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EXTRAPOLATION OF THE DIRICHLET PROBLEM FOR

ELLIPTIC EQUATIONS WITH COMPLEX COEFFICIENTS

MARTIN DINDOŠ AND JILL PIPHER

Abstract. In this paper, we prove an extrapolation result for complex co-
efficient divergence form operators that satisfy a strong ellipticity condition
known as p-ellipticity. Specifically, let Ω be a chord-arc domain in Rn and the
operator L = ∂i (Aij(x)∂j) + Bi(x)∂i be elliptic, with |Bi(x)| ≤ Kδ(x)−1 for
a small K. Let p0 = sup{p > 1 : A is p-elliptic}.

We establish that if the Lq Dirichlet problem is solvable for L for some

1 < q <
p0(n−1)
(n−2)

, then the Lp Dirichlet problem is solvable for all p in the

range [q,
p0(n−1)
(n−2)

). In particular, if the matrix A is real, or n = 2, the Lp

Dirichlet problem is solvable for p in the range [q,∞).

1. Introduction

Over the past several decades, a well developed theory of solvability of boundary
value problems for real second order elliptic and parabolic equations has evolved, a
theory that connects and quantifies the range of solvability with a variety of ways
of measuring smoothness of the coefficients and of the boundary domain. While the
literature is vast, some early advances in this area include [4], [7], [8], [17], [16], [24],
[25] [30], and [36]; for a small sample of some more recent contributions, we point to
[2], [3], [9], [12], [10], [11], [20], [21], [23], [27], [26], [31], and [35]. Equally important
are boundary value problems for systems of equations, higher order equations, and
second order equations with complex coefficients, but solvability for these equations
presents many more challenges. The main challenges to a comparably complete
understanding in these three settings are the lack of regularity of solutions, such
as that guaranteed in the real valued setting by the De Giorgi-Nash-Moser theory,
and the lack of even a weak (Agmon-Miranda) maximum principle. Much of our
understanding of solvability of real second order elliptic/parabolic equations, and
how solvability for particular function spaces of boundary data connects to the
geometry of the domain, depends on these principles.

In this paper, we take up the question of extrapolation of the solvability of a
particular boundary value, the Dirichlet problem, for complex coefficient divergence
form elliptic operators. We use the term extrapolation to mean that solvability of the
Dirichlet problem for boundary data in one function space implies solvability in a
range of function spaces. Extrapolation is not possible for arbitrary elliptic complex
coefficient operators. Our goal in this paper is to provide natural and checkable
structural conditions on the operator for which extrapolation holds. Many ideas
we develop here relate to the recent result of Shen [34] on extrapolation of systems
of elliptic PDEs. In fact, we plan to introduce the notion of p-ellipticity to general
second order complex coefficient elliptic systems in our future work. This will allow
us to extend and improve Shen’s result for these systems.
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The main result of this paper is an extrapolation result for complex coefficient
divergence form operators that satisfy a strong ellipticity condition known as p-
ellipticity. Essentially, p-ellipticity measures how close the operator is to being
real-valued. The interval where an operator is p-elliptic depends on the size of the
imaginary part of the coefficients. If the interval of p-elipticity is (1,∞), then the
operator is real-valued. We will discuss this condition in more detail below.

Our boundary value problems are formulated for measurable data in a Lebesgue
space; solvability is described in terms of nontangential convergence and a priori
estimates on a nontangential maximal function. The complex-valued setting is
very different from the real-valued theory that has been well developed over several
decades since the fundamental regularity results of De Giorgi - Nash - Moser. It is
well known that real-valued second order elliptic operators in divergence form satisfy
a maximum principle; in the language of nontangential boundary value problems,
this principle translates into solvability of the Dirichlet problem with data in L∞

on the boundary of the domain. This in turn entails that solvability of boundary
value problems with data in a Lebesgue space Lq(∂Ω) extrapolates, via interpolation
with the endpoint L∞, to solvability in all Lp, p ≥ q. There are many techniques
that can establish solvability for a single value of p, for example the Kato-type
techniques for a special class of complex operators ([1]), the Rellich-type inequalities
for real symmetric operators ([25]), or methods such as [29] and [15] for coefficients
satisfying a Carleson measure condition. But in the complex valued case, there is
no maximum principle in general. For this reason, extrapolation results have up to
now only been shown in the presence of L∞ estimates for solutions, for example,
in the limited setting of small perturbations of real-valued operators.

