THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Strengthening the evidence base for temperature-mediated phenological asynchrony and its impacts

Citation for published version:

Samplonius, J, Atkinson, A, Hassall, C, Keogan, K, Thackeray, SJ, Assmann, J, Burgess, M, Johansson, J, Macphie, K, Pearce-Higgins, J, Simmonds, EG, Varpe, \varnothing, Weir, J, Childs, DZ, Cole, EF, Daunt, F, Hart, T, Lewis, OT, Pettorelli, N, Sheldon, BC \& Phillimore, AAB 2020, 'Strengthening the evidence base for temperature-mediated phenological asynchrony and its impacts', Nature Ecology \& Evolution, vol. 0, 0. https://doi.org/10.1038/s41559-020-01357-0

Digital Object Identifier (DOI):
10.1038/s41559-020-01357-0

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:

Peer reviewed version

Published In:

Nature Ecology \& Evolution

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim. Strengthening the evidence base for temperature-mediated phenological asynchrony and its impacts

Jelmer M. Samplonius ${ }^{1 *}$, Angus Atkinson ${ }^{2}$, Christopher Hassall ${ }^{3}$, Katharine Keogan ${ }^{1,4}$, Stephen J. Thackeray ${ }^{5}$, Jakob J. Assmann ${ }^{6}$, Malcolm D. Burgess ${ }^{7,8}$, Jacob Johansson ${ }^{9}$, Kirsty H. Macphie ${ }^{1}$, James W. Pearce-Higgins ${ }^{10,11}$, Emily G. Simmonds ${ }^{12}$, Øystein Varpe ${ }^{13,14}$, Jamie C. Weir ${ }^{1}$, Dylan Z. Childs ${ }^{15}$, Ella F. Cole ${ }^{16}$, Francis Daunt ${ }^{17}$, Tom Hart ${ }^{16}$, Owen T. Lewis ${ }^{16}$, Nathalie Pettorelli ${ }^{18}$, Ben C. Sheldon ${ }^{16}$, Albert B. Phillimore ${ }^{1}$
${ }^{1}$ Institute for Evolutionary Biology, The University of Edinburgh, Edinburgh, UK
${ }^{2}$ Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL13DH, UK
${ }^{3}$ School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT
${ }^{4}$ Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen, AB11 9DB
${ }^{5}$ Lake Ecosystems Group, UK Centre for Ecology \& Hydrology, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK.
${ }^{6}$ Department of Biology, Aarhus University, Aarhus, Denmark
${ }^{7}$ RSPB Centre for Conservation Science, The Lodge, Sandy, Beds SG19 2DL
${ }^{8}$ Centre for Research in Animal Behaviour, University of Exeter, EX4 4QG
${ }^{9}$ Department of Biology, Department of Biology, Lund University, SE-22362 Lund, Sweden
${ }^{10}$ British Trust for Ornithology, Thetford, Norfolk, IP24 2PU, UK
${ }^{11}$ Conservation Science Group, Department of Zoology, University of Cambridge, David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, UK
${ }^{12}$ Department of Mathematical Sciences and Centre for Biodiversity Dynamics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
${ }^{13}$ University of Bergen, Department of Biological Sciences, 5020 Bergen, Norway
${ }^{14}$ Norwegian Institute for Nature Research, 5006 Bergen, Norway
${ }^{15}$ Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom
${ }^{16}$ Department of Zoology, University of Oxford, UK
${ }^{17}$ UK Centre for Ecology \& Hydrology, Bush Estate, Penicuik EH26 0QB, UK
${ }^{18}$ Institute of Zoology, Zoological Society of London, Regent's Park, London, United Kingdom
*email: jelmersamplonius@gmail.com

Climate warming has caused the seasonal timing of many components of ecological food chains to advance. In the context of trophic interactions the match-mismatch hypothesis (MMH) postulates that differential shifts can lead to phenological asynchrony with negative impacts for consumers. However, at present there has been no consistent analysis of the links between temperature change, phenological asynchrony, and individual-to-population level impacts across taxa, trophic levels and biomes at a global scale. Here, we propose five criteria that all need to be met to demonstrate that temperature-mediated trophic asynchrony poses a growing risk to consumers. We conduct a literature review of 109 papers studying 132 taxa, and find that all five criteria are assessed for only two taxa, with the majority of taxa only having one or two criteria assessed. Crucially, nearly every study was conducted in Europe or North America, and most studies were on terrestrial secondary consumers. We thus lack a robust evidence base from which to draw general conclusions about the risk that climate-mediated trophic asynchrony may pose to populations worldwide.

The shifting seasonal timing of key life history events, such as the budburst of trees, emergence of insects or the migration and breeding times of vertebrates, is one of the three universal ecological responses to climate warming ${ }^{1,2}$ alongside range shifts and reductions in organismal body size ${ }^{3,4}$. Such shifts in phenology have provided some of the earliest and strongest evidence that rising temperatures have left a discernible imprint on the planet's ecosystems ${ }^{5-8}$. For many consumer species, phenological events are timed to coincide with peak abundance of a predictable food resource. However, the strength and direction of the phenological response to temperature frequently differs among species occupying different trophic levels, leading to asynchrony between resource and consumer (box 1). The consequences of such asynchrony were first studied in the early 1900s in the context of trophic interactions between fish larvae and their zooplankton resource. This generated the
classic match-mismatch hypothesis ${ }^{9}$. Fish larvae were found to spawn at a relatively fixed date, but zooplankton phenology was more variable across years, causing annual variation in asynchrony between consumer and resource. The degree of asynchrony (referred to as mismatch by Cushing) was proposed to account for annual fluctuations in fish recruitment to the population ${ }^{9}$. In recent years, the hypothesis that changing temperatures might increase the frequency of costly trophic asynchrony between consumers and their resources has been increasingly discussed ${ }^{10-13}$. The impact of asynchronous phenological interactions on the fates of consumer species was identified as a key uncertainty in the fifth assessment report of the IPCC ${ }^{14}$.

Phenological asynchrony and mismatch are often used interchangeably in the ecological literature, but the meaning of the term "mismatch" is more ambiguous, as it is in some cases used to imply only dissimilar responses of adjacent trophic levels ${ }^{13}$, and in other cases implying negative impacts on the consumer ${ }^{15}$. In this paper we refer to "trophic asynchrony" when the consumer demand does not coincide with the phenology of the resource, and to the match-mismatch hypothesis (MMH) when asynchrony has negative impacts on fitness or populations (box 1). We note that the MMH is normally conceptualised from a unidirectional, bottom-up perspective (i.e., asynchrony leading to detrimental effects on consumers), rather than potential top-down effects upon prey and resources ${ }^{16}$.

Asynchrony has been detected in many study systems ${ }^{7,17,18}$, but to demonstrate negative consequences of asynchrony on the consumer (i.e., the MMH), several conditions need to be met. For trophic asynchrony to be identified as detrimental, the consumer must depend on a short, seasonally-pulsed or ephemeral resource ${ }^{19-25}$, and it should be established whether asynchrony might be an adaptive baseline state ${ }^{26-28}$. Moreover, there should be negative effects of asynchrony on consumer fitness ${ }^{29-34}$. Ultimately, asynchrony becomes of conservation concern when it affects mean demographic parameters and leads to population declines ${ }^{13,35-38}$. Although components of the MMH and consequences for population trends can be identified, these are based on very few and specific study systems.

