussian,

min
µ1,σ1

( lim
σ2→∞

KL(N (µ1, σ
2
1)||N (µ2, σ

2
2))) ∀µ2 ∈ R

⇒ min
µ1,σ1

( lim
σ2→∞

(log
σ2
σ1

+
σ2
1 + (µ1 − µ2)2

2σ2
2

− 1

2
)) ∀µ2 ∈ R

⇒ min
σ1

( lim
σ2→∞

(log
σ2
σ1

)) ⇒ min
σ1

(− log σ1). (2)

Eq. 2 suggests that we simply need to maximize the pre-
dicted standard deviation, or equivalently the entropy of the
predicted Gaussian. Thus we call it a max-entropy regular-
izer Ω. It can be easily used in any existing neural network
architecture:

min
θ
− log(σ(h|θ)), (3)

where σ(h|θ) denotes the predicted standard deviation of hid-
den unit h given the neuron uncertainty prediction parameter
θ. For numerical safety, we introduce a margin b in the loss,

min
θ

(b− log(σ(h|θ))+. (4)

This means that the regularization does not punish the model
as long as the entropy is larger than a threshold b. Note that,
this loss design is not absolutely necessary as the increment
for σ shrinks (since the gradient is − 1

σ ) during training, and
thus never reaches infinity with a finite number of updates.
However, one can think of it as an early-stopping mechanism
for this regularization term.

So far we have introduced the stochasticity to the small-
est unit of a network, i.e., a single neuron. To compute the
value of the regularizer over a mini-batch consisting of N
training samples, we need to aggregate the entropy of mul-
tiple neurons and set the margin b on the aggregation. How
to aggregate exactly is task-dependent, and we next provide
some suggestions for the four tasks to be discussed next,
including network pruning, adversarial defense, label noise
defense, and model calibration. Further analysis of the theo-
retical properties of the entropy regulariser are provided in
the supplemental material.
Pruning For network pruning, we aggregate entropy over
samples for each neuron, and then penalize if that neuron’s
aggregated entropy is low. To this end, the regularizer is
formulated as:

Ω(θ) =
1

K

K∑
j=1

(b− 1

N

N∑
i=1

log(σi,j))
+, (5)

where i = 1 . . . N indexes the training samples, and j =
1 . . .K neurons in a layer (i.e., feature channels). This reg-
ularizer aims to make neurons very stochastic, to the point
of compromising their reliability for computing a supervised
learning task. Thus only those neurons that are most useful
for the task get their entropy lowered and thus pay the regular-
ization cost. Less useful neurons get their entropy maximized,
allowing them to be detected and pruned after training.
Label Noise Different from pruning, we aim to identify
uncertain samples. Therefore, we aggregate entropy over neu-
rons for each sample, and prefer high sample-wise entropy,



leading to

Ω(θ) =
1

N

N∑
i=1

(b− 1

K

K∑
j=1

log(σi,j))
+. (6)

With this regularizer, inlier samples pay the entropy cost in
order to produce a clean feature for classification to satisfy the
supervised learning loss. Outlier samples, caused by either
label noise or being out-of-distribution, are anyway hard to
classify; the regularizer naturally inflates their entropy since
doing so does not impact the supervised learning loss. This
high-variance representation in turn reduces their (negative)
impact on network fitting.
Adversarial Defense To defend against adversarial sam-
ples, we aim to inflate entropy over both the neuron- and
sample-axes to produce a highly stochastic model:

Ω(θ) =
1

N

1

K

N∑
i=1

K∑
j=1

(b− log(σi,j))
+. (7)

This looks similar to VIB’s adversarial defense (Alemi et al.
2017), but with the vital difference that our entropy regular-
izer is not restricted to the N (0, 1) prior used in VIB. It can
be seen as learning a layer-wise data augmentation policy,
which turns out to be very useful for adversarial defense in
practice.
Calibration For training an easy-to-calibrate model, we
use the instance-wise entropy regularizer in Eq. 6, which we
expect to assign more variance to instances that are hard to
classify. Recall that SE-SNN produces data-dependent noise
variance σi,j for the i-th sample and j-th neuron, which can
be considered an indicator of confidence. We now link this
to temperature calibration, which is a simple and widely
used method to calibrating modern neural networks (Guo
et al. 2017). Temperature-scaling based calibration uses a
scalar parameter T for all classes to raise the output entropy.
We further exploit our variance estimate to produce better
temperature calibrated confidences pi from logits li as

pi = softmax(li/(T

K∑
j=1

σi,j)). (8)

