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Novelty and Impact  

This study shows that a weighted genomic risk score including 116 CRC susceptibility SNPs is the score 

with the best prediction performance, while deconstructing genetic risk into multiple regional scores or 
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inclusion of additional SNPs above the genome-wide significance threshold showed no further improvement 

on prediction performance. Modelling the levels of PRS with age and sex in the general UK population 

shows that employing genetic risk profiling can achieve a moderate degree of risk discrimination that could 

be helpful to identify a sub-population with higher CRC risk due to genetic susceptibility.  
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ABSTRACT 

Increasing numbers of common genetic variants associated with colorectal cancer (CRC) have been 

identified. This study aimed to determine whether risk prediction based on common genetic variants 

might enable   stratification for CRC risk. Meta-analysis of eleven genome-wide association studies 

(GWAS) comprising 16,871 cases and 26,328 controls was performed to capture CRC susceptibility 

variants. Genetic prediction models with several candidate polygenic risk scores (PRSs) were generated 

from Scottish CRC case–control studies (6478 cases and 11,043 controls), and the score with the best 

performance was then tested in UK Biobank (4800 cases and 20,287 controls). A weighted PRS of 116 

CRC SNPs (wPRS116) was found with the best predictive performance, reporting a c-statistics of 0.60 

and an odds ratio (OR) of 1.46 (95%CI: 1.41-1.50, per SD increase) in Scottish dataset. The predictive 

performance of this wPRS116 was consistently validated in UK Biobank dataset with c-statistics of 0.61 

and an OR of 1.49 (95%CI: 1.44-1.54, per SD increase). Modelling the levels of PRS with age and sex 

in the general UK population shows that employing genetic risk profiling can achieve a moderate degree 

of risk discrimination that could be helpful to identify a subpopulation with higher CRC risk due to 

genetic susceptibility. 
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INTRODUCTION 

Colorectal cancer (CRC) is one of the most common cancers, with 1.8 million new cases and almost 

0.8 million deaths globally in 2018.1 Substantial evidence showed that screening can reduce CRC 

mortality by allowing early detection and removal of precancerous lesions. Policy makers and clinicians 

rely on risk classification to determine which individuals to screen. To date, these classification schemes 

are predominantly based on age and/or a simple classification of family history. Stratifying the average 

risk population into risk categories offers the potential of tailoring surveillance intensity.  

Comprehensive information on genetic susceptibility could contribute importantly to CRC risk 

stratification, given that the heritability of CRC has been estimated to be around 16%-35%2 and the 

sibling recurrence risk ratio is about 2.0.3 We previously assessed the utility of CRC genetic risk 

profiling with a panel of 10 common genetic variants associated with CRC susceptibility.4 Although 

discrimination ability was low (c-statistic of 0.56), we showed that genotype data provides additional 

information to that from family history alone.4 Others have also showed that personalised screening 

using polygenic risk scores (PRSs) have the potential to identify high-risk subgroups most likely to 

benefit from targeted CRC prevention strategies.5 Incorporating more complete genetic information is 

expected to improve risk stratification and the combined effect of multiple risk loci has the potential to 

achieve a degree of risk discrimination that is useful for CRC risk stratification.  

In this study, we aimed to derive, optimize and test polygenic risk scores (PRSs) for prediction of CRC 

and to apply the PRSs with the best predictive performance in population settings for risk stratification. 

We developed models by incorporating genetic information of CRC and several markers that comprise 

potential CRC risk factors or complex traits co-occurring with CRC. To gauge the broader future 

potential of genetic risk modelling, we assessed the utility of genetic risk scores in categorizing risk 

subgroups within the general population by projecting the risk models to the UK population.  

MATERIALS AND METHODS 

Studies   

We made use of 11 previously published GWASs (i.e., CCRR1,6 CCFR2,7 COIN,8 CORSA,9 Croatia,10 

DACHS,11 FIN,12 NSCCG-OncoArray,13 SCOT,14 UK1,15 and VQ58 16) to generate a list of genetic 

variants associated with CRC risk. A series of Scottish CRC case–control studies were used to test the 

predictive performance of polygenic risk scores (PRSs). The developed PRSs were further evaluated in 

an independent test dataset from UK Biobank. Schematic representation of the study design is shown 

in Supporting Information Fig. S1. Standard quality control (QC) measures were applied to each of the 

datasets. After QC process, a total of 16,871 cases and 26,328 controls were finally included for the 

derivation of genetic susceptibility SNPs, 6,478 cases and 11,043 controls from Scottish dataset were 
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included for the development of PRSs, and 4,800 cases and 20,287 controls from UK Biobank were 

included to validate the predictive performance of the PRSs developed. Details are described in 

Supporting Information Methods and Table S1. 