We therefore lack a general overview of how often trophic asynchrony leads to population declines.

Box 1: Glossary of terms widely used in the study of trophic asynchrony

Phenology: the study of cyclically recurring biological events, such as the seasonal timing of tree leafing, insect hatching, or animal migration and reproduction. In this work, we also use it to refer to the events themselves, as has become the norm in the literature.

Trophic level: the position that an organism occupies in the food chain. Primary consumers are herbivores (e.g., winter moth, caribou), and secondary consumers are omnivores or carnivores (e.g., great tit, herring)

Phenological sensitivity/response: the interannual variation in phenology that relates to interannual variation in a biotic or abiotic cue, for example an advance in breeding in response to temperature.

Phenological/trophic asynchrony: when the seasonal peak in consumer demand for a resource does not coincide with the seasonal peak in availability of that resource.

The match-mismatch hypothesis (MMH): poses that trophic asynchrony has negative consequences for consumer fitness or population size. This is also sometimes referred to as trophic mistiming.

Five criteria for demonstrating risks of temperature-mediated asynchrony

Here, based on ideas that have been widely discussed in the literature and which we outline above, we propose five criteria that must all be met for temperature-mediated phenological asynchrony to be both present, and causing population declines (Table 1): (1) the consumer is highly reliant on a seasonally ephemeral resource; (2) the degree of trophic asynchrony between consumer and resource phenology is increasing over the years (evidenced by time series); (3) increasing trophic asynchrony is due to differing temperature responses of consumer and resource; (4) trophic asynchrony impacts negatively on consumer fitness, and (5) asynchrony impacts negatively on population growth ${ }^{37}$. In Table 1 we identify some of the methods that can be used to test each of these criteria. In the next section we summarise the existing biological evidence for these criteria, with a particular focus on general insights that have emerged from multi-species studies and formal meta-analyses on questions that
are pertinent to the study of the MMH . The five criteria can be seen as a best-practice framework, but we realize that each study system poses unique challenges for studying these criteria. We do not intend for their application to oversimplify the complex study of phenology, nor do we claim that they cover everything that phenological studies need to focus on.

Evidence for phenological asynchrony

Large-scale comparative analyses of phenological responses and formal meta-analyses provide ample evidence that on average spring timings are advancing at mid-high latitudes, and that species vary in their response to temperature ${ }^{8,17,39}$. In two large multi-species analyses based on phenological data from the UK, the phenology of secondary consumers advanced less than primary producers and consumers over the years (criterion 2) ${ }^{17}$ and secondary consumers have a lower phenological sensitivity to temperature (criterion 3$)^{7}$. For marine taxa, the magnitude of phenological advance varied among trophic groups, with phytoplankton, zooplankton and bony fish all more responsive than seabirds ${ }^{40,41}$. However, while large-scale multi-species and multi-population studies provide valuable insights into general trends and patterns of inter- and intra-specific variation in phenological responses, they do not estimate in situ responses for specific trophic interactions, nor do they reveal anything about fitness or population consequences. Of those studies that focus on trophic interactions known to be important to the consumer for a short period (criterion 1) most focus on a single interaction. Such studies have reported increasing asynchrony over the years (criterion 2), for example in great tits, Parus major, and winter moth, Operophtera brumata ${ }^{5,42}$. However, a recent analysis of the phenological time series underpinning 27 species interactions (including but not limited to trophic interactions) found that whilst the degree of asynchrony has changed over the years, the number of cases where asynchrony had increased was roughly balanced by the number of cases where asynchrony had decreased ${ }^{18}$. The same study also found that whilst phenology was responding to
temperature in the ecological systems considered, it was not possible to attribute temporal trends in asynchrony to long-term increases in temperature (criterion 3).

Potential consequences of trophic asynchrony

The most prominent evidence for the MMH comes from intensively-studied wild systems, such as that of the reliance of great tits on winter moth caterpillars to feed their young. For these birds, asynchrony between the timing of peak nestling demand and peak caterpillar biomass has negative consequences for individual fitness and annual mean fitness ${ }^{30,31}$. Meta-analyses of selection estimates in the wild report consistent selection pressures for earlier phenology ${ }^{43,44}$, but directional selection has not become stronger over time ${ }^{44}$. However, meta-analyses addressing selection on phenology have considered only absolute timing, rather than the timing of a consumer relative to its resource ${ }^{10}$, so it is unclear from these studies whether selection on consumers is being driven by asynchrony with resources.

Trophic asynchrony becomes a matter of conservation concern if it impacts negatively on population size (criterion 5$)^{37}$. Two long-term studies of great tits found no evidence of an effect of asynchrony on population size ${ }^{31,45}$, whereas a study of several populations of pied flycatchers Ficedula hypoleuca in the Netherlands reported stronger population declines where caterpillar phenology was earlier ${ }^{36}$. The only multi-species studies on this theme that we are aware of are for birds. One of these studies found that migrant passerines breeding in European forests had declined more than resident and marsh inhabiting species, which the authors attributed to the $M M H^{46}$. The other study found that, across 21 UK bird species, population declines were more pronounced for species that had advanced their breeding phenology least and in species whose annual productivity was most reduced by asynchrony with general insect and plant phenology. ${ }^{47}$ However, support for the MMH was weak and not reflected by declines in breeding success of those species.

Table 1. Criteria of evidence that climate change induced trophic asynchrony is increasing and deleterious for the consumer (the MMH), with a consideration of the data and methods that can be used.

Criterion	Evidence required	Data and Methods
1. An ephemeral	A large proportion of the	A variety of methods for quantifying diet
resource	diet is typically composed	composition exist, including direct observation of contributes a large of a species or food type proportion of the
feeding, gut content dissection, faecal/regurgitate		
consumer's diet	seasonal distribution	dissection, metabarcoding and stable isotope analysis. Requires that relevant aspects (e.g., biomass, abundance) of the favoured resource season and analysis reveals a pulsed intra-year relationship.

2. Asynchrony	Analysis of time-series of
between	consumer and resource
consumer and	phenology, with a test of
resource	whether trends in
phenology is	timing differ and whether
increasing over	this leads to an increase or time
	decrease in asynchrony

3. Variation in
asynchrony is
driven by
interannual
variation in
temperature

4. Asynchrony	A suitable measure of
impacts negatively	consumer fitness
on consumer	decreases with increasing
fitness	asynchrony

Requires a time series that covers a period of temperature change. A large number of phenological time series exist, as recorded by researchers, citizens, herbaria, etc. Statistical analysis of increasing asynchrony is easily achieved by including an interaction between year and species. Inference of whether asynchrony is increasing or decreasing requires inspection of predictions based on estimated elevations and slopes of the modelled relationships for each species ${ }^{18}$.

