

Edinburgh Research Explorer

Fragments of Bag Relational Algebra: Expressiveness and
Certain Answers

Citation for published version:
Console, M, Guagliardo, P & Libkin, L 2020, 'Fragments of Bag Relational Algebra: Expressiveness and
Certain Answers', Information Systems. https://doi.org/10.1016/j.is.2020.101604

Digital Object Identifier (DOI):
10.1016/j.is.2020.101604

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Information Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Jul. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/458046353?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.is.2020.101604
https://doi.org/10.1016/j.is.2020.101604
https://www.research.ed.ac.uk/en/publications/93e61750-c243-4958-8a42-a9bf28163ab6

Fragments of Bag Relational Algebra:
Expressiveness and Certain Answers?,??

Marco Consolea, Paolo Guagliardoa, Leonid Libkina

aSchool of Informatics, University of Edinburgh, United Kingdom

Abstract

While all relational database systems are based on the bag data model, much
of theoretical research still views relations as sets. Recent attempts to provide
theoretical foundations for modern data management problems under the bag
semantics concentrated on applications that need to deal with incomplete relations,
i.e., relations populated by constants and nulls. Our goal is to provide a complete
characterization of the complexity of query answering over such relations in
fragments of bag relational algebra.

The main challenges that we face are twofold. First, bag relational algebra
has more operations than its set analog (e.g., additive union, max-union, min-
intersection, duplicate elimination) and the relationship between various fragments
is not fully known. Thus we first fill this gap. Second, we look at query answering
over incomplete data, which again is more complex than in the set case: rather
than certainty and possibility of answers, we now have numerical information
about occurrences of tuples. We then fully classify the complexity of finding
this information in all the fragments of bag relational algebra.

Keywords: bag semantics, relational algebra, expressivity, certain answers,
complexity

1. Introduction

While all relational database management systems (DBMSs) use bags as the
basis of their data model, much of relational database theory uses a model based
on sets, thus disallowing repetitions of tuples. The presence of duplicates in real-
life databases is a very important consideration that is reflected in practically

?Work supported by EPSRC grants M025268 and N023056.
??This is the full version of a paper of the same title that appeared in the proceedings of

ICDT 2019, the 22nd International Conference on Database Theory [1]. This work was also
presented at AMW 2019, the 13th Alberto Mendelzon International Workshop on Foundations
of Data Management, where it was invited to this special issue. The final published version
of this article is available at https://doi.org/10.1016/j.is.2020.101604

Email addresses: console.marco@gmail.com (Marco Console),
paolo.guagliardo@ed.ac.uk (Paolo Guagliardo), libkin@inf.ed.ac.uk (Leonid Libkin)

Postprint accepted for publication in Information Systems August 7, 2020

https://doi.org/10.1016/j.is.2020.101604

all aspects of data management, such as querying, storing, and accessing data
[2, 3]. Theoretical research has raised this issue several times. By the early 1990s
there was agreement on what the standard collection of bag relational algebra
operations is [4], and in the mid 1990s their expressiveness and complexity
were thoroughly studied [5, 6], albeit in the context of the model of nested
relations, or complex objects, which was the research focus back then [7, 8].
Around the same time it was noticed that the well developed theory of query
optimization, especially for conjunctive queries, does not apply to bag semantics
[9], and despite many attempts and partial results [10, 11], the key problem of
the decidability of such optimizations remains unsolved [12]. Other languages,
in particular those with aggregates and fixpoints in the spirit of Datalog, have
been studied under bag semantics as well [13, 14, 6].

More recently, bag semantics has been considered in modern data management
applications that combine traditional databases and reasoning tasks. In [15],
fundamental problems of data integration and data exchange are studied under
bag semantics and are shown to differ rather drastically from their set semantics
counterparts. In [16], a similar program is carried out for ontology based data
access (OBDA), where an ontology supplements information provided by a
relational database in which duplicates are allowed. What is common to these
applications is that in both of them one needs to query incomplete data, that is,
databases with null values. The standard approach to querying such databases,
which is used in data integration, data exchange, and OBDA applications, is
based on the classical notion of certain answers [17].

However, when it comes to bags, the notion of certain answers becomes
more complex than under set semantics. In general, an incomplete database D
represents a collection JDK = {D1, D2, . . .} of complete databases, obtained by
interpreting incomplete data in D. A tuple ā is a certain answer to a query q if it
is in q(D′) for every D′ ∈ JDK; see [18, 17]. Under bag semantics, we have more
information: for each tuple, we know the number #

(
ā, q(D′)

)
of occurrences

of ā in q(D′). Thus, as D′ ranges over JDK, we have a range of numbers that
define an interval between

min(ā, q,D) = min
D′∈JDK

#
(
ā, q(D′)

)
and

max(ā, q,D) = max
D′∈JDK

#
(
ā, q(D′)

)
.

Under set semantics, min(D, q, ā) = 1 means that ā is a certain answer to q
on D, and max(D, q, ā) = 1 means that ā is a possible answer. On sets, these can
be easily checked for positive relational algebra, but it is hard (coNP-complete
and NP-complete, respectively) for full relational algebra [19]. This tells us
that, in terms of relational algebra operations, selection, projection, Cartesian
product and union are easy, but difference makes things hard. Our goal is to
paint a similar picture for bags. The problems that we face are:

2

(1) there are more operations that are included in bag relational algebra,
and we have less understanding of them;

(2) even for basic operations, there is very little knowledge of the complexity
of answering queries over incomplete data.

We now explain these points in more detail.

Bag algebra fragments. Under set semantics, we have well understood fragments
of relational algebra: SPC (select-project-Cartesian product) queries, positive
relational algebra RA+ that adds union, and full relational algebra RA that
adds difference. Moreover, intersection is expressible as the natural join of two
relations over the same attributes. Under bag semantics, however, the situation
is different:

• SPC queries follow their set-theoretic analogs but they keep duplicates.

• For union, there are two options: max-union, which takes the maximum
number of occurrences of a tuple, and additive union, which adds up
multiplicities (and corresponds to UNION ALL in SQL).

• Intersection (SQL’s INTERSECT ALL) takes the minimum number of oc-
currences of a tuple and it can no longer be expressed as a join in general.

• Difference (SQL’s EXCEPT ALL) subtracts multiplicities of tuples up to
zero.

• There is the duplicate elimination operation, which sets the multiplicities
of tuples to 1.

When the multiplicities of tuples in the input relations are at most 1, the bag
operations of difference, intersection and max-union coincide with set-theoretic
difference, intersection and union, respectively. SQL’s EXCEPT, INTERSECT and
UNION (without the ALL modifier) are variants of difference, intersection and
max-union, respectively, that treat input relations as sets by removing duplicates
from them; UNION can also be seen as additive union followed by duplicate elim-
ination.

The language RA of bag relational algebra consists of the following operations
[4, 5, 6]:

• multiplicity-preserving versions of selection (σ), projection (π) and Carte-
sian product (×), which form the class of SPC queries;

• additive union] that adds up multiplicities of tuples; together with SPC
queries it forms the positive relational algebra RA+;

• max-union ∪ that keeps the maximum number of occurrences of a tuple;

• min-intersection ∩ that keeps the minimum number of occurrences of a
tuple;

3

• difference − that subtracts the number of occurrences of a tuple up to
zero, i.e., #(ā, R−R′) = max

(
#(ā, R)−#(ā, R′), 0

)
;

• duplicate elimination ε that turns a bag into a set.

Example 1. For bags R = {a, a, b, b, c} and S = {a, b, b, b}, we have:

R] S = {a, a, a, b, b, b, b, b, c} ; R− S = {a, c} ;

R ∪ S = {a, a, b, b, b, c} ; ε(R) = {a, b, c} ,
R ∩ S = {a, b, b} ; ε(S) = {a, b} .

We remark that, differently from additive union], the max-union operation ∪
is not explicitly implemented in any standard query language. To see how it
could be used in practice, consider a scenario with two sensors, r and s, logging
data about events a1, a2, etc. into unary relations R and S, as follows: whenever
an event ai is detected by r (resp., s), an occurrence of ai is added to R (resp.,
S). Now assume that for any given event, one of the sensors can reliably detect
all of its occurrences, while the other may, or may not. Then, R ∪ S correctly
collates the data from the two sensors’ logs, returning all the reliably detected
occurrences of every event, but R] S does not.

To understand how query answering behaves in the fragments of RA, we
first need to understand their relative expressiveness. It might appear that
these questions have already been answered in [20, 6]. However, this was done
in the context of nested relations, and the results used the power of nesting
in an essential way. For the usual bag algebra with non-nested relations, as
implemented in all DBMSs, these basic results are surprisingly lacking. Thus,
as our first task, we shall produce a full picture of the expressiveness of bag
relational algebra fragments (which will indeed be different from the known
results in the nested case).

Incomplete information and bags. There is a much bigger variety of relational
algebra fragments for bags, but little is known about finding min(ā, q,D) and
max(ā, q,D) for queries in those fragments. We know that min is easy to
compute for RA+ queries and that for full RA the problem is computationally
hard: checking whether min(ā, q,D) ≥ n is NP-complete [19, 21]. Checking
whether max(ā, q,D) ≥ n is NP-complete even for SPC queries [21]. The
complexity of actually computing min and max (or, in terms of a decision
problem, checking whether min(D, q,D) = n, and likewise for max) is still
open.

Outline of the results. Our main results are summarized in Figure 1.

Expressiveness We characterize the relative expressive power of RA fragments,
as shown in the diagram. Furthermore, adding duplicate elimination to a
fragment that does not have it results in a language that is strictly more
expressive (than the original fragment), and incomparable with RA+{−} (i.e.,
RA+ with difference). The relative expressiveness of bag operations is indeed

4

RA+ = SPC{]}

RA+{∪}

RA+{∩}

RA+{∪,∩} RA+{−}SPC

SPC{∩}

SPC{∪}

Figure 1: Summary of the results. An edge indicates a more expressive fragment. Adding
duplicate elimination makes every fragment more expressive, and incomparable with RA+{−}.
Extending RA+{−} with duplicate elimination results in a fragment that has the expressive
power of full RA. The shaded area includes the fragments for which computing the minimum
occurrences of certain answers is tractable, while this is intractable whenever duplicate
elimination is added. Computing the maximum number of occurrences is intractable for
all fragments.

different from what was known in the nested relational case [20, 5, 6]. For
example, over nested relations, adding min-intersection to the analog of RA+

suffices to express max-union, but in the usual relational algebra over bags these
two operations are incomparable in their expressiveness.

Complexity of min For fragments in the shaded area, computing min(ā, q,D)
is tractable, and it can be done by evaluating the query naively on the incomplete
database. For all fragments outside the shaded area, and all fragments with
duplicate elimination (from SPC{ε} to the full RA), the complexity is intractable:
checking whether min(ā, q,D) θ n is NP-complete when θ is ≤, coNP-complete
when θ is ≥, and DP-complete when θ is =. Recall that DP is the class of
problems that are the intersection of an NP problem and a coNP problem [22].

Complexity of max For all the fragments, inside and outside the shaded
area, and with or without duplicate elimination, computing max is intractable:
checking max(ā, q,D) θ n is NP-complete when θ is ≥, coNP-complete when θ
is ≤, and DP-complete when θ is =.

Organization. Bag relational algebra is defined in Section 2, and the relative
expressive power of its fragments is studied in Section 3. Query answering over
bags with nulls is discussed in Section 4, and its complexity is classified in
Section 5. Concluding remarks are given in Section 6.

