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Abstract. OCTA imaging is an emerging modality for the discovery
of retinal biomarkers in systemic disease. Several studies have already
shown the potential of deep learning algorithms in the medical domain.
However, they generally require large amount of manually graded images
which may not always be available. In our study, we aim to investigate
whether transfer learning can help in identifying patient status from a rel-
atively small dataset. Additionally, we explore if data augmentation may
help in improving our classification accuracy. Finally, for the first time,
we propose a validation of our model on OCTA images acquired with a
different device. OCTA scans from three different groups of participants
were analysed: diabetic with and without retinopathy (DR and NoDR,
respectively) and healthy subjects. We used the convolutional neural net-
work architecture VGG16 and achieved 83.29% accuracy when classifying
DR, NoDR and Controls. Our results demonstrate how transfer learn-
ing enables fairly accurate OCTA scan classification and augmentation
based on geometric transformations helps in improving the classification
accuracy further. Finally, we show how our model maintains consistent
performance across OCTA imaging devices, without any re-training.

Keywords: Optical coherence tomography angiography - Transfer
learning - OCTA devices - Diabetic retinopathy

1 Introduction

There is an estimated number of more than 20 million people in the UK suffering
from at least one long-term condition [19]. If the current trend continues, this
figure is projected to increase by more than 20% in the next 5 years [5]. The
result of the surge would be to further aggravate the economic, social and hu-
man burden on the National Health Service (NHS) [19]. Some of these long-term
conditions could be mitigated if early detection was in place to encourage pre-
vention methods such as changes in lifestyle and diet. Hence, there is a need for
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the discovery of biomarkers in the early stages of disease and therefore the lat-
est Artificial Intelligence (AI) technologies could be utilised for identification of
people who can benefit from preventative therapies, improve patients outcomes
and reduce costs if implemented in clinical practice.

A potential source for disease biomarkers are the changes in microvasculature
which have been linked to multiple pathological conditions like diabetes, chronic
kidney disease (CKD) and Alzheimer’s disease. In particular, the only place in
the human body where it is possible to observe the blood vessels in a non-invasive
manner with a simple instrument is the retina [19]. A number of recent studies
have identified the potential of retinal imaging as a tool for early detection
of systemic disease [28]. Indeed, the changes in retinal microvasculature which
can be detected on the scans are indicators not only of eye disease, but also
for disease of the body. Diabetic retinopathy (DR), neurodegenerative disease,
cardiovascular disease and CKD are some of the diseases which have been found
to leave a footprint on the retina, often prior to the development of clinically
identifiable symptoms [19, 3, 10]. Hence, focusing on the information provided by
structural changes in retinal blood vessels can be useful for early diagnosis and
better medical treatment. In this work we focus on DR, a diabetes complication
that may cause vision loss to the patient.

Optical coherence tomography angiography (OCTA) has emerged recently
in the retina imaging domain with the advantage of being a non-invasive and
rapid imaging modality. It provides in vivo scans of multiple layers of the retina
and an insight into the microvasculature by constructing a map of the blood
flow. Quantifiable features can be extracted from the OCTA images which are
valuable biomarkers for various disease. Studies have identified the usefulness of
candidate biomarkers for distinguishing between healthy and DR eyes. Examples
include foveal avascular zone (FAZ) area, FAZ contour irregularity [13,25], ves-
sel caliber, fractal dimension, tortuosity, density and geometric features of the
vascular network [1, 14, 2, 22]. Moreover, vessel density has been useful for iden-
tifying CKD [27] and both vessel density and perfusion density for Alzheimer’s
disease [31,30]. Example of Controls, DR and NoDR images are provided in
Figure 1, where the NoDR label refers to diabetic patients without retinopathy.

(a) Control image (c) DR image

Fig.1: OCTA scans from Control, DR and NoDR patients
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Deep learning as a subfield of machine learning has shown remarkable results
in image classification tasks. The main advantage of deep learning models is that
hand-crafted features are not required. In fact, features are extracted automat-
ically in the process, saving time from doing feature engineering and removing
the need for identifying disease biomarkers in advance. However, such systems
require large amounts of labeled data for training. As a new imaging modal-
ity, OCTA datasets are usually small in size. Therefore, an approach known as
transfer learning has been adopted, which has been established to have strong
performance, especially when dealing with domains with limited data [24, 32, 9].