A variety of methods exist for identifying the time period over which phenology of each species responds to temperature ${ }^{48-51}$. Confidence in attribution can be increased by experiments ${ }^{26}$ or by including year as a term in the model ${ }^{41}$, thereby de-trending the phenology data ${ }^{52}$. Estimating temporal trends in temperature variables is also worthwhile, as differing trends may generate asynchrony ${ }^{53,54}$.

Can be assessed within years (relative fitness) or among years (mean fitness) or both ${ }^{30,31}$. Depending on how asynchrony varies across individuals or years, the relationship between fitness and asynchrony may be a linear decline or a humped relationship. If the former, care may need to be taken to establish causation ${ }^{55}$. Ideally, models should take into account both asynchrony with peak resource and phenological distribution of the resource ${ }^{56,57}$. Studies of impacts on relative fitness are informative regarding selection and opportunities for adaptation, whereas studies on mean fitness may be informative regarding demographic rates ${ }^{13}$

5. Asynchrony	Negative effects of
impacts negatively	asynchrony on fitness (4)
on consumer	that have a negative effect
population size,	on population size/growth, as assessed over multiple
density, or growth	years

Requires long-term data on asynchrony and population size or density. The impact of asynchrony on demographic rates can be incorporated into a population model ${ }^{58}$ or the causal pathways between asynchrony and population growth can be assessed in a structural equation mode ${ }^{59}$. It is important to rule out a causal effect of other variables (e.g., land-use, resource availability, sea ice, range shifts) that could cause populations to change over time ${ }^{24}$. Such confounding effects can partially be accounted for by including year as a term to detrend the analysis ${ }^{41,52}$. An alternative approach involves modelling a population's ability to persist on the basis of demographic and quantitative genetic parameters ${ }^{45,60}$.

Literature survey

We conducted a broad survey $(n=109)$ of published work on the match-mismatch hypothesis (MMH) across terrestrial, marine and freshwater systems with the aim of: (i) examining the evidence for temperature-mediated trophic asynchrony and its impacts and (ii) identifying gaps in the evidence base, thereby allowing us to (iii) make recommendations for priority areas for future work. To this end, we extracted data from published, peer-reviewed original research in which a trophic interaction was studied in relation to any of the five criteria we proposed as vital to the MMH (Table 1). Only original studies, where the specific interaction between consumer and resource could clearly be identified were included (see supplementary information for methodological details).

Taxonomic and geographical bias in the data

The search identified 772 papers, of which the full text was found for 760 . Of these, 571 were not relevant (e.g., no trophic interactions were reported, or none of the five criteria were extractable), and 80 had no extractable data, resulting in a total of 109 papers that had relevant data on 132 consumer taxa (Fig. S2). All but six of the 109 trophic interaction
studies were in Europe or North America (Fig. 1). The majority of trophic interactions were terrestrial (81.5% of the data), with marine (14\%) and freshwater interactions (4.5\%) being scarcer. For most interactions the consumer was a secondary consumer (58\%), with studies of primary (36.5%) or higher than secondary (5.5%) consumers less common. Birds made up the majority of the consumer taxa studied (53%), while 29.5% of taxa were insects, 8% were fish, 5% were mammals and 4% were crustaceans.

Testing the five criteria

The most tested criterion was criterion 1 (97% of interactions, $n=128 / 132$) - relating to dependence on a seasonally pulsed resource (Fig. 2, top panels). However, rather than conducting direct tests on the seasonal distribution of resources, 72% ($n=92 / 128$) of these included only a statement based on a priori knowledge of the natural history of the system that the resource was both ephemeral and important to the consumer.

Of the study systems that were tested for dependence on a seasonally pulsed resource (i.e., where the resource was ephemeral and the consumer was a specialist), 42% ($n=15 / 36$) showed such dependence. Excluding the cases where criterion 1 was not explicitly tested, criterion 2 was the most frequently tested (72% of interactions, $n=95 / 132$), relating to whether phenological asynchrony was increasing over time (Fig. 2, top panels). The remaining criteria were all tested substantially less frequently, with criterion 5 (population consequences) being tested least often (7.6% of interactions, $n=10 / 132$). Surprisingly few studies report data for criterion 3 (Fig. 2, top panels), which relates temperature to asynchrony, and this was almost never reported for marine and freshwater taxa. The distributions of criteria tested were broadly similar across consumer levels and biomes, with the exception of primary consumers for which criteria 3 and 4 appear slightly more common.

Our analysis could identify only two out of 132 consumer taxa for which all five of our criteria have been tested at least once: both of these are forest-breeding passerine birds studied in Europe - the great tit and the pied flycatcher. In a further 13 taxa, four out of five criteria were assessed. In the remaining 117 taxa, three or fewer criteria were studied, with the majority $(58 \%, \mathrm{n}=77 / 132)$ of consumer taxa having only two of the five criteria known (Fig. 2, bottom panels). Breaking this same analysis down to the per study level, no single study explicitly tested all five criteria (Fig. S3). This is generally due to a tendency for studies to focus on either phenology slopes (criteria $2 \& 3$), or the consequences of asynchrony (criteria 4 \& 5). Only a handful of studies detail temporal slopes, temperature slopes, and consequences of asynchrony in one study ${ }^{61-63}$.

Phenology slopes over time and temperature

Consumer and resource responses appear to be positively correlated across studies, with consumers showing a slight tendency to advance their phenology by less than their resource (Fig. 3). In $61 \%(n=58 / 95)$ of the cases, the phenology slope over time was greater for the resource than for the consumer (Fig 3a,b). For the phenological response to temperature, the consumer slope was greater than the resource slope in 59\% ($n=13 / 22$) of cases (Fig $3 c, d$). The degree to which these patterns differ across biomes and trophic levels could not be tested with this dataset, since the number of slope estimates is too low for non-terrestrial and non-secondary consumers. Based on visual inspection, it appears that especially terrestrial secondary consumers tend to be slower-advancing than their resource. However, more data on underrepresented groups would be required to reach robust conclusions about these patterns.

Fitness and demographic consequences

Fitness consequences in relation to trophic asynchrony (criterion 4) are studied in 36% (48/132) of the consumers (Fig. 2, top panels). Consequences of asynchrony for offspring
$(n=44)$ are studied over three times as often as consequences for adults ($n=14$, Fig. 4), though it is possible that this reflects a research bias to study fitness components that are more sensitive to asynchrony. In 29% of consumer taxa ($n=14 / 48$), no negative effect of asynchrony on fitness was reported (Fig. 4). The least studied consequence of trophic asynchrony is its effects on population demography (criterion 5, Fig. 2, 4). In half of these interactions ($n=5 / 10$), no effect of asynchrony was reported.

Discussion

Our literature survey on the ecological impacts of temperature-mediated trophic asynchrony reveals that the full causal chain from temperature change, to temperature-driven shifts in seasonal timing, consumer-resource synchrony, and individual-to-population level impact has rarely been studied. Only two out of 132 taxa were studied for all criteria, and for the majority of study systems, only one or two out of five criteria were met. The available studies were strongly biased toward terrestrial secondary consumers (especially birds) in the Northern Hemisphere (largely Europe and North America). Notably, the effects of climate warming on trophic asynchrony in aquatic systems and in the Southern Hemisphere are understudied ${ }^{64}$, although this could be reflective of the small amount of temperate land mass in the Southern hemisphere. Tropical studies are also under-represented, but this may partly indicate a reduced importance of temperature as a phenological cue in tropical ecosystems ${ }^{8}$. Crucially, demographic consequences of trophic asynchrony are the least studied of the five criteria, despite this knowledge being the most important to conservation.

