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Abstract 

In recent years, tourism demand forecasting has attracted more interests not only in tourism area but in data 

science field. In this study, we follow the previous relevant data science literatures and propose a new neural 

network enhanced hidden Markovian structural time series model (NehM-STSM). This model takes a 

multiplicative error structure of a trend and a seasonal element. The trend is modelled by an artificial neural 

network while the seasonal element is captured by a tailor-made hidden Markovian model with four 

components: a persistence replicative cycle, a jump component capturing an unexpected event, an amplitude 

component reflecting the event strength and a random error term. The empirical research is conducted using 

US incoming tourism data from twelve major source countries across January 1996-September 2017. The 

proposed NehM-STSM achieves a better performance than the chosen benchmark models for two error 

measures and most forecasting horizons. 

 

Keywords: autoregressive neural network; hidden Markovian model; low-pass filter; forecasting 

 

 

1. Introduction 

A major aspect of the tourism industry with significant implications for local community tourism is the fact 

that tourism flows are seasonal in nature. A close correlation exists between this seasonality and local 

community decision-making regarding macroeconomic, operation and resource organisation. Precise 

forecasting of tourism demand for a destination is an important and challenging problem for both the tourism 



2 

 

industry and the local economies as well. Several authors have provided an in-depth analysis of the 

favourable and unfavourable aspects of seasonality for the local community, such as the work of [1, 2, 3, 4, 

5]. Thus, one aspect of seasonality is beneficial due to that the periods with low tourism flows help to restore 

the natural and municipal resources, whereas it is detrimental because excessive tourist demand and 

consumption impose enormous strain on resources and infrastructure during periods of high tourism flows, 

which could create difficulties for local authorities in terms of investment management and workforce 

recruitment, disrupting the stability of community economics [1, 3, 6]. Therefore, researchers, industry 

workers and local authorities in charge of decision-making can all benefit from precise forecasting of tourist 

demand on various resources. 

 

The development, investigation, implementation and assessment of traditional models of statistical 

forecasting have been undertaken in previous decades in tourism area. These models can be divided into 

three major categories, namely, deterministic seasonality, stochastic seasonality and multivariate time series 

models [3]. The assumption underpinning the deterministic seasonality model is that there is an 

unconditional mean that may fluctuate from season to season over the long term. To obtain a seasonally 

adjusted series, Lim and McAleer employ moving average (MA) for extracting the seasonal element from 

the demand series [2]. MA method assumes a constant seasonal pattern over time, which, however, usually 

evolves over time. Hence the study concludes the inappropriateness of the assumption of constant seasonal 

patterns over time [2]. Meanwhile, the latest research on tourism demand forecasting has made extensive 

use of stochastic seasonality models. These models are subdivided into stochastic stationary seasonality 

model adopting the premise that seasonal pattern is constant [7, 8, 9] and stochastic non-stationary 

seasonality model underpinned by the premise that seasonal pattern fluctuates [2, 10]. The stochastic non-

stationary model has enjoyed broad popularity recently and is distinguished into the seasonal autoregressive 

integrated moving average (SARIMA) group of seasonal unit root models [11, 12, 13] and the structural 

time series model (STSM) [14]. The assumption underpinning both model subtypes is that, in addition to 

trend and seasonal elements, irregular terms are incorporated in tourist arrival data as well. The SARIMA 

model differentiates between seasonal and non-seasonal elements for stability, while the STSM model 

implicitly breaks down the time series into two parts: stochastic trend and seasonal with irregular terms. In 

relation to forecasting of tourism demand, the predominant model employed is the SARIMA model, yet the 

STSM model has been indicated to consistently have a better performance not only compared to the majority 

of other similar models, such as naïve Bayesian, neural network and exponential smoothing models [15], 

but also compared to the SARIMA model [10, 12]. 

 

Despite being recently implemented for incoming tourism forecasting, machine learning and methods in 

operational research areas have been deficiently researched in relation to this field. The artificial neural 

network (ANN) is applied in forecasting tourism demand of a number of different destinations with other 
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macroeconomic variables, such as tourism service, hotel information, foreign exchange rate and market 

expenses, such as the work of [16, 17]. Comparison studies of forecasting tourist visiting a destination via 

different models usually show the outperformance of machine learning model against the traditional 

econometric models, such as the work of [15, 18]. 

 

On the other hand, some studies claim that the machine learning models, such as the ANN, show the poorest 

performance in predicting the inflow of tourists from different source countries in the comparison to 

traditional econometrics models. Such claim is usually due to the under-fitting of the ANN model through 

an over-simplified structure, such as the ANN with a single lag input and three hidden neurons in [19], and 

the ANN with two-lagged input and one hidden neuron in [20].  

 

Meanwhile, a number of studies aim to develop novel models specifically for tourism demand forecasting, 

such as the logarithm least-squares support vector regression (LLS-SVR) in [21], Färe‐Primont total factor 

productivity index in [22], neuro-fuzzy technique in [23], and optimal subset selection algorithm in [24].  

 

In addition, in Appendix Table 7 and Appendix Table 8, we provide an overview of the use of traditional 

and machine learning models to make forecasting of tourism inflows in the last decade. The note underneath 

the tables explains the methodology abbreviations. To save the space of the main body in Appendix Table 

7 and Appendix Table 8 is provided in the appendix of the paper. 

 

Over the past twenty years, both the traditional and machine learning based tourism demand forecasting 

models have been thoroughly studied. The traditional models, although incorporating stochastic components 

as well as the macroeconomic variables and their covariance, are in the linear regression framework of either 

ARIMA or vector autoregressive (VAR). The assumptions behind those models fall into twofold: 1) the 

tourism demand time series contains a time-variant long-term trend, a seasonal trend, and a random error; 

2) the two trends can be captured by linear model through either ARIMA or VAR framework. The idea of 

most ARIMA-family models assumes that the simple method such as differential removes the seasonality 

and the remained stationary time series can be modelled by the ARIMA structures with a seasonal 

component, i.e., SARIMA model. However, the stationarity feature has not been studied and proved, and a 

simple seasonal component cannot fully capture the time-variant strong seasonal patterns across time. The 

idea of the VAR-family models considers factors that impact the seasonal patterns and combines them as a 

vector for capturing their changes across time. The assumption of the VAR-family models is the linearity 

of those factors and that the covariance of the factors captures the seasonal changes. However, on one hand, 

the factors might not linearly impact the tourism demand. On the other hand, there are many factors that 

impact the tourism demand, and the factors might evolve across time. To model the factors effectively, a 

statistically principal structure, rather than a heuristic way, is required. On the other hand, the machine 
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learning based model has not been applied more than as just a basic black-box with an over-simplified 

structure, i.e., 1-2 lag input and one hidden neuron [19, 20]. Only a few studies have adequately customised 

the machine learning for the tourism application. However, those studies merely focus on the performance 

of data science model along without considering the domain-specific patterns.  

 

A novel model, which considers the nature of the tourism data: a long term trend plus a strong time-variant 

seasonality, and takes the state-of-art machine learning model as a tailor-made framework specifically 

designed according to the data patterns, has yet to developed. Such a model shall consider the nonlinearity 

of the trend as well as the impacts of different economics and event factors by a statistical manner: regardless 

of the source of the impacts, their effects can be abstracted to a cyclical part, a jump part, an amplitude scale, 

and a stochastic error part. Considering all of those aspects, the model requires a complex tailor-made 

structure of certain machine learning models rather than a direct application. 

 

This study seeks to make up for the above-mentioned research deficiency by putting forth a new model that 

adjusts computational techniques according to the data patterns. Despite being effective in capturing time 

series non-linearity, particularly in the case of detrend series [25], ANN may be less effective in representing 

strong seasonal patterns [25, 26]. Thus, this study draws upon earlier research [3, 6, 27, 28, 29] to develop 

a new hybrid model. Tourism data have been represented as a trend undergoing gradual alterations alongside 

a recurrent yearly peak and valley with somewhat dissimilar amplitudes. The proposed model is following 

the premise of the occurrence of the trend and seasonality, in keeping with [3, 6], while a mathematical tool 

is employed for explicit extraction of the two elements, conditional upon specific limitations of the seasonal 

elements, in keeping with [6, 27, 30]. Furthermore, the nonlinear approach applied by [6, 27] is adopted for 

ANN-based modelling of the trend element. Whilst to capture the seasonal patterns, a framework of hidden 

Markovian model outlined by [28, 29] is heavily extended with the multiplicative error model containing 

four components for the seasonally cyclical patterns, unexpected jump, event amplitude, and a random error 

term. In this way, the abilities of both ANN and hidden Markovian model are exploited to devise an 

application-specific technique to model equivalent aspects of tourism data. To the author’s knowledge, no 

other study has proposed a technique involving the use of different computational models for modelling 

various data patterns. 

 

The contribution of this work is mainly on the methodology part. First, this work introduces the 

multiplicative error model (MEM) structure into the tourism demand forecasting area. MEM has been 

commonly used in econometrics area in modelling financial volatility [29] and has been proved as a better 

choice in extracting the error term more cleanly, more consistent with large variability of the time series 

data and producing better forecasting performance [31] [32] [33]. Second, this work models the factors that 

impact the seasonal patterns with the idea of the hidden Markovian model, but through an extended format. 
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The seasonal component is modelled as a multiplicative format of three hidden Markovian states: a seasonal 

persistent cyclical component, a jump component capturing the positive or negative non-persistent 

(instantaneous) effect of certain events, and an amplitude component for event strength. Thus, regardless of 

the evolution of the factors, their impacts have been modelled via an abstracted format. Third, this work 

provides a novel framework of modelling the tourism demand: the trend and seasonality can be explicitly 

decomposed and captured separately with different models corresponding to their characteristics. The 

nonlinearity of the trend is modelled by the ANN and the unobservable factors that impact the seasonal 

patterns are modelled by the multiplicative Markovian chains. 

 

The remainder of the study is organised in the following manner. Section 2 provides an in-depth presentation 

of the suggested model. Section 3 discusses the data and empirical research and assessment of the out-of-

sample forecasting results. Section 4 provides the study conclusion. 

 

2. Neural network enhanced hidden Markov STSM 

We extend the Neural Network enhanced Structural Time Series Model (NNeSTSM) proposed in [6]  by 

introducing the hidden Markovian process to model the seasonality component. We name the new model as 

Neural network enhanced hidden Markov Structural Time Series Model (NehM-STSM). In this model, we 

change the structure of the traditional STSM model in [14] and introduce the multiplicative error model 

(abbreviated as MEM), which was initially proposed in [34, 35], and further developed in [29]. We follow 

the MEM structure for two reasons: 

1) The seasonality component of NNeSTSM in [6] is restricted to be a stationary autoregressive 

process with the mean value close to zero. The “valley” part of the seasonality component therefore 

contains negative values, which are not physically meaningful but merely show the decreasing 

period the data. As discussed in [29, 34, 35], the MEM guarantees the positivity of the modelled 

variables, which, otherwise, require additional transformation (i.e., log) or are ignored of the non-

negativity. MEM structure has also been proved to perform well in time series data modelling by 

[33, 36]. By introducing MEM, our new model NehM-STSM generates non-negative seasonal 

components that keep the identical seasonality patterns as the original data and, on the other hand, 

shows a clear economic interpretation of the seasonal peak and valley. 