We now give some background for the results in this paper. The work in [14]
initiated the study of higher regularity of solutions to complex operators of the form

L = ∂i (Aij(x)∂j) + Bi(x)∂i (1.1)

where A := (Aij) is uniformly elliptic and bounded and |Bi(x)| ≤ Kδ(x)−1, under
a structural assumption called p-ellipticity. These new regularity results were used
to establish solvability of the Dirichlet problem for a certain class of such operators
in domains Ω with boundary data in Lq(∂Ω) for q in the range of p-ellipticity.
In [19], the authors gave another proof of the interior higher regularity results of
[14]. They were then able to prove boundary regularity estimates for domains Ω
satisfying certain minimal geometric conditions. In this paper, we use the interior
regularity and its extension to the boundary to prove the main theorem.

Theorem 1.1. Let Ω be a chord-arc domain in Rn and L = ∂i (Aij(x)∂j)+Bi(x)∂i
be a second order operator with bounded and measurable coefficients A and |B| .
δ(x)−1. Define

p0 = sup{p > 1 : A is p-elliptic}.

Assume that the Lq Dirichlet problem is solvable for L for some q ∈ (1, p0(n−1)
(n−2) ) (if

p0 = ∞ or n = 2 we require q ∈ (1,∞)).

Then the Lp Dirichlet problem is solvable for L for p in the range [q, p0(n−1)
(n−2) ), if

one of the following constraints holds on the size of the vector B.

• Ω is bounded and B(x) = o(δ(x)−1) as x → ∂Ω.
• Ω is bounded and lim supx→∂Ω |B(x)δ(x)| ≤ K. Here K = K(A, p, n) > 0
is sufficiently small.
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• Ω is unbounded and |B(x)δ(x)| ≤ K for all x ∈ Ω. Here K = K(A, p, n) >
0 is sufficiently small.

In particular, when p0 = ∞, i.e., the matrix A is real, the Lp Dirichlet problem
is solvable for p in the range [q,∞). The same conclusion holds when the dimension
n = 2, since the main inequalities of (3.16) hold for all r.

In the next section, we discuss the background in more detail and define the
terms used in the statement of the theorem. In section 3 we give the proof of the
main theorem.

2. Background and definitions

2.1. p-ellipticity. A concept related to p-ellipticity was introduced in [6], where
the authors investigated the Lp-dissipativity of second order divergence complex
coefficient operators. Later, and independently, we ([14]) and Carbonaro and
Dragičević ([5]) gave equivalent definitions of this property - the term “p-ellipticity”
was coined in [5] and their definition is the one we introduce below. To introduce
this, we define, for p > 1, the R-linear map Jp : Cn → Cn by

Jp(α+ iβ) =
α

p
+ i

β

p′

where p′ = p/(p− 1) and α, β ∈ Rn.

Definition 2.1. Let Ω ⊂ R
n. Let A : Ω → Mn(C), where Mn(C) is the space of

n× n complex valued matrices. We say that A is p-elliptic if for a.e. x ∈ Ω

Re 〈A(x)ξ,Jpξ〉 ≥ λp|ξ|
2, ∀ξ ∈ C

n (2.1)

for some λp > 0 and there exists Λ > 0 such that

|〈A(x)ξ, η〉| ≤ Λ|ξ||η|, ∀ξ, η ∈ C
n. (2.2)

It is now easy to observe that the notion of 2-ellipticity coincides with the usual
ellipticity condition for complex matrices. As shown in [5] if A is elliptic, then

there exists µ(A) > 0 such that A is p-elliptic if and only if
∣

∣

∣
1− 2

p

∣

∣

∣
< µ(A). Also

µ(A) = 1 if and only if A is real valued.

Some notation. Here and in what follows we will use the convention that points
in the interior of Ω will be denoted by uncapitalised letters such as x, y; while
points on the boundary will be denoted by the capital letters such as P or Q. The
expression ∆(Q, r) := B(Q, r)∩∂Ω will be used to denote the surface ball centered
at Q of radius r contained in the boundary of Ω. The Carleson region associated
to ∆(Q, r) is defined to be T (∆) := B(Q, r) ∩ Ω.