Polygenic risk scores 

Genome-wide polygenic score: We performed a meta-GWAS of 11 studies to obtain a list of genome-

wide significant SNPs (p<5×10-8) and their per-allele odds ratios (ORs) and standard errors for CRC 

risk. The meta-analysis SNPs were pruned to only those with an r2 < 0.1 and a distance greater than 500 

kb. For completeness, we also included the genetic risk variants reported in early published CRC 

GWASs (Table S2). A weighted genome-wide PRS (wPRS) was computed using both previously known 

susceptibility variants and independent variants identified by the meta-GWAS. 

Regional genetic scores: We additionally constructed regional genetic scores by including SNPs 

associated with CRC and its risk factors (i.e., vitamin D [VD], C-reactive protein [CRP], body mass 

index [BMI], waist hip rate [WHR], and inflammatory bowel disease [IBD]) by using the 

GENOSCORES library (https://pm2.phs.ed.ac.uk/genoscores/). This is similar to the approach used for 

LDpred,17 in which the correction for linkage disequilibrium (LD) between SNPs was based on pre-

multiplying the vector of weights by the generalized inverse of the correlation matrix estimated from 

1000G reference panel of European ancestry.   

Model development and evaluation 

We constructed prediction models in the Scottish dataset by incorporating genetic CRC risk in forms of 

either PRSs or regional genetic scores with adjustment for the first 10 genetic principal components 

(PCs). A sequence of logistic models was fitted for: (i) a weighted PRS of identified CRC GWAS SNPs; 

(ii) regional genetic scores for CRC; and (iii) regional genetic scores for CRC and other relevant traits. 

A series of stepwise backward logistic regressions was conducted on regional genetic scores to obtain 

an optimized set of scores determined by the Akaike information criterion. The discriminatory accuracy 

of the models was evaluated by the area under the receiver-operating characteristic curve (ROC, known 

as c-statistic) with 10-fold cross-validation. These models were further assessed by the stratification of 

anatomic tumor sites (i.e., proximal colon, distal colon and rectum). The PRS model with the best 

performance was then evaluated in UK Biobank. Odds ratios (OR) were then derived for per SD 

increase in PRS for overall, and site-specific, CRC risk. To simplify the interpretation of PRS, we 

categorized it into percentiles based on its distribution in controls.  

Combined effect of PRS and family history 

To evaluate the incremental contribution of combining PRS and family history for prediction, we 
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additionally calculated the expected information for discrimination (expected weight of evidence, 

denoted as Λ).18 Briefly, the expected information for discrimination is the expected log-likelihood ratio 

in favor of correct assignment as case or control, taken as the average of the values in cases and controls. 

One advantage of using Λ is that the contributions of independent variables to predictive performance 

are additive on the scale of Λ. For a logistic regression model, the sampling distribution of Λ is 

asymptotically Gaussian. In this situation, the c-statistic can be viewed as a mapping of Λ, which takes 

values from 0 to infinity to the interval from 0.5 to 1.18 The rationale and theoretical explanations are 

presented in Supplementary Methods. Family history of colorectal cancer (CRC) was considered as a 

categorical variable, dependent on the presence or absence of at least one first-degree relative affected 

by CRC at any age at the time of recruitment. 

Estimation of absolute risk for developing CRC 

The absolute risk of CRC for individuals in each risk category was calculated after accounting for 

competing risks of dying from causes other than CRC by using the formula described previously.19 

Specifically, we obtained sex- and age-dependent UK CRC incidence and mortality rates for 2016 mid-

year from the Office for National Statistics (http://www.ons.gov.uk/). The mortality rates for non-CRC 

causes were estimated by subtracting the age- and sex-specific CRC mortality rates from the overall 

mortality rates. Full details of these calculations are provided in Supplementary Methods.  

 

 

 

RESULTS 

The meta-analysis of 11 GWASs resulted in the identification of 1,593 genetic variants associated with 

CRC at p<5×10-8. After adding SNPs reported in other GWAS and excluding SNPs in LD, a list of 116 

SNPs (Table S2) were retained for the creation of a weighted polygenic risk score (wPRS116). We 

additionally created 35 regional genetic scores that included 1,593 SNPs with p<5×10-8 (Table 1). We 

also used more liberal p-value thresholds and created 40 genetic scores comprising of 1,837 SNPs at 

p<10-7 and 41 genetic scores comprising of 2,712 SNPs at p<10-6. The genes harbored in these genomic 

regions were annotated and are presented in Table S3. We additionally created 17 regional scores for 

CRP, 5 for VD, 85 for IBD, 69 for BMI and 48 for WHR with p-value threshold setting as 5×10-8. More 

liberal p-value thresholds (p<10-7 and p<10-6) were also applied for these traits, and the number of 

regional genetic scores created and SNPs included are present Table S4. 