2) Seasonality, which is observed from the data, is intrinsically driven by the population behaviours 

according to the weather, holiday, habit and other social causes, which may not be directly 

observable but its cyclical pattern has important impact on the forecasting accuracy [37]. Modelling 

the observed dynamics by its deep-rooted but unobservable causes allows the variable to switch 

abruptly between large number of states, which are generated by certain combinations of those 

causes and switch by a Markovian process. This methodology is usually called hidden Markov 
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model and is widely used in financial market [38], crime detection [28], and activity recognition as 

well [39]. Augustyniak et al show that a MEM framework can be easily incorporated with the 

unobservable states, which characterise the intrinsic nature and capture the style facts of the 

observed variables [29]. 

3) The primary impact factors of the seasonality include the weather, holidays, the habits, and the 

economic cycle and the unexpected events. Instead of incorporating them all into the model, a 

statistical principle is to extract and model the crucial patterns of impact factors. As the previous 

study [40], the factors affect the seasonality via three patterns: a persistence replicative component; 

a jump component capturing the unexpected event shock; a amplitude component for capturing the 

strength of the shock. MEM framework can be easily incorporated with the three patterns, which 

reflect the abstracted impact patterns. 

Therefore, our model is established on the cornerstone of the traditional STSM in [14] while borrowing the 

advantage of the MEM format. Tourist arrival data is represented as the variable 𝑦𝑡. The NehM-STSM has 

a multiplicative error structure form [34] as 

 𝑦𝑡 = 𝜇𝑡𝛾𝑡, (1) 

where 𝑡 =1, … , 𝑇 , 𝜇𝑡  and 𝛾𝑡  are trend and seasonal components respectively. We assume the process 

generating the seasonal component 𝛾𝑡 following the MEM form as 

 𝛾𝑡 = 𝑉𝑡𝜔𝑡, (2) 

where 𝑡=1, … , 𝑇, 𝜔𝑡~𝐷(1, Φ𝑡
2) is a positive independent and identically distributed innovation process with 

mean 1, which is independent of 𝑉𝑡 ; and 𝑉𝑡  is a process controlled by three hidden states: a seasonal 

persistence state driven by a high-dimensional Markov process; a jump state capturing the positive or 

negative shocking effect from certain non-persistent events from the market; and a data-driven state 

reflecting the amplitude of the event impact. The three hidden states represent the primary channels through 

which an impact factor may affect the seasonality. Regardless the source of the impact factors, their 

affection on the seasonality can be seen at either a replicative cycle or shocking effects with strong or weak 

strengths. The 𝑉𝑡  is defined in detail in Section 2.3. As discussed before, the advantage of MEM is to 

maintain the positivity of the variable, i.e., seasonal component 𝛾𝑡 in equation (2). We follow the assumption 

in [14] that 𝜇𝑡 is a smooth and non-stationary process but leave its precise dynamics unspecified; and the 

seasonal component 𝛾𝑡 shows a recurrent cycle of peak and valley, which are controlled by unobserved 

states. 

 

We implement the NehM-STSM in three steps. In the first step, we explicitly extract the trend component 

𝜇𝑡 from the tourist arrival data 𝑦𝑡 by the low-pass HP filter subject to the stationary constraint of the seasonal 

component, which can subsequently be obtained as 𝛾𝑡 = 𝑦𝑡/𝜇𝑡 . In the second step, we apply the 
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AutoRegressive Neural Network (ARNN) on 𝜇𝑡. The n-step value of 𝑦𝑡+𝑛 can therefore be forecasted via 

the trained ARNN. In the third step, the seasonal component 𝛾𝑡 is modelled by the hidden states defined in 

equation (2). The n-step ahead value of 𝛾𝑡+𝑛 is obtained via the estimated model. This procedure allows us 

to forecast the n-step ahead future value of the tourist arrival 𝑦𝑡+𝑛 by 𝑦𝑡+𝑛 = 𝜇𝑡+𝑛𝛾𝑡+𝑛. The three steps are 

discussed in detail below. 

 

2.1 The 1st Step: decomposing the trend and seasonality 

The low-pass Hodrick-Prescott filter (HP filter) developed by [41] is adopted for extraction of the trend 

element μt in keeping with the methodology proposed by [6]. In the field of macroeconomics, the HP filter 

is a popular tool for extraction of the short-run cyclical element and discovery of a time series trend [42, 43, 

44]. The μt can be determined in the NehM-STSM by calculating the following formula using certain values 

of smoothing parameter λ: 

 min
𝜇𝑡

(∑ (𝑦𝑡 − 𝜇𝑡)2 + 𝜆 ∑ [(𝜇𝑡+1 − 𝜇𝑡) − (𝜇𝑡 − 𝜇𝑡−1)]2𝑇−1
𝑡=2

𝑇
𝑡=1 ) (3) 

In the above, the fluctuation in the 𝜇𝑡 growth rate is penalised by λ, the penalty being greater and 𝜇𝑡 being 

smoother, the larger 𝜆 is. The 𝜆 value is calculated by using the statistical criteria, the Augmented Dickey-

Fuller (ADF) test [45], in accordance with the approach applied by [6]. The null hypothesis associated with 

the ADF specifies that the seasonal element 𝛾𝑡 contains a unit root and if this hypothesis is invalidated, then 

𝛾𝑡 is stationary. For selection of a suitable 𝜆 value, the empirical value suggested by [46, 47], namely, 𝜆 = 

129600, is used as a starting point, proceeding down to zero. The 𝜇𝑡 is extracted for every 𝜆 value and 𝛾𝑡 

stationarity is computed and assessed until invalidation of the hypothesis. 

 

The selection of 𝜆 is exemplified in Figure 1 based on monthly data of inflow of UK tourists to the US 

during January 1996-September 2017. In Figure 1(a), the 𝜆 is determined to be 129600 (1600 × 34) for 

data per month, in keeping with the empirical research conducted by [46, 47]. Meanwhile, in Figure 1(b)-

(d), there is a reduction in 𝜆 value to 3600, 1600 and 210, respectively. The emerging pattern reveals that 

the decrease in 𝜆 reduces the smoothness of the trend element, while the resulting seasonality element 

gradually becomes a stationary seasonal process. The 𝜆 value of 210 generated by the selection process is 

associated with a p-value of high significance (0.001) for the ADF test (Figure 1d). Meanwhile, intermediate 

𝜆 values related to the selection process are indicated in Figure 1(b) and Figure 1(c). 
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                                              (a)                                                                                           (b)  

  

                                              (c)                                                                                        (d)  

Figure 1 Use of HP filter to break down the trend and seasonality with various 𝝀 values. The superior portions of (a)-(d) show the 

blue curves denoting the monthly inflow of UK tourists to the US during January 1996-September 2017 and the red curves denoting 

the trend element by HP filter with 𝝀 having a value of 129600, 3600, 1600 and 210, respectively. The lower portions of (a)-(d) 

show the blue curves denoting the equivalent seasonal element derived as the ratio of the arrival data and the trend element, 

respectively 

 

2.2 The 2nd Step: Trend element modelling 

Once the trend and seasonal elements are broken down, 𝜇𝑡  is subjected to an Auto-regressive Neural 

Network (ARNN), which is a popular tool for modelling time series and has been demonstrated to have a 

better performance not only compared to conventional models in the deseasonalised financial literatures 

[25, 26, 48, 48], but also compared to repetitive feed-forward neural network [49]. Furthermore, as reported 

by [6], ARNN is especially effective in capturing the non-linearity of deseasonalised data related to tourism 

inflows. In the case of one-step-ahead forecasting, ARNN takes the form outlined by [49, 50]: 

 𝐿̂𝑡(𝜃ARXNN) = 𝑔[𝜑𝑖(𝑡), 𝜃ARNN] = 𝐹𝑗 ∑ 𝑊𝑗,𝑢𝑓𝑢(∑ 𝜑𝑖(𝑡)𝑤𝑢,𝑖 + 𝑤𝑢
𝑁𝑢
𝑖=1 ) + 𝑊𝑗

𝑁ℎ
𝑢=1  (4) 

where, the ARNN function is denoted by 𝑔[𝜑𝑖(𝑡), 𝜃ARNN], the number of neurons at the hidden layer and 

the number of input variables are respectively denoted by 𝑁ℎ and 𝑁𝑢, the weights factor from the neurons 
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at the hidden layer to the neurons at the output layer is denoted by 𝑊𝑗,𝑢, the matrix containing the weights 

from the neurons at the input layer 𝑁𝑢 to the neurons  at the hidden layer is denoted by 𝑤𝑢,𝑖, the biases of 

hidden and output layers are respectively denoted by 𝑤𝑢 and 𝑊𝑗, while the vector containing the regressive 

coefficients of the neural network AR part and the parameters vector containing every modifiable neural 

network parameter are respectively denoted by 𝜑𝑖(𝑡) and 𝜃ARXNN. In keeping with several studies [6, 49, 

50], the ARNN configuration employed in this study is 𝑁𝑢=4, and 𝑁ℎ=10, signifying that the input layer 

comprises four neurons equivalent to the 4-lag inputs, the hidden layer consists of ten neurons, each of 

which contains a hyperbolic tangential activation function, and the output layer comprises a single neuron 

equipped with linear regression function. Hence, the existing value of 𝜇𝑡 and the preceding three lags (𝜇𝑡−1, 

𝜇𝑡−2, and 𝜇𝑡−3) are the basis for forecasting. As a supervised-learning neural network, it involves “training” 

of the model parameters for mapping the input-output variables based on the adjusted Levenberg-Marquardt 

algorithm [51], which is intended to reduce the maximum gradient to attenuate the quadratic error.   

 

Based on the same data as in Figure 1, Figure 2 exemplifies forecasting of the trend element, the extraction 

of which is undertaken with HP filter with an 𝜆 value of 210 based on trained ARNN. The training of the 

ARNN model is achieved with the trend element data covering the period January 1996-July 2013, while 

ARNN out-of-sample testing is performed on the basis of the rest of the data from the period August 2013-

September 2017. The predicted (red colour) and extracted trend elements can be seen in the superior portion 

of Figure 2, exhibiting an extremely closed pattern. Meanwhile, the absolute error of the predicted trend is 

indicated in the middle portion and the absolute percentage error of the predicted trend is shown in the 

inferior portion of Figure 2. It can be seen that performances display an extremely high level of 

competitiveness, with less than 0.6% error. 

 

  

Figure 2 Application of the ARNN model for forecasting of the trend element. The upper graph shows the extraction of the trend 
element (blue curve) from the monthly data of inflow of UK tourists to the US during August 2013-September 2017 based on the 
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HP filter with 𝝀 = 𝟐𝟎𝟎. The red curve denotes the trend predicted by ARNN, the training of which was undertaken based on trend 
element data from January 1996-July 2013. The middle graph indicates the absolute error of the predicted trend, while the lower 
graph shows the absolute percentage error of the predicted trend. 

 

 

2.3 The 3rd Step: Seasonal element modelling 

In the third step, we estimate a process by equation (2) for the seasonal component 𝛾𝑡 = 𝑦𝑡/𝜇𝑡 as 

 𝛾𝑡 = 𝑉𝑡𝜔𝑡, (5) 

where 𝑡=1, … , 𝑇, 𝜔𝑡~𝐷(1, Φ𝑡
2) is a positive independent and identically distributed innovation process with 

mean 1, which is independent of 𝑉𝑡. Following the two regime Markovian-switching model of [52], and the 

structure of multiplicative time series model of [29, 33], we model the process 𝑉𝑡 as a multiplicative format 

of three hidden Markovian states as 

 𝑉𝑡 = 𝑆𝑡𝐽𝑡𝐿𝑡, (6) 

where 𝑆𝑡 represents the seasonal persistent component by a multiplication of 𝑁 Markovian processes; 𝐽𝑡 is 

a jump state capturing the positive or negative non-persistent (instantaneous) effect of certain market or 

social events, i.e., the positive events such as musical festival, Oktoberfest, Olympic games and FIFA world 

cup and the negative events such as natural disaster, infectious disease and terrorism attack; and 𝐿𝑡 is the 

event impact amplitude based on historical data. 