As per standard temperature calibration (Guo et al. 2017), T
is optimized with respect to validation negative log likelihood.
Neither standard temperature calibration, nor our generaliza-
tion above change the accuracy, since the maximum output of
the softmax is unchanged in both cases. However, SE-SNN
enables better calibration by allowing the temperature scaling
to depend on the per-instance variance, so hard-to-classify
high-variance instances are scaled more strongly.
Training SE-SNN We train SE-SNN using a combination
of the standard cross-entropy Lcl loss and our max-entropy
regularizer Ω as

L = Lcl + ωΩ(θ), (9)

where ω balances the classification loss and max-entropy
regularizer and Ω is defined according to the different appli-
cations as discussed above.

Experiments
Experiments are carried out to evaluate the efficacy of the
proposed framework in four applications: neural network
pruning, adversarial attack defense, learning with label noise,
and model calibration.

Neural Network Pruning

Competitors We follow the architecture/dataset combi-
nations used in most recent neural network pruning stud-
ies, including LeNet-5-Caffe1 network on MNIST (LeCun
1998), VGG-16 (Simonyan and Zisserman 2015) on CI-
FAR10 (Krizhevsky and Hinton 2009) and a variant of VGG–
16 on CIFAR100. Under these settings, the proposed method
is compared with the following contemporary state-of-the-
art methods including Generalized Dropout (GD) (Srini-
vas and Babu 2016), Group Lasso (GL) (Wen et al. 2016),
Sparse Variational Dropout (VD) (Molchanov, Ashukha, and
Vetrov 2017), Structured Bayesian Pruning (SBP) (Neklyu-
dov et al. 2017), Bayesian Compression with Group Normal
Jeffreys Prior (BC-GNJ) and Group Horseshoe Prior (BC-
GHS) (Louizos, Ullrich, and Welling 2017), Sparse L0 Reg-
ularization (L0) and L0 with separate λ for each layer (L0-
sep) (Louizos, Welling, and Kingma 2018), Variational Infor-
mation Bottleneck (VIBNet) (Dai et al. 2018), and Network
Slimming (NS) (Liu et al. 2017).
Evaluation Metrics Following the majority of the existing
evaluations, we monitor the test error while focusing on the
following three compression/complexity metrics: (a) Model
size: The ratio of nonzero weights in the compressed network
versus the original model. (b) FLOPs: The number of floating
point operations required to predict a label from an input
image during test2. (c) Run-time memory footprint: The ratio
of the space for storing hidden feature maps during run-time
in the pruned network versus the original network.
Training While many existing studies remove redundant
weights, we remove redundant neurons during compression.
Therefore, we can use the pipeline proposed in (Molchanov
et al. 2017). Specifically, after training the neural network, an
initial batch pruning stage is followed by a loop of removing
the least important neuron and fine-tuning. Since SE-SNN
is designed to discount unimportant neurons through inflat-
ing their pre-activation variance, we find that the network
achieves this by simultaneously assigning high-variance and
negative mean. As a result, a large portion of redundant neu-
rons never activate their RELU non-linearity. In the initial
batch pruning stage, neuron inactivity thus provides a single-
step pruning criterion before the iterative pruning begins
(and one that is guaranteed not to affect the test accuracy
since these neurons propagate no information). The pruning
then enters the second stage where the least important neu-
ron removal + fine-tuning loop continues until reaching the
target trade-off between accuracy and model compression

1https://github.com/BVLC/caffe/tree/master/examples/mnist
2Following the setting in (Dai et al. 2018), we count each mul-

tiplication as a single FLOP and exclude additions, which is also
consistent with most prior work



Table 1: Compression results on MNIST using LeNet-5-Caffe

Methods Model size (%) FLOPs (Mil) Memory (%) Error (%)

GD (Srinivas and Babu 2016) 1.38 0.250 32.00 1.1
GL (Wen et al. 2016) 23.69 0.201 19.35 1.0
VD (Molchanov, Ashukha, and Vetrov 2017) 9.29 0.660 60.78 1.0
SBP (Neklyudov et al. 2017) 19.66 0.213 21.15 0.9
BC-GNJ (Louizos, Ullrich, and Welling 2017) 0.95 0.283 35.03 1.0
BC-GHS (Louizos, Ullrich, and Welling 2017) 0.64 0.153 22.80 1.0
L0 (Louizos, Welling, and Kingma 2018) 8.92 1.113 85.82 0.9
L0-sep (Louizos, Welling, and Kingma 2018) 1.08 0.389 40.36 1.0
VIBNet (Dai et al. 2018) 0.83 0.094 15.55 1.0