Machine learning methods have shown promising results in the quest to im-
prove medical evaluations and patient outcomes. However, these models some-
times fail to replicate their results in real world clinical settings [4], where in-
teroperator variability and data quality issues are more common than in highly
controlled laboratory environments. In particular, the OCTA technology is based
on proprietary algorithms and no standard has emerged yet for image generation,
and as such different manufacturers of OCTA devices exploit different algorithms
[6]. As a result, the various OCTA devices on the market differ in quality, resolu-
tion and size of the images they generate. Moreover, even images collected with
the same device may present shifts in their distribution, due to interoperator
variability or cooperation of patients during the examination [20,12]. Hence, a
validation of the generalisation ability of the model is required to verify clinical
robustness and reliability [21].

In this study we investigate the feasibility of using deep learning for deter-
mining patient status in DR, a disease with a known vascular footprint, using
a small cross-sectional dataset of OCTA images. First, we investigated whether
transfer learning can address the issue related to the limited size of our dataset
and achieve competitive performance in disease classification. Secondly, we ex-
plored if geometric transformations improve classification performance. Thirdly,
we validated our model on a dataset from a different OCTA device to test its
robustness. Novel contributions of this study are the ability to independently
classify diabetic eyes with and without retinopathy and the validation of the
consistency in the classification accuracy of our model on a dataset composed of
OCTA images collected with a different imaging device.

2 Methods

2.1 Datasets and imaging devices

The first dataset in the study, NHS Lothian, consists of three groups: diabetic
with and without retinopathy (13 DR an 13 NoDR, respectively) and 31 age- and
gender-matched healthy subjects (Controls). From each patient we considered
both left and right eye whenever available, in order to increase the size of the
dataset. Therefore, a total of 51 images from diabetic participants (26 DR and
25 NoDR) and 56 Control images were analysed. The scans were captured by a
commercial Optovue RTVue XR Avanti system (Optovue Inc., Fremont, CA).
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In this study, only images of the superficial layer with 3 x 3 field of view (FOV)
and 304 x 304 pixel resolution were analysed.

The second dataset used is a publicly available dataset of OCTA images, OC-
TAGON [8]. The dataset consists of 144 healthy and 69 diabetic OCTA images,
captured using the DRI OCT Triton system (Topcon Corp, Tokyo, Japan). As
in the previous analysis we used images of 3 x 3 FOV superficial depth level with
320 x 320 pixel resolution of 36 controls and 19 diabetic subjects. Scans of both
eyes of the patients were used whenever they were available.

2.2 Data augmentation and transfer learning

Several studies have shown the effectiveness of deep learning architectures on
imaging tasks. However, these networks usually require a large amount of la-
beled data to avoid overfitting. In our work, we are dealing with particularly
small datasets. A possible solution to this problem is data augmentation [26].
Several augmentation techniques are possible, but in our work we focused on
geometric transformations on the input space. For DR classification, we selected
zoom in the range [0.8,1.2] and rotations up to 40° as the most effective trans-
formations. Furthermore, we performed online data augmentation, meaning that
each training batch is augmented at every epoch during training, removing the
constraints on the memory requirements. Performances are then computed by
averaging results from a 5-fold cross-validation. To tackle the issues related to
the limited size of our datasets we used a transfer learning approach: considering
a convolutional neural network trained with a bottom-up approach, after pre-
training with ImageNet we kept the weights of the bottom layers and re-trained
only the last convolutional layers to achieve faster learning. In particular, as in
[15], we fine-tuned the last 7 convolutional layers. As required by VGG16 input
size, images were resized to 224 x 224 pixels. RmsProp optimizer with a starting
learning rate of 1 x 10~° was used to train the model for 200 epochs. Throughout
the study, the metrics used to evaluate the classification performance of the mod-
els are accuracy, sensitivity, specificity and area under the Receiver operating
characteristic (ROC) curve.