 

The construction of 𝑆𝑡 

𝑆𝑡 is defined by a multiplicative format of 𝑁 Markovian processes, which are illustrated by 𝑆𝑡
(𝑖)

, 𝑖=1, … , 𝑁, 

as 

 𝑆𝑡 = 𝑆0 ∏ 𝑆𝑡
(𝑖)𝑁

𝑖=1 , (7) 

where 𝑆0 =
1

𝐸[∏ 𝑆𝑡
(𝑖)𝑁

𝑖=1 ]
 is a scaling parameter that makes the mean of 𝑆𝑡 to be 1: E[St]=1. Each of the 𝑁 

Markovian processes has two states and shares the same transition matrix as 

 𝑃 = [
𝑝 1 − 𝑝

1 − 𝑝 𝑝
] (8) 

where 𝑝 ∈ (0,1). Each Markovian process has distinct state as 𝑆𝑡
(𝑖)

∈ {𝑠𝑖, 1}, where 𝑠1 > 1 and  

𝑠𝑖 = (1 − 𝜃𝑠) + 𝜃𝑠𝑠𝑖−1 

    = 1 + 𝜃𝑠
𝑖−1(𝑠1 − 1) 

where 𝑖=2, … , 𝑁 and 𝜃𝑠 ∈ [0,1]. The scaling parameter can be calculated as  

𝑆0 =
1

𝐸 [∏ (1 + 𝜃𝑠
𝑖−1(𝑠1 − 1))𝑁

𝑖=1 ]
. 



11 

 

Based on this, we can have 𝑠1 ≥ 𝑠2 ≥ ⋯ ≥ 𝑠𝑁 ≥ 1. In each Markovian process, at time 𝑡, if the component 

𝑆𝑡
(𝑖)

= 1,  it does not contribute to the variation of the seasonal component 𝛾𝑡; and if the component 𝑆𝑡
(𝑖)

=

𝑠𝑖, it pushes up or pulls down the variation of the 𝛾𝑡. We therefore define 𝑆𝑡
(𝑖)

= 1 and 𝑆𝑡
(𝑖)

= 𝑠𝑖 as the “off” 

and “on” state respectively. It is noted that at the “on” state, 𝑆𝑡
(𝑁)

 and 𝑆𝑡
(1)

 have the weakest and strongest 

effect on the seasonality component respectively. The component 𝑆𝑡
(𝑖)

 satisfies the intuition and assumption 

of the model structure: the 𝑠𝑖 is determined by state values of 𝑆𝑡
(𝑖)

 in “last season” with different impacts, 

which is represented by “on” with value 𝑠𝑖  or “off” with value 1. For example, following the assumption 

of 12 “seasons” in a year in [6], we have 𝑁=12 in equation (7). Therefore, each value of 𝑆𝑡 in the current 

year is a combined effect of seasonal patterns 𝑆𝑡
(𝑖)

, 𝑖=1, … , 𝑁 in last year with each of the patterns 𝑆𝑡
(𝑖)

 being 

an independent Markovian process. If one of the processes is switched “on”, the seasonal pattern in this year 

increases or decreases proportionally to the magnitude of the pattern in last year, measured by the value of 

𝑠𝑖. The seasonal effect remains for several periods following the geometric distribution with the transition 

probability of 𝑝. 𝑆𝑡, the result of the final state is produced by the multiplicative combination of the 𝑁 

Markovian independently evolved processes.  

 

Moreover, if we take the log-transformation to two sides of equation (7), we can have  

 log 𝑆𝑡 = log 𝑆0 + ∑ log 𝑆𝑡
(𝑖)𝑁

𝑖=1 , (9) 

As the study in [53], the Markovian process with two states can be illustrated as an autoregressive of order 

1, AR(1), process. Furthermore, [54] argued that a model with structure of a sum of AR(1) processes can 

capture the long term dependence of the log-transformed financial data. Consequently, in this study, the log-

transformed seasonal persistent component 𝑆𝑡 can be represented as the sum of 𝑁 AR(1) processes, each of 

which is interpreted as the corresponding process in last “season”. Thus, seasonal persistent component 𝑆𝑡 

in our proposed NehM-STSM model can be considered as a discrete version of the model in [54] applied in 

tourism area.  

 

The construction of 𝐽𝑡 

Similarly, the process 𝐽𝑡 is defined by a sequence of independent and identical distributed random variables 

with discrete probability density function (also termed as probability mass function) as 

 𝑃(𝐽𝑡 = 𝑗0 × 𝑗𝑖) = {
𝑞(𝑁 − 1)−1, 𝑖 = 1, … , 𝑁 − 1,
1 − 𝑞,            𝑖 = 𝑁,                  

 (10) 

where 𝑞 ∈ (0,1), 𝑗1 > 1, therefore we can have 

𝑗𝑖 = (1 − 𝜃𝑗) + 𝜃𝑗𝑗𝑖−1 

= 1 + 𝜃𝑗
𝑖−1(𝑗1 − 1) 
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where 𝑖=2, … , 𝑁, 𝜃𝑠 ∈ [0,1], 𝑗𝑁 = 1 and therefore 𝑗1 ≥ 𝑗2 ≥ ⋯ ≥ 𝑗𝑁 = 1. The scaling parameter 𝑗0 can be 

calculated as 𝑗0 = [1 + 𝑞
(𝑗1−1)(1−𝜃𝑗

𝑁−1)

(𝑁−1)(1−𝜃𝑗)
]

−1

 to maintaining 𝐸[𝐽𝑡] = 1. The 𝐽𝑡 is interpreted as a jump state 

that captures the positive or negative instantaneous impact of certain market or social events on the 

seasonality. The parameter 𝑞 is the probability of the event occurring in a given time period. In practice, the 

events occurring simultaneously has a cumulative effect on the certain variable. In our model, the 

cumulation is interpreted by the multiplicative structure, which is given by one of the values 𝑗1, 𝑗2, …, 𝑗𝑁−1 

with the equal probability 𝑞. The 𝑗1 represents the strongest impact and the 𝑗𝑁−1 has the weakest effect. The 

probability of no event is 1 − 𝑞. In contrast to 𝑆𝑡, the effect of certain event generated by 𝐽𝑡 does not last 

for long time and therefore generates instantaneous jumps of different magnitudes on the seasonality 

component 𝑉𝑡. Since we assume 𝑁=12 in equation (7), we also have 𝑁=12 for 𝐽𝑡 component. But for the 

value of 𝐽𝑡 at time 𝑡, we only assume one event occurring, either any of 𝑗𝑖, 𝑖=2, … , 𝑁 − 1, or 𝑖 = 𝑁, which 

is associated with 𝑗𝑁 = 1 (off state). 

 

The construction of 𝐿𝑡 

𝐿𝑡 is defined as a novel component to capture the time-varying effect of the event. The intuition of 𝐿𝑡 is to 

capture the season-on-season changes of the component 𝑉𝑡. 𝐿𝑡 is defined as 

 𝐿𝑡 = ∏ 𝐿𝑡
(𝑖)𝑁𝐿

𝑖=1 , (11) 

 𝐿𝑡
(𝑖)

= 1 + 𝑙𝑖
𝑟𝑡−𝑖

√𝐿𝑡−𝑖
, (12) 

where 𝑖 = 1,…, 𝑁𝐿, 𝑙1 > 0, 𝑙𝑖 = 𝜃𝑙
𝑖−1𝑙1 for 𝑖 = 2,…, 𝑁𝐿, 𝜃𝑙 ∈ [0,1], and 𝑁 is the number of the seasons in 

a year. As the construction of 𝑆𝑡 assumes 12 “seasons” in a year, the value of 𝑁 in equation (11) is also 

configured as 𝑁=12. The assumption of 𝐿𝑡 is that the amplitude value at time 𝑡 is determined by the season-

on-season “return” 𝑟𝑡−𝑁−𝑖  up to time 𝑡-1. For example, as we assume 12 “seasons” in a year by using 

monthly tourism data, the season-on-season “return” at June 2017 𝑟𝐽𝑢𝑛𝑒,2017 is defined as the return of 

seasonal component 𝑉𝐽𝑢𝑛𝑒,2017 at June 2017 to that of June 2016 𝑉𝐽𝑢𝑛𝑒,2016 as 

𝑟𝐽𝑢𝑛𝑒,2017 =
𝑉𝐽𝑢𝑛𝑒,2017 − 𝑉𝐽𝑢𝑛𝑒,2016

𝑉𝐽𝑢𝑛𝑒,2016
. 

Consequently, the component 𝐿𝑡 at July 2017 is determined by the last 𝑁𝐿 season-on-season “returns”. In 

this study, we assume an event having the impact on the seasonality for half year at the most, thus having 

𝑁𝐿=6. When the “return” is positive, 𝑟𝑡−𝑖 > 0, the component 𝐿𝑡
(𝑖)

 is higher than 1 therefore enhancing the 

impact on the seasonality. On the other hand, when the “return” is negative, 𝑟𝑡−𝑖 < 0, the component 𝐿𝑡
(𝑖)

 is 

lower than 1 therefore lowering the seasonal component 𝑉𝑡. Based on this structure, the impact of the events 



13 

 

on the seasonal component is influenced by the importance of the event, which is measured by the magnitude 

of the return 𝑟𝑡−𝑖 and of a multiplicative factor 𝑙𝑖 giving less weights to more distant events.  

 

The model structure of seasonal component 𝛾𝑡 

As the discussion, the seasonal component 𝛾𝑡 has the structure of multiplicative Markovian processes, each 

of which evolves independently. Figure 3 shows an example of the multiplicative Markovian processes. 

𝑉𝑡−1
(1)

, 𝑉𝑡−1
(2)

, …, and 𝑉𝑡−1
(𝑁)

 are 𝑁 independent two-state Markovian processes. The final state is combined as a 

product of the 𝑁 processes.  

…
...

…
...

{Aac,Abc,Bac,Bbc} {Aac,Abc,Bac,Bbc}
 

Figure 3 This figure shows an example of the structure of multiplicative hidden Markovian processes. In this example, the 

Markovian state 𝑽𝒕−𝟏
(𝟏)

∈ {𝑨, 𝑩}, 𝑽𝒕−𝟏
(𝟐)

∈ {𝒂, 𝒃}, and 𝑽𝒕−𝟏
(𝑵)

∈ {𝑪, 𝒄}. The final state is the product of 𝑵 processes.  

