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Abstract 24 

Nest building consists of a series of motor actions, which are concomitant with activity in 25 

regions of the anterior motor pathway, the social behaviour network and the reward 26 

circuity in nest building adult male zebra finches (Taeniopygia guttata). It is not clear, 27 

however, whether this activity is due to nest building, collection and/or manipulation of 28 

nest material. To identify which areas of the brain are specifically involved, we used 29 

immunohistochemistry to quantify the immediate early gene c-fos in male zebra finches 30 

that were nest building (Building), birds given a nestbox but could interact only with tied 31 

down nest material (Fixed), and birds that were not given a nestbox or nest material 32 

(Control). We investigated the following brain regions: the anterior motor pathway (anterior 33 

ventral mesopallium (AMV), anterior nidopallium (AN), anterior striatium (ASt)), areas of the 34 

social behaviour network (bed nucleus of the stria terminalis, dorsomedial sub division 35 

(BSTmd), lateral septum (LS)), the dopaminergic reward circuitry (ventral tegmental area 36 

(VTA)) and the cerebellum. We found that there was greater Fos-ir expression in the BSTmd, 37 

LS and AMV with increased material deposition; in LS, AMV ASt and folia VI with increased 38 

material carrying; in LS, AMV and ASt with increased nest material tucking; and in LS and all 39 

folia (except folium VIII) with increased tugging at tied down material. These data confirm a 40 

functional role for areas of the anterior motor pathway, social behaviour network and the 41 

cerebellum in nest material collection and manipulation by birds.  42 

 43 

Abbreviations: AMV, anterior ventral mesopallium; AN, anterior nidopallium; ASt, anterior 44 

striatum; BSTmd, bed nucleus of the stria terminalis, dorsomedial subdivision; BSTmv, bed 45 

nucleus of the stria terminalis, ventral subdivision; Fos-ir, fos immunoreactivity; LS, lateral 46 

septum; VTA, ventral tegmental area.  47 
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1. Introduction 48 

Avian reproductive behaviour includes territorial defence, courtship, pairing, nest building, 49 

egg laying, incubation, and parental care. Although the neural underpinnings of many of 50 

these reproductive behaviours have been well studied (e.g. Heimovics and Riters 2006; 51 

Meddle et al. 1999; O’Connell and Hofmann 2011), as have the ultimate causes of nest 52 

building (e.g. Hansell 2000; Mainwaring et al. 2014), the neurobiology of nest building has 53 

received much less attention to date. Nest building consists of a sequence of actions: a nest 54 

site must be located, material is then collected and deposited, and the nest is constructed 55 

(Hansell 2000; Walsh et al. 2013). The brain regions involved in nest-building behaviours 56 

have typically been quantified by the production of the immediate early gene c-fos protein 57 

product Fos, as a molecular indicator of neuronal activity (Clayton 2000; Hall et al. 2014; Hall 58 

et al. 2015; Heimovics and Riters 2006; Klatt and Goodson 2013; Meddle and Follett 1997). 59 

For example, Heimovics and Riters (2006) found that captive adult male European starlings 60 

(Sturnus vulgaris) with a nestbox in the breeding season had elevated neuronal activity in 61 

several areas of the social behaviour neural network, in comparison to males without a 62 

nestbox. These social behaviour network regions included the bed nucleus of the stria 63 

terminalis, dorsal subdivision (BSTmd) and ventral subdivision (BSTmv), but as nest-building 64 

behaviour was not specifically quantified the differences in neuronal activity specifically 65 

related to nest building or to courtship or territorial defence could not be disassociated. This 66 

is particularly pertinent as activity in the BSTmd and BSTmv, as well as the lateral septum 67 

(LS), is associated with territorial defence behaviours in birds (Goodson 2005).  68 

In our previous study (Hall et al. 2014) we examined neuronal activity in the brain 69 

during nest building in zebra finches and demonstrated that as nest material pick up and 70 

deposit increased, so did the amount of Fos-immunoreactivity (Fos-ir) produced in the 71 
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anterior motor pathway, specifically in the anterior ventral mesopallium (AMV), anterior 72 

nidopallium (AN), and the anterior striatum (ASt) as well as in the ventral tegmental area 73 

(VTA) in the dopaminergic reward circuitry. However, in that study we did not dissociate 74 

whether the neural activity resulted from general handling of nest material or was due to 75 

nest possession and material collection.  76 

 Nest building consists of nest site selection, material  collection and often entails fine 77 

motor actions of the beak, and for some species the feet, to manipulate material into a 78 

small space (e.g. Muth and Healy 2014). As nest building consists of a sequence of 79 

organised, discrete motor actions as well as learning (Bailey et al. 2014; Muth and Healy 80 

2014; Thorpe 1956; Tinbergen 1953), and the cerebellum is involved in fine motor control, 81 

learning and memory (Middleton and Strick 2000), it seems plausible that the cerebellum 82 

plays an integral part in nest construction. Furthermore, as there is evidence that cerebellar 83 

foliation increases with nest complexity (Hall et al. 2013), the large variation in cerebellar 84 

volume and degree of foliation may provide the neural substrates leading to fine motor 85 

control (Butler and Hodos 2005).  86 

The cerebellum can be subdivided into individual folia, which receive different 87 

combinations of somatosensory input from different parts of the body; for example, folia I – 88 