2. Bag Relational Algebra

We now describe the standard operations of bag relational algebra and
provide their semantics [4, 20, 5, 6]. A bag is a collection of elements with
associated multiplicities (numbers of occurrences); if an element b occurs n
times in a bag B, we write #(b, B) = n. If #(b, B) = 0, it means that b does
not occur in B. Sets are just a special case when #(b, B) ∈ {0, 1}.

5

In a database D, each k-ary relation name R of the schema is associated
with a bag RD of k-tuples; we will omit the superscript D whenever it is clear
from the context. We assume that the attributes of a k-ary relation are 1, . . . , k,
i.e., we adopt the unnamed perspective [18].

Syntax. The syntax of relational algebra (RA) expressions is defined as follows:

e, e′ ::= R (base relations)

| σi=j(e) (selection)

| πα(e) (projection)

| e× e′ (Cartesian product)

| e] e′ (additive union)

| e ∪ e′ (max-union)

| e ∩ e′ (intersection)

| e− e′ (difference)

| ε(e) (duplicate elimination)

where i and j in σi=j(e) are positive integers, and α in πα(e) is a possibly empty
tuple of positive integers.

The arity of RA expressions is defined as follows: for base relations, it is
given by the schema; for σi=j(e) and ε(e), it is the arity of e; for πα(e), it is
the arity of α; for e × e′, it is the sum of the arities of e and e′; for e ? e′ with
? ∈ {∪,],∩,−}, it is the arity of e.

We then say that an RA expression is well-formed w.r.t. a schema if: it
mentions only relation names from the schema; i and j in σi=j(e) are less than
or equal to the arity of e; the elements of α in πα(e) are less than or equal to
the arity of e; the expressions e and e′ in e ? e′, with ? ∈ {∪,],∩,−}, have the
same arity. In the rest of the paper, we implicitly assume that we are always
working with well-formed RA expressions.

Semantics. We give the semantics of (well-formed) RA expressions e by induc-
tively defining the quantity #(ā, e,D), which is the number of occurrences of a
tuple ā (of appropriate arity) in the result of applying e to a database D. This
is done as follows:

#(ā, R, D) = #
(
ā, RD

)
#(ā, σi=j(e), D) =

{
#(ā, e,D) if ā.i = ā.j

0 otherwise

#(ā, πα(e), D) =
∑

ā′ : πα(ā′)=ā

#(ā′, e,D)

#
(
āā′, e× e′, D

)
= #

(
ā, e,D

)
· #
(
ā′, e′, D

)
#(ā, e] e′, D) = #(ā, e,D) + #(ā, e′, D)

#(ā, e ∪ e′, D) = max
{

#(ā, e,D), #(ā, e′, D)
}

6

#(ā, e ∩ e′, D) = min
{

#(ā, e,D), #(ā, e′, D)
}

#(ā, e− e′, D) = max
{

#(ā, e,D)−#(ā, e′, D), 0
}

#(ā, ε(e), D) = min
{

#(ā, e,D), 1
}

where ā.i denotes the i-th element of ā, πi1,...,in(ā) is the tuple (ā.i1, . . . , ā.in),
and the tuples ā and ā′ in the rule for e × e′ have the same arity as e and e′,
respectively.

Then, for an expression e and a database D, we define e(D) as the bag of
tuples ā of the same arity as e so that #

(
ā, e(D)

)
= #(ā, e,D).

Fragments. The two main fragments of RA we consider are SPC, consisting
of selection (σ), projection (π) and Cartesian product (×), and RA+, which is
SPC extended with additive union (]). Given a fragment L of RA, we write
L{op1, . . . , opn} to denote the fragment obtained by adding the RA operations
op1, . . . , opn to L. Thus, for instance, RA+ is SPC{]}.

A query is a mapping q from databases to bags of tuples. We always assume
that queries are generic, that is, invariant under permutations of the domain
[18]. A query q is expressible in a fragment L of RA if there is an expression e
in that fragment so that e(D) = q(D) for every database D.

Then, given two fragments L and L′, we say that L′ is at least as expressive
as L, and write L ⊆ L′, if every query expressible in L is also expressible in L′.
We say that L′ is more expressive than L, and write L (L′, if L′ is at least
as expressive as L and there is a query that is expressible in L′ but not in L.
Notice that if L′ has all the operations of L, then L′ is at least as expressive as
L.

3. Expressive Power of Bag Relational Algebra Fragments

In this section, we study the relative expressiveness of RA fragments. We
present the results that justify the edges in Figure 1, along with additional
results that are not explicitly captured in that diagram.

We start by showing that extending positive relational algebra with max-
union or intersection results in a more expressive fragment.

Proposition 1. RA+ (RA+{?} for ? ∈ {∪,∩}.

Proof. Trivially RA+{?} is at least as expressive as RA+, so we only need to
show that there exists a query that is expressible in the former but not in latter.
To this end, consider a schema consisting of two nullary (i.e., of arity 0) relation
symbols R and S, and suppose that R?S is expressible in RA+, i.e., there exists
an RA+ expression e equivalent to R ? S. For a database D, let m = |RD| and
n = |SD|; then, |e(D)| = f?(m,n), where f∪ = max and f∩ = min. Moreover,
|e(D)| is expressible by a polynomial pe ∈ N[m,n], because e ∈ RA+ [23].

For n0 ∈ N, we define the polynomial p ∈ N[m] such that p(m) = pe(m,n0)
and distinguish the following two cases.

7

• When ? = ∪, let n0 = deg(pe) ≥ deg(p). Then, p(m) = max(m,n0) = n0

for every m ∈ {0, . . . , n0}. But this is impossible, as the unique polynomial
p̃ ∈ N[m] of degree at most n0 that interpolates the n0 + 1 data points
{(i, n0) | i = 0, . . . , n0 } is the constant function p̃(m) = n0, and p̃(m) 6=
p(m) for m > n0.

• When ? = ∩, let n0 be a positive integer. We have deg(p) ≥ 1, as p(m) =
min(m,n0) = n0 > 0 for every m ≥ n0, while p(0) = 0. Then p is strictly
increasing in the interval [0,+∞), since its coefficients are in N. But this
is impossible because p(m) = n0 for every m ≥ n0.

The proof of Proposition 1 also applies to show the following.

Corollary 1. SPC (SPC{?} for ? ∈ {∪,∩}.

We now show that additive union increases the expressive power of SPC{∩}
and SPC{∪}.

Proposition 2. SPC{?} (RA+{?} for ? ∈ {∪,∩}.

The proof of the above result is based on the fact that, on databases consisting
of nullary relations of size 1, there are RA+ expressions whose results size is
greater than 1, whereas every SPC{∪,∩} expression can only yield a (nullary)
relation of size 1, as the following lemma shows.

Lemma 1. Let D be a database over a schema consisting only of nullary relation
names and such that RD = {()} for every relation name R in the schema. Then,
for every SPC{∪,∩} expression e, it is the case that e(D) = {()}.

Proof. Let e be an SPC{∪,∩} expression over the schema of D. Observe that all
subexpressions of e are nullary and, since there are no attributes, none of them
can be a selection. Moreover, projection will be over an empty list of attributes
and so it can be discarded. Thus, assuming w.l.o.g. that there is no projection,
we proceed by induction on the structure of e to show that e(D) = {()}.

The base case is when e is a relation name R; then trivially e(D) = RD =
{()}. For the inductive step, we have that e = e1 ? e2 with ? ∈ {×,∪,∩} and,
by the inductive hypothesis, e1(D) = e2(D) = {()}. Then, from the semantics
of ×, ∩ and ∪, we get e(D) = e1(D) ? e2(D) = {()}.

Proof of Proposition 2. Let ? ∈ {∪,∩}. Trivially RA+{?} is at least as expressive
as SPC{?}, thus we only need to show that there is a query expressible in the
former but not in latter. To this end, consider a schema consisting of a nullary
relation name R, and suppose that e = R]R (which, in particular, is an RA+

expression) is expressible in SPC{?}, i.e., there exists an SPC{?} expression e′

equivalent to e. Towards a contradiction of this equivalence, let D be a database
where RD = {()}. Then, since e′ is an SPC{∪,∩} expression, by Lemma 1 we
have that e′(D) = {()}, whereas e(D) = {(), ()}.

In particular, the proof of Proposition 2 also applies to show the following.

8

Corollary 2. SPC (RA+.

Next, we will show that ∪ increases the expressive power of RA+{∩}, and
∩ increases the expressive power of RA+{∪}. In turn, this implies that ∪ and
∩ are incomparable operations.

Proposition 3. RA+{?} (RA+{∪,∩} for ? ∈ {∪,∩}.

To prove the above, we need some additional notions and lemmas. We start
by introducing a special syntactic form for RA+{∩} expressions.

Definition 1. An RA+{∩} expression is in intersection normal form (∩-NF)
if it is of the form e1 ∩ · · · ∩ en where each ei is an RA+ expression. Observe
that this is well defined because ∩ is commutative and associative.

Lemma 2. Every RA+{∩} expression over nullary relation names can be equiv-
alently rewritten to ∩-NF.

Proof. Let e be an RA+{∩} expression over nullary relation names. As before,
note that all subexpressions of e are nullary and, since there are no attributes,
none of them can be a selection. Moreover, projection will be over an empty list
of attributes and therefore it can be discarded. Assuming w.l.o.g. that there is
no projection, we proceed by induction on the structure of e.

Base case: e is R. Then R ∩R is obviously equivalent to e and in ∩-NF.

Inductive step: e is e′ ? e′′ with ? ∈ {],×}. By the induction hypothesis,
there are ∩-NF expressions e′1 ∩ · · · ∩ e′m and e′′1 ∩ · · · ∩ e′′n equivalent to e′ and
e′′, respectively. Then, the following ∩-NF expression:

m⋂
i=1

n⋂
j=1

(
e′i ? e

′′
j

)
is equivalent to e because:

f?
(
min(x1, . . . , xm),min(y1, . . . , yn)

)
= min

(
f?(x1, y1), . . . , f?(x1, yn), . . . , f?(xm, y1), . . . , f?(xm, yn)

)
where:

• f×(x, y) = x · y and f](x, y) = x+ y; and,

• for any given database D, we have that each xi = |e′i(D)| and each yj =
|e′′j (D)|.

The proofs of the next two lemmas can be found in Appendix A.

Lemma 3. Let D be a database over a schema with a nullary relation symbol R,
and let e be an RA+{∪} expression that mentions only R. Then, |e(D)| ≥ |RD|.

9

Lemma 4. Let D be a database over a schema consisting of two nullary relation
symbols R and S, and let e be an RA+{∪} expression that mentions both R and
S. Then, |e(D)| ≥ |RD| and |e(D)| ≥ |SD|.

We are now ready to prove the result on the expressiveness of RA+{∪,∩}
stated earlier.

Proof of Proposition 3.

• RA+{∪} (RA+{∩,∪}
Trivially RA+{∩,∪} is at least as expressive as RA+{∪}; therefore, we only
need to show that there exists a query expressible in RA+{∩,∪} that is not
expressible in RA+{∪}. To this end, consider a schema consisting of two
nullary relation symbols R and S, and the RA+{∩,∪} expression e = R ∩ S.
Towards a contradiction, suppose that e is expressible in RA+{∪}, i.e., there
exists an RA+{∪} expression e′ equivalent to e.