 

The economic interpretation of the two-state Markovian model was indicated in [52] as a mimic of a 

“volatile versus tranquil” two-period market, i.e., bull versus bear period. However, real market typically 

contains much higher number of states than the two-state model. Therefore, a multiplicative structure offers 

a more realistic way on this issue. Let us consider the seasonal persistent component 𝑆𝑡 modelled by 𝑁 

hidden Markovian states, which can be expressed as: 

 𝑆𝑡 (𝑆𝑡
(1)

, 𝑆𝑡
(2)

, … , 𝑆𝑡
(𝑁)

) = 𝛿 (𝑆𝑡
(1)

)
𝑇

|
1 ∙ (𝑆𝑡

(2)
, … , 𝑆𝑡

(𝑁)
)

𝑠1 ∙ (𝑆𝑡
(2)

, … , 𝑆𝑡
(𝑁)

)
|, 

1 ∙ (𝑆𝑡
(2)

, … , 𝑆𝑡
(𝑁)

) = 𝛿 (𝑆𝑡
(2)

)
𝑇

|
1 ∙ 1 ∙ (𝑆𝑡

(3)
, … , 𝑆𝑡

(𝑁)
)

1 ∙ 𝑠2 ∙ (𝑆𝑡
(3)

, … , 𝑆𝑡
(𝑁)

)
|, 

𝑠1 ∙ (𝑆𝑡
(2)

, … , 𝑆𝑡
(𝑁)

) = 𝛿 (𝑆𝑡
(2)

)
𝑇

|
𝑠1 ∙ 1 ∙ (𝑆𝑡

(3)
, … , 𝑆𝑡

(𝑁)
)

𝑠1 ∙ 𝑠2 ∙ (𝑆𝑡
(3)

, … , 𝑆𝑡
(𝑁)

)
|, 

… …, 

where 𝑆𝑡
(𝑖)

∈ {1, 𝑠𝑖} is the state variable in the #𝑖 Markovian process (𝑖 = 1, … , 𝑁), and 𝛿 (𝑆𝑡
(𝑖)

)
𝑇
 is a 2-

dimensional vector with unity value at 𝑆𝑡
(𝑖)

 and zero at others. The seasonal component 𝑆𝑡  is therefore 
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constructed with 𝑁 layers. The 1st layer, 𝑖 = 1, determines whether the value of the seasonality is at the peak 

level. The second layer breaks each of the two states at the 1st layer into further two states to increase the 

granularity. For example, 𝑠1 ∙ 𝑠2 ∙ (𝑆𝑡
(3)

, … , 𝑆𝑡
(𝑁)

) means that the seasonality lies in the “higher” state (𝑠2) 

of the “peak” level (𝑠1), i.e., 𝑠1 = 1.99 and 𝑠2 = 1.50 in our empirical studies. The interpretation of more 

layers is analogous. In our case of 12 seasons in a year, 𝑁=12, the model partitions the seasonality to 12 

layers (through the hidden states), each of which may be switched “on” or “off” to determine the value of 

the current seasonality at time 𝑡.  

 

Estimating the Seasonal Component 𝑉𝑡   

Seasonal component 𝑉𝑡 is constructed as a multiplicative format of three hidden Markovian states 𝑉𝑡 =

𝑆𝑡𝐽𝑡𝐿𝑡 with 𝑁 × 2𝑁 elements state-space 𝑿𝑉. The model can be estimated using the standard Hamilton filter 

[52] with 𝑁=12. The conditional density of the observed process can be calculated as: 

𝑝(𝛾𝑡|𝐹𝑡−1, Θ) = ∑ 𝑝(𝛾𝑡|𝑉𝑡, 𝐹𝑡−1, Θ)𝑝(𝑉𝑡|𝐹𝑡−1, |Θ)

𝑉𝑡∈𝑿𝑉

, 

the filtering distributions of the hidden states can be obtained as: 

𝑝(𝑉𝑡|𝐹𝑡, Θ) =
𝑝(𝛾𝑡|𝑉𝑡, 𝐹𝑡−1, Θ)𝑝(𝑉𝑡|𝐹𝑡−1, Θ)

𝑝(𝛾𝑡|𝐹𝑡−1, Θ)
, 

and predictive distributions of the hidden states can be obtained as 

𝑝(𝑉𝑡|𝐹𝑡−1, Θ) = ∑ 𝑝(𝑉𝑡|𝑉𝑡−1, 𝐹𝑡−1, Θ)𝑝(𝑉𝑡−1|𝐹𝑡−1, Θ),

𝑉𝑡∈𝑿𝑉

 

where 𝛾𝑡 is the observed seasonal component in equation (1), Θ represents the model parameters as Θ =

{𝑝, 𝜃𝑠, 𝑠1, 𝑞, 𝜃𝑗, 𝑗1, 𝜃𝑙 , 𝑙1}. The log-likelihood estimation function is then obtained as 

log 𝑝(𝛾1, … , 𝛾𝑇|Θ) = ∑ log 𝑝(𝛾𝑡|𝐹𝑡−1, Θ)
𝑇

𝑡=1
. 

For the initialization of the Hamilton filter, the state distribution at time 𝑡=1, 𝑝(𝑉𝑡|𝐹0, Θ) has been made as 

the stationary distribution of the Markovian chain. The code of estimating this multi-dimensional hidden 

Markovian model is available as the supplementary material.  

 

By those three steps discussed in Section 2.1-2.3, our Neural network enhanced hidden Markov Structural 

Time Series Model (NehM-STSM) is implemented and estimated. The estimation of the trend 𝜇𝑡  and 

seasonal 𝛾𝑡 components are completely separated. Because of this, the n-step ahead forecast of the monthly 

tourist arrivals is also separated by the ARNN in Section 2.1 and multiple hidden Markovian model in 

Section 2.3. The final forecasting output is the multiplication of the results from two models according to 

the deterministic equation (1): 𝑦̂𝑡+𝑛 = 𝜇̂𝑡+𝑛 × 𝛾𝑡+𝑛. 
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3. Assessment of forecasting 

3.1 Model and Data 

The three models chosen for assessment and comparative analysis of their forecasting performance are the 

suggested Neural Network-enhanced hidden Markov Structural Time Series Model (NehM-STSM), the 

Neural Network-enhanced Structural Time Series Model with HP filter (NNeSTSM-HP), and the Neural 

Network-enhanced Structural Time Series Model with Moving Average as the trend filter (NNeSTSM-MA). 

[6] were the ones who put forth the second two models, which performed better compared to the 

conventional Seasonal Autoregressive Integrated Moving Average model (SARIMA). The structural 

similarity of these two models to the NehM-STSM is the reason for selecting them as reference models in 

the present study. 

 

The suggested model is analysed empirically by drawing on monthly data of inflows of tourists from twelve 

major source markets (i.e. Mexico, Canada, Mainland China, Japan, UK, South Korea, Brazil, Germany, 

Australia, France, Italy, Spain) to the US in the period between January 1996 and September 2017. The 

official website of the National Travel & Tourism Office was the source of the time series data for every 

source market. Figure 4 provides the data series of the tourism inflow from the twelve major source markets 

during January 1996-September 2017. It can be seen that there has been a significant rise in the inflow of 

tourists from Mexico and Mainland China between 2010 and 2016. It is also worth observing that the inflow 

of tourists from all source markets into the US exhibits a significantly seasonal pattern. 

 

  

                                              (a)                                                                                           (b)  

Figure 4 Data of tourism inflow to the US during January 1996-September 2017; (a) inflow of tourists from the first six source 

markets (i.e. Canada, Mexico, UK, Japan, Germany, France); (b) inflow of tourists from the following six source markets (i.e. 

Brazil, Mainland China, South Korea, Australia, Italy, Spain) 

 

A rolling-window forecasting mechanism is used to assess the forecasting performance. More specifically, 

model estimation is based on the rolling-window data, while testing is based on the rest of the following-up 

data. The period January 1996-December 2009, the first 70% of the whole dataset, represents the original 
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window W1, while the rest of the data from the period January 2010-September 2017 serve as the testing 

dataset. Initially, the data in W1 is used for training the models, while afterwards the testing dataset from 

the period January 2010 to June 2011 is used for evaluating the models for a set of horizon h of one to 

eighteen months ahead forecasting. Subsequently, the original window for model estimation moves one 

month ahead to W2 spanning the period February 1996-January 2010, while model testing is based on the 

rest of the data for the period February 2010 to July 2011, with a set of horizon h of one to eighteen months 

ahead forecasting. Likewise, model estimation and forecasting are performed recurrently up to the point 

where no more remainder data are available. In the last round, the model is trained by the data in the period 

of April 2003 to March 2016 and tested by the data in the period of April 2016 to September 2017, a set of 

horizon h of one to eighteen months ahead forecasting. Eventually, the rolling-window forecasting 

mechanism yields 88 sets (one-month sliding from January 1996 to April 2003) of h (h=1, …, 18) months-

ahead forecasting amounting to 88*18*12= 19008, with 1584 forecasting in every one of the twelve source 

markets. 

 

The widely used Mean Average Absolute Percentage Error (MAPE), calculated as MAPE=
|𝑦̂−𝑦|

𝑦
∗ 100%, 

where 𝑦̂ is the forecasted result, is chosen as the measure of forecasting precision in order to encompass all 

results. An additional common measure employed for assessment of all results is the Root Mean Square 

Error (RMSE), calculated as RMSE=√∑ (𝑦̂−𝑦)2𝑁
𝑖=1

𝑁
, where 𝑦̂ is the forecasted result and the 𝑁 is the total 

number of forecasting results (see Appendix). Furthermore, the predicted values of tourism inflow are 

represented as a closer insight example. 

 

3.2 Empirical Result 

The average MAPE and RMSE error measures associated with the twelve tourist inflow series for every 

forecasting horizon are illustrated in Figure 5. It is apparent that the lowest performance is exhibited by the 

NNeSTSM-MA model, while NNeSTSM-HP and NehM-STSM have a similar performance. Furthermore, 

the error rate of NehM-STSM is somewhat lower from horizon 1-15. However, NehM-STSM has a 

markedly greater performance than NNeSTSM-HP when the forecasting horizon exceeds 15. 
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                                              (a)                                                                                                         (b)  

Figure 5 The MAPE and RMSE for different horizon, with an average of these two measures being generated across all twelve 
markets. Figure 7 provides the MAP of every market. NehM-STSM = Neural Network-enhanced hidden Markov Structural Time 
Series Model; NNeSTSM-HP = Neural Network-enhanced STSM model with HP filter; NNeSTSM-MA = Neural Network-
enhanced STSM model with Moving Average as the trend filter; SARIMA = Seasonal autoregressive integrated moving average. 

 

 

 
                                                                                      (a) 

 
                                                                                       (b)  
Figure 6 The correlation coefficient matrix of (a) the RMSE measure of all datasets by NehM-STSM model; (b) the average RMSE 
measure across all twelve markets by four different models SARIMA, NehM-STSM, NNeSTSM-HP, and NNeSTSM-MA. 

 

 

An in-depth perspective of forecasting precision is outlined in Figure 7, which shows the MAPE and RMSE 

measures for forecasting outcomes of horizon h=1 to 18 (1 month to 1.5 years) with data from twelve source 

markets (Japan, Mainland China, Canada, Mexico, France, UK, Korea, Italy, Australia, Germany, Spain, 

Brazil). From the forecasting horizon 1 to 5 months ahead, the two models, NehM-STSM and NNeSTSM-

HP perform similarly, although NehM-STSM, indicated by the green line, has a slightly higher performance 

than the other two in the majority of cases. The model NNeSTSM-MA, however, does not provide a stable 

forecasting performance across twelve datasets. On the datasets of P.R.C, Canada, UK, Australia, Italy, and 

Spain, the NNeSTSM-MA performs close to NNeSTSM-HP in the forecasting horizon 1 to 5 months ahead. 

But on other datasets, the NNeSTSM-MA apparently shows higher error than NNeSTSM-HP and NehM-

STSM models. The SARIMA, however, performs the worst overall except the cases of Mexico, UK, and 

Australia data, where the SARIMA beats the NNeSTSM-MA model in long horizon forecasting. This is 
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usually due to the structural change in the tourism demand data in the long term and thus the moving average 

being unable to capture the long-term trend. 