VI receive afferent somatosensory information originating from neck musculature (Necker 89 

2001). It may then be the case that different folia are involved in different behaviours, for 90 

example folia I – VI might be involved in behaviours that require beak movement (e.g. 91 

preening, feeding or picking up nest material) and folium IX receives input from neck 92 

musculature and the legs (Feenders et al. 2008; Necker 2001).  93 

To determine which of the brain regions previously associated with nest building 94 

(Hall et al. 2014) are associated with nest-material selection, collection and handling, we 95 
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tested the hypothesis that the cerebellum, anterior motor pathway, social behaviour 96 

network and the dopaminergic reward circuitry are specifically involved in the collection 97 

and/or handling of nest material in captive male zebra finches. We used three groups of 98 

zebra finches: Builders (pairs allowed to build a nest), Fixed (pairs provided with material 99 

that was tied down so that the birds could interact with the material but not build a nest), 100 

and Controls (pairs that were not provided with material). To identify neuronal activity in 101 

zebra finches, we quantified Fos-ir throughout the brain. Given the beak and neck 102 

movements required to build a nest (Hansell 2000; 2005), the role of the cerebellum and 103 

anterior motor pathway in fine movements, and the Hall et al. (2014) data, we expected 104 

Fos-ir expression in the brain regions we examined to increase with increasing handling of 105 

material (in or out of a nest).  106 

 107 

2. Materials and methods 108 

2.1. Subjects 109 

60 adult zebra finches (30 of each sex) were bred at the University of St Andrews, Scotland, 110 

UK. The sample size was chosen based on the numbers of birds required to obtain 111 

significance in our previously published studies (Hall et al. 2014; Hall et al. 2015). The birds 112 

were housed in single-sex colony cages, maintained on a 14L:10D light:dark cycle, at 19-21°C 113 

and 50-65% humidity. All colony and holding cages were lined with wood pellet bedding. 114 

Birds had ad libitum access to finch seed mix, water, oyster shell grit, cuttlefish bone and a 115 

mineral block. Three times a week water was supplemented with calcium and vitamin D3, 116 

and food was supplemented with spinach. All experimental procedures were approved by 117 

the University of St Andrews Animal Welfare and Ethics Committee.  118 

 119 
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2.2. Treatment group assignment 120 

Birds had previously been paired (partners were randomly assigned) and had successfully 121 

built nests. Birds were re-paired with the same partner and placed in holding cages (50 x 25 122 

x 25 cm) in the same room but were visually isolated from one another. 123 

 To ensure all pairs were motivated to build a nest prior to behavioural observations, 124 

four pairs were randomly selected, given 240 pieces of 15cm long cotton string (No. 4 125 

Polished Cotton Twine; Rope Source, UK) and left for approximately 16 hours. Following 126 

inspection, the next day an experimental cohort was created from the pairs that had begun 127 

to build a nest by randomly assigning one pair to each treatment group (Building, Fixed or 128 

Control). Pair formation and motivation to build needed to be confirmed before selecting a 129 

pair, although it should be noted that this meant that all pairs (including the Control birds) 130 

handled material prior to the experiment. 131 

Established pairs were then moved to the test cages (100 x 50 x 50 cm) and left to 132 

habituate for approximately 18 hours. This selection procedure continued until there were 133 

10 pairs of birds for each treatment. The test cages were of similar design to the holding 134 

cages but to prevent building with wooden pellets, the floor was covered in brown paper. 135 

Nest cups were only placed in the cages with Building and Fixed pairs. Control pairs were 136 

not provided with a nest cup as we wanted to distinguish between neural activation caused 137 

by nest possession and activation caused by nest building and material handling.  138 

 139 

2.3. Behavioural observations 140 

On the day following habituation, 30 minutes after lights on, a nest cup was added to the 141 

Building and the Fixed treatment cages. Four piles of string made up of 60 pieces (240 142 

pieces/cage) were added to the Building treatment and four sets of 60 pieces of string, with 143 
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one end tied to the cage bars, were added to the Fixed treatment. By tying one end of the 144 

string to the cage bars the birds were able to tug at the string, but not use the material to 145 

build a nest. All pairs were digitally recorded using three birdbox cameras (SpyCamera CCTV, 146 

Bristol, UK) mounted inside each cage and the video feed was recorded onto a laptop. 147 

Sacrifice time for all birds was set for 90 minutes after the male of the Building pair 148 

began depositing string in the nest cup, even if the Fixed male had already begun tugging at 149 

the tied down string. The birds were monitored via a window in the door of the test room so 150 

as not to disturb the birds, and time was recorded when the Building pair made the first 151 

deposit of string into the nest cup. If the nest-building male began to build immediately 152 

after receiving the string, the sacrifice time was delayed by 15 minutes to avoid Fos-ir being 153 

associated with material being delivered to the nest builder’s cage. If the Building male did 154 

not deposit material in the nest within four hours of the experiment starting, the whole 155 

experiment was terminated: the string and nest cups were removed from all cages, and 156 

another attempt was made the following day.  157 

 Behavioural data were only recorded for the first 45 minutes of the experiment. 158 