We set out to optimize these derived scores by examining their discriminative ability in the Scottish 

dataset (Table S5). More specifically, the combined effect of 116 CRC SNPs in the form of wPRS116 

was significantly associated with CRC risk (OR=1.46, 95% CI: 1.41 to 1.50, p=1.71×10-116, 1 SD 
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increase of wPRS116) and showed moderate discriminative ability (c-statistic=0.60) (Table 1). When 

stratifying CRC status by tumor sites, the predictive ability of wPRS116 had less accuracy than that for 

overall CRC risk (Table 1). With inclusion of multiple regional scores, the best model of regional 

genetic risk scores (including 31 CRC scores, 7 CRP scores, 2 VD scores, 25 IBD scores, 18 BMI scores 

and 7 WHR scores) yielded a c-statistics of 0.60 (Table S4). When comparing to the wPRS116, the 

regional scores showed no further improvement on overall CRC prediction (the p-value of likelihood-

ratio test for assessing predictive accuracy between the models of wPRS116 and genetic risk scores was 

close to 1).  

We next tested the predictive performance of wPRS116 in the UK Biobank dataset. Similarly, the 

wPRS116 showed moderate discrimination ability with a c-statistic of 0.610 and an OR of 1.49 (95% CI: 

1.44 to 1.54, p=6.67×10-128, per SD increase) (Table 2). For individuals in the lowest 1% of wPRS116, 

the OR compared with the middle quintile (40%-60%) was 0.32 (95%CI: 0.19 to 0.54, p=8.51×10-6); 

by contrast, for individuals in the highest 1% of the PRS distribution, the corresponding estimated OR 

was 3.25 (95%CI: 2.50 to 4.22, p=1.52×10-17) (Fig.1, Table S6). When considering CRC risk separately 

for proximal colon, distal colon and rectum, it showed no improvement in predictive performance. We 

then explored the modification effect of the wPRS116 by sex, age, or family history, but found no 

evidence of an interaction effect (Table S7, Pinteraction = 0.426 for multiplicative interaction with sex, 

Pinteraction = 0.688 with age, Pinteraction = 0.388 with family history), therefore we did not fit additional 

interaction terms in the model. 

We then assessed the incremental contribution of adding wPRS116 and family history to a baseline model 

of age, sex and the first 10 genetic PCs as predictors in UK Biobank. Baseline model on age, sex and 

the 10 PCs yielded a c-statistic of 0.53, and the corresponding estimate of Λ was 0.01 bits (Table S8). 

When adding family history alone, the c-statistic increased to 0.55 and the corresponding Λ was 0.02 

bits. Adding both family history and wPRS116 yielded c-statistic of 0.610 and an incremental value of 

0.10 bits, which showed significantly improvement over family history alone. We recalibrated the 

posterior probabilities by fitting a logistic regression model with the response variable as outcome and the 

logit of the posterior probability as the predictive variable. It showed that recalibration of the posterior 

probabilities increases the test log-likelihood only by 1 natural log units for baseline + family history and 

showed no increases for the baseline + FH + wPRS116, indicating that both these models were well-calibrated 

(Fig. S2). 

To gauge the potential public health impact of applying such risk prediction model in the general 

population, we estimated the 10-year absolute risk of the general UK population (Fig. S3, Table S9). 

We observed that the estimated absolute CRC risk for individuals at the highest 1% of PRS began to 

increase sharply after 45 years old, and reached a risk of 22.1% in men and 14.4% in women by 75 

years old.  As 50 years old is the recommended starting age of screening in Scotland, we used the 
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average risk at this age as reference threshold (0.48% for man and 0.33% women). Individuals in the 

top 10% of wPRS116 would reach or exceed this level of risk at 45 years old, which is 5 years earlier 

than the average risk population; in contrast, individuals in the bottom 10% of PRS would stay below 

this average risk until 60 years old. If we considered individuals with 10-year absolute risk ≥5% as high 

risk group, with risk strata by wPRS116 in population settings, we will able to identify 10% men and 5% 

women meriting intensive screening at 65 years old.  