 
                                                 (a)                                                                                                   (b) 

 
                                                 (c)                                                                                                   (d) 

 
                                                 (e)                                                                                                   (f) 

 
                                                 (g)                                                                                                   (h) 

 
                                                 (i)                                                                                                   (j) 

 
                                                 (k)                                                                                                   (l) 

 
Figure 7 Forecasting error measures of MAPE achieved by the SARIMA, NNeSTSM-HP, NNeSTSM-MA and NehM-STSM 

models regarding tourist inflows from twelve source markets (Japan, Mainland China, Canada, Mexico, France, UK, Korea, Italy, 
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Australia, Germany, Spain, and Brazil). Model estimation is based on data from the period January 1996-December 2009, which 

are summarised in the graphs to ensure clarity. The forecasting outcomes cover the period January 2010-September 2017. NehM-

STSM = Neural Network-enhanced hidden Markov Structural Time Series Model; NNeSTSM-HP = Neural Network-enhanced 

STSM model with HP filter; NNeSTSM-MA = Neural Network-enhanced STSM model with Moving Average as the trend filter. 

 

The seasonality component is the sole point of dissimilarity between NehM-STSM and NNeSTSM-HP, 

since they both involve application of the HP filter and ARNN. The existence of a correlation between the 

value of the seasonal element at time t and the values of seasons in the previous year via different formats 

is the assumption underpinning both models. Furthermore, the premise adopted by NehM-STSM is that the 

noted variables are produced by latent states through the assembly of a multiplicative structure of twelve 

hidden Markovian processes for capturing seasonal patterns. Meanwhile, the premise adopted by 

NNeSTSM-HP is that the seasonal element is associated with a conventional additive structural STSM 

model. Seasonal element modelling with these two models is exemplified in Figure 8. The seasonal element 

of tourist inflow from Mexico is predicted by STSM (Figure 8a) and hidden Markovian processes (Figure 

8b). Regarding the absolute percentage error (APE), hidden Markovian processes have a significantly lower 

forecasting error compared to STSM. The results obtained for the seasonal element of the tourist inflow 

from Canada do not differ much (Figure 8c and d). Dictating the seasonality at time t by turning the twelve 

layers (states) “on” or “off”, the multiple layer (state) structure of the multiplicative hidden Markovian 

processes model is the reason for the reduced error rate associated with this model. 

 

The seasonal element is defined as 𝛾𝑡 = 𝑦𝑡/𝜇𝑡, by the multiplicative structure of equation (1), meaning that 

𝛾𝑡 is a cyclical variable with a mean of 1. On the other hand, in NNeSTSM-HP, the seasonal element has a 

mean of zero but with high deviation because it is defined as the discrepancy between 𝑦𝑡 and 𝜇𝑡, which are 

the original tourist arrival and the trend element, respectively. The stability and economic relevance of the 

seasonal element are improved by the multiplicative definition of the NehM-STSM, with 𝛾𝑡 values of 0.8 

and 1.2 respectively suggesting that tourist arrival is around 80% of the dominant trend and exceeding the 

trend by 20%. 
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                           (c)                                                                   (d) 

 

 
Figure 8 The forecasted seasonal element of tourist inflow and APE (%). The outcomes of Mexican tourist inflow are presented in 

(a) and (b), while the outcomes of Canadian tourist inflow are presented in (c) and (d). NehM-STSM = Neural Network-enhanced 

hidden Markov Structural Time Series Model; NNeSTSM-HP = Neural Network-enhanced STSM model with HP filter; 

NNeSTSM-MA = Neural Network-enhanced STSM model with Moving Average as the trend filter. The forecasting is based on the 

1-month ahead rolling-window mechanism.  

 

 

 For instance, the approximated parameter 

{𝑝, 𝜃𝑠, 𝑠1, 𝑞, 𝜃𝑗, 𝑗1, 𝜃𝑙 , 𝑙1} 

is reported for the seasonality element 𝑉𝑡 = 𝑆𝑡𝐽𝑡𝐿𝑡 of the NehM-STSM model applied to Mexican tourist 

inflow to the US. Based on the data of Mexican tourist inflow to the US, the approximated parameters for 

the seasonal element 𝑉𝑡 of NehM-STSM are listed in Table 1. The parameter suggests that the likelihood of 

the element 𝑆𝑡 hidden state switching “on” is nearly 1 (p = 0.9788), while the likelihood of events altering 

seasonality is more or less small (q = 0.1388). 

Table 1 The seasonality element 𝑽𝒕 of the NehM-STSM model based on data of Mexican tourist inflow to the US 

Tourist arrival from Mexico 

Markovian component: 

𝑝 = 0.9788, 𝜃𝑠 = 0.82, 𝑠1 = 2.18 

𝑠1 = 2.18, 𝑠2 = 1.52, 𝑠3 = 1.27, 𝑠4 = 1.15, 𝑠5 = 1.08, 𝑠6 = 1.04,  
𝑠7 = 1.03, 𝑠8 = 1.02, 𝑠9 = 1.01, 𝑠10 = 1.00, 𝑠11 = 1.00, 𝑠12 = 1.00   

Event component: 

𝑞 = 0.1388, 𝜃𝑗 = 0.76, 𝑗1 = 3.55 

𝑗1𝑗0 = 3.09, 𝑗2𝑗0 = 2.53, 𝑗3𝑗0 = 2.13, 𝑗4𝑗0 = 1.82, 𝑗5𝑗0 = 1.61, 𝑗6𝑗0 = 1.42,  
𝑗7𝑗0 = 1.29, 𝑗8𝑗0 = 1.20, 𝑗9𝑗0 = 1.16, 𝑗10𝑗0 = 1.11, 𝑗11𝑗0 = 0.89, 𝑗12𝑗0 = 0.46, 

Event amplitude component: 𝜃𝑙 = 0.91, 𝑙1 = 0.45 

 

The original outcomes in Figure 7 are supplemented in Table 2 to Table 7 with error measures of the 

predicted monthly tourist inflows for every horizon from six source markets. NehM-STSM exhibits a 

markedly and consistently higher performance than the NNeSTSM models in all cases, apart from the points 

underscored in Table 2 and Table 3. As highlighted by [6], the series associated with Japan and Mainland 

China exhibit patterns that are significantly different. The inflow of Japanese tourists generally exhibits 
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stability, aside from a notable decline in 2001 owing to the 9/11 terrorist attack. Meanwhile, during 2010-

2017, the inflow of Japanese tourists exhibits repeated patterns that are more or less similar. On the other 

hand, there is an approximately 800% rise in the inflow of tourists from Mainland China, from 0.5 × 105 

in 1996 to 4 × 105 in 2017. The trend and seasonal elements both exhibit stability during the period 1996-

2008. By contrast, in the period post-2008, there is a rapid rise in the trend element, whereas the seasonal 

element displays yearly fluctuation with discrepant magnitude. These kinds of patterns make the hidden 

states inaccurate because they are not intended for structural break change. Regarding the inflow of Chinese 

tourists to the US, the “opening up policy” implemented by the Chinese government is a notable contributing 

factor to the observed figures, particularly after 2008, when Beijing played host to the Olympic Games. 

 

Table 2 The average precision of monthly forecasting of inflow of Japanese tourists to the US. MAPE and RMSE are averaged 
across all predicted data during the period August 2013-September 2017, while model estimation is based on the data from the 
period January 1996-July 2013. 

JAPAN MAPE (%)   RMSE 

Horizon NNeSTSM-HP NNeSTSM-MA NehM-STSM   NNeSTSM-HP NNeSTSM-MA NehM-STSM 

1 1.4181 2.0708 1.7549   4,054.2216 5,947.8787 4591.2257 

2 1.4251 2.1153 1.7746  4,116.4230 6,020.8353 4908.9931 

3 1.4387 2.2448 1.7970  4,940.8339 6,933.7099 4926.8026 

4 1.4761 2.2996 1.8316  4,970.5450 7,182.1324 5107.0065 

5 1.4971 2.4668 1.8736  4,999.1695 7,203.4253 5314.2614 

6 1.6709 2.5655 1.9252  5,221.7649 7,458.9450 5430.3399 

7 1.6711 2.5902 1.9635  5,274.6463 7,632.7029 5641.2444 

8 1.9163 2.6175 1.9689  5,350.2330 7,829.8352 5948.7154 

9 1.9649 2.7587 1.9749  5,353.7903 7,986.5011 5976.1547 

10 1.9809 2.8478 2.0412  5,713.3339 8,051.9947 6240.8634 

11 1.9975 2.8738 2.0557  5,758.4859 8,114.1258 6316.8534 

12 2.0234 2.8808 2.0731  6,248.8423 8,454.1336 6626.1592 

13 2.2615 3.0187 2.0852  6,691.2576 8,626.6082 6687.2181 

14 2.2837 3.0473 2.1016  6,799.8298 9,686.8360 6720.4324 
15 2.3124 3.1867 2.1505  6,936.5144 9,788.7525 6918.9744 

16 2.3790 3.3717 2.2022  6,949.0603 9,842.7553 7083.8602 

17 2.6283 3.6827 2.2048  7,808.9009 10,981.2925 7109.1353 
18 2.6644 3.8045 2.2324   8,826.8160 11,741.7673 7222.8883 

 

Table 3 The average precision of monthly forecasting of inflow of Chinese tourists to the US. MAPE and RMSE are averaged 
across all predicted data during the period August 2013-September 2017, while model estimation is based on the data from the 
period January 1996-July 2013. 

P.R.China MAPE (%)   RMSE 

Horizon NNeSTSM-HP NNeSTSM-MA NehM-STSM   NNeSTSM-HP NNeSTSM-MA NehM-STSM 

1 2.1939 2.6700 1.5890  3,389.4265 3,867.8937 2512.5841 
2 2.2354 2.7582 2.1122  3,535.8994 5,363.7645 2820.0064 

3 2.3853 2.9167 2.4317  3,608.4120 6,167.2981 4287.4174 

4 2.5095 3.2158 2.8817  3,679.6287 6,960.3408 5119.7475 
5 2.8493 3.4330 3.1640  3,851.8719 7,357.0434 5555.2003 

6 2.8788 3.6580 3.4916  4,464.0106 7,685.4256 5571.5591 

7 3.0546 4.5565 4.1331  5,080.0699 8,326.3558 6337.3278 
8 3.6452 4.9174 4.1675  5,406.6520 8,777.0933 6715.0477 

9 4.0254 4.9781 4.2239  5,492.1599 9,142.2132 6741.8255 

10 4.3749 5.0052 4.2676  5,556.7633 10,562.9857 7160.4687 
11 4.5822 5.5689 4.3154  6,458.7721 12,049.3078 7512.0370 

12 4.6617 5.6944 4.3629  9,245.5575 12,343.0974 7630.8765 

13 4.8025 6.1542 4.4099  9,719.7594 12,744.8141 9673.1791 
14 4.8565 6.8230 4.4263  10,366.2691 14,315.0753 10004.0591 

15 5.8348 7.6449 4.4883  12,210.8285 16,494.3540 10024.4359 

16 6.0910 8.7256 4.5042  13,664.4354 17,081.6246 10265.6192 
17 6.1872 9.1358 4.5495  15,102.8313 20,231.3794 10375.7248 

18 6.2882 10.2183 4.5550   15,812.8968 20,998.1905 10801.0503 
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Table 4 The average precision of monthly forecasting of inflow of Canadian tourists to the US. MAPE and RMSE are averaged 
across all predicted data during the period August 2013-September 2017, while model estimation is based on the data from the 
period January 1996-July 2013. 