From the video output for the Building and Fixed birds, the occurrence of seven nest-159 

building behaviours were recorded: depositing (bird released string into nest), pick up 160 

(selecting material), tuck (bird touched and rearranged material in the nest), tugging 161 

(pulling on string fixed string), tugging and hopping (hopping along cage floor while tugging 162 

at fixed string), tugging and flying (attempting to fly off with fixed string), and hopping with 163 

string. The duration and number of bouts of birds flying with string was also recorded. 164 

Example clips of tugging and tucking can be found in the Supplementary material.  165 

 For all birds allopreening, drinking, feeding, grooming, hopping, jumping and 166 

scratching were also quantified along with the number of bouts and the total duration of 167 
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birds flying. All behaviours were coded using BORIS behavioural analysis software (Friard 168 

and Gamba 2016). 169 

 170 

2.4. Brain tissue collection 171 

90 minutes following initiation of nest-building, pairs of birds were terminally anesthetised 172 

(0.2ml sodium pentobarbitone) and the brain was dissected from the skull and fixed by 173 

submersion in 4% paraformaldehyde in phosphate-buffered saline (0.1M PBS, pH = 7.4; PFA) 174 

for six days at 4°C. Brains were then immersed in 15% sucrose in PFA for 24 hours at 4°C, 175 

and then transferred into 30% sucrose in PBS for 24 hours, at 4°C. Brains were then frozen 176 

on powdered dry ice, wrapped in foil and stored in labelled plastic bags at -80°C. Samples 177 

were then transported on dry ice to the Roslin Institute, University of Edinburgh, Easter 178 

Bush, UK were they were stored at -80°C until processing for immunohistochemistry.  179 

 The cerebellum was separated from the brain and processed separately. The 180 

cerebellum was sectioned on a sagittal plane and the forebrain coronally sectioned on a 181 

freezing microtome (section thickness = 50m), and the sections collected in 0.1M PBS. The 182 

sections were then stored for 24 hours in PBS at 4°C before immunohistochemical 183 

processing for Fos-ir. The coronal forebrain sections were transferred from the PBS into 184 

cryoprotectant and then stored at -20°C for 22 months before being sectioned in the same 185 

manner as the cerebellum.  186 

 187 

2.5. Fos immunohistochemistry 188 

Immunohistochemistry was processed in two stages, the cerebellum and forebrain. All birds 189 

were processed in the same immunohistochemical run. All sections were processed in 190 

Corning netwell baskets and tray system. Sections were washed for 15 minutes, three times, 191 
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in 0.2% Triton X-100 in 0.1M phosphate buffer (PBS-T) on a shaking platform and then 192 

rinsed for 5 minutes in 0.1M PBS. Sections were then incubated for 20 minutes in 0.3% H2O2 193 

in 0.1M PBS followed by three 10-minute washes in 0.1M PBS-T.  194 

 Sections were then incubated in 10% Normal Goat Serum (Vector Laboratories) in 195 

0.1M PBS-T for 60 minutes to reduce endogenous peroxidase activity and then incubated 196 

for 120 minutes at room temperature in 10% Normal Goat Serum in 0.1M PBS-T containing 197 

the primary Fos antibody (1:5000; Santa Cruz Biotechnology rabbit polyclonal anti-Fos K-25, 198 

sc-253). Incubation continued for approximately 20 hours at 4°C. This antibody has been 199 

validated previously for use in zebra finches (Nordeen et al. 2009) and used to identify 200 

patterns of neuronal activity associated with nest building in zebra finches (Hall et al. 2014; 201 

Hall et al. 2015; Kingsbury et al. 2015; Klatt and Goodson 2013). 202 

Any excess unbound antibody was removed by three 10-minute rinses in 0.1M PBS-203 

T. A Vectastain elite rabbit kit (Vector Laboratories; PK6101) was used to amplify the 204 

antibody-antigen complex. The sections were then incubated for 60 minutes in biotinylated 205 

goat anti-rabbit secondary antibody (1:250 in 0.1M PBS-T; Vector Laboratories), rinsed for 206 

three 10-minute washes in 0.1M PBS-T and then incubated in 0.1M PBS-T for 60 minutes at 207 

room temperature with avidin-biotin horseradish-peroxidase complex (ABC; Vector 208 

Laboratories). Sections were then washed in three 10-minute washes in 0.1M PBS-T, and 209 

then five minutes in 0.1M PBS. Sections were then briefly rinsed in 0.1M sodium acetate 210 

buffer and developed with 0.04% nickel-intensified diaminobenzidene (Sigma) as the 211 

chromagen for six minutes. To terminate the reaction, sections were rinsed a further six 212 

times, each rinse lasting five minutes, in 0.1M PBS before being mounted with a paintbrush 213 

onto gelatin coated slides, serially dehydrated through alcohol, cleared in xylene and cover-214 

slipped with glass coverslips using Pertex mounting medium (CellLife). 215 
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 216 

2.6. Fos immunoreactivity quantification 217 

Fos-ir was quantified in the BSTmd and LS in the social behaviour network; the VTA in the 218 

dopaminergic reward/motivation circuit; and the AMV, AN, and ASt of the anterior motor 219 

pathway. These brain regions were selected as Fos-ir was previously reported to increase in 220 

these regions following nest building male zebra finches (Hall et al. 2014). Fos-ir was also 221 

quantified in all folia in the cerebellum. Areas of interest were located with reference to 222 

brain atlases of the canary (Stokes et al. 1974) and the zebra finch (Nixdorf-Bergweiler and 223 