DISCUSSION 

In this study we describe a systematic approach to derive, validate and test a number of candidate 

genetic risk scores with incorporating information from hundreds to thousands of common genetic 

variants to predict polygenic susceptibility of CRC. We evaluated the predictive performance of both a 

genomic risk score and a series of regional genetic scores that were built based on the summary statistics 

from multiple GWASs. Our study shows that a weighted genomic risk score including 116 CRC 

susceptibility SNPs is the score with the best performance, while deconstructing genetic risk into 

multiple regional scores or inclusion of additional SNPs above the genome-wide significance threshold 

showed no further improvement on prediction performance. By implementing the PRSs developed, we 

show that the inclusion of genetic factors into a baseline model of age, sex and family history results in 

a significant improvement of CRC risk stratification. It should be noted that family history data in this 

study were collected based on self-reported bowel cancer history of parents and siblings. Therefore any 

potential recall bias on family history may lead to the prediction improvement being less accurate.   

ROC analysis of the genetic model that included wPRS116 showed an improved but still modest 

discriminative performance (c-statistic: 0.60 in Scottish dataset, 0.61 in UK Biobank dataset). To our 

knowledge, the best predictive performance achieved by PRS along with age and family history was 

0.69 and 0.60 for Korean men and women,20 but the SNPs were chosen from the same dataset used to 

generate the model, and therefore the reported c-statistics are likely inflated. Other genetic models 

showed consistently low to modest discriminatory abilities.21 Hsu et al developed sex-specific models 

by using family history and 27 common genetic variants with adjustment of endoscopy history and 

obtained a discrimination ability of 0.59 for men and 0.56 for women.22 Similarly, Smith et al reported 

a c-statistic of 0.57 for genetic risk model combing 41 CRC susceptibility SNPs.23 The most recent 

genetic model for CRC was developed by Jeon et al including 63 CRC susceptibility SNPs and achieved 

a slightly improved predictive accuracy with a c-statistic of 0.59.24 This modest level of test 

performance is consistent across studies, suggesting that risk assessment algorithms based on 

independent SNPs reaching genome-wide significance level have similar performance characteristics 

in European populations. However, it should be kept in mind that our results pertain to the UK 

population of white ancestry only, and therefore generalization to any other ancestry need further 

evaluation. 
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With the expectation of improving the predictive power of common genetic variants, we additionally 

derived a set of SNPs associated with CRC risk with liberal p-value thresholds to allow the contribution 

of signals from additional susceptibility SNPs that have not been discovered or validated in previous 

GWAS efforts. Any correlation between SNPs was addressed by creating LD-adjusted regional scores. 

However, with inclusion of thousands of SNPs, the predictive capacity did not improve but showed a 

lower c-statistic in the range of 0.58 to 0.59, which is probably due to the cost of adding noise from 

SNPs that were not truly associated with CRC. To assess if the genetic susceptibility of known risk 

factors of CRC would further contribute to CRC prediction, we developed prediction models, which 

incorporated genetic information of several known risk factors, but the c-statistic remained close to 0.60.  

Most previous efforts mainly focused on the predictive ability of PRS to capture the overall risk of 

CRC.4, 5, 22-24 However, there is compelling evidence suggesting that genetic risk factors may differ by 

anatomic locations.25 We therefore aimed to improve prediction of site-specific CRC by deconstructing 

the commonly used genomic risk score into several regional scores, allowing susceptibility signals 

through multiple/different mechanisms to influence genetic predisposition to site-specific CRC. 

Although we treated proximal, distal and rectal cancer as distinct endpoints to generate the best set of 

regional scores respectively, their predictive performance still showed modest discriminative ability. 

This might be limited by the fact that the weights used for regional score calculation were derived from 

the coefficient estimates for overall CRC instead of site-specific ones. 

An extrapolation to the UK population led to the conclusion that 10% of the general population will 

have a 10-years absolute risk approaching 5% after 65 years old on the basis of quantifiable genetic risk 

alone and who will merit intensive screening. A 5% threshold of absolute risk has clinical and public 

health impact since it exceeds the highest risk at any age in the general population and it is 10-fold 

greater than the risk of a 50-year old person who is eligible to enter the population-based screening 

programs. Additionally, the modelling shows individuals at different levels of the wPRS116 will reach 

the same risk estimate at different ages, supporting the notion that using genetic profiling in combination 

with age will lead to more effective risk stratification.   

In conclusion, we show that prediction of CRC risk based on profiling with common genetic variants 

presents a moderate discriminability. Although the contribution of wPRS116 to individualized risk 

profiling is limited, employing genetic risk profiling can achieve a moderate degree of risk 

discrimination that is helpful to identify a population subset with high genetic risk. 
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