2.2. Chord-arc domains (CAD). Our aim is to establish the extrapolation re-
sult under minimal necessary assumptions on the geometry of the domain Ω ⊂ Rn

and its boundary ∂Ω. Recently, there has been substantial progress in understand-
ing the interplay between boundary regularity of the domain and solvability of
boundary value problems for elliptic operators. We start by collecting some defini-
tions.

Definition 2.2 (Corkscrew condition). [24]. A domain Ω ⊂ Rn satisfies the
Corkscrew condition if for some uniform constant c > 0 and for every surface ball
∆ := ∆(Q, r), with Q ∈ ∂Ω and 0 < r < diam(∂Ω), there is a ball B(x∆, cr) ⊂
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B(Q, r) ∩ Ω. The point x∆ ⊂ Ω is called a corkscrew point relative to ∆, (or,
relative to B). We note that we may allow r < C diam(∂Ω) for any fixed C, simply
by adjusting the constant c.

Definition 2.3 (Harnack Chain condition). [24]. Let δ(x) denote the distance
of x ∈ Ω to ∂Ω. A domain Ω satisfies the Harnack Chain condition if there is a
uniform constant C such that for every ρ > 0, Λ ≥ 1, and every pair of points x, x′ ∈
Ω with δ(x), δ(x′) ≥ ρ and |x−x′| < Λ ρ, there is a chain of open balls B1, . . . , BN ⊂
Ω, N ≤ C(Λ), with x ∈ B1, x

′ ∈ BN , Bk ∩ Bk+1 6= ∅ and C−1 diam(Bk) ≤
dist(Bk, ∂Ω) ≤ C diam(Bk). The chain of balls is called a Harnack Chain.

Definition 2.4 (1-sided NTA). If Ω satisfies both the Corkscrew and Harnack
Chain conditions, then Ω is a 1-sided NTA domain (Ω is sometimes called a uniform
domain).

Definition 2.5 (Ahlfors-David regular). A closed set E ⊂ Rn is n−1-dimensional
ADR (or simply ADR) (Ahlfors-David regular) if there is some uniform constant
C such that for σ = Hn−1 (the n− 1 dimensional Hausdorff measure)

1

C
rn−1 ≤ σ(E ∩B(Q, r)) ≤ C rn−1, ∀r ∈ (0, R0), Q ∈ E, (2.3)

where R0 is the diameter of E (which may be infinite).

Given that we are interested in solvability of boundary value problems on n− 1
dimensional boundaries, it is natural to assume that our domain Ω is a 1-sided
NTA domain with n− 1-dimensional ADR boundary. However, it was established
in [3, Theorem 1.2] that, even in the case of the simplest second order elliptic
operator (the Laplacian), an extra assumption on the regularity of the domain is
required. That is, the following result was proven:

Theorem 2.6. Suppose that Ω ⊂ Rn is a 1-sided NTA (aka uniform) domain,
whose boundary is Ahlfors-David regular. Then the following are equivalent:

(1) ∂Ω is uniformly rectifiable.

(2) Ω is an NTA domain (i.e., it is a 1-sided NTA which also satisfies the
Corkscrew condition in the exterior R

n \ Ω).

(3) ω ∈ A∞.

Here ω denotes harmonic measure for ∂Ω with some fixed pole inside the domain.
For the Laplacian, it is a classical fact that ω ∈ A∞ is equivalent to solvability of
the Lp Dirichlet problem for some p ∈ (1,∞). Therefore, we shall assume that
our domain Ω also satisfies the exterior Corkscrew condition. See also [22] for the
variable coefficient version of this result.

Definition 2.7 (Chord-Arc domain). If Ω and Rn \ Ω satisfy the Corkscrew
condition, Ω satisfies the Harnack Chain condition, and ∂Ω is is n− 1-dimensional
Ahlfors-David regular, then Ω is a chord-arc domain (CAD).

We also note that on chord-arc domains there is a well defined notion of trace.
Let

W :=

{

u ∈ L1
loc(Ω) : ‖u‖W :=

(
∫

Ω

|∇u|2dx

)
1
2

< +∞

}

,
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which is clearly contained in W 1,2
loc (Ω). Then, if Ω is CAD, there exists a bounded

operator Tr from W to L2
loc(∂Ω, σ) such that Tru = u

∣

∣

∂Ω
if u ∈ W ∩ C0(Ω). Also

the image Tr(W ) is dense in C0(Ω).
Our notion of solvability of the Dirichlet problem requires a few more definitions.