Bischof 2007). To avoid any unconscious bias all slides were coded so the experimenter was 224 

unaware of the treatment group during Fos-ir quantification. 225 

Images of each section were digitally captured using a Nikon E600 Brightfield 226 

Microscope camera and Zen 2 software, and stored on a laptop and server. See Table 1 for 227 

lens magnification. Each image was opened in ImageJ software version 1.5s (Schneider et al. 228 

2012) and desaturated. Auto levels function was used to isolate Fos-ir nuclei from 229 

background staining. This function saturates the Fos-ir as black and the lack of Fos-ir as 230 

white. Before applying the function to each image, units were subtracted from the auto 231 

levels adjustment value (Table 1). The units subtracted differed between each brain region 232 

due to the variation in neuropil background staining, but were kept consistent for all 233 

samples within a region. After applying the auto levels function, the number of highlighted 234 

Fos-ir nuclei were counted in the image as a whole or in sub-sections (Table 1), either 235 

manually using a clicker or by using the analyse particles function in ImageJ (Table 1). 236 

Automatic counting was used for all regions apart from the BSTmd where the counting was 237 

manual. Nuclei were only counted if they fulfilled a predetermined criterion that differed 238 

with all brain regions due to the neuropil staining (Table 1). These criteria were selected by 239 
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measuring the area of the smallest Fos-ir nuclei identified in multiple, randomly selected 240 

sections across randomly selected birds. The number of suitable sections differed across the 241 

birds due to damage caused during sectioning and/or mounting of sections and therefore 242 

the number of Fos-ir nuclei in each section were summed and then averaged to yield a 243 

single value for each brain region in each bird.  244 

Cerebellum sections were quantified live, using a Leica microscope with a video 245 

camera connection at x40 magnification with a 4.5 light intensity. Three sections for each 246 

male were selected and three circles (40.6 m radius) placed semi-randomly on the 247 

molecular layer of each folia, with each circle touching at least one other. All Fos-ir cells 248 

(identified as a dark dot on the image) within the circles were counted manually and then 249 

averaged for each folia, for each male (Figure 1).  250 

 251 

2.7. Statistical analysis 252 

Hopping with string and flying with string were combined into one category – carry. 253 

Hopping, jumping, and flying were all combined into one category – move, for all three 254 

treatments. Tugging while hopping and tugging while flying were combined with tugging. 255 

We included the following behaviours in the analysis: pick up, deposit, tuck, carry, tug, 256 

feeding and move.  257 

 All statistical analyses were completed using R Studio (2012, ver 1.1.447) with R 258 

Development Core Team (2016, ver. 3.4.1) using packages ‘plotrix’ (Lemon 2006), ‘dplyr’ 259 

(Wickham et al. 2017), ‘tidyr’ (Wickham and Henry 2009), and ‘broom’ (Robinson and Hayes 260 

2019). All graphs were created using ‘ggplot2’ (Wickham 2009) ‘cowplot’ (Wilke 2019), and 261 

‘ggsignif’ (Ahlmann-Eltze 2017). All means are shown and with standard errors. Behaviour 262 

and Fos-ir counts were compared as dependent variables using Generalised Linear Models 263 
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(GLM), with a negative binomial distribution using the ‘MASS’ package (Venables and Ripley 264 

2002), and the independent variable treatment on three levels (Building, Fixed, Control). 265 

Posthocs, using the ‘multcomp’ package (Hothorn et al. 2008), were run on any forebrain 266 

region or cerebellum region that had differing Fos-ir levels. Type II likelihood-ratio chi-267 

square tests (‘car’ package (Fox and Weisberg 2011)) were performed on all finalised GLMs 268 

to determine the significance of predictor variables.  269 

To investigate whether behaviour explained individual variation in Fos-ir production 270 

GLMs with negative binomial distribution were run with Fos-ir counts as dependent 271 

variables and behaviour counts as independent variables. Only Building males were included 272 

in analyses with deposit, carry and tuck, while only Fixed males were included in analyses 273 

with tug. Both Building and Fixed males were included in behaviour analyses move and 274 

feeding, with behaviour counts*treatment as interactions. To account for the number of 275 

analyses conducted correlating Fos-ir and behaviours and the chance of including a Type I 276 

error, a sequential Bonferroni method was used (Holm 1979), adjusting the critical value for 277 

each model, by brain region and folia. The forebrain and the cerebellum were analysed 278 

separately.  279 

 280 

3. Results 281 

3.1. Behavioural analysis 282 

In the 90-50 minutes prior to sacrifice, Control, Fixed and Building birds all moved around 283 

the cage to the same degree (GLM: 𝜒2
1 = 3.38, n = 26, p = 0.18). Control birds fed more than 284 

Building birds, while Fixed birds did not differ either of the other groups (GLM: 𝜒2
1 = 10.16, n 285 

= 16, p = 0.001). Building birds made more pick ups (GLM: 𝜒2
1 = 10.46, n = 26, p = 0.006; 286 