Let us first consider the case when e′ mentions only either R or S; w.l.o.g., say
R. Take D such that |RD| > |SD|; then |e(D)| = |SD|, and |e′(D)| ≥ |RD|
by Lemma 3. Therefore, |e′(D)| > |e(D)|, which contradicts the equivalence
of e and e′. When e′ mentions both R and S, we can again take D such that
|RD| > |SD|, which leads to the same contradiction, since |e(D)| = |SD|, and
|e′(D)| ≥ |RD| by Lemma 4.

• RA+{∩} (RA+{∩,∪}
Trivially RA+{∩,∪} is at least as expressive as RA+{∩}; therefore, we only
need to show that there exists a query expressible in RA+{∩,∪} that is not
expressible in RA+{∩}. To this end, consider a schema consisting of two
nullary relation symbols R and S, and the RA+{∩,∪} expression e = R ∪ S.
Towards a contradiction, suppose that e is expressible in RA+{∩}, i.e., there
exists an RA+{∩} expression e′ equivalent to e. By Lemma 2, e′ is equivalent
to an expression of the form e1 ∩ · · · ∩ ek where each ei is an RA+ expression.
Then, for every database D, whenever m = |RD| and n = |SD| we have that

max(m,n)︸ ︷︷ ︸
|e(D)|

= min
(
p1, . . . , pk

)︸ ︷︷ ︸
|e′(D)|

where each pi is a bivariate polynomial in N+[m,n]. Let d be the maximum
degree of a polynomial among p1, . . . , pk, and let n0 = (d + 1)k + 1. Then
for each m < n0 we have n0 = max(m,n0) = min

(
p1(m,n0), . . . , pk(m,n0)

)
.

Consider now univariate polynomials p′i(m) = pi(m,n0) − n0 for i ≤ k. We
have 0 = n0 − n0 = min

(
p′1(m), . . . , p′k(m)

)
for all m < n0. By pigeonhole,

it means that there is a polynomial p′j(m) and at least d + 1 distinct values
m1, . . . ,md+1 smaller than n0 such that p′j(m1) = . . . = p′j(md+1) = 0. Since
the degree of p′j is at most d, this implies that p′j(m) is identically zero, and
thus pj(m,n0) = n0 for all m.

Now, using max(m,n) = min
(
p1(m,n), . . . , pk(m,n)

)
, we have

10

n0 + 1 = max(n0 + 1, n0) = min
(
p1(n0 + 1, n0), . . . , pk(n0 + 1, n0)

)
≤ pj(n0 + 1, n0) = n0 ,

which contradicts the assumption that ∪ is expressible in RA+{∩}.

The following is a direct consequence of Proposition 3.

Corollary 3. L{∪} and L{∩} are incomparable, for L ∈ {SPC,RA+}.

Finally, we show that with additive union and difference one can express both
intersection and max-union, therefore RA+{−} is the most expressive fragment
of RA without duplicate elimination.

Proposition 4. RA+{∩,∪} (RA+{−}.

Proof. Let e ∈ RA+{∩,∪}; by induction on the structure of e we will show that
there exists an expression e′ ∈ RA+{−} that is equivalent to e. The base case
is when e ∈ RA+, which is trivially also in RA+{−}. For the inductive step,
let e = e1 ? e2, with e1, e2 ∈ RA+{∩,∪} and ? ∈ {∩,∪}. By the induction
hypothesis, there exist e′1, e

′
2 ∈ RA+{−} such that e′i ≡ ei for i = 1, 2. Consider

the RA+{−} expressions e∩ = e′1 − (e′1 − e′2) and e∪ = e′1] (e′2 − e′1); we will
show that e? ≡ e1 ?e2 for ? ∈ {∩,∪}. To this end, let D be a database and let ā
be a tuple; moreover, let m = #(ā, e′1, D) and n = #(ā, e′2, D). Then, we have
the following:

k∩ = #(ā, e∩, D) = #(ā, e′1, D) ´
(
#(ā, e′1, D) ´ #(ā, e′2, D)

)
= m´ (m´ n)

k∪ = #(ā, e∪, D) = #(ā, e′1, D) +
(
#(ā, e′2, D) ´ #(ā, e′1, D)

)
= m+ (n´m)

If m ≥ n, we have that 0 ≤ m ´ n = m − n ≤ m and n ´ m = 0, therefore
k∩ = m − (m − n) = n and k∪ = m. Otherwise, when n > m, we have that
m´ n = 0 and n´m = n−m, so k∩ = m´ 0 = m and k∪ = m+ n−m = n.
Thus, k∩ = min(m,n) and k∪ = max(m,n).

Now, since e′1 ≡ e1 and e′2 ≡ e2 by the induction hypothesis, #(ā, e1, D) = m
and #(ā, e2, D) = n. Hence, for ? ∈ {∩,∪}, we have k? = #(ā, e1 ? e2, D) and,
as D and ā were chosen arbitrarily, e? ≡ e1 ? e2. This proves that RA+{∩,∪} ⊆
RA+{−}.

We are left to show that the containment is strict. This follows from the fact
that every query q expressible in RA+{∩,∪} is monotonic, that is, q(D) ⊆ q(D′)
for all databases D and D′ such that D ⊆ D′. However, in RA+{−}, one can
express queries that are not monotonic. Indeed, consider e = R− S over unary
relation names R and S, and let D = {R(a), S(b)} and D′ = {R(a), S(a), S(b)};
then, D ⊆ D′ but e(D) = {R(a)} 6⊆ e(D′) = ∅.

Then, obviously, we immediately get the following.

Corollary 4. RA+{−, ε} and RA have the same expressive power.

We conclude this section by showing that adding duplicate elimination to a
fragment that does not already have it increases its expressive power.

11

Proposition 5. L (L{ε} for every fragment L of RA without duplicate
elimination.

The proof of Proposition 5 is based on the fact that, on databases with relations
of even size, every RA+{−} expression can only yield a relation of even size, as
the following lemma shows.

Lemma 5. Let L be a fragment of bag relational algebra without duplicate
elimination, let e be an RA+{−} expression, and let D be a database such that,
for every relation name R, the number of occurrences of every tuple in RD is
even. Then, the number of occurrences of every tuple in e(D) is even.

Proof. Let ā be a tuple that occurs k times in e(D), and let k > 0 (for k = 0 we
have nothing to show). By induction on the structure of e, we will show that k
is even.

Base case: e is a relation name R. Then, k = #(r,RD) is even by assumption.

Inductive step:

• e = πα(e′). Then, k is the sum of the number of occurrences of all tuples
ā′ ∈ e′(D) such that πα(ā′) = ā. The number of occurrences of every
tuple in e′(D) is even by the induction hypothesis, hence k is even as well.

• e = σi=j(e
′). Then k = #(ā, e′, D), which is even by the induction hypoth-

esis.

• e = e1 × e2. Then, there are tuples ā1 ∈ e1(D) and ā2 ∈ e2(D) such that
ā = ā1ā2 and k = m ·n, where m = #(ā1, e1, D) and n = #(ā2, e2, D). As
k > 0, both m and n are positive and, by the induction hypothesis, even.
Hence, k is even as well.

• e = e1] e2. Then, k = m+n where m = #(ā, e1, D) and n = #(ā, e2, D).
Since k > 0, at least one of m and n must be positive. Assume w.l.o.g.
that m > 0; then, m is even by the induction hypothesis. If n = 0, then
k = m is even; otherwise, n is even by the induction hypothesis as well,
and therefore k is the sum of two positive even numbers, which is obviously
even.

• e = e1−e2. Then, k = m´n where m = #(ā, e1, D) and n = #(ā, e2, D).
As k > 0, we have that m > n; in turn, m is positive and, by the induction
hypothesis, even. If n = 0, then k = m is even; otherwise, n is even as
well by the induction hypothesis, so k = m− n is obviously even.

Proof of Proposition 5. Let L be a fragment of bag relational algebra without
duplicate elimination. Clearly, L{ε} is at least as expressive as L, so we only
need to show that there exists a query that is expressible in the former but not
in latter. To this end, consider a schema consisting of a nullary relation name
R, and take any database D such that |RD| is a positive even number. Then,
for every L expression over R, we have that |e(D)| is even by Lemma 5. Hence,
the L{ε} expression ε(R) is not expressible in L, since |ε(RD)| = 1.

12

4. Certain and Possible Answers under Bag Semantics

Dealing with incomplete information is a recurring topic in many different
areas of logic and computer science. In database theory, the main way to
deal with the lack of information is via incomplete databases. Intuitively, an
incomplete databaseD is a compact representation of a possibly infinite collection
JDK of complete databases, which define the semantics of D.

In this paper, we use incomplete databases with marked (or labeled) nulls.
This model of incompleteness is very common in the database literature [18, 17]
and naturally occurs in many different scenarios, e.g., in data exchange and
integration (cf. [24, 25, 26]). In this model databases are populated by constants
and nulls, coming from two disjoint and countably infinite sets denoted by Const
and Null, respectively. More formally, a k-ary relation is a finite bag of k-ary
tuples over Const∪Null. A database D then maps each k-ary relation symbol R
in the schema to a k-ary bag relation RD. Given a database D = {RD1 , . . . , RDn },
we write Const(D) and Null(D) for the set of constants and nulls occurring in
the RDi s, respectively. The active domain of D is the set Const(D) ∪ Null(D),
denoted by adom(D). We say that D is complete if Null(D) = ∅.

The semantics JDK of a database D is defined by means of valuations. A
valuation v is a map v : Null(D)→ Const, and the result of applying v to D is the
complete database v(D) obtained by replacing each null ⊥ ∈ Null(D) with v(⊥).
Observe that applying v to each relation RD in D preserves multiplicities, i.e.,
for each relation name R in the schema and each tuple c̄ ∈ Rv(D) the following
equality holds:

#
(
c̄, Rv(D)

)
=
∑

ā : v(ā)=c̄

#
(
ā, RD

)
.

The set JDK is defined as JDK = {v(D) | v is a valuation}.
When relations are sets, the standard way to answer a query q on an

incomplete database D is to compute certain answers, i.e., tuples that are in
q(D′) for every D′ ∈ JDK, and possible answers, i.e., tuples that are in q(D′)
for some D′ ∈ JDK. When relations are bags, however, one must also take
multiplicities into account. In what follows, this is done by computing the
minimum and maximum number of occurrences of a tuple in the answers across
all databases in JDK (cf. [21]). Let D be a database, let q be a relational algebra
expression of arity n, and let ā ∈ Const(D)n be a tuple of constants, we define
min(ā, q,D) and max(ā, q,D) as follows:

min(ā, q,D) = min
D′∈JDK

#
(
ā, q(D′)

)
; (1a)

max(ā, q,D) = max
D′JDK

#
(
ā, q(D′)

)
. (1b)

Intuitively, min(ā, q,D) and max(ā, q,D) are extensions of certain and possible
answers to bag databases. Indeed, min(ā, q,D) ≥ 1 if and only if ā is in q(D′)
for every D′ ∈ JDK (and thus it is a certain answer), and max(ā, q,D) ≥ 1 if ā
is in q(D′) for some D′ ∈ JDK (and thus it is a possible answer).

13

Thus, from now on we assume min(ā, q,D) and max(ā, q,D) as our standard
notion of query answers and study their complexity. More specifically, we will
focus on data complexity, that is, computing min(ā, q,D) and max(ā, q,D) for
a fixed query q. Depending on the type of comparison we use, several decision
problems arise from the computation of min and max. These decision problems
are defined as follows.