SE-SNN 2.35 0.061 11.08 0.9

Table 2: Compression results on CIFAR10 using VGG16

Methods Model size (%) FLOPs (Mil) Memory (%) Error (%)

BC-GNJ (Louizos, Ullrich, and Welling 2017) 6.57 141.50 81.68 8.6
BC-GHS (Louizos, Ullrich, and Welling 2017) 5.40 121.90 74.82 9.0
VIBNet (Dai et al. 2018) 5.30 70.63 49.57 8.8(8.5)

SE-SNN 2.57 53.61 49.41 8.0

objectives. Since one neuron/channel is removed at each iter-
ation, the accuracy never drops sharply. We set the regularizer
weight ω (Eq. 9) and margin b (Eq. 5) as 0.01 and 4 in all
experiments, respectively.

Testing During testing, only the mean of the learned dis-
tribution is passed between layers. So there are no additional
parameters and inference cost compared to the network’s de-
terministic counterpart. The distribution generation branches
are only used during training to identify redundant neurons.

Results on MNIST The most commonly used benchmark
and architecture is MNIST with LeNet-5-Caffe. We follow
the standard training and testing protocols. The results are
shown in Table 1. It is clear that SE-SNN achieves the best
performance on FLOPs, run-time memory footprint, and test
error. In terms of model size, our model is only comparable
with the state of art. This is because it does not prune the
linear layer as much as other methods. Instead, it focuses on
pruning the convolutional filters, hence the excellent perfor-
mance on FLOPS and memory footprint.

Results on CIFAR10 For CIFAR10, several VGG16 vari-
ants and training protocols have been proposed in differ-
ent works. We use the standard VGG16 architecture but
change the dimension of linear layers from 4096 to 512,
as in (Louizos, Ullrich, and Welling 2017; Dai et al. 2018).
The results in Table 2 compare our method with (Louizos,
Ullrich, and Welling 2017; Dai et al. 2018). The error rate for
VIBNet in parentheses was obtained by further fine-tuning
the pruned architecture. Our model achieves the best perfor-
mance across all the evaluation metrics and error rates.

Results on CIFAR100 We compare with the study in (Liu
et al. 2017), which uses the same VGG16 variant that replaces
two fully connected layers with three convolutional layers.

This architecture improves accuracy at the expense of FLOPs
and memory. The results in Table 3 show that our model
produces the best compression result while maintaining com-
parable accuracy. Note that the 26.2% error rate achieved by
our model is identical to that of the original network. So if
the accuracy drop is used as a compression metric, our model
is as good as any competitor.

Adversarial Defense
Experimental Setting Following (Alemi et al. 2017), we
focus on two types of adversarial attacks: Fast Gradient
Sign (FGS) (Goodfellow, Shlens, and Szegedy 2015) and
an optimization-based attack CW-L2 (Carlini and Wagner
2017; Athalye, Carlini, and Wagner 2018).We evaluate un-
targeted FGS attacks with attack magnitude ε ranging from
0.0 to 0.5 and untargeted CW-L2 attack on models trained
on MNIST. We use a popular architecture including three
FC layers with 1024, 1024 and 256 output neurons respec-
tively. The third FC layer is implemented as a stochastic layer.
We set the regularizer weight and margin as 0.1 and 16, re-
spectively. Results averaged over 20 runs are reported. We
compare against the original (undefended) network, termed
as ‘Baseline’, Deep VIB (Alemi et al. 2017) using the varia-
tional information bottleneck, Bayesian Adversarial Learning
(BAL) (Ye and Zhu 2018) putting a distribution on the adver-
sarial data-generating process, Adv-BNN (Liu et al. 2019)
learning a BNN to incorporate the effective randomness and
using adversarial training to seek the best model distribution,
and RSE (Liu et al. 2018b) adding random noise layer in
the neural network and using the ensemble prediction over
random noises to stabilise the performance. Since our model
is stochastic, we follow the best practice recommended in
(Athalye, Carlini, and Wagner 2018) for attacking stochastic



Table 3: Compression results on CIFAR100 using a VGG16 variant

Methods Model size (%) FLOPs (Mil) Memory (%) Error (%)