Building = 50 ± 16.23; Control = 178 ± 30.47; Building vs Control, p = 0.006).  287 
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 288 

3.2. Forebrain 289 

In the anterior motor region, Building and Fixed males had more Fos-ir than did Control 290 

birds in the AMV (GLM: 𝜒2
1 = 13.87, n = 24, p < 0.001; Control vs Fixed, p = 0.004; Control vs 291 

Building, p < 0.001; Table 2; Error! Reference source not found.). In the AN and ASt it was 292 

just the Building males that had more Fos-ir than did Control males (AN, GLM: 𝜒2
1 = 11.46, n 293 

= 25, p = 0.003; Control vs Building, p = 0.002; ASt, GLM: 𝜒2
1 = 7.25, n = 25, p = 0.03; Control 294 

vs Building, p = 0.01; Table 2; Error! Reference source not found.). The Fos-ir expression in 295 

the AN and ASt of the Fixed birds did not differ from that in the Building or the Control 296 

birds. Fos-ir in the LS was higher in Building compared to Fixed males, while Control Fos-ir in 297 

the LS did not differ from that in Building or Fixed males (GLM: 𝜒2
1 = 7.85, n = 21, p = 0.02; 298 

Building vs Fixed, p = 0.01; Table 2; Error! Reference source not found.). Fos-ir did not differ 299 

by treatment in the BSTmd (GLM: 𝜒2
1 = 1.55, n = 21, p = 0.46; Table 2; Error! Reference 300 

source not found.), or in the VTA (GLM: 𝜒2
1 = 0.64, n = 23, p = 0.69; Table 2; Error! 301 

Reference source not found.). 302 

There was increased Fos-ir expression in four regions of the forebrain in response to 303 

handling of nest material. As the number of times Building males deposited material in the 304 

nest increased, so did the amount of Fos-ir in the BSTmd, LS and AMV (Table 3; Figure 3). 305 

Fos-ir also increased in the LS, AMV and ASt the more Building males carried material, while 306 

an increase in tucking material in the nest correlated with an increase of Fos-ir in the LS and 307 

the AMV (Table 3; Figure 3). As tugging of material in Fixed males increased, so too did Fos-308 

ir in the LS (Table 3; Figure 3). Neither variation in the number of times a bird picked up 309 

material, nor in the number of times a bird moved or fed, explained variation in Fos-ir in any 310 

of the brain areas (see Supplementary material). 311 
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 312 

3.3. Cerebellum 313 

As Building males carried more material, Fos-ir increased in Folia VI (Table 4; Figure 4). 314 

There was increased Fos-ir in all cerebellar folia, except Folia VIII, as Fixed males tugged nest 315 

material (Table 4; Figure 4). As Building and Fixed males picked up more material, Fos-ir 316 

increased in Folia VIII and Folia X (Table 4; Figure 4) while as feeding increased, Fos-ir in 317 

Folia II, III, IV, V and VI decreased (Table 4; Figure 4).  The number of times Building males 318 

deposited or tucked nest material did not explain variation in any folia, and moving did not 319 

explain folia Fos-ir variation in either Building or Fixed males.  Finally, although Fos-ir 320 

differed by treatment in folium IX (GLM: 𝜒2
1 = 6.44, n = 22, p = 0.04), posthoc testing 321 

showed no significant differences between the treatment groups. 322 

 323 

4. Discussion 324 

In the anterior motor pathway, nest-building males (Building) and males that could interact 325 

only with nest material that was tied down (Fixed) had more Fos-ir in the AMV than did 326 

males with no access to nest material (Control). Activation in the AMV increased as males 327 

deposited and tucked nest material and activation in the AMV and ASt increased as males 328 

carried nest material. Building males also had higher Fos-ir levels in the AN and ASt than did 329 

Control males, which indicates a role for the anterior motor pathway in nest building.  330 

 In the social behaviour network and dopaminergic reward circuitry, Fos-ir in the LS 331 

was higher in Building than in Fixed males and there was no difference in Fos-ir in the 332 

BSTmd and VTA between the three treatments. Fos-ir increased with depositing in the LS 333 

and BSTmd, while carrying, tucking and tugging of nest material caused activation in the LS.  334 
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 In the cerebellum, Fos-ir differed by treatment only in folia IX, however activation in 335 

nearly all folia was correlated with changes in behaviour. Fos-ir increased with tugging in all 336 

folia (bar folia VIII), Fos-ir increased in folia VIII and X the more a male picked up nest 337 

material and Fos-ir increased in folia II, III, IV, V and VI the more a male feed. Moving about 338 

the cage did not account for neuronal activity in any of the forebrain regions or folia that we 339 

measured. 340 

 341 

4.1. Forebrain 342 

There was greater activation in the all areas of the anterior motor pathway in Building birds 343 

than Control birds, while Fixed birds had greater activation than Control birds only in the 344 

AMV. As activation across the anterior motor pathway increased with nest-building 345 

behaviours, these data establish the importance of the anterior motor pathway in nest 346 

building. Furthermore, given the involvement of this motor pathway in motor learning and 347 

sequencing (Feenders et al. 2008), these data are consistent with nest building being a 348 

sequential behaviour that involves learning (Bailey et al. 2014; Breen et al. 2019; Muth and 349 