In the first place, we need to introduce a non-standard notion of a nontangential
approach region - such regions are typically referred to as “cones” when the domain
is at least Lipschitz regular, and “corkscrew” regions when the domain is chord-
arc. In the following, the parameter a is positive and will be referred to as the
“aperture”. A standard corkscrew region associated with a boundary point Q is
defined ([24]) to be

γa(Q) = {x ∈ Ω : |x−Q| < (1 + a)δ(x)}

for some a > 0 and nontangential maximal functions, square functions are defined
in the literature with respect to these regions. We modify this definition in order
to achieve a certain geometric property (see Proposition 3.3) which may not hold
for the γa(Q) in general.

Definition 2.8. For y ∈ Ω, let Sa(y) := {Q ∈ ∂Ω : y ∈ γa(Q)}. Set

S̃a(y) :=
⋃

Q∈Sa(y)

∆(Q, aδ(y)).

Define

Γa(Q) := {y ∈ Ω : Q ∈ S̃a(y)}.

Let us make some observations about this novel definition of the corkscrew re-
gions that we will use to define nontangential maximal functions. We first note
that, for any Q ∈ ∂Ω, γa(Q) ⊂ Γa(Q). If y ∈ γa(Q), then Q ∈ Sa(y) ⊂ S̃a(y),
i.e., y ∈ Γa(Q). Next, we note that, for any Q ∈ ∂Ω, Γa(Q) ⊂ γ2a(Q). Indeed,

if y ∈ Γa(Q), then Q ∈ S̃a(y) and therefore there exists a Q0 ∈ Sa(y) such that
|Q−Q0| < aδ(y). Hence,

|y −Q| ≤ |y −Q0|+ |Q−Q0| < (1 + a)δ(y) + aδ(y) = (1 + 2a)δ(y).

Thus our Γa(Q) is sandwiched in between two standard corkscrew regions and is
thus itself a corkscrew region.

Definition 2.9. For Ω ⊂ Rn as above, the nontangential maximal function Ñp,a

is defined using Lp averages over balls in the domain Ω. Specifically, given w ∈
Lp
loc(Ω;C) we set

Ñp,a(w)(Q) := sup
x∈Γa(Q)

wp(x) (2.4)

where, at each x ∈ Ω,

wp(x) :=

(

−

∫

Bδ(x)/2(x)

|w(z)|p dz

)1/p

. (2.5)

The regions Γa(Q) have the following property inherited from γ2a(Q): for any
pair of points x, x′ in Γa(Q), there is a Harnack chain of balls connecting x and x′ -
see Definition 2.3. The centers of the balls in this Harnack chain will be contained
in a corkscrew region Γa′(Q) of slightly larger aperture, where a′ depends only the
geometric constants in the definition of the domain.
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2.3. The Lp-Dirichlet problem. We recall the definition of Lp solvability of the
Dirichlet problem for an operator L = ∂i (Aij(x)∂ju) +Bi(x)∂iu where A := (Aij)
is uniformly elliptic and bounded, and |Bi(x)| ≤ Kδ(x)−1, for some small K < ∞
to be determined later.

In anticipation to formulating the Lp-Dirichlet problem we first recall the no-
tion of classical solvability, via the Lax-Milgram lemma. Given a CAD-domain Ω,
consider the bilinear form B : Ẇ 1,2(Ω;C)× Ẇ 1,2

0 (Ω;C) → C defined by

B[u,w] =

∫

Ω

[Aij(x)∂ju(x)∂iw(x) +Bi(x)∂iu(x)w(x)] dx. (2.6)

Clearly, B is bounded under the assumptions A has entries in L∞(Ω) and that B
satisfies |B(x)| ≤ Kδ−1(x). Indeed, for the second term this allows us to use the
Cauchy-Schwarz inequality followed by an application of Hardy-Sobolev inequality

∫

Ω

|w(x)|2

δ(x)2
dx ≤ C

∫

Ω

|∇w|2 dx (2.7)

which holds for each function w ∈ Ẇ 1,2
0 (Ω;C). Recalling our earlier discussion for

W = Ẇ 1,2(Ω;C) we denoted by Tr(W ) traces of functions from W on Ω and noted
that Tr(W ) is dense in C0(Ω).

Given an arbitrary f ∈ Tr(W ), there exists v ∈ Ẇ 1,2(Ω;C) such that Tr v = f

on ∂Ω. Writing u = u0 + v, we seek u0 ∈ Ẇ 1,2
0 (Ω;C) such that

B[u0, w] = −B[v, w] for all w ∈ Ẇ 1,2
0 (Ω;C).