3 Results

3.1 Classification of Controls, DR and NoDR patients

Evaluation metrics of the model (with and without augmentation) classifying
Controls, DR and NoDR subjects on NHS Lothian are reported in Table 1.
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Table 1: Table of classification performances in the DR study with standard
error

Controls DR NoDR
Without augm With augm Without augm With augm Without augm With augm
Acc% 75.75+230 83.03+4.45 88.74+220 85.89+3.59 77.58+£4.66 85.89+3.04
Sen % 89.70 £5.46  92.73+3.04 60.76 & 14.27 59.62+ 13.88  32.67+3.00 58.50 +11.17
Spe % 60.73+£2.90 7236 £6.67 95.39+1.82 92.04+3.59 91.37+3.94 96.53 £ 2.02

The average ROC curves obtained with and without data augmentation are
showed in Figure 2. Data augmentation helps in improving the average classifi-
cation accuracy from 78.38% to 83.29%. The effectiveness of transfer learning is
then verified by comparing the model with a new one with the same CNN ar-
chitecture as VGG16, but with random initialisation of the weights. The latter
achieves only 50.00% accuracy.

Cross-Validation ROC of VGG16 - Mean curves Cross-Validation ROC of VGG16 - Mean curves

True Positive Rate
True Positive Rate

% Mean ROC for class 0(AUC = 0.86 + 0.06) /,’, Mean ROC for class 0(AUC = 0.90 + 0.07)
02 Mean ROC for class 1(AUC = 0.83 + 0.21) 0z Mean ROC for class 1(AUC = 0.82 + 0.15)
’ Mean ROC for class 2(AUC = 0.84 + 0.06) Mean ROC for class 2(AUC = 0.94  0.06)
—— Mean ROC for micro-average (AUC = 0.87 = 0.06) —— Mean ROC for micro-average (AUC = 0.90 + 0.07)
--- Chance --- Chance
+ 1 std. dev. e + 1 std. dev.

[ 05 ) 5
False Positive Rate False Positive Rate

(a) Average ROC curve obtained without (b) Average ROC curve obtained with
data augmentation data augmentation

Fig.2: Average ROC curves obtained when classifying Controls, DR and NoDR
patients

3.2 Model validation on OCTAGON dataset

The generalisation ability of the model in classifying OCTA scans from different
devices is tested using the OCTAGON dataset with the following two labels: dia-
betic and Control. For this reason, we classified diabetic patients, combining DR
and NoDR in the same class. We repeated the previous analysis on NHS Lothian
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dataset by combining DR and NoDR in the same class, achieving 87.33% and
84.24% classification accuracy, with and without data augmentation respectively.
Using the model without data augmentation on the OCTAGON dataset, the ac-
curacy drops to 83.64% (Table 2a). Moreover, we test the model pre-trained on
ImageNet and fine-tuned on OCTAGON without data augmentation (Table 3a).

Table 2: Classification statistics (with standard error) obtained classifying Con-
trols vs Diabetes on OCTAGON dataset, using VGG16 pre-trained on ImageNet
and fine-tuned on NHS Lothian

Diabetes Diabetes
Overall Acc % 83.64 +4.74 Overall Acc % 63.64 +=5.75
Sen % 77.50 £7.75 Sen % 43.57 £9.50
Spe % 95.00 £ 4.47 Spe % 100.00 £ 0.00

(a) Model fine-tuned on NHS Lothian  (b) Model fine-tuned on NHS Lothian
without data augmentation with data augmentation

Table 3: Classification statistics (with standard error) obtained classifying Con-
trols vs Diabetes on OCTAGON dataset, using VGG16 pre-trained on ImageNet
and fine-tuned on OCTAGON

Diabetes Diabetes
Overall Acc % 87.27 +4.15 Overall Acc % 90.91 4 3.64
Sen % 75.00 &+ 14.14 Sen % 80.00 = 10.95
Spe % 94.64 + 2.95 Spe % 97.5+2.24

(a) Model fine-tuned on OCTAGON  (b) Model fine-tuned on OCTAGON with
without data augmentation data augmentation

The model trained on NHS Lothian with data augmentation achieves the
classification statistics displayed in Table 2b when classifying Controls vs Dia-
betes on OCTAGON images. Interestingly, we can observe how in this case the
accuracy drops significantly, from 87.33% achieved when classifying Controls vs
Diabetes on NHS Lothian, to 63.64% when performing the same classification
task on OCTAGON data. A possible explanation for this could be that data
augmentation may push the images of NHS Lothian even further from the dis-
tribution of images in OCTAGON and thus worsen the classification accuracy
on the latter dataset.