Healy 2011; 2014; Walsh et al. 2013). Our data also support the suggestion of Hall et al. 350 

(2014) that nest building may be underpinned by motor control similar to that which has 351 

been recognised in tool use, in particular due to the increase activation in the ASt, an area 352 

of the striatum active during tool use in both birds and mammals (Obayashi et al. 2001; 353 

Reiner et al. 2004).  354 

Our experimental design allowed us to make more specific associations between 355 

activity in the different parts of the anterior motor pathway with the different building-356 

associated behaviours. In particular, although a role for the AMV and the ASt in nest 357 

material collection (see Hall et al. (2014) is confirmed by the increase in activation in the 358 
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Building males the more they carried (AMV and ASt) and deposited (AMV) nest material, as 359 

there was no difference in activation in these regions between Building and Fixed males and 360 

no increase as males picked up material, regardless of treatment, they are unlikely to be 361 

primarily regulating material collection. Indeed, as the activation in the AMV also increased 362 

as males tugged at material that was tied down only in the Building birds (and not in the 363 

Fixed birds), it looks as if the AMV is involved in nest building and not just in material 364 

collection. Furthermore, as activation did not increase the more often Building and Fixed 365 

males fed or moved, and this is a behaviour that uses similar muscle movements to those 366 

used when the birds handle nest material, the activation of the AMV and ASt in association 367 

with increased carrying, depositing and tucking of nest material seems unlikely to be due 368 

just to the use of the neck, beak and wings muscles.  369 

Activation levels in the BSTmd of Building males increased the more material a male 370 

deposited in the nest, which fits with what we know about the role of the male in nest 371 

building in zebra finches and that of the BSTmd in male sexual behaviour. In zebra finches it 372 

is the male that selects material, carries it to the nestbox, and is typically the one to build 373 

the nest (Zann 1996) and the increase in BSTmd Fos-ir in conjunction with increases in 374 

depositing of material is also consistent with a role for the BSTmd in the neural control of 375 

male courtship behaviours (e.g. Goodson 2005). One of those courtship behaviours could be 376 

the possession of a nestbox (BSTmd activation increased in starlings that have a nestbox: 377 

Heimovics and Riters 2006). But because in our study, the possession of a nestbox did not 378 

affect the amount of Fos-ir in the Building and Fixed males relative to the Control birds, 379 

which did not have a nest cup (as with Hall et al. 2014), it seems unlikely that BSTmd 380 

activation in zebra finches is related to nestbox possession alone. Further work is required 381 

to identify whether BSTmd activation occurred because males were engaging in nest 382 
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building, or because male zebra finches were performing a male sexual behaviour (Zann 383 

1996). To determine whether the BSTmd is required for nest building rather than for a male 384 

sexual behaviour, it would be helpful to investigate activation levels in species where the 385 

female builds the nest. If BSTmd is active specifically in building, then one would expect 386 

activity in this region to be greater in nest-building females.  387 

Activation in the LS was greater in Building than Fixed males, and increased the more 388 

Building males deposited, carried and tucked nest material and increased the more Fixed 389 

males tugged on tied down nest material.  This finding corroborates the data of Heimovics 390 

and Riters (2006), which showed that the LS is activated as birds collect nest material 391 

(Heimovics and Riters 2005). As activation in the LS of our birds also increased with the 392 

number of times a bird tucked or tugged nest material, it may be related to interactions 393 

with nest material and not to nest building per se .  394 

Finally, although we previously reported that activation in the VTA increased the 395 

more a Building male picked up material (Hall et al. 2014), we did not replicate that finding 396 

here. In the current study, VTA activation did not correlate with any behaviours (for neither 397 

Building nor Fixed males) analysed in this study. It is not clear why our data differ from 398 

those we reported in our previous study as the experiments were intentionally very similar. 399 

 400 

4.2. Cerebellum 401 

Differences in the degree to which the Fixed birds tugged at the nest material explained 402 

individual variation in Fos-ir expression in all folia, except for folia VIII. Tugging involved 403 

repetitive neck movements as males used their beak to pull at string that was tied down, 404 

and while doing so males also frequently hopped and flew around the string pile while 405 

tugging. This use of neck, leg, feet and wing muscles is probably the cause of activation in all 406 
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of these cerebellar folia. Folia I – VI receive projections from the brainstem and spinal 407 

divisions innervating neck musculature (Necker 2001), folium VI also receives input from leg, 408 

feet and wing muscles and folium IX receives input from the legs (Feenders et al. 2008). Fos-409 

ir in folia II – VI also increased as the males fed, which suggests that while these folia are 410 

activated during material handling, they were not predominately activated because the 411 

birds were engaging in tugging nest material. Rather, it seems that similar neck movements 412 

are required to tug at material as to feed. Because tucking of nest material is a behaviour 413 

that seems to require similar neck musculature as to tugging, we might have expected 414 

tucking also to result in increased activation in these folia.  But it did not, thus pointing to a 415 

need to look more closely at the muscle and bill movements required to build a nest, and 416 

how different use or degree of use of muscles activates different cerebellar folia.  417 