NS-Single (Liu et al. 2017) 24.90 250.50 - 26.5
NS-Best (Liu et al. 2017) 20.80 214.80 - 26.0
VIBNet (Dai et al. 2018) 15.08 203.10 73.80 25.9(25.7)

SE-SNN 14.93 181.31 70.16 26.2
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Figure 2: Adversarial defense accuracy (mean + standard deviation) under untargeted FGS and CW attacks on MNIST

models: We compute the expected gradient over multiple
stochastic samples for each input when constructing attacks.
This is because using the expected gradient over multiple
posterior samples produces a better gradient estimator for
the attacker, allowing it to generate samples that are much
harder to defend against (Athalye, Carlini, and Wagner 2018).
For the FGS attack, we evaluate two settings, namely normal
training and adversarial training, the latter of which gener-
ates and uses FGS attack samples during training to increase
adversarial robustness.

Results From the comparative results shown in Figure 2(a),
we can see that our SE-SNN outperforms the competing de-
fense methods over a range of FGS attack strengths when
trained with adversarial attack samples (Figure 2(a)(R)) or
with only normal samples (Figure 2(a)(L)). The advantage of
SE-SNN is particularly pronounced when the attack magni-
tude is large. We can also see from Figure 2(b) that under the
stronger CW attacks the Baseline now fails completely. In this
case SE-SNN provides the most effective defense. It is worth
pointing out that, unlike BAL (Ye and Zhu 2018), which
learns their models with explicit adversarial sampling, our
SE-SNN can also work with training with only normal sam-
ples - Figure 2(a) suggests that our SE-SNN beats BAL even
without being trained with adversarial attack samples (com-
paring SE-SNN in Figure 2(a)(L) to BAL in Figure 2(a)(R)).
It is noteworthy that though RSE provides strong defense
against CW attacks, it performs very poorly on FGS. We
attribute this to the fact that their fixed variance parameter
is hand picked for CW. We tried re-tuning their σ for FGS,
but failed. In contrast, our SE-SNN’s ability to learn the
variance σ leads to good performance against both attacks,
and our regularizer hyperparameters ω, β are fixed across all
adversarial experiments, without the need for re-tuning for
different attacks. More results on CIFAR10 with ResNet-18
are shown in the supplementary materials.

Robustness against Label Noise
Experimental Setting The label noise robustness of our
SE-SNN is evaluated on digit recognition using MNIST. We
consider patterned label noise which is more common in prac-
tice. Specifically, one class label will be flipped to a different
one at a strength p. The flipping pattern is fixed for each run
but varies across different runs following (Hendrycks et al.
2018). For the network architecture, we follow (Patrini et al.
2017) to train a neural network with two FC layers of dimen-
sion 128, where both FC layers are implemented as stochastic
layers. Due to the randomness of noisy samples in selection
and label reassignment, multiple runs of experiments are
conducted.
Competitors Baseline: This is the original network with-
out adding our stochastic layers. Bootstrap hard and Boot-
strap soft (Reed et al. 2015): Both iteratively use the model-
predicted labels to refine the original labels that are poten-
tially corrupted by noise. They differ in whether the updated
label is binary or continuous. Forward Correction (Patrini
et al. 2017): This model predicts the label corruption ma-
trix (capturing the label flipping pattern) by first training a
classifier on the noisy labels followed by corruption matrix
estimation using the resulting softmax probabilities. The es-
timated matrix is then employed to regularize the retraining
of the model. We stick to the original setting, which uses the
argmax at the 97th percentile of softmax probabilities for
label noise detection. Note that unlike the competitors, our
SE-SNN does not have any additional steps to refine the label
or prune the training samples. Having said that, it can be eas-
ily combined with a label refinement procedure such as the
corruption matrix based one in Forward Correction (Patrini
et al. 2017).
Results The results are shown in Figure 3. We can see that
even without any label correction/refinement procedure, our
SE-SNN is already very competitive – it is only beaten by
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Figure 3: Label noise results on MNIST

100 101 102 103

The number of drawn samples

0.5

1.0

1.5

EC
E(

%
)

Temp. ResNet
Temp. Drop ResNet

Temp. ResNet-SNN
SW Temp. ResNet-SNN

Figure 4: Calibration Results with ResNet on CIFAR-100

Table 4: ECE (%) with 15 bins on ResNet-110 (ResNet), Wide-ResNet-16-2(WRN), and their corresponding SE-SNN version
(e.g., Res-SNN for ResNet) with temperature scaling (Temp.), temperature scaling of dropout (Temp. Drop) in (Gal and
Ghahramani 2016), and sample-wise temperature scaling (SW Temp.) using the per-sample variance learned by SE-SNN.