Problem: MINθ[q], for θ ∈ {>,=, <}
and a query q of arity n.

Inputs: an incomplete database D,
a tuple ā ∈ Const(D)n,
a non-negative integer k.

Question: is min(ā, q,D) θ k?

Problem: MAXθ[q], for θ ∈ {>,=, <}
and a query q of arity n.

Inputs: an incomplete database D,
a tuple ā ∈ Const(D)n,
a non-negative integer k.

Question: is max(ā, q,D) θ k?

Whether the number k is represented in unary or binary form does not
matter: the results will be the same regardless. All tractability results are
shown assuming binary representation, and all matching hardness results will
be proved for the case when k is represented in unary. The choice of inequalities,
i.e., < vs ≤ or > vs ≥, is not important: since k is an integer, ≤ k is the same
condition as < k + 1.

As for the case of certain and possible answers, the complexity of the above
problems depends on the fragment of RA in which the query q is expressed.
While for some of these fragments the problems can be proved to be intractable,
there are fragments of RA for which computing min(ā, q,D) is tractable and can
actually be done via naive evaluation. The naive evaluation of a query q of arity
n on a bag database D is defined as the bag obtained by assuming that each
null value in Null(D) is a distinct constant and evaluating q directly over D. In
what follows, we will denote by naive(ā, q,D) the number of occurrences of a
tuple ā ∈ Const(D)n in the result of the naive evaluation of an RA query q on
an incomplete database D. It is well known that naive(ā, q,D) can be computed
in DLogSpace in data complexity [5, 6].

Example 2. On a database with relations R = {a,⊥1,⊥1} and S = {⊥1,⊥2},
the naive evaluation of σ1=2(R×S), ε(R) and R∩S gives {(⊥1,⊥1), (⊥1,⊥1)},
{a,⊥1} and {⊥1}, respectively.

5. Complexity of Certain and Possible Answers

We now turn our attention to the complexity of evaluating bag relational
algebra expressions on incomplete databases, that is, solving the problems MINθ[q]

14

and MAXθ[q] for queries in various fragments of RA. As already explained, these
problems are natural bag analogs of the notions of certainty and possibility over
set databases.

In Section 5.1, we first provide upper and lower bounds for full RA. When
the relation θ is < or >, the results are easily derivable from the results for the
set case in [19]; we complement them with the exact complexity for equality.

After introducing our technical framework in Section 5.2, we then focus – in
Section 5.3 – on the problem MINθ[q], proving the exact tractability boundary
shown in Figure 1. We start by showing that in all fragments up to RA+{∩},
the value of min can be computed by naive evaluation of queries, which extends
a result in [21]. We then show that beyond this fragment the problem becomes
intractable: NP-complete for <, coNP-complete for >, and DP-complete for =.
In particular, we show that the problem is intractable for all fragments containing
SPC{∪}, and all fragments containing SPC{ε}.

Next, in Section 5.4, we look at MAXθ[q]. It was shown in [21] that for >
the problem is NP-complete, even for very simple queries. Here, we complete
the picture and settle the case for =, even when q is a query that simply returns
a relation from the database.

Finally, in Section 5.5, we discuss what happens with more complex selection
conditions in queries.

5.1. Upper and lower bounds for full RA

Before delving into the complexity of the different fragments of RA, we
briefly look at the complexity of evaluating general expressions. First, observe
that RA queries are generic, i.e., invariant under permutations of the domain.
In the bag case, this is stated as follows.

Proposition 6. Let D and D′ be complete databases, let ρ be a bijection between
adom(D) and adom(D′) such that D′ = ρ(D), and let q ∈ RA be a query of arity
n. Then, #(ā, q,D) = #(ρā, q,D′) for every tuple ā ∈ adom(D)n.

Proof. By induction on the structure of q.

Base case:

• q = R. Trivial.

Inductive step:

• q = σγ(q′). Suppose such ρ exists. Since ρ is a bijection, ā satisfies γ if and
only if ρā does. If ā does not satisfy γ then #(ā, q,D) = #(ρā, q,D′) = 0.
Suppose now that ā satisfies γ. From the inductive hypothesis, we can
conclude that #(ā, q′, D) = #(ρā, q′, D′) hence #(ā, q,D) = #(ρā, q,D′).

• q = πα(q′). Assume that q′ has arity m and suppose that there exists a
bijection ρ with the properties defined above. Let b̄ ∈ adomm(D) be a
generic tuple that is equal to ā on the attributes in α, then #(ā, q,D) =∑
b̄ : πα(b̄)=ā #(b̄, q′, D). We now apply the inductive hypothesis and obtain

that #(b̄, q′, D) = #(ρb̄, q′, D′) for each such tuple. Clearly ρb̄ is equal to

15

ρā on the attributes in α, proving #(ā, q,D) ≤ #(ρā, q,D′). To prove
that this is actually an equality, we simply notice that ρ is a bijection,
hence for each ū′ ∈ adomm(D′) there exists a tuple ū ∈ adomm(D) such
that ū′ = ρū and ū is equal to ā on α if and only if ū′ is equal to ρā on α.

• q = q′×q′′. Assume that q′ has arity m′, q′′ has arity m′′, and suppose that
there exists a bijection ρ with the properties defined above. Let ā1 and ā2

be two tuples of arity m′ and m′′ respectively, such that ā = ā1 ◦ ā2, then
#(ā, q,D) = #(ā1, q

′, D) · #(ā2, q
′′, D). From the inductive hypothesis,

#(ā1, q
′, D) = #(ρā1, q

′, D′) and #(ā2, q
′′, D) = #(ρā2, q

′′, D′). The
claim follows from ρā = ρā1 ◦ ρā2.

• q = ε(q′). By the inductive hypothesis, we have that #(ā, q′, D) =
#(ρā, q′, D′). Then the claim follows from the definition of ε.

• q = q′ ? q′′, for ? ∈ {∩,],∪,−}. By the inductive hypothesis, we have
that #(ā, q′, D) = #(ρā, q′, D′) and #(ā, q′′, D) = #(ρā, q′′, D′). Then,
the claim follows from the definition of ∩,], ∪, and −.

Intuitively, the above tells us that we need to take into account only finitely
many valuations in order to compute the values in (1a) and (1b). Upper bounds
of NP, coNP, and DP follow straightforwardly.

Proposition 7. Let q be an expression in RA. Then:

• MIN<[q] and MAX>[q] are in NP;

• MIN>[q] and MAX<[q] are in coNP;

• MIN=[q] and MAX=[q] are in DP.

Proof. Let D be an incomplete bag database, let ā be a tuple in adomn(D), and
let k be a positive integer. Assume a set C ⊆ Const such that C is disjoint with
adom(D) and the cardinality of C is the same as the cardinality of Null(D). Let
V be the set of valuations for Null(D) defined as follows: V = {v | range(v) ⊆
(C ∪ Const(D))}. Clearly, for each D′ ∈ JDK there exists a valuation v ∈ V
and a bijection ρ from adom(vD) to adom(D′) such that ρ is the identity over
Const(D) and ρ(vD) = D′.

Using this observation, to check whether min(ā, q,D) < k we can simply
guess a valuation v′ ∈ V such that #(v′ā, q, v′D) < k. If such valuation exists,
v′D is itself a witness of min(ā, q,D) < k. If such valuation does not exist,
due to Proposition 6 we can conclude that there exists no v′D ∈ JDK such
that #(v′ā, q, v′D) < k. A similar technique can be used to check whether
max(ā, q,D) > k.

From these considerations we can conclude what follows. In order to solve
MIN<[q] and MAX>[q] for input D and k, one can simply guess a valuation v for
Null(D) and check whether #(vā, q, vD) < k and #(vā, q, vD) > k respectively.
To solve MIN>[q], one can guess a valuation v for Null(D) such that #(vā, q, vD) <
k + 1 and use it as a counterexample for min(ā, q,D) > k. Similarly, MAX<[q]
can be solved by guessing a valuation v for Null(D) such that #(vā, q, vD) > k−1

16

and use it as a counterexample for max(ā, q,D) < k. Finally, to solve MIN=[q],
one can simply solve an instance of MIN<[q] with input D, a, and k + 1, and
an instance of MIN>[q] with input D, a, and k− 1. The same technique can be
used to solve MAX=[q].

To prove the claim, we observe the following. For a given valuation v,
checking whether #(vā, q, vD)θk can be done in DLogSpace in the size of
D for q ∈ RA and θ ∈ {<,>}. Moreover, valuations for Null(D) can be guessed
using a number of bits that is polynomial in the size of D.

For general RA expressions, all of these problems are complete in their
respective classes.

Proposition 8. Let q be an expression in RA. Then:

• MIN<[q] and MAX>[q] are NP-hard;

• MIN>[q] and MAX<[q] are coNP-hard;

• MIN=[q] and MAX=[q] are DP-hard.

Proof. The results for < and > follow directly from the fact that set databases
can be simulated by bag databases. Hence, the hardness results presented in
[19] apply. For =, we can show a reduction from a very well known DP-complete
problem; see Theorem 2 for the case of MIN=[q] and Theorem 4 for the case of
MAX=[q].

Despite these high bounds, one may expect that some fragments of RA will
behave better; this is what we investigate next.

5.2. Technical tools

To prove our results, we will use reductions from two well-known decision
problems: satisfiability (SAT) and satisfiability-unsatisfiability (SAT-UNSAT) of
propositional formulae in conjunctive normal form (CNF). We use the following
standard terminology:

• a literal is a propositional variable or its negation;

• a clause is a (non-empty) disjunction of literals;

• a k-CNF formula is a conjunction of clauses, where each clause consists of
exactly k distinct literals.

We also assume that complementary literals (i.e., a propositional variable and its
negation) do not appear in the same clause; this is without loss of generality, as
such clauses can be removed without compromising equivalence to the original
formula. Thus, we consider k-CNF formulae where each clause mentions precise-
ly k distinct variables.

We write Var(ϕ) and |ϕ| for the set of variables and the number of clauses of
ϕ, respectively. A truth assignment for ϕ is a function from Var(ϕ) to either t
(true) or f (false). The formula ϕ is satisfiable if there exists a truth assignment
that makes all of its clauses true.

17

Example 3. The following 3-CNF formula

ϕ = (¬x1 ∨ x2 ∨ x4)︸ ︷︷ ︸
C1

∧ (x1 ∨ ¬x2 ∨ ¬x3)︸ ︷︷ ︸
C2

(2)

has two clauses, C1 and C2, each consisting of three literals. We have Var(ϕ) =
{x1, x2, x3, x4} and |ϕ| = 2. The formula is satisfiable because there is a truth
assignment that makes both C1 and C2 true; e.g., the one mapping every variable
in Var(ϕ) to t.

We let k-SAT refer to the problem of checking whether a given k-CNF formu-
la is satisfiable; this problem is well known to be NP-complete for k ≥ 3. Given
two k-CNF formulae ϕ and ψ, SAT-UNSAT is the problem of checking whether
ϕ is satisfiable while ψ is not. For k ≥ 3, this is known to be DP-complete [22].