On the other hand, the model only pre-trained on ImageNet and fine-tuned on
OCTAGON with data augmentation, achieves an accuracy of 90.91%(43.64%),
as showed in Table 3b. In this case, data augmentation helps in improving the
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performance since test images are from the same distribution of the training set,
on which the model was fine-tuned.

4 Discussion and conclusions

In the current study, we investigated the non-invasive detection of DR in OCTA
retinal scans using deep learning. In order to address the limited size of our
datasets, we employed a transfer learning approach. We also verified how our
model can be successfully applied to a different dataset - OCTAGON. In par-
ticular, we achieved 83.29%(+4.31%) accuracy when classifying DR, NoDR and
Controls with data augmentation and pre-training from ImageNet. On the other
hand, if we start to train our model from scratch, giving a random initialisation
to the weights, classification accuracy decreases significantly. For this reason, we
can confidently assert that transfer learning plays a critical role in achieving a
satisfactory classification performance.

Our novel contributions were the ability to independently classify diabetic
eyes with and without retinopathy and the investigation of the consistency in
the classification accuracy of our model on a dataset composed of OCTA images
collected with a different imaging device. In particular, we verified how our
model pre-trained on ImageNet and fine-tuned on NHS Lothian is able to achieve
satisfactory performance in classifying OCTAGON images without re-training.
Model robustness is a fundamental aspect when deploying Al screening tools to
critical settings such as predictive healthcare, where it can essentially be life-
critical [21].

In [15], the authors used transfer learning with VGG16 architecture to detect
DR from OCTA images. They reported an accuracy of 87.28%, using a dataset
of 131 OCTA images, thus achieving a slightly higher accuracy, but with a bigger
dataset than in our work. Other authors have classified DR using fundus images.
They achieved classification accuracy comparable to our study, but using consid-
erably larger datasets. This imaging modality is usually not able to reveal subtle
abnormalities correlated with early DR [15], as we were able when independently
classifying diabetic eyes with and without retinopathy. In particular, Sayres et
al. reported a 88.4% accuracy in DR classification on a dataset of 1,796 reti-
nal fundus images from 1,612 diabetic patients using Inception-V4 architecture
[23]. In [16], the authors achieved a high classification accuracy of 93.49% using
Inception-V3 architecture. They had available 8,816 fundus images from 5,278
patients. Lin et al. used a CNN with 4 convolutional layers and obtained 86.10%
accuracy with a datset of 21,123 fundus photographs [18]. In [17], the authors
used a cross-disease attention network to grade both DR and diabetic macu-
lar edema (DME) by exploring the relationship between the two diseases. Their
method, trained on the 1200 fundus images of Messidor [7] dataset, achieved
92.6% average accuracy over ten folds. Wang et al. [29] employed a network
called Zoom-in-Net to generate attention maps highlighting suspicious regions
and Detecting DR. They achieved 90.5 classifying referable/nonreferable DR on
Messidor. Efforts in the automated classification of DR on the basis of researched
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biomarkers have been suggested in [1], where the authors extracted six quantita-
tive features from the images and used them to train a support vector machine
(SVM) in order to detect DR. In general, statistical learning methods rely on
manual image segmentation, which lacks consistency [11] and could lead to er-
rors, to perform feature extraction. On the other hand, deep learning methods
have the advantage that they can directly process the raw images as input.

From the satisfactory results obtained when applying our model on a different
dataset, we can argue that a deep learning system for automatic detection of
DR, applicable to images collected with any OCTA device, can be achieved.
Limitations of our work are the use of a modest dataset size and the inclusion
of both left and right eye from the same participant as independent samples.
Future works will validate our procedure on larger cohorts and will account for
possible correlations between eyes.

In summary, we were able to verify how transfer learning techniques are useful
to tackle the issue related to the limited size of OCTA datasets and achieve
satisfactory performance when detecting DR and NoDR, how geometric data
augmentation helps in improving the performance further and how our approach
maintains consistent performance across different OCTA devices.
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