Observe that −B[v, ·] ∈
(

Ẇ 1,2
0 (Ω;C)

)∗
, hence by the Lax-Milgram lemma there

exists unique solution u0 ∈ Ẇ 1,2
0 (Ω;C), provided the form B is coercive on the

space Ẇ 1,2
0 (Ω;C).

When L is uniformly elliptic (i.e. 2-elliptic) we clearly have

Re

∫

Ω

Aij∂ju∂iu dx ≥ λ

∫

Ω

|∇u|2 dx,

for all u ∈ Ẇ 1,2
0 (Ω;C). On the other hand, for the term involving the entries of B

we may use (2.7) to estimate
∣

∣

∣

∣

∫

Ω

Bi(∂iu)u dx

∣

∣

∣

∣

≤ CK

∫

Ω

|∇u|2 dx,

hence

B[u, u] ≥ (λ− CK)‖∇u‖2L2(Ω).

This implies coercivity of the bilinear form B, for small values of K. It follows that
the Lax-Milgram lemma can be applied and guarantees the existence of weak solu-
tions. That is, given any f ∈ Tr(W ), the homogenous space of traces of functions
in W , there exists a unique u ∈ W (up to a constant) such that Lu = 0 in Ω and
Tru = f on ∂Ω. We call these solutions energy solutions and use them to define
the notion of solvability of the Lp Dirichlet problem.

Definition 2.10. Let Ω be a chord-arc domain in Rn and fix an integrability ex-
ponent p ∈ (1,∞). Also, fix an aperture parameter a > 0. Consider the following
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Dirichlet problem for a complex valued function u : Ω → C:














0 = ∂i (Aij(x)∂ju) +Bi(x)∂iu in Ω,

u(Q) = f(Q) for σ-a.e. Q ∈ ∂Ω,

Ñ2,a(u) ∈ Lp(∂Ω),

(2.8)

where the usual Einstein summation convention over repeated indices (i, j in this
case) is employed.

The Dirichlet problem (2.8) is solvable for a given p ∈ (1,∞) if there exists a
C = C(p,Ω) > 0 such that for all boundary data f ∈ Lp(∂Ω;C)∩Tr(W ) the unique
energy solution satisfies the estimate

‖Ñ2,a(u)‖Lp(∂Ω;dσ) ≤ C‖f‖Lp(∂Ω;dσ), (2.9)

where dσ denotes surface measure on the boundary, i.e., the restriction of Hn−1 to
∂Ω.

Above and elsewhere, a barred integral indicates an averaging operation. Ob-
serve that, given w ∈ Lp

loc(Ω;C), the function wp associated with w as in (2.5) is
continuous. The L2-averaged nontangential maximal function was introduced in
[28] in connection with the Neuman and regularity problems. In the context of
p-ellipticity, Proposition 3.5 of [14] shows that there is no difference between L2

averages and Lp averages when w = u solves Lu = 0 and that Ñp,a(u) and Ñ2,a′(u)
are comparable in Lr norms for all r > 0 and all allowable apertures a, a′.
Remark. Given f ∈ Lp(∂Ω;C) ∩ Tr(W ), the corresponding energy solution con-
structed above is unique: the decay implied by the Lp estimates eliminates con-
stant solutions. As the space Lp(∂Ω;C) ∩ Tr(W ) is dense in C0(W ) and hence
in Lp(∂Ω;C) for each p ∈ (1,∞), it follows that there exists a unique continuous
extension of the solution operator f 7→ u to the whole space Lp(∂Ω;C), with u

such that Ñ2,a(u) ∈ Lp(∂Ω) and, moreover, ‖Ñ2,a(u)‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω;C). It
was shown in the Appendix (section 7) of [14] that for any f ∈ Lp(∂Ω;C) the cor-
responding solution u constructed by the continuous extension attains the datum
f as its boundary values in the following sense. Consider the average ũ : Ω → C

defined by

ũ(x) = −

∫

Bδ(x)/2(x)

u(y) dy, ∀x ∈ Ω.

Then
f(Q) = lim

x→Q, x∈Γ(Q)
ũ(x), for a.e. Q ∈ ∂Ω, (2.10)

where the a.e. convergence is taken with respect to the Hn−1 Hausdorff measure
on ∂Ω.