Dataset CIFAR-10 CIFAR-100

Model ResNet Res-SNN WRN WRN-SNN ResNet Res-SNN WRN WRN-SNN

Temp. 1.39 1.07 0.90 0.79 1.89 1.43 2.49 1.86
Temp. Drop 1.09 - 0.72 - 1.13 - 2.03 -
SW Temp. - 0.90 - 0.39 - 0.93 - 1.64

Forward Correction when the corruption strength (percent-
age of samples with label noise) is large (> 0.2). Once our
SE-SNN is combined with the same procedure adopted by
Forward Correction (SE-SNN+Forward), we achieve the best
result.

In the supplementary material, we present the results in
a more realistic problem to show the effectiveness of our
model.

Calibration
Experimental Setting Following the architecture and
dataset used in (Guo et al. 2017), we train ResNet-110 and
Wide-ResNet-16-2 on CIFAR-10 and CIFAR-100. For SE-
SNN, a stochastic layer is added before the classification
layer in these two neural networks respectively. Expected
Calibration Error (ECE) (Naeini, Cooper, and Hauskrecht
2015) is the widely-used evaluation matrix to measure the
calibration error. ECE approximates the difference in ex-
pectation between confidence and accuracy by partitioning
predictions intoK equally-spaced bins and taking a weighted
average of the bins’ difference between accuracy and confi-
dence. Specifically, ECE computes:

ECE =

K∑
k=1

|Bk|
n
|acc(Bk)− conf(Bk)|, (10)

where n is the number of samples, Bk denotes the set of sam-
ples in bin k. acc and conf respectively denote the average
accuracy and confidence (e.g., Eq. 8) of items in the specified
bin.
Results Using SE-SNN we can draw multiple samples
from the distribution corresponding to a single input, and

use these to produce an average softmax result for prediction.
The ability to average over multiple samples should lead to
an improved calibration (as per other approaches to Bayesian
neural networks (Gal and Ghahramani 2016), which is de-
noted as ‘Temp. Drop’.), even before using our novel sample-
wise temperature scaling strategy in Eq 8. Fig. 4 shows the
ECE result for ResNet-110 on CIFAR100 as a function of
the number of samples drawn. It can be seen that, as a func-
tion of the number of samples drawn to estimate probability
posterior pi, performance stabilizes after 10 samples. Table 4
summarizes the results for CIFAR-10/100 using ResNet-110
and WideResNet WRN-16-2 and 100 samples. We can see
that: (1) Temperature scaled ResNet-SNN improves perfor-
mance compared to temperature scaled vanilla ResNet. (2)
Our sample-wise temperature scaling (‘SW Temp’) further
improves performance compared to vanilla temperature scal-
ing, reducing the calibration error by 12-50% relatively to
vanilla temperature scaling. (3) Our method is clearly more
effective than the dropout temperature scaling based one in
(Gal and Ghahramani 2016) (‘SW Temp’ vs. ‘Temp. Drop’).

Further analysis are shown in supplementary materials.

Conclusion

We proposed a simple and effective stochastic neural net-
work framework. Our model is related to VIB and variational
dropout, but provides a simpler and more direct realization
via neuron regularization by a non-informative activation
prior. Our extensive experiments show that this simple frame-
work has diverse benefits for network pruning, adversarial
defense, label noise robust learning, and model calibration.



References
Alemi, A. A.; Fischer, I.; Dillon, J. V.; and Murphy, K. 2017.
Deep variational information bottleneck. In ICLR.
Athalye, A.; Carlini, N.; and Wagner, D. 2018. Obfuscated
Gradients Give a False Sense of Security: Circumventing
Defenses to Adversarial Examples. In ICML.
Bishop, C. M. 1995. Training with Noise is Equivalent to
Tikhonov Regularization. Neural Computation 7(1): 108–
116.
Blundell, C.; Cornebise, J.; Kavukcuoglu, K.; and Wierstra,
D. 2015. Weight Uncertainty in Neural Networks. In ICML.
Carlini, N.; and Wagner, D. 2017. Towards evaluating the
robustness of neural networks. In IEEESSP.
Dai, B.; Zhu, C.; Guo, B.; and Wipf, D. 2018. Compressing
Neural Networks using the Variational Information Bottle-
neck. In ICML.
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