Bias in the Match-Mismatch Hypothesis evidence base across biomes

Terrestrial systems were by far the most represented of the three environments that we considered, presumably by virtue of the comparative ease of collecting data on both phenology and fitness in these systems. This ease of data collection is evident in the great
contribution that citizen science data collectors have made to the study of terrestrial phenology ${ }^{47,65-68}$, which is rare for aquatic systems. Monitoring phenology of many aquatic organisms is hampered by their wide ranges and underwater habitats ${ }^{69}$, and compounded by the logistic and financial challenges encountered during offshore research. As a result, relatively few multi-decadal phenological time series have been collected at sufficient resolution to capture seasonal changes ${ }^{70,71}$. Moreover, separate sampling programmes are often needed for consumer and resource (e.g., piscivorous birds and their prey) ${ }^{72}$, and even if resources can be quantified, many aquatic organisms are generalist feeders, further adding to the difficulties in quantifying the MMH. Citizen scientists can, however, collect valuable data on the terrestrial stages of aquatic organisms (e.g., dragonflies), or aquatic seasonal events that can be observed from shore (e.g., amphibian spawning, floating algal blooms). Furthermore, with ongoing technological innovation in data collection methodologies, it may become possible to widen the aquatic evidence base for some taxa. For example, radar can be used to quantify aquatic-terrestrial subsidies based on insect emergence, providing detailed measures of the timing and size of resource pulses ${ }^{73}$, and satellite-based observation tools are providing a wide-scale perspective on phytoplankton phenology changes ${ }^{74}$. It would therefore be valuable to consider how diverse data sources, and lines of evidence, can be fruitfully combined to advance our knowledge of the importance of the MMH in aquatic systems.

Despite their overrepresentation in MMH research, even in terrestrial systems there are biases and gaps in the evidence-base that extend beyond the aforementioned geographic biases (Fig 1). Of the terrestrial studies, temperate forest taxa and birds in particular predominate, which is likely due to the fact that seasonality increases with latitude. Temperate forests experience a pronounced seasonal temperature-mediated pulse in resources ${ }^{46}$, and they present particularly suitable study systems to study individual fitness in the wild (e.g., cavity nesting birds). In aquatic systems, individual marking of philopatric seabirds and pinnipeds permits some components of fitness to be monitored ${ }^{75}$, but this is
much harder for underwater organisms ${ }^{76}$. Likewise, for many widely-distributed groups such as fish, invertebrates, and plankton, individuals cannot be sampled repeatedly, and populations can rarely be sampled to the extent that demographic implications of asynchrony can be assessed. On the other hand, invertebrates are more amenable to experimental study ${ }^{32}$, and numerous national surveys of population sizes exist ${ }^{77,78}$ that could be used to infer demographic consequences of trophic asynchrony. Another key research gap in aquatic systems involves the specific role of cross system consumer-resource interactions in mediating trophic asynchrony. For example, some freshwater consumers feed upon terrestrial resources, which represents a substantial source of nutrients ${ }^{79}$. The delivery of at least some of this material is strongly seasonal. Leaf fall, for example, is triggered by photoperiod in conjunction with drought and temperature ${ }^{80}$. Aquatic phenology research would greatly benefit from increased consideration of the synchrony between freshwater consumers and terrestrial resources.

Further challenges in studying the MMH

We recognise that studying these five criteria and improving the evidence base regarding the risks posed by the MMH will not be straightforward and we have already discussed how aquatic environments present particular challenges, but other complexities remain. While criteria 2 and 3 are perhaps the easiest to satisfy, even here challenges exist in attributing a change in phenology/asynchrony to temperature, as sensitivity estimates can be obscured by non-climate drivers or compensatory mechanisms ${ }^{62,81}$. For example, changing nutrient availability and light conditions can influence the seasonal timing of phytoplankton blooms ${ }^{82,83}$, but would not be expected to affect consumer organisms in the same way. In this article we have simplified the interaction between resource and consumer to a single metric, the asynchrony between the peak demand of consumer and availability of the resource. However, as the MMH predicts that consumer fitness relates to resource availability during a particular window ${ }^{9}$, consumers might in addition to asynchrony be
sensitive to the height and width of the resource ${ }^{11,37}$, either of which could be sensitive to temperature and exacerbate or ameliorate effects on fitness. Although the potential for resource abundance to influence fitness is widely acknowledged, it is unusual for studies on the MMH in relation to fitness (criterion 4) or population size (criterion 5) to include its effect ${ }^{56,57}$. We realize that especially criterion 4 may be hard to satisfy for study systems where individuals cannot be studied, which should not discourage people from working on such systems. Whilst fulfilling all the other criteria would allow one to infer whether the mismatch is causing population declines, there are clear advantages of studying individuals within populations. Apart from the fact that such data helps demonstrate causative effects of asynchrony on fitness, it can tell us whether seasonal timing will be under directional selection.

Where the resource is in fact a guild (caterpillars, phytoplankton) rather than a species, temperature-mediated shifts in the aggregate phenology may arise from a variety of processes, from similar plastic responses of different species, to changes in the relative abundance of early- and late-blooming constituent species, even when these species independently might show no or weak phenological shifts ${ }^{84}$. While the effect of asynchrony on the consumer may not be sensitive to these two scenarios, if we want to project phenological changes into the future we need to understand the processes that underpin community phenological responses. An obvious solution to this problem is to improve the species level resolution of sampling ${ }^{85}$, but this can be costly and impractical in the short term, and might require new sampling approaches such as eDNA ${ }^{86}$.

Is trophic asynchrony of conservation concern?

This review reveals a lack of robust evidence for the $M M H$, and even the two best studied taxa in terrestrial systems present a mixed message. In great tits, matching with the caterpillar peak has fitness impacts at both the individual and population level ${ }^{30,31}$, but trophic
asynchrony currently poses no threat to their population persistence ${ }^{31,45}$. Pied flycatchers also perform worse when poorly matched with the caterpillar peak ${ }^{22,87}$, but, in contrast to great tits, declines in asynchronous flycatcher populations have been recorded in the Netherlands ${ }^{36}$. Nevertheless, those pied flycatcher populations have been increasing again since 2002^{88}. Interestingly, pied flycatchers breed about two weeks later than tits ${ }^{89}$, the average nest is rarely matched with the caterpillar peak ${ }^{90}$, and a long-term study in the Netherlands found no correlation between annual mean asynchrony with the caterpillar peak and the strength of the seasonal decline in the number of recruits ${ }^{91}$. Moreover, pied flycatchers are more generalist than tits in the nestling diet ${ }^{92}$, so it remains uncertain to what extent these flycatcher populations will be negatively affected by trophic asynchrony compared to specialists.