In our reductions, we will use CNF formulae encoded as relations. To this
end, we assume that formulae are built from a countably infinite and linearly
ordered set Var of propositional variables. Assuming a bijection ρ from Var to
Null, for each variable x ∈ Var we define the pairs:

ūtx =
(
0, ρ(x)

)
, (3a)

ūfx =
(
ρ(x), 1

)
. (3b)

Observe that ūtx and ūfx do not unify: there exists no valuation v of nulls such
that v(ūtx) = v(ūfx) = (0, 1). We denote concatenation of tuples, in particular
of pairs of the above form, by juxtaposition; for example, ūtxū

f
yū

f
z is the tuple(

0, ρ(x), ρ(y), 1, ρ(z), 1
)
.

Given a k-CNF formula ϕ, with each clause C of ϕ we associate a relation
enc(C) of arity 2k constructed as follows:

1) For each truth assignment τ that makes C true, we add a single occurrence
of the tuple ū1 · · · ūk, where each ūi is equal to ūtxi if τ(xi) = t and to ūfxj
if τ(xi) = f , and the variables are considered in the order we assumed on
Var.

2) We then remove duplicates from the resulting relation, which amounts to
considering only truth assignments that are unique with respect to what
they assign to the variables mentioned in the clause C we are encoding.

If the clauses of ϕ are C1, . . . , Cn, we define Rϕ =
⊎n
j=1 enc(Cj). Note that

the number of tuples in each enc(Cj) is exactly 2k − 1 and so the total number
of tuples in Rϕ is |ϕ| · (2k − 1). Thus, when k is considered fixed, the size of Rϕ
is polynomial w.r.t. the size of ϕ.

Example 4. The encoding Rϕ of the 3-CNF formula (2), assuming the ordering

18

x1 < x2 < x3 < x4 and the mapping ρ(xi) = ⊥i for i ∈ {1, . . . , 4}, is as follows:

0 ⊥1 0 ⊥2 0 ⊥4

0 ⊥1 0 ⊥2 ⊥4 1
0 ⊥1 ⊥2 1 0 ⊥4

0 ⊥1 ⊥2 1 ⊥4 1
⊥1 1 0 ⊥2 ⊥4 1
⊥1 1 ⊥2 1 0 ⊥4

⊥1 1 ⊥2 1 ⊥4 1︸ ︷︷ ︸
enc(C1)

⊎
0 ⊥1 0 ⊥2 0 ⊥3

0 ⊥1 0 ⊥2 ⊥3 1
0 ⊥1 ⊥2 1 0 ⊥3

⊥1 1 0 ⊥2 0 ⊥3

⊥1 1 0 ⊥2 ⊥3 1
⊥1 1 ⊥2 1 0 ⊥3

⊥1 1 ⊥2 1 ⊥3 1︸ ︷︷ ︸
enc(C2)

The relations Rϕ enjoy the following properties that will be central in our
proofs.

Lemma 6. For every k-CNF formula ϕ, all of the following hold:

(a) Let R be the relation that encodes a clause of ϕ. Then, for every valuation
v of nulls, #

(
(0, 1)k, v(R)

)
≤ 1.

(b) Let v be a valuation with range in {0, 1}, and let τ be the truth assignment
such that, for each x ∈ Var(ϕ), τ(x) = t iff v

(
ρ(x)

)
= 1. Then, τ makes a

clause C of ϕ true if and only if #
(
(0, 1)k, v(R)

)
= 1, where R = enc(C).

(c) There is a truth assignment satisfying exactly m clauses of ϕ if and only if
there is a valuation v with range in {0, 1} such that #

(
(0, 1)k, v(Rϕ)

)
= m.

(d) For every valuation v, there is a valuation v′ with range in {0, 1} such that
#
(
(0, 1)k, v′(Rϕ)

)
≥ #

(
(0, 1)k, v(Rϕ)

)
.

Proof.
(a) By construction, all tuples in R are of the form

ūt1x1
· · · ūtkxk , with x1, . . . , xk ∈ Var(ϕ) and t1, . . . , tk ∈ {t, f} . (4)

Moreover, for any two distinct tuples there exists i such that one of them is
of the form ūt1x1

· · · ūtxi · · · ū
tk
xk

while the other has the form ūt1x1
· · · ūfxi · · · ū

tk
xk

.

Let v be a valuation; clearly, it cannot be that v(ūtxi) = v(ūfxi) = (0, 1), so no
two distinct tuples in R both unify with (0, 1)k. Thus, #

(
(0, 1)k, v(R)

)
≤ 1.

(b) By construction, τ makes C true if and only if there is a tuple ā ∈ R of the
form (4) such that ti = τ(xi) for each i ∈ {1, . . . , k}. In turn, by definition

of τ and as v has range in {0, 1}, this is the case iff v
(
ū
τ(xi)
xi

)
= (0, 1) for

each i ∈ {1, . . . , k}, and so iff v(ā) = (0, 1)k. By Lemma 6(a), this is the
case iff #

(
(0, 1)k, v(R)

)
= 1.

(c) “if”. Let v be a valuation with range in {0, 1} such that #
(
(0, 1)k, v(Rϕ)

)
=

m. Then, by Lemma 6(b), there are exactly m distinct clauses C1, . . . , Cm
of ϕ such that, for each i ∈ {1, . . . , k}, we have #

(
(0, 1)k, v(Ri)

)
= 1, where

19

Ri ⊆ Rϕ is the relation encoding Ci. Consider the truth assignment τ such
that, for each x ∈ Var(ϕ), τ(x) = t iff v

(
ρ(x)

)
. Then, by Lemma 6(b), τ

satisfies C1, . . . , Cm but no other clause of ϕ. To see this, let C be a clause
of ϕ distinct from C1, . . . , Cm and encoded by R ⊆ Rϕ, and suppose that τ
makes C true. But then #

(
(0, 1)k, v(R)

)
= 1 and so #

(
(0, 1)k, v(Rϕ)

)
> m,

against the initial assumption.

“only if”. Let ϕ = {C1, . . . , Cm, Cm+1, . . . , Cn}, and let Ri be the relation
that encodes clause Ci, for each i ∈ {1, . . . , n}. Let τ be a truth assignment
that τ makes C1, . . . , Cm true and Cm+1, . . . , Cn false. Consider the valua-
tion v such that, for each ⊥ ∈ Null,

v(⊥) =

{
1 if ρ−1(⊥) = x ∈ Var(ϕ) and τ(x) = t ,

0 otherwise .

Then, due to Lemma 6(a) and Lemma 6(b), for i ∈ {1, . . . , n} we have that
#
(
(0, 1)k, v(Ri)

)
is 1 if i ≤ m, and 0 otherwise. Thus, #

(
(0, 1)k, v(Rϕ)

)
=∑n

i=1 #
(
(0, 1)k, v(Ri)

)
= m.

(d) For any given valuation v, we can always define the valuation v′ such that,
for every ⊥ ∈ Null, v′(⊥) = v(⊥) if v(⊥) ∈ {0, 1}, and v′(⊥) = 0 otherwise.
As v′ agrees with v on the values assigned to the nulls in the preimage of
{0, 1} under v, we have that v(ā) = v′(ā) whenever v(ā) unifies with (0, 1)k.
Thus, #

(
(0, 1)k, v′(Rϕ)

)
≥ #

(
(0, 1)k, v(Rϕ)

)
.

We also define a variant of the encoding described above, by associating each
clause with an identifier in the relation that encodes the formula. To make this
formal, let ϕ be a k-CNF formula, and let ι be an injection from the clauses of
ϕ to Const; for each clause C of ϕ, we then define

enc(C, ι) =
(
B × enc(C)

)
]B′

where B and B′ are tables consisting of a single occurrence of the tuples
(
ι(C)

)
and

(
ι(C)(0, 1)k

)
, respectively. Intuitively, we compute the relation enc(C), add

one occurrence of (0, 1)k, and then prefix every tuple with the value ι(C). Note
that, for distinct clauses C and C ′, no tuple of enc(C, ι) unifies with any of the
tuples in enc(C ′, ι). For ϕ = C1 ∧ · · · ∧ Cn, we let enc(ϕ, ι) =

⊎n
i=1 enc(Ci, ι),

whose size is exactly 2k · |ϕ|.
Example 5. Consider the encoding of the 3-CNF formula (2) in Example 4. If
ι(C1) = a ∈ Const, then enc(C1, ι) is the following table:

a 0 ⊥1 0 ⊥2 0 ⊥4

a 0 ⊥1 0 ⊥2 ⊥4 1
a 0 ⊥1 ⊥2 1 0 ⊥4

a 0 ⊥1 ⊥2 1 ⊥4 1
a ⊥1 1 0 ⊥2 ⊥4 1
a ⊥1 1 ⊥2 1 0 ⊥4

a ⊥1 1 ⊥2 1 ⊥4 1
a 0 1 0 1 0 1

20

Our second technical tool is a (k+ 1)-CNF formula derived from two k-CNF
formulae, to check whether one is satisfiable while the other is not. To this end,
for a k-CNF formula ϕ and a literal ` ∈ {x,¬x} with x 6∈ Var(ϕ), we denote by
ϕ` the (k+1)-CNF formula obtained by adding ` to each clause of ϕ. Moreover,
for a (finite) set Σ of propositional variables, we let ϕf (Σ) denote the |Σ|-CNF
formula consisting of all maxterms over Σ,1 except

∨
x∈Σ x. Observe that ϕf (Σ)

has size 2|Σ| − 1, and it is satisfied only by the truth assignment that maps all
of the variables in Σ to f .

Then, given two k-CNF formulae f and g, we define the (k+1)-CNF formula

h(f, g) = fx ∧ g¬x ∧ g¬y ∧ ϕf ({z1, . . . , zk+1})
∧ (x ∨ z2 ∨ · · · ∨ zk+1) ∧ (¬x ∨ y ∨ z3 ∨ · · · ∨ zk+1) , (5)

where none of the variables x, y, z1, . . . , zk+1 appears in Var(f) ∪ Var(g). This
formula has the following property:

Lemma 7. Let f and g be k-CNF formulae. Then, f is satisfiable and g is un-
satisfiable if and only if the maximum number of clauses of h(f, g) that can be
satisfied by a single truth assignment is exactly |h(f, g)| − 1.

Proof. We denote by ‖ϕ‖ the maximum number of clauses that can be satisfied
in ϕ by a single truth assignment, while |ϕ| denotes the number of clauses in ϕ.
To avoid the clutter, we let ϕf refer to ϕf ({z1, . . . , zk+1}) in (5), and h refer to
h(f, g) itself; note that |h| = |f |+ 2 · |g|+ 2k+1 + 1.

“if”. Assume that ‖h‖ = |h| − 1. We will prove that f is satisfiable while g is
unsatisfiable by showing that all other possible combinations lead to a contra-
diction.

Let us start by supposing that there exists a satisfying truth assignment τ for
g. Then, the extension of τ that assigns t to all the variables in Var(f)∪ {x, y}
and f to those in Var(ϕf) satisfies h, in contradiction of the initial assumption.

We now consider the case when both f and g are unsatisfiable. To examine
‖h‖, let h1 denote fx ∧ g¬x ∧ g¬y, and h2 consist of all clauses of h that are not
in h1, so that h = h1 ∧ h2. Note that ‖h‖ ≤ ‖h1‖+ ‖h2‖; moreover, h2 depends
on the variables in Var(ϕf) while h1 does not. We denote ‖h2‖ by M when all
variables in Var(ϕf) are mapped to f , and by N otherwise. Then, we examine
‖h1‖, M , and N for each of the four possible truth assignments for x and y:

Assignment ‖h1‖ M N

x 7→ f y 7→ f = ‖f‖+ |g|+ |g| = |ϕf |+ 1 < |ϕf |+ 2
x 7→ f y 7→ t ≤ ‖f‖+ |g|+ ‖g‖ = |ϕf |+ 1 < |ϕf |+ 2
x 7→ t y 7→ f = |f |+ ‖g‖+ |g| = |ϕf |+ 1 < |ϕf |+ 2
x 7→ t y 7→ t = |f |+ ‖g‖+ ‖g‖ = |ϕf |+ 2 < |ϕf |+ 2

1That is, all disjunctions where each variable in Σ appears exactly once, in either positive
or negated form.