Various movements explained in activation in folia VI, VII and X. Folium VI activity 418 

increased with the number of times males carried nest material, which is consistent with the 419 

stimulation of leg, feet and wing muscles (Feenders et al. 2008) while in folia VIII and X, 420 

activation increased as males picked up more nest material. Unlike the explicable 421 

relationship between movement and activation in folia, VI, why these activation in two folia 422 

should have increased with any motor output is not clear because these folia predominately 423 

receive visual information (Iwaniuk et al. 2007; Wylie et al. 2018). Perhaps picking up 424 

material requires visual perception in a clustered environment that enables detection and 425 

selection of desired material. But it is therefore surprising that tucking material in the nest, 426 

a behaviour that might also demand visual perception to ensure material is tucked in the 427 

correct location and manner, does not explain activation variation in folia VIII and X.  Again, 428 

closer examination of the function of these folia is required to explain these behaviour-folia 429 

activation relationships. 430 



 

 

19

 431 

5. Conclusion 432 

By comparing neural activity in zebra finches that could build a nest (Building) and zebra 433 

finches that could only pick up and pull at material (Fixed), we have identified activity in the 434 

cerebellum, anterior motor pathway, social behaviour network and the dopaminergic 435 

reward circuitry that is specifically involved in the collection and/or handling of nest 436 

material in captive male zebra finches.  Observing the occurrence of activation across these 437 

regions shows that nest building and material handling is more than just a series of fine-438 

tuned motor actions. 439 
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Figures 539 
Figure 1. Drawing of a sagittal cerebellum section. Sampling protocol used to quantify Fos-ir 540 
in the molecular layer of the zebra finch cerebellum. Neurons with Fos-ir were live counted, 541 
with three sampling circles arranged in the molecular layer of the cerebellum in a chain of 542 
semi-random positions. 543 
 544 
Figure 2. Mean number of Fos-ir nuclei in each forebrain region; A) AMV: anterior ventral 545 
mesopallium; B) AN: anterior nidopallium; C) ASt: anterior striatum; D) LS: lateral septum;  546 
E) BSTmd: bed nucleus of the stria terminalis, dorsal subdivision; F) VTA: ventral tegmental 547 
area. Sample sizes for each group are indicated at the bottom of each bar. Means and 548 
standard errors shown. * indicates significant differences (** p > 0.001; *** p < 0.001). 549 
 550 
Figure 3: Correlations between nest building activities and Fos immunoreactivity in the bed 551 
nucleus of the stria terminalis (BSTmd), lateral septum (LS), anterior ventral mesopallium 552 
(AMV) and the anterior striatum (ASt). Within each graph the regression coefficient and p 553 
value are presented in the top-left corner. Graphs A-H represent Building males (filled 554 
circles) and Graph I represent Fixed males (open squares). 555 
 556 
Figure 4. Correlations between nest building activities and Fos immunoreactivity in the 557 
cerebellum folia. Within each graph the regression coefficient and p value are presented in 558 
the top-left corner. Graphs A-I represent Fixed males (open squares) and Graphs J and K 559 
represent Building males (filled circles) and Graph L includes both Fixed (open squares) and 560 
Building (filled circles) males. 561 
  562 



 

 

 563 

 

 
Figure 1 Drawing of a sagittal cerebellum section. Sampling protocol used to quantify Fos-
ir in the molecular layer of the zebra finch cerebellum. Neurons with Fos-ir were live 
counted, with three sampling circles arranged in the molecular layer of the cerebellum in 
a chain of semi-random positions.  
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Figure 2. Mean number of Fos-ir nuclei in each forebrain region; A) AMV: anterior ventral 
mesopallium; B) AN: anterior nidopallium; C) ASt: anterior striatum; D) LS: lateral septum;  
E) BSTmd: bed nucleus of the stria terminalis, dorsal subdivision; F) VTA: ventral 
tegmental area. Sample sizes for each group are indicated at the bottom of each bar. 
Means and standard errors shown. * indicates significant differences (** p > 0.001; *** p 
< 0.001).  
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Figure 3: Correlations between nest building activities and Fos immunoreactivity in the 
bed nucleus of the stria terminalis (BSTmd), lateral septum (LS), anterior ventral 
mesopallium (AMV) and the anterior striatum (ASt). Within each graph the regression 
coefficient and p value are presented in the top-left corner. Graphs A-H represent 
Building males (filled circles) and Graph I represent Fixed males (open squares). 
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Figure 4. Correlations between nest building activities and Fos immunoreactivity in the 
cerebellum folia. Within each graph the regression coefficient and p value are presented 
in the top-left corner. Graphs A-I represent Fixed males (open squares) and Graphs J and 
K represent Building males (filled circles) and Graph L includes both Fixed (open squares) 
and Building (filled circles) males.  
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Tables 570 
Table 1. Criteria applied to each brain region for Fos-ir quantification. Each brain region 571 
required different measures due to the neurophil staining. 572 
 573 
Table 2. Fos-ir means and standard errors for each of the three treatments for each brain 574 
region quantified.  575 
 576 
Table 3. Behaviours that correlated with Fos-ir production in the brain regions of male adult 577 
zebra finches. As the listed behaviour increased, so did Fos-ir in the reported brain region. 578 
The Holm (1979) method was used to account for Type I errors. The critical value was set at 579 
0.01. Carry, Tuck and Deposit analysis included only Building males, Tugging included only 580 
Fixed males, and Pick Up, Move and Feeding included both Building and Fixed males.  581 