CANADA MAPE (%)   RMSE 

Horizon NNeSTSM-HP NNeSTSM-MA NehM-STSM   NNeSTSM-HP NNeSTSM-MA NehM-STSM 

1 1.9035 2.0288 1.5596 
 

29,574.0551 29,115.2496 23348.4713 

2 1.9213 2.0366 1.5984 
 

31,639.8449 32,423.3141 24636.8265 
3 1.9998 2.0508 1.6360 

 
32,997.5614 33,268.1662 24795.3656 

4 2.0176 2.0985 1.6753 
 

34,349.9232 37,737.8413 24876.6925 

5 2.1590 2.2578 1.7088 
 

34,652.0709 38,551.6398 25501.5102 
6 2.1766 2.4782 1.7523 

 
34,838.0449 40,927.5715 25884.5410 

7 2.1797 2.5653 1.7655 
 

36,389.6919 46,293.5134 26045.4341 

8 2.2958 2.8336 1.7879 
 

38,467.9057 53,846.6558 26216.5628 
9 2.4023 2.9751 1.8135 

 
42,776.4385 54,351.7902 26603.7664 

10 2.5649 3.2464 1.8473 
 

44,424.6116 55,052.8761 27695.4449 

11 2.6107 3.4492 1.8780 
 

44,483.5258 56,376.6186 29288.3842 
12 2.7096 3.4499 1.9169 

 
46,719.3535 59,543.0840 29773.2073 

13 2.7706 3.6082 1.9323 
 

46,869.1387 59,832.5781 31736.4468 

14 2.9847 3.8336 1.9560 
 

48,633.3919 61,402.9161 32161.7312 
15 3.2304 4.1664 1.9935 

 
50,546.9690 62,518.2238 32353.1747 

16 3.4763 4.2384 1.9936 
 

55,964.3055 66,041.3895 33043.6654 

17 3.9160 4.3333 2.0053 
 

69,943.1255 66,111.7145 33091.2679 
18 4.7323 4.5588 2.0283 

 
117,251.7355 70,288.0321 33923.5333 

 

Table 5 The average precision of monthly forecasting of inflow of Mexican tourists to the US. MAPE and RMSE are averaged 
across all predicted data during the period August 2013-September 2017, while model estimation is based on the data from the 
period January 1996-July 2013. 

MEXICO MAPE (%)   RMSE 

Horizon NNeSTSM-HP NNeSTSM-MA NehM-STSM   NNeSTSM-HP NNeSTSM-MA NehM-STSM 

1 2.0551 3.1615 1.7986  23,008.9286 35,896.4678 25470.5902 
2 2.1493 3.1794 1.8554  30,034.8306 45,076.1205 26308.8634 

3 2.2997 3.6235 2.3909  32,120.5691 49,137.0452 28908.4991 

4 2.3816 3.6724 3.5128  32,689.2784 51,805.6269 45942.3311 
5 2.3954 3.7165 3.8835  35,360.0412 54,152.3174 51145.9735 

6 2.4068 6.1008 4.1627  37,918.8539 74,973.5001 56300.8959 

7 2.5992 6.5296 4.2037  38,737.2888 80,005.6105 59711.6139 
8 2.6431 6.9635 4.2291  39,970.9958 93,468.5149 61326.6282 

9 2.6603 7.1458 4.4652  41,492.9709 98,001.1533 63203.4026 

10 2.7547 7.1770 4.7197  43,861.5262 102,553.8870 64230.1731 
11 2.9492 7.2857 4.8740  45,512.4265 103,310.2356 70535.8700 

12 2.9575 7.3130 5.0981  46,122.7767 105,057.1264 71701.7775 

13 3.0117 7.7906 5.1982  46,799.1201 105,735.4548 72835.4986 
14 3.1128 7.8629 5.2329  47,804.7792 107,459.8577 73278.3120 

15 3.2467 7.8649 5.3746  48,535.5247 110,370.2890 78453.6638 

16 3.3036 8.1077 5.5123  49,214.1087 114,738.5518 78641.1904 
17 3.5934 8.1079 5.8336  50,539.1630 116,850.5917 81824.1781 

18 3.6229 8.1335 5.8975   54,686.8468 119,028.1019 88882.9838 

 

Table 6 The average precision of monthly forecasting of inflow of French tourists to the US. MAPE and RMSE are averaged across 
all predicted data during the period August 2013-September 2017, while model estimation is based on the data from the period 
January 1996-July 2013. 

FRANCE MAPE (%)   RMSE 

Horizon NNeSTSM-HP NNeSTSM-MA NehM-STSM   NNeSTSM-HP NNeSTSM-MA NehM-STSM 

1 2.0968 2.6193 1.6697   2,204.1445 2,583.0345 1417.1331 

2 2.1712 3.3467 1.8777  2,321.2121 3,559.6996 1435.7498 
3 2.2151 3.6270 1.8829  2,441.6981 4,545.7766 1566.7104 

4 2.2767 3.7776 1.9588  2,478.8577 4,770.9112 1626.7368 

5 2.3220 5.2181 2.0163  3,017.5703 4,847.1334 1942.2822 
6 2.5546 5.3940 2.0425  3,054.1489 5,440.8341 2020.2504 

7 2.6189 5.4629 2.0683  3,187.0396 5,883.8394 2171.6906 

8 2.7427 5.6700 2.1146  3,240.0692 6,090.0635 2208.6878 
9 2.8423 5.7421 2.1183  3,460.5369 6,735.7209 2353.9587 

10 2.8521 5.7862 2.1690  3,502.2232 7,284.6118 2384.3391 

11 3.0307 6.2567 2.2071  3,546.2541 8,493.6410 2518.1650 
12 3.2129 6.3154 2.3341  4,547.2265 8,643.9093 2612.9452 

13 3.2134 6.3256 2.4961  4,788.6029 9,078.5282 2864.3710 

14 3.4172 6.9927 2.5178  4,809.2516 10,274.5840 2994.9699 
15 3.5129 7.0585 2.5608  5,351.4803 10,315.5725 3220.0646 
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16 3.6808 8.1430 2.6175  5,949.9461 10,368.8115 3223.7053 

17 3.8886 8.2036 2.6236  6,418.1043 10,462.3922 3257.1460 
18 4.0212 8.2543 2.6317   6,530.2179 10,671.9451 3288.2015 

 

Table 7 The average precision of monthly forecasting of inflow of British tourists to the US. MAPE and RMSE are averaged across 
all predicted data during the period August 2013-September 2017, while model estimation is based on the data from the period 
January 1996-July 2013. 

UK MAPE (%)   RMSE 

Horizon NNeSTSM-HP NNeSTSM-MA NehM-STSM   NNeSTSM-HP NNeSTSM-MA NehM-STSM 

1 2.0125 2.0136 1.6613   5,905.0835 6,811.1439 3798.5859 
2 2.0292 2.0192 1.6702  6,394.6941 7,184.9834 3992.1153 

3 2.1592 2.0834 1.7447  7,055.4306 8,102.3625 4006.7844 

4 2.1748 2.1805 1.8177  7,914.8472 8,925.2220 5910.4819 
5 2.3482 2.2493 1.9077  8,553.7269 9,114.8483 6543.1342 

6 2.6110 2.4806 1.9170  8,553.8564 9,160.5909 6561.7763 

7 2.6127 2.6586 1.9328  9,470.1553 9,992.9597 6624.8191 
8 2.7743 2.9626 1.9649  9,484.3761 10,021.0201 6716.7608 

9 2.8075 3.0014 1.9897  9,522.9954 10,109.8395 6731.3691 

10 2.8297 3.7035 2.0413  10,405.7139 11,812.6566 7195.2826 

11 2.8436 3.8187 2.0434  10,583.7699 11,866.8348 7508.1648 

12 3.1550 3.9078 2.1550  10,797.7889 12,275.2218 7527.9648 

13 3.5197 4.0512 2.1806  12,552.6999 12,801.4114 7602.9052 
14 3.7874 4.1160 2.1817  12,601.5293 13,098.4995 7738.9987 

15 3.9738 4.2072 2.1918  13,862.9409 14,147.0197 8147.0584 

16 4.0694 4.2164 2.2299  14,115.8330 15,423.6550 8239.5793 
17 4.3471 5.1342 2.2487  16,254.6417 16,217.2473 8309.2794 

18 5.2968 5.6525 2.2882   16,629.8387 16,722.6244 8333.2153 

Note: MAPE is Mean Average Absolute Percentage Error; RMSE is Root Mean Square Error; NNeSTSM-HP is the Neural Network 
enhanced STSM model with HP filter; NNeSTSM-MA is the Neural Network enhanced STSM model with Moving Average as the 
trend filter; NehM-STSM is the Neural Network enhanced hidden Markovian STSM model. 

 

 

4. Conclusion 

Modelling and predicting tourism data across short as well as long horizons are significantly influenced by 

the long-term trend element and strong recurrent seasonal element incorporated in tourism data. Building 

on the research by [3, 14, 27, 29], the present study puts forth a new hybrid model comprising neural network 

and multiplicative hidden Markovian processes. The low-pass Hodrick-Prescott filter is employed for 

explicit breakdown of the original tourism inflow data. This process is confirmed as a stationary seasonal 

process because it is conditional upon the stationarity and seasonality of the seasonal element. The original 

tourism series divided by the trend element gives the seasonal element. Estimation of a three-layer 

autoregressive neural network with ten hidden neurons and of a multiplicative hidden Markovian process is 

respectively undertaken based on the trend element and the seasonal element. The final forecasting outcome 

of the tourism series is the sum of the outputs of the neural network and multiplicative hidden Markovian 

process. The advantages of the new proposed NehM-STSM model are twofold: 1) as the traditional 

econometrics model, NehM-STSM assumes a time-variant trend with a strong seasonal pattern in the 

tourism demand data; however, NehM-STSM assumes the non-linearity of the two component and explicitly 

obtain them and model them separately. The tailor-made mechanism provides the  NehM-STSM 

outperformance; 2) NehM-STSM considers the factors that impact the seasonal patterns by the abstracted 

format of a persistence replicative component, a jump component capturing the impact event, an event 

amplitude component and a random error term. Such structure provides a generic framework of all possible 
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impact factors: regardless the factors, their impact on the seasonality reflects on one of the abstracted 

components. Apparently, the structure of the NehM-STSM model significantly increases the time and space 

complexity during the training process and requires relatively large volume of training data and the high-

end computing facility in the employment of the proposed model. The empirical studies of this work include 

the data of tourism inflow from twelve major source markets to the US up to 18 forecasting horizons by the 

NehM-STSM, NNeSTSM-HP, NNeSTSM-MA, and the SARIMA models. According to the out-of-sample 

forecasting results, NehM-STSM has a higher performance than NNeSTSM-HP and NNeSTSM-MA. On 

average, the proposed NehM-STSM model performs slightly better (i.e., less than 0.5%) to the NNeSTSM-

HP model in forecasting horizon of one to five months ahead. However, in the horizon more than five 

months, the proposed NehM-STSM model outperforms the NNeSTSM-HP model by 1% up to 3%, and 

NNeSTSM-MA more than 5%. The good forecasting results are mainly due to the hidden Markovian 

processes effectively capture the seasonal patterns of the tourism demand. The empirical results in twelve 

major markets across 20 years show that a model structure that contains the ANN and the multiplicative 

hidden Markovian process is capable to well capture the tourism demand changes with strong time-variant 

seasonal patterns. Such model structure can be easily applied in forecasting time series in other areas, which 

contains a trend and a cyclical pattern. In future research, the NehM-STSM model should be refined to deal 

with data structural break changes. 
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Appendix Figure  1 Forecasting error measures of RMSE achieved by the SARIMA, NNeSTSM-HP, NNeSTSM-MA and NehM-

STSM models regarding tourist inflows from twelve source markets (Japan, Mainland China, Canada, Mexico, France, UK, 

Korea, Italy, Australia, Germany, Spain, and Brazil). Model estimation is based on data from the period January 1996-December 

2009, which are summarised in the graphs to ensure clarity. The forecasting outcomes cover the period January 2010-September 
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2017. NehM-STSM = Neural Network-enhanced hidden Markov Structural Time Series Model; NNeSTSM-HP = Neural 

Network-enhanced STSM model with HP filter; NNeSTSM-MA = Neural Network-enhanced STSM model with Moving 

Average as the trend filter. 