21

Since f and g are unsatisfiable, ‖f‖ < |f | and ‖g‖ < |g|. Therefore, in all of the
above cases, both ‖h1‖+M and ‖h1‖+N are strictly less than |f |+2·|g|+|ϕf |+1,
and so ‖h‖ < |h| − 1, in contradiction of the initial assumption.

“only if”. Let τ be a satisfying assignment for f , and assume that g is unsati-
sfiable. The extension of τ that maps all variables in Var(g) ∪ {x, y} ∪ Var(ϕf)
to f clearly satisfies all clauses of h but one, namely (x∨ z2 ∨ · · · ∨ zk+1). Now,
suppose there exists a truth assignment τ ′ satisfying all the clauses of h. Then,
τ ′ satisfies g¬y and, since g is unsatisfiable, τ ′(y) = f . Moreover, τ ′ also satisfies
ϕf and thus τ ′(zi) = f for every i ∈ {1, . . . , k + 1}. In turn, to make the clause
(¬x ∨ y ∨ z3 ∨ · · · ∨ zk+1) true, we must have τ ′(x) = f . Therefore, the clause
(x ∨ z2 ∨ · · · ∨ zk+1) of h is not satisfied by τ ′, which is a contradiction.

The following result is a critical lemma that will allow us to show the hard-
ness of min problems by exhibiting a polynomial-time procedure that constructs
a database for every CNF formula (based on the encodings given above), and
query with specific properties.

Lemma 8. Let q be an RA query of arity 0.2 Let dbenc be a procedure that for
each k-CNF formula ϕ builds, in polynomial time w.r.t. the size of ϕ, a database
Dϕ such that the following properties hold:

(P1) There exists a polynomially computable number χ, dependent only on k
and |ϕ|, for which: there is a truth assignment that satisfies exactly m
clauses of ϕ if and only if there is a valuation v with range in {0, 1} such
that #

(
(), q, v(Dϕ)

)
= χ−m.

(P2) For every valuation v, there exists a valuation v′ with range in {0, 1} such
that #

(
(), q, v(Dϕ)

)
≥ #

(
(), q, v′(Dϕ)

)
.

Then, (a) MIN<[q] is NP-hard, (b) MIN>[q] is coNP-hard, and (c) and MIN=[q]
is DP-hard.

Proof. Observe that (P2) directly implies the following:

(P3) min
(
(), q,Dϕ

)
= min

{
#
(
(), q, v(Dϕ)

)
| v is a {0, 1} valuation

}
.

(a) Let k ≥ 3. We show that dbenc provides a reduction from k-SAT to MIN<[q].
To this end, let ϕ be a k-CNF formula, and let Dϕ = dbenc(ϕ).

By (P3), min
(
(), q,Dϕ

)
= χ − |ϕ| iff there exists a valuation v with range

in {0, 1} such that #
(
(), q, v(Dϕ)

)
= χ − |ϕ|. In turn, by (P1), this is the

case iff there is a truth assignment satisfying |ϕ| clauses of ϕ. Therefore, ϕ
is satisfiable iff Dϕ, () and χ− |ϕ| form a positive instance of MIN<[q].

2We will consider queries that project onto the empty tuple, so the only possible answers
are either the empty bag, or bags containing one or more occurrences of (). This is only for
technical convenience: the results hold even if we disallow projection over the empty tuple.

22

(b) Since MIN<[q] is the complement of MIN>[q], its complexity follows directly
from the previous point.

(c) We show that dbenc and (5) together give a reduction from SAT-UNSAT
to MIN<[q]. To this end, let f and g be two k-CNF formulae with k ≥ 3,
let ϕ denote the formula h(f, g) defined as in (5), and let Dϕ = dbenc(ϕ).

By Lemma 7, f is satisfiable and g is unsatisfiable iff the maximum number
of clauses of ϕ that can be satisfied by the same truth assignment is exactly
|ϕ|−1, which is the case iff ϕ is unsatisfiable and there is a truth assignment
that satisfies |ϕ| − 1 clauses of ϕ. In turn, by (P1), this is the case iff both
of the following hold:

• there is no valuation v′ with range in {0, 1} such that #
(
(), q, v′(Dϕ)

)
=

χ− |ϕ|, and
• there exists a valuation v with range in {0, 1} for which #

(
(), q, v(Dϕ)

)
=

χ− (|ϕ| − 1) = χ− |ϕ|+ 1.

By (P3), the above hold (together) iff min
(
(), q,Dϕ

)
= χ−|ϕ|+1. Therefore,

f is satisfiable and g is unsatisfiable if and only if Dϕ, () and χ − |ϕ| + 1
form a positive instance of MIN=[q].

5.3. Computing min: intractability beyond RA+{∩}
While computing min is hard in the general case, there exists a large fragment

of RA for which min can be computed via naive evaluation. In the set case
this fragment is well known to be positive relational algebra [17] consisting of
selection, projection, Cartesian product, and union. Notice that over sets the
intersection of two relations is expressible by join, but over bags this is no
longer the case. It turns out that the good behavior of join with respect to
certain answers extends to bags, when we add intersection explicitly. Indeed,
for RA+{∩}, one can compute min simply by using naive evaluation.

Theorem 1. Let q be an RA+{∩} expression of arity n, let D be a database,
and let ā ∈ Const(D)n. Then, min(ā, q,D) = naive(ā, q,D).

Proof. This is an immediate consequence of a more general result that we shall
see later on (Proposition 9).

From the fact that bag relational algebra queries are in DLogSpace with
respect to data complexity [5, 6], we then immediately get the following:

Corollary 5. For expressions q in RA+{∩}, the problems MIN<[q], MIN>[q]
and MIN=[q] are all in DLogSpace.

As a matter of fact, RA+{∩} is the best fragment for which we can compute
certain answers efficiently under bag semantics. To show this, from the diagram
in Figure 1, it suffices to prove that the problem is intractable for SPC{∪}, as
well as for all fragments with duplicate elimination. This is what we do next; in
particular, we shall see that in all of these fragments the intractable complexity
is exactly the same, namely NP-complete, coNP-complete, and DP-complete,
when θ is <, >, and =, respectively.

23

Hardness for SPC{∪}. We first study the max-union operator ∪. Recall that,
in the set case, adding union is harmless and preserves the property that certain
answers can be found by naive evaluation. But under bag semantics, adding ∪
to SPC gives rise to a substantial increase in the complexity of computing min.

Theorem 2. There exists an SPC{∪} query q for which MIN<[q] is NP-hard,
MIN>[q] is coNP-hard, and MIN=[q] is DP-hard.

Proof. Let ϕ be a k-CNF formula, and define dbenc(ϕ) as the database with
relations R and T , where R is the encoding Rϕ of ϕ, and T consists of precisely
|ϕ| occurrences of (0, 1)k. Consider the query q = π()(R∪T); we will show that
dbenc and q satisfy the properties of Lemma 8.

Let v be a valuation, let A = adom
(
v(Dϕ)

)2k
, and let ū = (0, 1)k. First, we

will show that

#
(
(), q, v(Dϕ)

)
= 2k · |ϕ| −#

(
ū, v(Rϕ)

)
≥ (2k − 1) · |ϕ| (6)

By definition of projection, #
(
(), π()(R ∪ T), v(Dϕ)

)
is equal to∑

ā∈A
#
(
ā, R ∪ T, v(Dϕ)

)
. (6.1)

As R = Rϕ and T does not contain any tuple distinct from ū, (6.1) equals∑
ā∈A : ā 6=ū

#
(
ā, v(Rϕ)

)
+ #

(
ū, R ∪ T, v(Dϕ)

)︸ ︷︷ ︸
(†)

. (6.2)

The summation above amounts to |v(Rϕ)| −#
(
ū, v(Rϕ)

)
, and by definition of

∪ we have that (†) is equal to max
{

#
(
ū, v(Rϕ)

)
,#
(
ū, v(T)

)}
. By construction,

T consists of exactly |ϕ| occurrences of the constant tuple ū, so #
(
ū, v(T)

)
=

#(ū, T) = |ϕ|. In turn, since |v(Rϕ)| = |Rϕ| = (2k − 1) · |ϕ|, we have that (6.2)
is equal to

(2k − 1) · |ϕ| −#
(
ū, v(Rϕ)

)
+ max

{
#
(
ū, v(Rϕ)

)
, |ϕ|

}︸ ︷︷ ︸
(††)

. (6.3)

Obviously #
(
ū, v(Rϕ)

)
≤ |ϕ| by Lemma 6, so (††) = |ϕ|. Thus, from (6.3) we

directly get (6).
By Lemma 6, there exists a truth assignment that satisfies m clauses of ϕ

iff there exists a valuation v with range in {0, 1} such that #
(
ū, v(Rϕ)

)
= m.

In turn, from (6), this is the case iff #
(
(), q, v(Dϕ)

)
= 2k · |ϕ| −m, thus proving

that (P1) holds for χ = 2k ·|ϕ|. In addition, from (6) and Lemma 6(d) it directly
follows that (P2) holds as well.

Handling duplicate elimination. In terms of tractability, no fragment survives
the addition of duplicate elimination. Indeed, for all fragments from SPC{ε}
to full relational algebra RA, the decision problems are NP-complete, coNP-
complete, and DP-complete for <, > and =, respectively.

24

Theorem 3. There exists an SPC{ε} query q for which MIN<[q] is NP-hard,
MIN>[q] is coNP-hard, and MIN=[q] is DP-hard.

Proof. Let ϕ be a k-CNF formula, define dbenc(ϕ) as the database Dϕ consisting
of the relation S = enc(ϕ, ι), for some injection ι from ϕ to Const, and consider
the query q = π()

(
ε(S)

)
.3 We will show that dbenc and q satisfy the properties

of Lemma 8.
By construction and by Lemma 6(a), for every valuation v, the number of

occurrences of ι(C)(0, 1)k in v
(
enc(C, ι)

)
is either 1 or 2, and any other tuple

occurs at most once. Recall also that, for distinct clauses C and C ′, no tuple in
enc(C, ι) unifies with any tuple in enc(C ′, ι).

From Lemma 6(c) it follows that (P1) holds for χ = 2k · |ϕ| if we show that,
for every valuation v,

#
(
(), q, v(Dϕ)

)
= 2k · |ϕ| −m ⇐⇒ #

(
(0, 1)k, v(Rϕ)

)
= m, (7)

where Rϕ = enc(ϕ). In addition, from (7) and Lemma 6(d) it also follows that
(P2) holds.

Let v be a valuation, and let Sj denote the set of tuples that occur precisely
j times in v(S). Then,

#
(
(), q, v(Dϕ)

)
=
∑
ā∈S1

1 +
∑
ā∈S2

1 = |v(S)| −
∑
ā∈S2

1 .