 582 
Table 4. Behaviours that correlate with Fos-ir production in the cerebellum folia of male 583 
adult zebra finches. +/-  in the effect size column indicates the direction of Fos-ir in relation 584 
to behaviour. The Holm (1979) method was used to account for Type I errors. The critical 585 
value was set at 0.01. Carry, Tuck and Deposit analysis only included Building males, Tugging 586 
only included Fixed males and Pick Up, Move and Feeding included both Building and Fixed 587 
males.  588 
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 590 
Table 1 Criteria applied to each brain region for Fos-ir quantification. Each brain region 591 
required different measures due to the neurophil staining. BSTmd were manually counted 592 
due to the neurophil staining and ImageJ failing to detect cells stained for Fos-ir. This issue 593 
did not occur with other brain regions.  594 

 595 

 596 

 597 
 598 
 599 
 600 
 601 
 602 
 603 
 604 
 605 

 606 
Table 2 Fos-ir means and standard errors for each of the three treatments for each brain 607 
region quantified. 608 

  Means ± SE 

Brain region Acronym Control Fixed Building 

Bed nucleus of the stria terminalis, 
dorsomedial subdivision 

BSTmd 39.24 ± 5.55 28.31 ± 6.94 33.66 ± 4.40 

Lateral Septum LS 28.32 ± 3.55 18.17 ± 6.10 46.96 ± 15.92 

Ventral Tegmental Area VTA 58.97 ± 14.88 53.85 ± 12.83 75.78 ± 25.87 

Anterior ventral mesopallium AMV 20.72 ± 10.10 137.70 ± 34.68 
 

244.21 ± 70.81 

Anterior nidopallium AN 23.13 ± 15.54 59.46 ± 20.78 191.20 ± 48.32 

Anterior striatum ASt 29.70 ± 17.14 111.52 ± 28.67 194.75 ± 76.30 

 609 
 610 
 611 
 612 
 613 
 614 
 615 
 616 
 617 
 618 
 619 
 620 

Region Objective 
lens (x) 

Units 
subtracted 
from auto 
levels 
adjustment 
level 

Count criteria Whole image or sub-
sections sampled 

BSTmd 20 30 Manual count Whole image 
LS 10 25 Analyse particles: 

> 100 pixel count 
3 circles (X pixel) 

VTA 10 40 Analyse 
particles:150-
800-pixel count 

Whole image 

AMV 
AN 
AST 

10 30-40 Analyse 
particles:100-
800-pixel count 

Whole image 



 

 

Table 3. Behaviours that correlated with Fos-ir production in the brain regions of male adult 621 
zebra finches. As the listed behaviour increased, so did Fos-ir in the reported brain region. 622 
The Holm (1979) method was used to account for Type I errors. The critical value was set at 623 
0.01. Carry, Tuck and Deposit analysis included only Building males, Tugging included only 624 
Fixed males, and Pick Up, Move and Feeding included both Building and Fixed males.  625 

Brain Region Acronym Behaviours 𝜷 z p value 
Bed nucleus of the stria terminalis, dorsomedial 
subdivision 

BSTmd Depositing 0.006 2.97 0.003 

Lateral Septum LS Depositing 0.016 3.06 0.002 
  Carry 0.004 2.78 0.005 
  Tuck 0.014 2.75 0.006 
  Tug 0.016 4.02 < 0.001 
      
Anterior ventral mesopallium AMV Depositing 0.017 3.33 < 0.001 
  Carry 0.006 5.22 < 0.001 
  Tuck 0.013 3.11 0.002 
      
Anterior striatum ASt Carry 0.005 3.33 < 0.001 

 626 

 627 
 628 
Table 4. Behaviours that correlate with Fos-ir production in the cerebellum folia of male 629 
adult zebra finches. +/-  in the effect size column indicates the direction of Fos-ir in relation 630 
to behaviour. The Holm (1979) method was used to account for Type I errors. The critical 631 
value was set at 0.01. Carry, Tuck and Deposit analysis only included Building males, Tugging 632 
only included Fixed males and Pick Up, Move and Feeding included both Building and Fixed 633 
males.  634 

Folia Behaviours 𝜷 z p value 

I Tug 0.002 3.48 < 0.001 

II Tug 0.003 5.13 < 0.001 

 Feeding - 0.018 - 2.78 0.005 

III Tug 0.003 8.08 < 0.001 

 Feeding - 0.029 - 3.70 < 0.001 

IV Tug 0.002 5.78 < 0.001 

 Feeding - 0.024 - 4.21 < 0.001 

V Tug 0.003 7.28 < 0.001 

 Feeding - 0.022 - 3.21 0.001 

VI Carry 0.002 2.60 0.009 

 Tug 0.002 2.67 0.008 

 Feeding - 0.014 - 2.48 0.01 

VII Tug 0.002 4.19 < 0.001  

VIII Pick up 0.020 2.92 0.003 

IX Tug < 0.001 2.80 0.005 

X Pick up 0.043 3.01 0.003 

Tug 0.003 5.49 < 0.001 

 635 