 

Appendix Table 1 This table shows the average accuracy of monthly forecasts of US tourist arrivals from ITALY. The MAPE and 
RMSE are average values across all forecasted data from Aug 2013 to Sep 2017. The models are all estimated by the data from Jan 
1996 to Jul 2013. 

ITALY MAPE (%)   RMSE 

Horizon NNeSTSM-HP NNeSTSM-MA NehM-STSM   NNeSTSM-HP NNeSTSM-MA NehM-STSM 

1 2.0760 2.2960 1.5638   1,475.6624 1,457.7917 936.4578 
2 2.1643 2.2975 1.6673  1,666.8365 1,550.6151 980.6446 

3 2.4231 2.4264 1.6917  1,771.6161 1,586.2061 1132.4206 

4 2.5114 2.4301 1.8404  1,788.0513 1,635.6921 1229.8841 
5 2.5947 2.5749 1.8460  1,813.4666 1,995.6738 1298.3736 

6 2.8404 2.5902 1.8594  1,917.3266 2,094.8811 1345.3443 

7 2.8780 2.7442 1.9749  2,044.4124 2,466.9727 1375.1717 
8 2.9147 3.3665 2.0370  2,054.7212 2,547.7043 1410.9643 

9 2.9329 3.5887 2.0592  2,074.7729 2,750.9733 1457.2117 

10 3.0640 3.6322 2.0601  2,134.1112 2,859.2173 1470.0406 

11 3.1256 3.7910 2.0954  2,418.3283 3,421.4189 1477.8052 

12 3.1793 4.1297 2.0975  2,430.2504 3,676.2009 1482.2882 

13 3.2600 4.3187 2.1138  2,433.6272 3,807.4520 1555.1989 
14 3.2896 4.4406 2.1350  2,797.2310 3,862.3840 1617.5904 

15 4.0717 4.8030 2.1453  2,917.3847 3,900.5534 1633.5497 

16 4.1003 4.9981 2.2125  3,357.8388 4,175.0139 1685.3512 
17 4.4225 5.6311 2.2724  3,897.4073 4,180.4292 1687.2069 

18 5.1484 5.9064 2.3108   4,032.1618 4,204.3810 1703.0690 
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Appendix Table 2 This table shows the average accuracy of monthly forecasts of US tourist arrivals from SPAIN. The MAPE and 
RMSE are average values across all forecasted data from Aug 2013 to Sep 2017. The models are all estimated by the data from Jan 
1996 to Jul 2013. 

SPAIN MAPE (%)   RMSE 

Horizon NNeSTSM-HP NNeSTSM-MA NehM-STSM   NNeSTSM-HP NNeSTSM-MA NehM-STSM 

1 2.0620 2.0070 1.6159   1,131.2550 967.7461 821.7475 
2 2.2655 2.0861 1.6872  1,159.9743 969.5743 934.6483 

3 2.2796 2.1114 1.7509  1,167.8067 1,299.0070 956.7833 

4 2.4873 2.1931 1.7745  1,306.2908 1,334.5188 962.1861 
5 2.5127 2.2924 1.9082  1,338.3505 1,396.7860 986.9406 

6 2.5820 2.3603 1.9512  1,371.1106 1,538.6468 1000.8060 

7 2.6814 2.6981 1.9829  1,403.6249 1,550.6383 1011.2027 
8 2.8738 2.7678 2.1235  1,469.7818 1,553.7871 1032.6326 

9 3.1616 2.7878 2.1507  1,629.6006 1,649.0506 1080.0721 

10 3.3143 3.0014 2.1742  1,682.1278 1,698.8751 1175.0529 
11 3.3900 3.8057 2.2708  1,744.6072 1,761.1165 1194.6776 

12 3.4045 3.8778 2.2830  2,063.5352 1,808.4086 1257.2086 

13 3.7876 3.8861 2.3353  2,419.1042 1,893.1316 1257.8672 

14 3.9407 3.8905 2.3367  2,725.9535 2,011.4587 1286.2419 

15 5.1572 4.0116 2.3691  2,913.4500 2,376.6354 1294.1468 

16 5.7490 4.1130 2.4666  3,181.5540 2,568.4638 1300.0468 
17 5.7636 4.1994 2.4931  3,286.3516 2,740.7787 1418.1323 

18 6.3312 4.5619 2.5197   3,287.6573 2,776.1523 1431.9225 
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Appendix Table 3 This table shows the average accuracy of monthly forecasts of US tourist arrivals from KOREA. The MAPE and 
RMSE are average values across all forecasted data from Aug 2013 to Sep 2017. The models are all estimated by the data from Jan 
1996 to Jul 2013. 

KOREA MAPE (%)   RMSE 

Horizon NNeSTSM-HP NNeSTSM-MA NehM-STSM   NNeSTSM-HP NNeSTSM-MA NehM-STSM 

1 2.0793 2.1199 1.6558   2,640.2352 3,046.9965 1702.7453 
2 2.1052 3.8615 1.6922  2,952.5378 4,879.4001 2078.7106 

3 2.1470 4.1527 1.7219  3,085.8545 4,984.1086 2103.7348 

4 2.2451 4.2305 1.7904  3,086.3512 5,002.5364 2275.5735 
5 2.4745 4.2319 1.9303  3,471.6760 5,128.7030 2284.5419 

6 3.0370 4.6459 1.9890  3,804.4224 5,592.8176 2431.6917 

7 3.6132 4.7867 2.2267  4,032.4997 6,136.6385 2458.5053 
8 3.7898 5.2997 2.6138  4,650.4786 6,279.4104 2765.5148 

9 3.8106 7.5102 2.7404  5,191.7739 9,398.1144 2951.8585 

10 3.8585 7.5286 2.7462  5,511.4165 9,484.0720 3321.3011 
11 3.8876 8.4528 2.7959  5,819.9610 10,094.5358 3322.3296 

12 3.9205 9.0589 3.0722  5,879.5808 10,315.7880 3855.9122 

13 3.9252 9.1615 3.1211  6,364.2125 13,809.4776 4485.9743 

14 4.0039 9.3973 3.6093  6,407.3150 14,805.1213 4862.4039 

15 4.3950 9.9553 3.9641  6,593.0796 16,049.2606 5433.6812 

16 4.6872 10.4615 4.5859  6,869.8729 16,449.2499 7144.8775 
17 5.0658 10.6986 4.7038  7,006.9979 16,760.7544 7232.0126 

18 5.6340 10.7651 4.7583   8,701.1004 17,084.5424 7452.8607 
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Appendix Table 4 This table shows the average accuracy of monthly forecasts of US tourist arrivals from BRAZIL. The MAPE and 
RMSE are average values across all forecasted data from Aug 2013 to Sep 2017. The models are all estimated by the data from Jan 
1996 to Jul 2013. 

BRAZIL MAPE (%)   RMSE 

Horizon NNeSTSM-HP NNeSTSM-MA NehM-STSM   NNeSTSM-HP NNeSTSM-MA NehM-STSM 

1 2.2335 2.5098 1.5046   3,057.5383 4,257.6484 1980.8455 
2 2.6828 3.1460 1.6981  3,392.3893 5,259.9389 2144.6272 

3 2.7026 3.1878 1.8322  3,521.7652 5,283.6159 2432.3179 

4 2.8603 3.4739 1.8454  4,420.9312 5,399.7015 2515.2901 
5 2.8874 3.6534 1.8569  4,506.7629 5,406.3148 2757.8516 

6 2.9132 3.7979 1.8827  4,537.9710 5,574.7851 2786.7100 

7 2.9218 3.8081 2.0213  4,545.9499 5,634.5468 2794.9607 
8 2.9962 3.8916 2.0982  4,863.4487 5,654.2005 2795.5737 

9 3.0359 4.1216 2.2240  4,935.2503 6,305.7624 2820.4368 

10 3.0871 4.5922 2.2583  5,222.5648 6,567.7108 3052.5253 
11 3.1031 4.6884 2.3989  6,409.7712 6,625.3523 3156.1360 

12 3.2811 4.7335 2.4131  6,524.7034 6,719.7297 3284.5918 

13 3.3392 5.0993 2.4173  6,857.0126 6,893.2053 3557.1128 

14 4.6565 5.1042 2.4749  7,413.8218 6,911.0253 3767.7148 

15 5.0524 5.1769 2.4781  7,822.6411 7,187.5633 4060.7292 

16 5.3771 5.3796 2.4885  9,764.8979 8,337.4461 4333.3787 
17 6.0188 5.4892 2.6065  10,977.9553 8,693.2951 4338.6418 

18 8.5497 5.7705 2.6280   15,743.3030 8,827.6983 4412.1274 
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Appendix Table 5 This table shows the average accuracy of monthly forecasts of US tourist arrivals from GERMANY. The MAPE 
and RMSE are average values across all forecasted data from Aug 2013 to Sep 2017. The models are all estimated by the data from 
Jan 1996 to Jul 2013. 

GERMAN

Y MAPE (%)   RMSE 

Horizon NNeSTSM-HP NNeSTSM-MA NehM-STSM   NNeSTSM-HP NNeSTSM-MA NehM-STSM 

1 2.0232 2.0899 1.5711   2,886.2685 2,814.0082 1757.3587 

2 2.0819 2.0990 1.6871  3,355.7972 3,240.0784 1857.4898 

3 2.0951 2.1730 1.6981  3,677.2995 3,761.6868 2083.8911 
4 2.0962 2.2608 1.7097  3,690.3158 4,086.0665 2088.4756 

5 2.2106 2.2732 1.7423  4,077.4593 4,089.7474 2224.5407 

6 2.2189 2.2953 1.7930  4,082.0890 4,112.9655 2435.5884 
7 2.3521 2.2956 1.8259  4,176.1337 4,213.4900 2649.8362 

8 2.3563 2.3728 1.8335  4,251.6155 4,736.7540 2731.9955 

9 2.3769 2.5377 1.8845  4,350.0382 5,049.1387 2859.8656 
10 2.3779 2.6588 1.9671  4,417.1725 5,282.7154 2860.6948 

11 2.4945 2.7320 2.0156  4,695.4755 5,571.7511 2960.6886 

12 2.6526 2.8772 2.0452  4,968.6968 5,641.2513 3269.3592 

13 2.9490 2.9504 2.0770  4,992.0286 6,083.6366 3353.7597 

14 3.0304 3.1776 2.1694  5,167.5828 6,146.0525 3360.1209 

15 3.1270 3.3762 2.2009  5,358.2740 6,291.6163 3401.8004 
16 3.2708 3.5396 2.2337  6,048.0195 6,560.1257 3492.5675 

17 3.6697 3.9830 2.2431  6,385.2877 6,812.1865 3513.4731 
18 3.7681 4.0417 2.2570   6,582.6340 6,880.3405 3515.0853 
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Appendix Table 6 This table shows the average accuracy of monthly forecasts of US tourist arrivals from AUSTRALIA. The MAPE 
and RMSE are average values across all forecasted data from Aug 2013 to Sep 2017. The models are all estimated by the data from 
Jan 1996 to Jul 2013. 