It would nevertheless be premature to conclude from this that a relative shortage of evidence for demographic consequences of trophic asynchrony constitutes evidence of absence of an effect. Even in species for which negative population consequences are not yet apparent, such as great tits, it is possible that continued increases in temperature will be problematic. Application of an integral projection model to a UK population of great tits suggested that under a high emission scenario, more rapid responses of the prey species (the winter moth caterpillar) coupled with limits to plasticity in great tit hatch date being reached, lead to an acceleration in directional selection. An increase in evolution of hatch date timing was to an insufficient degree to prevent negative consequences of trophic asynchrony, and the population in that scenario is projected to have an increased risk of extinction ${ }^{93}$. Such demographic approaches should be greatly expanded upon, and provide a unique way to understand which life stages will likely matter from the perspective of pathways leading to shifts in population growth rate and density ${ }^{58}$.

Research Priorities

Based on our five criteria and our review of the literature we identify six priorities for future work to properly test the match-mismatch hypothesis and its impacts.

1. From cause to effect - focusing on population consequences: There is an urgent need for studies that consider the full causal chain, from climate driver to seasonal timing, synchrony, and individual-to-population level impact. In particular, we need many more tests of the impact of asynchrony on population change (criterion 5), across taxa and habitat types. This most important criterion from the perspective of conservation and policy ${ }^{13,37}$ and yet has received the least attention. Furthermore, given that the population impacts of trophic asynchrony at one location may be buffered by matching at another location ${ }^{90}$, we strongly advocate expanding the spatial scale of current research to include multi-population studies. This will allow the consequences of phenological shifts to be interpreted in the context of other universal climate warming responses such as range shifts.
2. Balancing the evidence - data collection and synthesis for aquatic systems: Despite the marine origin of the MMH, current monitoring and research has so far led to a limited understanding of the MMH in marine and freshwater systems, compared to terrestrial habitats. It is imperative for funders to continue to support time series, since with each passing year the statistical power of these to reveal patterns improves. We further recommend for underused historic records, including museum collections and naturalist observations, to be coupled with new work on these systems to create well documented long time series within a matter of years. However, we must also ask how additional monitoring approaches (e.g., eDNA, radar) might be usefully combined with "traditional" monitoring approaches, to expand the species representation, monitoring of individual states and fitness consequences, and spatial coverage of aquatic ecosystem studies, and support a broader understanding of changes in phenological asynchrony (criterion 2) and the role of temperature as a driver (criterion 3) in these systems.
3. Environmental drivers of phenology - beyond temperature: Here, we have addressed phenological asynchrony in relation to temperature (criterion 3), the beststudied driver. However, the environmental drivers of phenology vary geographically. For instance, at lower latitudes seasonally pulsed precipitation is a more important driver of phenology ${ }^{8}$, and at higher latitudes the timing of snow melt is a key mechanism ${ }^{94-99}$. In order to gain a global perspective on the risks posed by climatemediated phenological asynchrony poses there is an urgent need to apply our framework to alternative environmental drivers of phenology.
4. Assessing the risks - global predictions and species traits: We need more studies on trophic asynchrony and its drivers at different latitudes and many more to be conducted outside of Europe and North America (see Fig. 1). As data on the MMH accumulate, a fruitful approach would be to conduct comparative analyses to identify the taxonomic groups, trophic levels, environments and regions where fitness or population impacts of phenological asynchrony (criterion 4 and 5) are most likely. Based on first principles we may expect temperature-mediated asynchrony to be more frequent and deleterious when the consumers are endotherms rather than ectotherms ${ }^{8}$, income rather than capital breeders ${ }^{24,37}$, and at higher latitude regions experiencing the most seasonal climates and the most rapid climate change ${ }^{8}$. However, empirical validation of these predictions is lacking.
5. Observing interactions - enhancing the role of citizen science: Mass participation citizen science has resulted in millions of phenological records that underpin many of the studies quantifying phenological shifts ${ }^{7,17,65,100}$ and can even be used to project weather records into the past ${ }^{101}$. A strength of these schemes is their spatial as well as temporal coverage. In some instances it is possible to identify the phenology of consumer species and their resources from existing datasets ${ }^{102}$, but this requires the assumption that co-occurring species are actually interacting. While using data amassed over larger spatial scales (e.g., via citizen science or remote sensing) is attractive as a means to examining geographic variation in temporal
trends in asynchrony (criterion 2) and temperature sensitivity (criterion 3) or fitness consequences (criteria 4\&5), care is required in matching data at a resolution that is pertinent to the trophic interaction ${ }^{103,104}$. Moreover, we are not aware of any study combining citizen science-derived datasets to study the impacts of asynchrony of specific trophic interactions on population change (criterion 5). Therefore an opportunity exists for development or extensions of citizen science schemes to collect data on the phenology of species interactions across trophic levels and on the fitness and/or population sizes of the consumer.
6. Clarifying the concept - "asynchrony" or "mismatch": There exists a degree of terminological inconsistency in relation to the MMH , which may confuse attempts at achieving a common understanding of the potential importance of this phenomenon. Many studies that claim to address "mismatch" identify the conditions that could lead to greater asynchrony, but stop short of explicitly testing whether asynchrony leads to any negative consequences for the consumer. Where no evidence for negative repercussions is presented we encourage authors to use the term "asynchrony", rather than "mismatch", which implies a negative consequence.

Concluding remarks

Temperature-mediated trophic asynchrony and its consequences are widely discussed in global change research and have been intensively studied over the past two decades. In this study we have presented five criteria that together provide a causal chain to explicitly demonstrate the risk that temperature-mediated asynchrony poses to populations, which we hope will strengthen future work. In an extensive review of the literature we found that no single study and only two study systems have tested all five criteria, with a clear deficit of studies considering the impact of asynchrony on population size, which is the most important criterion from a conservation perspective ${ }^{37}$. This means that at present we cannot state from the literature that temperature-mediated trophic asynchrony will have a widespread negative
impact on consumer population size or growth. We identify six research priorities, which need to be tackled to get a comprehensive understanding of the frequency and magnitude of trophic asynchrony and its impacts on consumers. A more consistent approach to the study of the match-mismatch hypothesis and its population consequences at the global scale will allow us to better target conservation efforts and provide much needed evidence for possible consequences of one of the most intriguing impacts of climate change on global biota: phenological change.

Figure legends

Figure 1. Locations of studies on phenological asynchrony identified by our analysis, subdivided by biome (light blue $=$ freshwater, dark blue $=$ marine, orange $=$ terrestrial) and consumer trophic level (triangles = primary, squares = secondary, circles $=>$ secondary). There is a clear geographical bias of studies, with a considerable overrepresentation of Europe and North America.

Figure 2. Individual criteria tested across taxa (a,b), and the total number of criteria tested per taxon (c, d). The most tested criteria (a, b) were 1 "ephemeral resource" and 2 "phenological change over the years". The total number of criteria tested (c, d) was two out of five for most taxa, and all five criteria were tested for only two out of 132 taxa (c,d). The left panels (a, c) are divided by trophic level, and the right panels by biome (b, d).