Since |v(S)| = |S| = 2k · |ϕ|, we have that #
(
(), q, v(Dϕ)

)
= 2k · |ϕ| −m if and

only if
∑
ā∈S2

1 = m. In turn, this is the case iff

(†) there exist exactly m distinct clauses C1, . . . , Cm in ϕ such that, for every
i ∈ {1, . . . ,m}, #

(
ι(Ci)(0, 1)k, v(enc(Ci, ι))

)
= 2.

By construction, #
(
ι(C)(0, 1)k, v(enc(C, ι))

)
= 2 iff #

(
(0, 1)k, v(enc(C))

)
= 1,

for every C ∈ ϕ. So, by Lemma 6(a), (†) holds iff #
(
(0, 1)k, v(Rϕ)

)
= m.

5.4. Computing max: hardness for simple queries

The problem of computing max is hard already for very simple queries: in
fact, MAX>[q] is NP-complete for a query q that returns a base relation [21].
Here, we complete the picture by proving that deciding MAX=[q] for the same
class of queries is complete for DP.

Theorem 4. The problem MAX=[q] is DP-hard even for a query q that returns
a base relation.

Proof. We provide a reduction from SAT-UNSAT. To this end, let f and g be
two 3-CNF formulae, let ϕ denote h(f, g), let Dϕ be the database consisting of

3The output of this query is always either the empty bag, or the bag consisting of a single
occurrence of the empty tuple ().

25

the single relation R = Rϕ, and consider the query q = R. Observe that ϕ is a
4-CNF formula and, for every valuation v, we have that #

(
(0, 1)4, q, v(Dϕ)

)
=

#
(
(0, 1)4, v(Rϕ)

)
.

By Lemma 7, f is satisfiable and g is unsatisfiable iff the maximum number
of clauses of ϕ that can be satisfied by a single truth assignment is |ϕ| − 1. By
Lemma 6(c), this is the case iff both of the following hold:

(†) there exists a valuation v with range in {0, 1} such that #
(
(0, 1)4, v(Rϕ)

)
=

|ϕ| − 1, and
(‡) there is no valuation v′ with range in {0, 1} such that #

(
(0, 1)4, v′(Rϕ)

)
=

|ϕ|.
Observe that Lemma 6(d) directly implies that

max
v∈V

{
#
(
(0, 1)k, v(Rϕ)

)}
= max
v∈V ′

{
#
(
(0, 1)k, v(Rϕ)

)}
,

where V is the set of all valuations, and V ′ ⊆ V consists of all valuations with
range in {0, 1}. Thus, (†) and (‡) hold together iff max

(
(0, 1)4, q,Dϕ

)
= |ϕ|−1.

Therefore, f is satisfiable and g is unsatisfiable iff Dϕ, (0, 1)k, and |ϕ| − 1 are a
positive instance of MAX=[q] for q = R.

5.5. Complex selection conditions

In our definition of relational algebra, we assumed that selection conditions
are equalities of the form i = j, where i and j denote positions within a table.
Selection conditions γ can be generalized to arbitrary Boolean combinations of
equalities, according to following the grammar:

γ := (i = j) | γ ∧ γ | γ ∨ γ | ¬γ

We briefly describe how more complex conditions affect our results.
If we only add conjunction (that is, selection conditions are conjunctions of

equalities), there is no change at all. This is because the cascade-of-selections
equivalence,

σγ∧γ′(e) ≡ σγ
(
σγ′(e)

)
,

applies under bag semantics as well.
If we add disjunction, it might at first appear that this leads to intractability,

because the following equivalence

σγ∨γ′(e) ≡ σγ(e) ∪ σγ′(e)

holds under bag semantics, and we have seen that the fragment SPC{∪} is in-
tractable. However, adding disjunction to selection conditions is weaker than
adding max-union, and preserves tractability.

Proposition 9. Let q be an RA+{∩} query of arity n, where selection conditions
are positive Boolean combinations of equalities; then, MIN<[q] and MIN>[q] can
be solved in DLogSpace. More precisely, for every database D and for every
n-tuple ā of constants, min(ā, q,D) = naive(ā, q,D).

26

Proof. For every valuation v, we have v(ā) = ā and

naive(ā, q,D) ≤
∑

ā′ : v(ā′)=ā

naive(ā′, q,D) ≤ #
(
ā, q, v(D)

)
, (8)

where the rightmost inequality is by Lemma 9, which is given in Appendix A.
Let us now define a valuation ṽ whose restriction to Null(D) is injective and such
that the image of Null(D) under it is disjoint with Const(D). In other words, each
null in D is mapped to a distinct constant that does not appear in D. From the
definition of naive evaluation, it then follows that #

(
ā, q, ṽ(D)

)
= naive(ā, q,D).

This, together with (8), proves that naive(ā, q,D) = min(ā, q,D).

The problems become intractable when conditions are unrestricted Boolean
combinations of equalities, even when these are added to the SPC fragment.

Proposition 10. In the extension of SPC that allows arbitrary Boolean combi-
nations of equalities as selection conditions, there is a query q for which MIN<[q]
is NP-complete, MIN>[q] is coNP-complete, and MIN=[q] is DP-complete.

Proof. Let ϕ be a k-CNF formula, and define dbenc(ϕ) as the database Dϕ with
relations R and T , where R is the encoding Rϕ of ϕ and T consists of a single
occurrence of (0, 1)k. Consider the query q = π()

(
σγ(R × T)

)
, where γ is the

disjunction of all inequalities i 6= j for every i ∈ {1, . . . , 2k} and j = 2k + 1. We
will show that dbenc and q satisfy the properties of Lemma 8.

For a valuation v, the answer to q on v(Dϕ) consists of as many occurrences
of () as there are tuples different from (0, 1)k in Rϕ. More precisely,

#
(
(), q, v(Dϕ)

)
=
∑

ā6=(0,1)k

#
(
ā, v(Rϕ)

)
= |v(Rϕ)| −#

(
(0, 1)k, v(Rϕ)

)
. (9)

Therefore, (P1) holds for χ = (2k − 1) · |ϕ| = |Rϕ| = |v(Rϕ)| by Lemma 6(c).
In addition, from (9) and Lemma 6(d) it also follows that (P2) holds.

6. Conclusions

We have provided two complete classifications: of the expressive power
of fragments of bag relational algebra, and of the complexity of computing
certain and possible answers in those fragments. For the complexity of certain
answers, we have a dichotomy: either they can be computed efficiently by naive
evaluation, or their complexity is intractable, which means NP-complete, or
coNP-complete, or DP-complete (depending on how the problem is turned
into a decision problem).

Directions for future work are motivated by the recent work on bag semantics
in data management applications where incompleteness naturally occurs, such as
data exchange [15] and OBDA [16]. Notice that we have primarily concentrated
on the closed-world semantics, which as of late has been actively studied in
those contexts; see, e.g., [27, 28, 29, 30, 31]. Thus we believe our results could

27

be relevant to understanding the complexity of these applications under the
closed-world assumption. As another direction for future work, we would like to
study the complexity of finding certain and possible answers in the fragments of
bag relational algebra under the open-world assumption. The general case is of
course undecidable, but the picture for the fragments studied here is not clear.
Finally, we would like to use our results as the starting point for the study of
answering queries with grouping and aggregation over incomplete data, as such
queries rely on bag semantics.

Acknowledgements

The authors would like to thank the anonymous reviewers for their construc-
tive comments and suggestions, which have contributed to the improvement of
this work.

References

[1] M. Console, P. Guagliardo, L. Libkin, Fragments of bag relational algebra:
Expressiveness and certain answers, in: ICDT, Vol. 127 of LIPIcs, Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2019, pp. 8:1–8:16.

[2] C. J. Date, H. Darwen, A Guide to the SQL Standard, Addison-Wesley,
1996.

[3] R. Ramakrishnan, J. Gehrke, Database Management Systems, McGraw-
Hill, 2003.

[4] J. Albert, Algebraic properties of bag data types, in: VLDB, 1991, pp.
211–219.

[5] S. Grumbach, T. Milo, Towards tractable algebras for bags, J. Comput.
Syst. Sci. 52 (3) (1996) 570–588.

[6] L. Libkin, L. Wong, Query languages for bags and aggregate functions, J.
Comput. Syst. Sci. 55 (2) (1997) 241–272.

[7] P. Buneman, S. A. Naqvi, V. Tannen, L. Wong, Principles of programming
with complex objects and collection types, Theor. Comput. Sci. 149 (1)
(1995) 3–48.

[8] R. G. G. Cattell, The Object Database Standard: ODMG-93, Morgan
Kaufmann, 1993.

[9] S. Chaudhuri, M. Y. Vardi, Optimization of Real conjunctive queries, in:
PODS, 1993, pp. 59–70.

[10] T. S. Jayram, P. G. Kolaitis, E. Vee, The containment problem for real
conjunctive queries with inequalities, in: PODS, 2006, pp. 80–89.

28

[11] S. Cohen, Equivalence of queries combining set and bag-set semantics, in:
PODS, 2006, pp. 70–79.

[12] P. G. Kolaitis, The query containment problem: Set semantics vs. bag
semantics, in: AMW, 2013.

[13] L. E. Bertossi, G. Gottlob, R. Pichler, Datalog: Bag semantics via set
semantics, in: ICDT, Vol. 127 of LIPIcs, Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2019, pp. 16:1–16:19.

[14] L. S. Colby, L. Libkin, Tractable iteration mechanisms for bag languages,
in: ICDT, 1997, pp. 461–475.

[15] A. Hernich, P. G. Kolaitis, Foundations of information integration under
bag semantics, in: LICS, IEEE Computer Society, 2017, pp. 1–12.

[16] C. Nikolaou, E. V. Kostylev, G. Konstantinidis, M. Kaminski, B. C. Grau,
I. Horrocks, The bag semantics of ontology-based data access, in: IJCAI,
2017, pp. 1224–1230.

[17] T. Imielinski, W. Lipski, Incomplete information in relational databases,
Journal of the ACM 31 (4) (1984) 761–791.

[18] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-
Wesley, 1995.

[19] S. Abiteboul, P. Kanellakis, G. Grahne, On the representation and querying
of sets of possible worlds, Theoretical Computer Science 78 (1) (1991) 158–
187.

[20] S. Grumbach, L. Libkin, T. Milo, L. Wong, Query languages for bags:
expressive power and complexity, SIGACT News 27 (2) (1996) 30–44.

[21] M. Console, P. Guagliardo, L. Libkin, On querying incomplete information
in databases under bag semantics, in: IJCAI, ijcai.org, 2017, pp. 993–999.

[22] C. H. Papadimitriou, M. Yannakakis, The complexity of facets (and some
facets of complexity), J. Comput. Syst. Sci. 28 (2) (1984) 244–259.

[23] T. J. Green, G. Karvounarakis, V. Tannen, Provenance semirings, in:
PODS, ACM, 2007, pp. 31–40.

[24] M. Arenas, P. Barceló, L. Libkin, F. Murlak, Foundations of Data
Exchange, Cambridge University Press, 2014.

[25] M. Bienvenu, M. Ortiz, Ontology-mediated query answering with data-
tractable description logics, in: Reasoning Web, 2015, pp. 218–307.

[26] M. Lenzerini, Data integration: a theoretical perspective, in: PODS, 2002,
pp. 233–246.

29

[27] S. Ahmetaj, M. Ortiz, M. Simkus, Polynomial datalog rewritings for
expressive description logics with closed predicates, in: IJCAI, 2016, pp.
878–885.

[28] G. Amendola, N. Leone, M. Manna, P. Veltri, Enhancing existential rules
by closed-world variables, in: IJCAI, 2018, pp. 1676–1682.