AUSTRALIA MAPE (%)   RMSE 

Horizon NNeSTSM-HP NNeSTSM-MA NehM-STSM   NNeSTSM-HP NNeSTSM-MA NehM-STSM 

1 2.0344 2.0963 1.5472   1,879.6087 2,203.7164 1027.8362 
2 2.0633 2.1058 1.6562  1,976.2163 2,296.9482 1371.3213 

3 2.1108 2.1105 1.7475  2,335.8330 2,487.9154 1656.2893 

4 2.1143 2.3146 1.7491  2,403.0227 2,708.4169 1805.4700 
5 2.1586 2.3347 1.7657  2,430.1701 3,024.3907 2003.2769 

6 2.2065 2.3538 1.7798  2,655.8755 3,136.8702 2314.3030 

7 2.2764 2.4584 1.9404  2,796.2365 3,148.3399 2388.1717 
8 2.4465 2.7246 1.9918  2,823.3480 3,432.0916 2527.6011 

9 2.6196 2.7901 2.1030  3,073.6260 3,888.0412 2908.8652 

10 2.6956 3.7065 2.3810  3,134.7780 4,331.6185 2976.3895 
11 2.7121 3.8835 2.6915  3,500.6858 4,414.2942 3157.5373 

12 2.7825 5.0907 3.4248  3,564.7621 5,335.7646 3238.6334 

13 3.1559 5.4759 3.4354  3,854.4347 5,855.3615 3486.6058 

14 3.2456 5.5153 3.5845  3,870.5337 6,026.6730 3823.2241 

15 3.4178 5.7663 3.6348  3,953.1031 6,466.3063 3982.7686 

16 3.4516 6.1835 3.9519  3,970.5294 6,522.8144 4029.3722 
17 3.7459 6.7793 4.0738  4,335.7868 7,241.5357 4212.5915 

18 3.9772 6.7820 4.1080   4,429.4164 7,442.9502 4314.8553 

Note: MAPE is Mean Average Absolute Percentage Error; RMSE is Root Mean Square Error; NNeSTSM-HP is the Neural Network 

enhanced STSM model with HP filter; NNeSTSM-MA is the Neural Network enhanced STSM model with Moving Average as the 

trend filter; NehM-STSM is the Neural Network enhanced hidden Markovian STSM model. 

 

 

Appendix Table 7 Overview of studies related to tourism forecasting through traditional econometrics models published in the 
last decade; the frequency of data is provided per week (W), per month (M), quarterly (Q) and per year. Some machine learning 
models have also been included as benchmark models. 

Paper 
Data  

Freq. 
Methodology variables Finding and Limitation 

[55] M 

KELM, ELM, 

ANN, SVR, 
ARIMA, LSSVR 

Tourist arrivals, 

Google search, 
Baidu search 

KELM model with google and baidu search outperformed all others; 

[56] Q 

LR 

HA, 

Naïve, 

Tourist arrivals, 

GDP, 

Tourism price 

Combining all information into a single model did not improve the 

performance; Combining logistic regression models can improve the 

predictive power; 

[40] Q 
VAR, 

BGVAR, 

Tourist arrivals, 

economic variable 

BGVAR model captured the linkages between countries; Shock of 

economic variable has spill-over effects on other neighbouring countries; 

[3] Q M-STSM Tourist arrivals  
Novel multivariate model capturing both the backward and forward 

inter-quarter dependencies to forecast the seasonal tourist arrival; 

[57] M 
MSS, 

SSA, ARIMA, ETS 
Tourist arrivals  

Multivariate model with cross country relations improved the single 

model forecasting performance; 

[58] M 
GDFM,  

PCA 
Tourist arrivals  

Index of search trend can improve the 1 and 4 week forecasting 

performance; 

[59] W ARIMAX 

Hotel demand, 

search queries, 

website traffic, 
weekly weather 

ARMAX model with search queries and website traffic outperformed 

other models; 

[60] M 
SFOASVR, 

SVR 
Tourist arrivals 

hybridized SFOASVR model outperformed the SARIMA, BPNN, SVR 

models significantly; 

[61] M 
DLM, HW, 
SNAIVE 

Hotel nonresident 
Holt-Winter works best in short term forecasting; DLM is better in long 
term; 

[62] M 
EC-ADLM, TVP 

VAR, BVAR,  

Tourist arrivals, 

economic variable 
No single model outperforms all others on all occasions; 

[63] M AR-MIDAS 
Tourist arrivals,  
Google trend data 

Google searches on destination hotels and flights from source countries 
improved the forecasting performance; 

[64] Q TDFS Tourist arrivals 
The web-based TDFS is proposed for stable, accurate and real-time 

tourism forecasting; 

[65] M MGFFS Tourist arrivals  
The genetic algorithm based fuzzy system is significantly more accurate 
than other approaches; 

[66] M 
EMD, 

BPNN 
Tourist arrivals  

EMD-BPNN model outperformed the single BPNN and ARIMA model 

in forecasting tourist arrival in HK; 
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[10] Q TVP-STSM  
Tourist arrivals 

Economic variables 

Novel time-varying STSM model with explanatory variable coefficients 

to forecast the quarterly tourist arrival; 

[67] Annual 

ADLM,  

TVP,  

VAR 

Air passengers 

economic variable 

Pooled ADL models outperformed all other models; 

TVP models do not improve accuracy; 

[68] Q, M 
ARMA, ARIMA, 
ARAR, ARFIMA 

Tourist arrivals 
ARFIMA outperformed all other ARMA-based models for both monthly 
and quarterly forecasting; 

[69] Q 

LR, 

ETS, 

SS 

Tourist arrivals 
Economic variables 

All models outperformed official benchmark in short term but 
underperformed it in long term; 

[70] Q 

SARIMA, 

DE, 

ECM, 
VC 

Tourist arrivals 
Combined models did not always outperform the best single forecasts 
but always outperformed the worst single model; 

Combined models are the safest choice; 

[11] Q HEGY test Tourism demand 
HEGY test improve forecasts in all horizons except the high volatility 

cases; 

[71] Q ARIMA Tourism demand HEGY test was not useful by the ARIMA1 and ARIMA14 results; 

[13] Q 
Naïve I & II,  
LR, WM,  

ARIMA, SW, 

Tourism demand 
In-sample performance did not guarantee the out-of-sample 
performance; A combined model provided the best forecasting 

performance; 

[12] Q 

STSM 

ARIMA 

AR 

Tourism demand 

Economic variables 

Forecasting performance is highly dependent on the forecasting horizon; 

Explanatory variable did not improve the performance; 

[72] M 
ARIMA 

MSS 

Tourism demand 

Economic variables 
ARIMA outperformed the multivariate state space model consistently; 

[2] Q MA Tourism demand 
Moving-Average is suitable for separating the seasonal component but 

not for forecasting; 

[7] M 
SARIMA,  
HEGY test,  

HW, LR 

Tourism demand 
SARIMA with HEGY test outperformed the Holt-Winters and linear 

regression; 

Note: extreme learning machine (ELM) model; kernel extreme learning machine (KELM) model; artificial neural network (ANN) 
model; support vector regression (SVR); least square support vector regression (LSSVR); autoregressive moving average (ARMA); 
autoregressive integrated moving average (ARIMA); autoregressive fractionally integrated moving average (ARFIMA); logistic 
regression (LR) model; historical average (HA) model; vector autoregressive (VAR) model; bayesian global vector autoregressive 
(BGVAR) model; multiseries structural time series (M-STSM) model; multivariate singular spectrum analysis (MSS); singular 
spectrum analysis (SSA); exponential smoothing (ETS); generalized dynamic factor model (GDFM); principle component analysis 
(PCA); autoregressive fractionally integrated moving average model with exogenous inputs model (ARIMAX); FOA algorithm for 
three parameters selection of the SVR model with seasonal adjustment (SFOASVR); dynamic linear model (DLM); Holt-Winter 
(HW); seasonal naïve (SNAIVE); autoregressive distributed lag model (ADLM); autoregressive distributed lag model (ADLM); 
error-correction ADLM (EC-ADLM); autoregressive mixed-data sampling (AR-MIDAS); tourism demand forecasting system 
(TDFS); Modular Genetic-Fuzzy Forecasting System (MGFFS); empirical mode decomposition (EMD); back-propagation neural 
network (BPNN); time-varying parameter structural time series model (TVP-STSM); autoregressive distributed lag models 
(ADLM);  state space models (SS); dynamic econometric (DE); error correction model (ECM); variance covariance (VC); 
Hylleberg-Engle-Granger-Yoo Test (HEGY test); winter model (WM); multivariate state space (MSS); moving-average (MA); 
Holt-Winters (HW); sine wave (SW); 

 

Appendix Table 8 Overview of studies related to machine learning-based tourism forecasting and published in the last decade; the 
frequency of data is provided per week (W), per month (M), quarterly (Q) and per year. Traditional econometrics models have 
also been included as benchmark models. 

Paper 
Data  
Freq. 

Methodology variables Finding and Limitation 

[73] M SAE, ESN Tourist demand, search query 
SAE with ESN model with search query outperforms 

SARIMA, SVR, and LSTM. 

[20] M 
ARIMA, ETS, ANN,  
TBATS, ARFIMA,  

SSA, MA 

Tourist arrivals, 
No single model outperformed all others consistently; SSA-R, 

SSA-V, ARIMA, and TBATS models are better than others; 

[19] M 
ARIMA 
SETAR 

ANN 

Tourist arrivals, 
ARIMA outperformed SETAR and ANN for short horizons; 
Optimized structure with pre-processing of the data may 

improve the ANN performance; 

[74] Q SVR, GA Tourist demand SVR with GA outperform other benchmark models; 

[15] Q 

STSM, 
ANN, 

Naïve, 

HW 

Tourist arrivals 

Basic structural method (BSM) achieved the best performance; 

ANN, if structured correctly, can outperform BSM 
significantly; 

[18] M 

ANN, GA, 
ARIMA, ETS, 

MA, 

Naïve  

Tourist arrivals 

ANN outperformed all other models in forecasting tourist 

arrivals to Durban from US; 
Time-series analysis is valuable for tourism forecasting;  
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[17] M 

BNN 

LR, 

TS, 

FNN 

Tourist arrivals, 

Service Price, 

Hotel rate, 

FX, Number of visitors, 

Marketing Expenses, 

Gross Domestic Expenditure 

Back-propagation NN captured the non-linearity of the tourist 

arrivals better than all other benchmark models; 

Feed-forward NN performed the worst; 

[75] Annual 

ANN,  
MR, 

Naïve, 

MA, 
ETS 

Tourist arrivals, 

Service Price, 

Hotel rate, 
FX, Population, 

Marketing Expenses, 

Gross Domestic Expenditure 

ANN outperformed all benchmark models in forecasting 
Japaness tourist arrivals 

[16] Q 
ANN,  
MR 

Tourist arrivals, 
Economic variables 

ANN outperformed multi-regression in forecasting tourist 
arrival; 

Note: stacked autoencoders (SAE); recurrent neural network (ESN) artificial neural network (ANN) model; support vector 
regression (SVR); Genetic Algorithm (GA); singular spectrum analysis (SSA); self-exciting threshold autoregressions (SETAR); 
genetic algorithm (GA); Back-propagation neural network (BNN); time-series model (TS); Feed-forward neural network (FNN); 
Multiple regression (MR); 

 

 