In [14], it was shown that a Moser iteration scheme could be applied in the pres-
ence of p-ellipticity to yield higher regularity of solutions. Precisely, the following
two lemmas were proven.

Lemma 2.11. Let the matrix A be p-elliptic for p ≥ 2 and let B have coefficients
satisfying Bi(x) ≤ Kδ(x)−1. Suppose that u is a W 1,2

loc (Ω;C) solution to L in Ω.
Then, for any ball Br(x) with r < δ(x)/4,

∫

Br(x)

|∇u(y)|2|u(y)|p−2dy . r−2

∫

B2r(x))

|u(y)|pdy (2.11)
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and
(

−

∫

Br(x))

|u(y)|qdy

)1/q

.

(

−

∫

B2r(x)

|u(y)|2dy

)1/2

(2.12)

for all q ∈ (2, np
n−2 ] when n > 2, and where the implied constants depend only p-

ellipticity and K. When n = 2, q can be any number in (2,∞). In particular,

|u|(p−2)/2u belongs to W 1,2
loc (Ω;C).

Lemma 2.12. Let the matrix A be p-elliptic for p < 2 and let B have coefficients
satisfying Bi(x) ≤ Kδ(x)−1. Suppose that u is a W 1,2

loc (Ω;C) solution to L in Ω.
Then, for any ball Br(x) with r < δ(x)/4 and any ε > 0

r2−

∫

Br(x)

|∇u(y)|2|u(y)|p−2dy ≤ Cε−

∫

B2r(x)

|u(y)|pdy + ε

(

−

∫

B2r(x)

|u(y)|2dy

)p/2

(2.13)
and
(

−

∫

Br(x)

|u(y)|2dy

)1/2

≤ Cε

(

−

∫

B2r(x)

|u(y)|pdy

)1/p

+ ε

(

−

∫

B2r(x)

|u(y)|2dy

)1/2

(2.14)
where the constants depend only p-ellipticity and K. In particular, |u|(p−2)/2u be-

longs to W 1,2
loc (Ω;C).

In [19], two improvements were observed. First, the reverse Hölder inequality for
p < 2 was simplified, eliminating the term containing the integral of |u|2 multiplied
by ε on the left hand side of (2.14). Second, the method of proof led to an extension
of the reverse Hölder inequalities to the boundary, namely for balls B for which the
Tr(u) = 0 on 2B ∩∂Ω. The statement of the boundary reverse Hölder is as follows.

Lemma 2.13. ([19]) Let Ω be a chord-arc domain. Let L = ∂i (Aij(x)∂ju) be a
q-elliptic operator. Let u ∈ W be a weak solution to Lu = 0 in Ω and B be a ball
of radius r centered on ∂Ω such that Tr u = 0 on 2B ∩ ∂Ω. There holds

∫

B∩Ω

|u|q−2|∇u|2 dx ≤
C

r2

∫

(2B\B)∩Ω

|u|q dx.

Furthermore, if q > 2, one has

(

1

|B ∩Ω|

∫

B∩Ω

|u|q dx

)
1
q

≤ C

(

1

|2B ∩ Ω|

∫

2B∩Ω

|u|2 dx

)
1
2

,

and if q < 2, we have

(

1

|B ∩Ω|

∫

B∩Ω

|u|2 dx

)
1
2

≤ C

(

1

|2B ∩ Ω|

∫

2B∩Ω

|u|q dx

)
1
q

.

The constant C > 0 depends only on n, q, the constant λq and ‖A‖∞.

We claim the following improvement of this lemma holds.

Lemma 2.14. Let Ω be a chord-arc domain. Let L = ∂i (Aij(x)∂ju) + Bi(x)∂i
be a q-elliptic operator. There exists K = K(n, q, λq, ‖A‖∞) > 0 of the following
significance. Suppose that |Bi(x)| ≤ Kδ(x)−1 for all x ∈ Ω. Let u ∈ W be a weak
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solution to Lu = 0 in Ω and B be a ball of radius r centered on ∂Ω such that
Tru = 0 on 2B ∩ ∂Ω. There holds

∫

B∩Ω

|u|q−2|∇u|2 dx ≤
C

r2

∫

(2B\B)∩Ω

|u|q dx.