Figure 3. Consumer versus resource slopes in relation to year and temperature. Symbol shapes represent consumer trophic level (triangles = primary, squares = secondary, circles = >secondary), colour represents biome (light blue $=$ freshwater, dark blue $=$ marine, , orange $=$ terrestrial) and larger symbols are from longer time series (average 21 years, range 6 to 119 years). The solid diagonal line represents an equal rate of change by consumer and resource. Where the resource slope <0, points above the line represent systems where resource phenology is advancing by more than that of the consumer, whereas points below the line represent systems where consumer phenology is advancing more rapidly than resource phenology. Where resource slope >0, points below the line represent systems where resource phenology is delaying by more than that of the consumer, whereas points above the line represent systems where consumer phenology is delaying more rapidly than resource phenology.

Figure 4. Number of taxa in which consequences of trophic asynchrony were studied, divided into those where the effect reported was negative or neutral (statistically nonsignificant, no positive effect of trophic asynchrony was ever reported for this taxon). Results are clearly biased toward juvenile rather than adult life stages.

References

1. Walther, G., Post, E., Convey, P. \& Menzel, A. Ecological responses to recent climate change. Nature 389-395 (2002).
2. Parmesan, C. \& Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37-42 (2003).
3. Walther, G.-R. Community and ecosystem responses to recent climate change. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365, 2019-2024 (2010).
4. Daufresne, M., Lengfellner, K. \& Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl. Acad. Sci. U. S. A. 106, 12788-93 (2009).
5. Visser, M. E., van Noordwijk, A. J., Tinbergen, J. M. \& Lessells, C. M. Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc. R. Soc. London B Biol. Sci. 265, 1867-1870 (1998).
6. Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637-669 (2006).
7. Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241-245 (2016).
8. Cohen, J. M., Lajeunesse, M. J. \& Rohr, J. R. A global synthesis of animal phenological responses to climate change. Nat. Clim. Chang. 8, 224-228 (2018).
9. Cushing, D. D. H. D. Plankton production and year-class strength in fish populations: an update of the match/mismatch hypothesis. Adv. Mar. Biol. 26, 249-293 (1990).
10. Visser, M. E. \& Both, C. Shifts in phenology due to global climate change: the need for a yardstick. Proc. R. Soc. London B Biol. Sci. 272, 2561-2569 (2005).
11. Durant, J., Hjermann, D., Ottersen, G. \& Stenseth, N. C. Climate and the match or mismatch between predator requirements and resource availability. Clim. Res. 33,

271-283 (2007).
12. Renner, S. S. \& Zohner, C. M. Climate Change and Phenological Mismatch in Trophic Interactions Among Plants, Insects, and Vertebrates. Annu. Rev. Ecol. Evol. Syst. 49, 165-182 (2018).
13. Visser, M. E. \& Gienapp, P. Evolutionary and demographic consequences of phenological mismatches. Nat. Ecol. Evol. 3, 879-885 (2019).
14. IPCC. Climate Change 2014 Part A: Global and Sectoral Aspects. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014).
15. Johansson, J., Kristensen, N. P., Nilsson, J. Å. \& Jonzén, N. The eco-evolutionary consequences of interspecific phenological asynchrony - a theoretical perspective. Oikos 124, 102-112 (2015).
16. Deacy, W. W. et al. Phenological synchronization disrupts trophic interactions between Kodiak brown bears and salmon. Proc. Natl. Acad. Sci. 201705248 (2017) doi:10.1073/pnas. 1705248114.
17. Thackeray, S. J. et al. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob. Chang. Biol. 16, 3304-3313 (2010).
18. Kharouba, H. M. et al. Global shifts in the phenological synchrony of species interactions over recent decades. Proc. Natl. Acad. Sci. 115, 5211-5216 (2018).
19. Willson, M. F. \& Womble, J. N. Vertebrate exploitation of pulsed marine prey: A review and the example of spawning herring. Rev. Fish Biol. Fish. 16, 183-200 (2006).
20. Dunn, P. O., Winkler, D. W., Whittingham, L. A., Hannon, S. J. \& Robertson, R. J. A
test of the mismatch hypothesis: How is timing of reproduction related to food abundance in an aerial insectivore? Ecology 92, 450-61 (2011).
21. Reneerkens, J. et al. Effects of food abundance and early clutch predation on reproductive timing in a high Arctic shorebird exposed to advancements in arthropod abundance. Ecol. Evol. 6, 7375-7386 (2016).
22. Samplonius, J. M., Kappers, E. F., Brands, S. \& Both, C. Phenological mismatch and ontogenetic diet shifts interactively affect offspring condition in a passerine. J. Anim. Ecol. 85, 1255-1264 (2016).
23. Mallord, J. W. et al. Diet flexibility in a declining long-distance migrant may allow it to escape the consequences of phenological mismatch with its caterpillar food supply. Ibis (Lond. 1859). 159, 76-90 (2017).
24. Youngflesh, C. et al. Circumpolar analysis of the Adélie Penguin reveals the importance of environmental variability in phenological mismatch. Ecology 98, 940951 (2017).
25. Varpe, \varnothing. \& Fiksen, \varnothing. Seasonal plankton-fish interactions: Light regime, prey phenology, and herring foraging. Ecology 91, 311-318 (2010).
26. Kharouba, H. M. \& Wolkovich, E. M. Disconnects between ecological theory and data in phenological mismatch research. Nat. Clim. Chang. 10, 406-415 (2020).
27. Visser, M. E., te Marvelde, L. \& Lof, M. E. Adaptive phenological mismatches of birds and their food in a warming world. J. Ornithol. 153, 75-84 (2012).
28. Singer, M. C. \& Parmesan, C. Phenological asynchrony between herbivorous insects and their hosts: Signal of climate change or pre-existing adaptive strategy? Philos. Trans. R. Soc. B Biol. Sci. 365, 3161-3176 (2010).
29. Vatka, E., Orell, M. \& Rytkönen, S. Warming climate advances breeding and improves synchrony of food demand and food availability in a boreal passerine. Glob. Chang.