[29] A. Hernich, Answering non-monotonic queries in relational data exchange,
Logical Methods in Computer Science 7 (3) (2011).

[30] A. Hernich, L. Libkin, N. Schweikardt, Closed world data exchange, ACM
Trans. Database Syst. 36 (2) (2011) 14:1–14:40.

[31] C. Lutz, I. Seylan, F. Wolter, Ontology-mediated queries with closed
predicates, in: IJCAI, 2015, pp. 3120–3126.

Appendix A. Additional Proofs

Proof of Lemma 3. We proceed by induction on the structure of e. Note that all
subexpressions of e are nullary and, since there are no attributes, none of them
can be a selection. Moreover, according to the syntax of bag relational algebra
defined in Section 2, every subexpression of e must mention R at least once (and
it does not mention any other symbol of the schema due to the assumptions of
the lemma).

Base case: e is R. Then, |e(D)| = |RD|.

Inductive step:

• e is π()(e
′). Then, |e(D)| = |e′(D)| and by the induction hypothesis

|e′(D)| ≥ |RD|.
• e is e′ × e′′. Then, |e(D)| = |e′(D)| · |e′′(D)|. By the induction hypothesis
|e′(D)| and |e′′(D)| are both ≥ |RD|, and thus their product is as well.

• e is e′ ∪ e′′. Then, |e(D)| = max
{
|e′(D)|, |e′′(D)|

}
≥ |e′(D)| and by the

induction hypothesis |e′(D)| ≥ |RD|.
• e is e′] e′′. Then, |e(D)| = |e′(D)|+ |e′′(D)| ≥ |e′(D)|. By the induction

hypothesis both |e′(D)| and |e′′(D)| are ≥ |RD|, and therefore their sum
is as well.

Proof of Lemma 4. We proceed by induction on the structure of e. Note that
all subexpressions of e are nullary and, since there are no attributes, none of
them can be a selection.

Base case: e is eR?eS , where ? ∈ {×,],∪} and eR, eS are RA+{∪} expressions
such that eR mentions only R and eS mentions only S. Then, we have |e(D)| =
f?
(
|eR(D)|, |eS(D)|

)
, where f×(m,n) = m ·n, f](m,n) = m+n and f∪(m,n) =

max(m,n). Clearly, for every m,n ∈ N and for each ? ∈ {×,],∪}, we have that
f?(m,n) ≥ m and f?(m,n) ≥ n. Thus, since |eR(D)| ≥ |RD| and |eS(D)| ≥
|SD| by Lemma 3, the claim follows trivially.

30

Inductive step: Straightforward application of the induction hypothesis as in
Lemma 3.

Lemma 9. Let q be a n-ary expression in RA+{∩} and let D be a bag semantics
database. For every tuple ā ∈ adomn(D) and every valuation v for Null(D) the
following inequality holds:∑

{b̄∈adomn(D) | vb̄=vā}

naive(b̄, q,D) ≤ #(vā, q, vD)

Proof. We proceed by induction on the structure of q.

Base case:

• q = R. Trivially, each occurrence of ā in RD results in one occurrence of
v(ā) in Rv(D).

Inductive step:

• q = πα(q′). Assume that q′ has arity m. Due to the definition of
Projection, the following equality holds for every valuation v for Null(D):

#(vā, πα(q′), vD) =
∑

{c̄∈adomm(vD) | πα(c̄)=vā}

#(c̄, q′, vD) (A.1)

Notice that c̄ in Equation A.1 is a tuple of constants, hence from the
definition of semantics for incomplete databases we can conclude that
there exists at least one tuple ū ∈ adomm(D) such that vū = c̄. We now
apply the inductive hypothesis to q′ and ū and derive the following.∑

{b̄∈adomm(D) | vū=vb̄}

naive(b̄, q′, D) ≤ #(vū, q′, vD) (A.2)

By assumption, vū in Equation A.2 is equal to c̄. For this reason, we can
substitute vū with c̄ obtaining the following inequality.∑

{b̄∈adomm(D) | vb̄=c̄}

naive(b̄, q′, D) ≤ #(c̄, q′, vD) (A.3)

Observe now that v is a function, hence for every b̄ ∈ adomm(D) there
exits one and only one tuple c̄ of constants such that vb̄ = c̄. In light
of this consideration, we can apply Equation A.3 to each tuple c̄ in the
right-hand side of Equation A.1 and obtain the following inequality.

∑
{c̄∈adomm(vD) | πα(c̄)=vā}

 ∑
{b̄∈adomm(D) | vb̄=c̄}

naive(b̄, q′, D)

 ≤ (A.4)

∑
{c̄∈adomm(vD) | πα(c̄)=vā}

#(c̄, q′, vD)

31

The double summation on the left-hand side of Equation A.4 can now be
re-written as a single summation over all those tuples b̄ such that vb̄ is
equal to vā on α. Hence:

∑
{b̄∈adomm(D) | πα(vb̄)=vā}

naive(b̄, q′, D) ≤
∑

{c̄∈adomm(vD) | πα(c̄)=vā}

#(c̄, q′, vD)

(A.5)

Consider now naive(ā, πα(q′), D), and let z̄ be a generic tuple in adomm(D)
such that z̄ is equal to ā on the attributes in α. Since

Z = {z̄ ∈ adomm(D) | z̄ is equal to ā on α}

is a subset of

B = {b̄ ∈ adomm(D) | vb̄ is equal to vā on α} ,

the following inequality holds:∑
z̄∈Z

naive(z̄, q′, D) ≤
∑
b̄∈B

naive(b̄, q′, D) .

The claim now follows from the definition of projection, that is,

naive(ā, πα(q′), D) =
∑
z̄∈Z

naive(z̄, q′, D) .

• q = σγ(q′), where γ is a positive Boolean combination of equalities.
W.l.o.g. we assume γ to be in disjunctive normal form, that is, γ =∨
i(
∧
j(ai,j = bi,j)).

If this is the case, a tuple ā satisfies γ if it satisfies all the equalities in one
of the disjuncts of γ.

Let A be the set of n-tuples that unify with ā; for every valuation v we
have∑
ā′∈A

naive
(
ā′, σγ(q′), D

)
≤
∑
ā′∈A

naive
(
ā′, q′, D

)
≤ #

(
v(ā), q′, v(D)

)
, (A.6)

where the left inequality is by definition of the selection operation, and
the right one is by the inductive hypothesis.

If v(ā) satisfies γ, then #
(
v(ā), σγ(q′), v(D)

)
= #

(
v(ā), q′, v(D)

)
and so

the claim follows by (A.6). Otherwise, when v(ā) does not satisfy γ, for
each disjunct of γ there is an equality i = j not satisfied by v(ā). Then,
from the definition of selection we have #

(
v(ā), σγ(q′), v(D)

)
= 0.

Observe now that valuations are functions, hence vā.i 6= vā.j implies that
ā.i 6= ā.j. In turn, this implies all the tuples b̄ ∈ adomn(D) such that
vb̄ = vā do not satisfy the equality conditions violated by vā. From this
consideration, we can conclude that

∑
{b̄∈adomn(D) | vb̄=vā}

naive(b̄, σγ(q′), D) =

0, proving the claim.

32

• q = q1] q2. From the definition of] we obtain the following:∑
{b̄∈adomn(D) | vb̄=vā}

naive(b̄, q1] q2, D) =
∑

{b̄∈adomn(D) | vb̄=vā}

naive(b̄, q1, D)+

(A.7)∑
{b̄∈adomn(D) | vb̄=vā}

naive(b̄, q2, D)

(A.8)

Applying the inductive hypothesis to q1 and q2 we obtain the following:∑
{b̄∈adomn(D) | vb̄=vā}

naive(b̄, q1, D) ≤ #(vā, q1, vD) (A.9)

∑
{b̄∈adomn(D) | vb̄=vā}

naive(b̄, q2, D) ≤ #(vā, q2, vD)

Finally, we apply the definition of additive union to vD and obtain the
following:

#(vā, q1] q2, vD) = #(vā, q1, vD) + #(vā, q2, vD) (A.10)

The claim now follows from Equation A.9 and Equation A.10.

• q = q1 × q2. Suppose that the arity of q1 is a and the arity of q2 is b,
and assume two tuples ā1 ∈ adoma(D) and ā2 ∈ adoma(D) such that
ā = ā1 ◦ ā2. From the definition of Cartesian product we obtain the
following.

#(vā, q1 × q2, vD) = #(vā1, q1, vD) ·#(vā2, q2, vD) (A.11)

Applying the inductive hypothesis on vā1 and vā2, we obtain the following
inequalities: ∑

{b̄1∈adoma(D) | vb̄1=vā1}

naive(b̄1, q1, D) ≤ #(vā1, q1, vD) (A.12)

∑
{b̄2∈adomb(D) | vb̄2=vā2}

naive(b̄2, q2, D) ≤ #(vā2, q2, vD)

We now apply Equation A.12 to Equation A.11, and derive the following:∑
{b̄1∈adoma(D) | vb̄1=vā1}

naive(b̄1, q1, D) ·
∑

{b̄2∈adomb(D) | vb̄2=vā2}

naive(b̄2, q2, D)

≤ #(vā, q1 × q2, vD) (A.13)

33

Let S = {b̄ ∈ adomn(D) | vb̄ = vā}. From the definition of Cartesian
product we can derive the following equality:∑
{b̄∈S}

naive(b̄, q1 × q2, D) =
∑

{b̄1,b̄2 | b̄1◦b̄2∈S}

naive(b̄1, q1, D) · naive(b̄2, q2, D) (A.14)

To prove the claim, observe that the left-hand side of Equation A.13 is
alway greater or equal to the right-hand side of Equation A.14.

• q = q1 ∩ q2. From the definition of ∩ we can derive the following:∑
{b̄∈adomn(D) | vb̄=vā}

naive(b̄, q1 ∩ q2, D)

=
∑

{b̄∈adomn(D) | vb̄=vā}

min{naive(b̄, q1, D), naive(b̄, q2, D)} (A.15)

We now apply the inductive hypothesis to q1 and q2 and obtain the
following: ∑

{b̄∈adomn(D) | vb̄=vā}

naive(b̄, q1, D) ≤ #(vā, q1, vD) (A.16)

∑
{b̄∈adomn(D) | vb̄=vā}

naive(b̄, q2, D) ≤ #(vā, q2, vD) (A.17)

Finally, we apply the definition of intersection to vD and obtain the
following.

#(vā, q1 ∩ q2, vD) = min{#(vā, q1, vD); #(vā, q2, vD)} (A.18)

We now observe that the right-hand side of Equation A.15 is always lesser
or equal to the left-hand side of Equation A.16 and Equation A.17. This
is due to the application of the min operator. In turn, together with
Equation A.18 this proves that the following inequality holds:∑

{b̄∈adomn(D) | vb̄=vā}

naive(b̄, q1 ∩ q2, D) ≤ #(vā, q1 ∩ q2, vD)

This in turn proves the claim.

34

	Introduction
	Bag Relational Algebra
	Expressive Power of Bag Relational Algebra Fragments
	Certain and Possible Answers under Bag Semantics
	Complexity of Certain and Possible Answers
	Upper and lower bounds for full RA
	Technical tools
	Computing min: intractability beyond RA+{}
	Computing max: hardness for simple queries
	Complex selection conditions

	Conclusions
	Additional Proofs