Biol. 17, 3002-3009 (2011).
30. Reed, T. E., Jenouvrier, S. \& Visser, M. E. Phenological mismatch strongly affects individual fitness but not population demography in a woodland passerine. J. Anim. Ecol. 82, 131-144 (2013).
31. Reed, T. E., Grøtan, V., Jenouvrier, S., Sæther, B.-E. \& Visser, M. E. Population growth in a wild bird is buffered against phenological mismatch. Science 340, 488491 (2013).
32. van Asch, M., Salis, L., Holleman, L. J. M., van Lith, B. \& Visser, M. E. Evolutionary response of the egg hatching date of a herbivorous insect under climate change. Nat. Clim. Chang. 3, 244-248 (2013).
33. Gienapp, P., Reed, T. E. \& Visser, M. E. Why climate change will invariably alter selection pressures on phenology. Proc. R. Soc. B Biol. Sci. 281, 2014161120141611 (2014).
34. Ramakers, J. J. C., Gienapp, P. \& Visser, M. E. Phenological mismatch drives selection on elevation, but not on slope, of breeding time plasticity in a wild songbird. Evolution 73, 175-187 (2019).
35. Winder, M. \& Schindler, D. E. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85, 2100-2106 (2004).
36. Both, C., Bouwhuis, S., Lessells, C. \& Visser, M. E. Climate change and population declines in a long-distance migratory bird. Nature 441, 81-83 (2006).
37. Miller-Rushing, A. J., Høye, T. T., Inouye, D. W. \& Post, E. The effects of phenological mismatches on demography. Philos. Trans. R. Soc. B Biol. Sci. 365, 3177-3186 (2010).
38. Plard, F. et al. Mismatch Between Birth Date and Vegetation Phenology Slows the Demography of Roe Deer. PLoS Biol. 12, 1-8 (2014).
39. Edwards, M. \& Richardson, A. J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430, 881-884 (2004).
40. Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Chang. 3, 919-925 (2013).
41. Keogan, K. et al. Global phenological insensitivity to shifting ocean temperatures among seabirds. Nat. Clim. Chang. 8, 313-317 (2018).
42. Visser, M. E. \& Holleman, L. J. Warmer springs disrupt the synchrony of oak and winter moth phenology. Proc. R. Soc. London B Biol. Sci. 268, 289-294 (2001).
43. Kingsolver, J. G., Diamond, S. E., Siepielski, A. M. \& Carlson, S. M. Synthetic analyses of phenotypic selection in natural populations: Lessons, limitations and future directions. Evol. Ecol. 26, 1101-1118 (2012).
44. Radchuk, V. et al. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10, 1-14 (2019).
45. Vedder, O., Bouwhuis, S. \& Sheldon, B. C. Quantitative assessment of the importance of phenotypic plasticity in adaptation to climate change in wild bird populations. PLoS Biol. 11, e1001605 (2013).
46. Both, C. et al. Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proc. R. Soc. B Biol. Sci. 277, 12591266 (2010).
47. Franks, S. E. et al. The sensitivity of breeding songbirds to changes in seasonal timing is linked to population change but cannot be directly attributed to the effects of trophic asynchrony on productivity. Glob. Chang. Biol. 24, 957-971 (2018).
48. van de Pol, M. et al. Identifying the best climatic predictors in ecology and evolution. Methods Ecol. Evol. 7, 1246-1257 (2016).
49. Bailey, L. D. \& De Pol, M. Van. Climwin: An R Toolbox for Climate Window Analysis. PLoS One 11, 1-27 (2016).
50. Teller, B. J., Adler, P. B., Edwards, C. B., Hooker, G. \& Ellner, S. P. Linking demography with drivers: Climate and competition. Methods Ecol. Evol. 7, 171-183 (2016).
51. Simmonds, E. G., Cole, E. F. \& Sheldon, B. C. Cue identification in phenology: A case study of the predictive performance of current statistical tools. J. Anim. Ecol. 88, 1428-1440 (2019).
52. Iler, A. M., Inouye, D. W., Schmidt, N. M. \& Høye, T. T. Detrending phenological time series improves climate-phenology analyses and reveals evidence of plasticity. Ecology 98, 647-655 (2017).
53. Both, C. et al. Large-scale geographical variation confirms that climate change causes birds to lay earlier. Proc. R. Soc. London B Biol. Sci. 271, 1657-1662 (2004).
54. Visser, M. E. et al. Variable responses to large-scale climate change in European Parus populations. Proc. R. Soc. London B Biol. Sci. 270, 367-372 (2003).
55. Verhulst, S. \& Nilsson, J.-A. J. A. The timing of birds' breeding seasons: a review of experiments that manipulated timing of breeding. Phil. Trans. R. Soc. B 363, 399-410 (2008).
56. Durant, J. M. et al. Timing and abundance as key mechanisms affecting trophic interactions in variable environments. Ecol. Lett. 8, 952-958 (2005).
57. Ramakers, J. J. C., Gienapp, P. \& Visser, M. E. Comparing two measures of phenological synchrony in a predator-prey interaction: Simpler works better. J. Anim. Ecol. 1-12 (2019) doi:10.1111/1365-2656.13143.
58. Simmonds, E. G., Cole, E. F., Sheldon, B. C. \& Coulson, T. Testing the effect of quantitative genetic inheritance in structured models on projections of population
dynamics. Oikos 1-13 (2019) doi:10.1111/oik. 06985.
59. Mclean, N., Lawson, C. R., Leech, D. I. \& van de Pol, M. Predicting when climatedriven phenotypic change affects population dynamics. Ecol. Lett. 19, 595-608 (2016).
60. Gienapp, P. et al. Predicting demographically sustainable rates of adaptation: Can great tit breeding time keep pace with climate change? Philos. Trans. R. Soc. B Biol. Sci. 368, 20120289 (2013).
61. Visser, M. E., Holleman, L. J. M. \& Gienapp, P. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 147, 164-172 (2006).
62. Atkinson, A. et al. Questioning the role of phenology shifts and trophic mismatching in a planktonic food web. Prog. Oceanogr. 137, 498-512 (2015).
63. Ross, M. V., Alisauskas, R. T., Douglas, D. C. \& Kellett, D. K. Decadal declines in avian herbivore reproduction: density-dependent nutrition and phenological mismatch in the Arctic. Ecology 98, 1869-1883 (2017).
64. Chambers, L. E. et al. Phenological Changes in the Southern Hemisphere. PLoS One 8, e77514 (2013).
65. Hurlbert, A. H. \& Liang, Z. Spatiotemporal variation in avian migration phenology: citizen science reveals effects of climate change. PLoS One 7, e31662 (2012).
66. Newson, S. E. et al. Long-term change in spring and autumn migration phenology of common migrant breeding birds in Britain: results from large-scale citizen science bird recording schemes. Ibis (Lond. 1859). 158, 481-495 (2016).
67. Phillimore, A. B., Leech, D. I., Pearce-Higgins, J. W. \& Hadfield, J. D. Passerines may be sufficiently plastic to track temperature-mediated shifts in optimum lay date. Glob. Chang. Biol. 22, 3259-3272 (2016).
68. Tansey, C. J., Hadfield, J. D. \& Phillimore, A. B. Estimating the ability of plants to plastically track temperature-mediated shifts in the spring phenological optimum. Glob. Chang. Biol. 23, 3321-3334 (2017).
69. Richardson, A. J. \& Poloczanska, E. S. Under-resourced, under threat. Science 320, 1294-1295 (2008).
70. Mackas, D. L., Pepin, P. \& Verheye, H. Interannual variability of marine zooplankton and their environments: Within- and between-region comparisons. Prog. Oceanogr. 97-100, 1-14 (2012).
71. O'Brien, T. D., Lorenzoni, L., Isensee, K. \& Valdés, L. What are Marine Ecological Time Series telling us about the ocean? A status report. IOC-UNESCO, IOC. 297 (2017).
72. Burthe, S. et al. Phenological trends and trophic mismatch across multiple levels of a North Sea pelagic food web. Mar. Ecol. Prog. Ser. 454, 119-133 (2012).
73. Stepanian, P. M. et al. Declines in an abundant aquatic insect, the burrowing mayfly, across major North American waterways. Proc. Natl. Acad. Sci. U. S. A. 117, 29872992 (2020).
74. Schmidt, K. et al. Increasing picocyanobacteria success in shelf waters contributes to long-term food web degradation. Glob. Chang. Biol. 1-14 (2020) doi:10.1111/gcb. 15161.
75. Sauve, D., Divoky, G. \& Friesen, V. L. Phenotypic plasticity or evolutionary change? An examination of the phenological response of an arctic seabird to climate change. Funct. Ecol. 33, 2180-2190 (2019).
76. Bradshaw, C. J. A., Mollet, H. F. \& Meekan, M. G. Inferring population trends for the world's largest fish from mark-recapture estimates of survival. J. Anim. Ecol. 76, 480489 (2007).
77. Bell, J. R. et al. Long-term phenological trends, species accumulation rates, aphid traits and climate: Five decades of change in migrating aphids. J. Anim. Ecol. 84, 2134 (2015).
78. Macgregor, C. J., Williams, J. H., Bell, J. R. \& Thomas, C. D. Moth biomass increases and decreases over 50 years in Britain. Nat. Ecol. Evol. 3, 1645-1649 (2019).
79. Tanentzap, A. J. et al. Terrestrial support of lake food webs: Synthesis reveals controls over cross-ecosystem resource use. Sci. Adv. 3, 1-11 (2017).
80. Estiarte, M. \& Peñuelas, J. Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: Efects on nutrient proficiency. Glob. Chang. Biol. 21, 1005-1017 (2015).
81. Beaugrand, G. \& Kirby, R. R. How Do Marine Pelagic Species Respond to Climate Change? Theories and Observations. Ann. Rev. Mar. Sci. 10, 169-197 (2018).
82. Thackeray, S. J., Jones, I. D. \& Maberly, S. C. Long-term change in the phenology of spring phytoplankton: Species-specific responses to nutrient enrichment and climatic change. J. Ecol. 96, 523-535 (2008).
83. Ji, R., Jin, M. \& Varpe, \varnothing. Sea ice phenology and timing of primary production pulses in the Arctic Ocean. Glob. Chang. Biol. 19, 734-741 (2013).
84. Walters, A. W., De Los Ángeles González Sagrario, M. \& Schindler, D. E. Speciesand community-level responses combine to drive phenology of lake phytoplankton. Ecology 94, 2188-2194 (2013).
85. Shutt, J. D., Burgess, M. D. \& Phillimore, A. B. A spatial perspective on the phenological distribution of the spring woodland caterpillar peak. Am. Nat. 194, E109E121 (2019).
86. Pochardt, M. et al. Environmental DNA facilitates accurate, inexpensive, and multiyear population estimates of millions of anadromous fish. Mol. Ecol. Resour. 20,

457-467 (2020).
87. Burger, C. et al. Climate change, breeding date and nestling diet: how temperature differentially affects seasonal changes in pied flycatcher diet depending on habitat variation. J. Anim. Ecol. 81, 926-936 (2012).
88. Pearce-Higgins, J. W. \& Green, R. E. Birds and climate change: Impacts and conservation responses. Birds and Climate Change: Impacts and Conservation Responses (Cambridge University Press, 2014). doi:10.1017/CBO9781139047791.
89. Samplonius, J. M. et al. Phenological sensitivity to climate change is higher in resident than in migrant bird populations among European cavity breeders. Glob. Chang. Biol. 24, 3780-3790 (2018).
90. Burgess, M. D. et al. Tritrophic phenological match-mismatch in space and time. Nat. Ecol. Evol. 2, 970-975 (2018).
91. Visser, M. E. et al. Effects of spring temperatures on the strength of selection on timing of reproduction in a long-distance migratory bird. PLoS Biol. 13, e1002120 (2015).
92. Cholewa, M. \& Wesołowski, T. Nestling food of european hole-nesting passerines: do we know enough to test the adaptive hypotheses on breeding seasons? Acta Ornithol. 46, 105-116 (2011).
93. Simmonds, E. G., Cole, E. F., Sheldon, B. C. \& Coulson, T. Phenological asynchrony, a ticking time-bomb for seemingly stable populations. Ecol. Lett. (2020) doi:10.1111/ele. 13603.
94. Prevéy, J. et al. Greater temperature sensitivity of plant phenology at colder sites: implications for convergence across northern latitudes. Glob. Chang. Biol. 23, 26602671 (2017).
95. Assmann, J. J. et al. Local snow melt and temperature-but not regional sea ice-
explain variation in spring phenology in coastal Arctic tundra. Glob. Chang. Biol. 25, 2258-2274 (2019).
96. Bjorkman, A. D., Elmendorf, S. C., Beamish, A. L., Vellend, M. \& Henry, G. H. R. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades. Glob. Chang. Biol. 21, 4651-4661 (2015).
97. Lameris, T. K. et al. Arctic Geese Tune Migration to a Warming Climate but Still Suffer from a Phenological Mismatch. Curr. Biol. 28, 2467-2473 (2018).
98. Doiron, M., Gauthier, G. \& Lévesque, E. Trophic mismatch and its effects on the growth of young in an Arctic herbivore. Glob. Chang. Biol. 21, 4364-4376 (2015).
99. Iler, A. M. et al. Maintenance of temporal synchrony between syrphid flies and floral resources despite differential phenological responses to climate. Glob. Chang. Biol. 19, 2348-2359 (2013).
100. Ovaskainen, O. et al. Chronicles of nature calendar, a long-term and large-scale multitaxon database on phenology. Sci. Data 7, 1-11 (2020).
101. Brohan, P. et al. Marine observations of old weather. Bull. Am. Meteorol. Soc. 90, 219-230 (2009).
102. Phillimore, A. B., Stålhandske, S., Smithers, R. J. \& Bernard, R. Dissecting the Contributions of Plasticity and Local Adaptation to the Phenology of a Butterfly and Its Host Plants. Am. Nat. 180, 655-670 (2012).
103. Wang, S. et al. Limitations and challenges of MODIS-derived phenological metrics across different landscapes in pan-Arctic regions. Remote Sens. 10, 1-21 (2018).
104. Helman, D. Land surface phenology: What do we really 'see' from space? Sci. Total Environ. 618, 665-673 (2018).

Correspondence

Correspondence should be addressed to JMS.

Acknowledgements

We thank Arild Husby, Thomas Reed, Marcel Visser, Isla Myers-Smith, and Michael Singer for constructive criticism on an earlier version of this MS.

Author contributions

JMS, ABP, AA, CH, KK, SJT, JJA, MDB, JJ, KHM, JWPH, EGS, ØV, JCW, DZC, EFC, FD, TH, OWL, NP, and BCS contributed to conceiving ideas. All authors contributed to editing the manuscript. JMS, ABP, AA, CH, KK, SJT, JJA, MDB, JJ, KHM, JWPH, EGS, ØV, and JCW extracted data for the analyses. JMS, ABP, AA, CH, KK, and SJT contributed to writing the manuscript. JMS and ABP expanded on the initial ideas to determine the structure and content of the manuscript and wrote most of it. JMS conducted the analyses.

Competing Interests

The authors declare no competing interest.

Consequence per taxon