Furthermore, one has
(

1

|B ∩ Ω|

∫

B∩Ω

|u|q dx

)
1
q

≤ C

(

1

|2B ∩ Ω|

∫

2B∩Ω

|u|p dx

)
1
p

(2.15)

for any p > 0. The constant C > 0 depends only on n, q, the constant λq and
‖A‖∞.

The first improvement is rather trivial, namely that the proof given in [19] also
holds for operators with lower order terms of the form L = ∂i (Aij(x)∂j) +Bi(x)∂i
where |Bi(x)| ≤ Kδ(x)−1 andK is sufficiently small. This can be seen by examining
the proof given in the paper.

The second improvement is that in the reverse Hölder inequality we can have
any exponent p > 0 on the right-hand side of the inequality. This observation
is originally due to Fefferman-Stein [18] but we would like to refer the reader to
a more recent exposition by Shen ([34], Theorem 2.4) for more details than we
provide here. The proof starts with knowledge that the reverse Hölder inequality
holds for a specific pair of exponents q > p: in our situation when q > 2, it holds
for p = 2. Then, an argument that employs the known reverse Hölder inequality
on rescaled balls multiple times, ultimately yields
(

1

|Bsr ∩ Ω|

∫

Bsr∩Ω

|u|q dx

)
1
q

≤ Cs
n
q t

n
2 (t− s)n(

1
q−

1
2 )

(

1

|Btr ∩Ω|

∫

Btr∩Ω

|u|2 dx

)
1
2

,

(2.16)
for any pair of boundary balls Bsr, Btr with same center and radii sr, tr respectively
for any 0 < s < t < 1. Next, for a fixed 0 < p < 2 we write 1

2 = 1−θ
q + θ

p for θ ∈ (0, 1).

Using Hölder’s inequality we have
(

1

|Btr ∩Ω|

∫

Btr∩Ω

|u|2 dx

)
1
2

≤

(

1

|Btr ∩Ω|

∫

Btr∩Ω

|u|q dx

)
1−θ
q
(

1

|Btr ∩Ω|

∫

Btr∩Ω

|u|p dx

)
θ
p

(2.17)

Finally, for 0 < t < 1 let

I(t) =

(

1

|Btr ∩Ω|

∫

Btr∩Ω

|u|q dx

)
1
q

/

(

1

|Br ∩ Ω|

∫

Br∩Ω

|u|p dx

)
1
p

.

Combining the two previous inequalities yields:

I(s) ≤ Cs
n
q t

n
2 (t− s)n(

1
q−

1
2 )I(t)1−θ.

Next, we choose s = tb for some b > 1 such that b−1 > 1 − θ. We take log of the
inequality above and then integrate it in t with respect to t−1dt over the interval
[1/2, 1]. This finally yields

(

1

b
− θ

)
∫ 1

1/2

log I(t)

t
dt ≤ C.



10 MARTIN DINDOŠ AND JILL PIPHER

As I(t) ≥ cI(1/2) for all t ∈ [1/2, 1] we obtain I(1/2) ≤ C which gives (2.15) when
p < 2. The case p > 2 is easier as we can use the version of (2.15) when p = 2 and
then the usual Hölder inequality.

Remark 2.15. Observe that we can apply same argument to the inequality (2.12).
Hence we have the following. For u as in Lemma 2.11 we have

(

−

∫

Br(x))

|u(y)|qdy

)1/q

.

(

−

∫

B2r(x)

|u(y)|pdy

)1/p

(2.18)

for all p > 0 and q < p0 where p0 = sup{p > 1 : matrix A is p-elliptic}.

3. Proof of Theorem 1.1

The proof is based on the following abstract result [33], see also [37, Theorem
3.1] for a version on an arbitrary bounded domains. In both of these papers, the
argument is carried for the case q = 2 below, but can be generalized as follows.

Theorem 3.1. Let Ω be an open set in R
n and let T be a bounded sublinear operator

on Lq(∂Ω;Cm), q > 1. Suppose that for some p > q, T satisfies the following Lp

localization property. For any ball ∆ = ∆d ⊂ ∂Ω and C∞ function f supported in
∂Ω \ 3∆ the following estimate holds:

(

|∆|−1

∫

∆

|Tf |p dx′

)1/p

≤ (3.1)

C

{

(

|2∆|−1

∫

2∆

|Tf |q dx′

)1/q

+ sup
∆′⊃∆

(

|∆′|−1

∫

∆′

|f |q dx′

)1/q
}

,

for some C > 0 independent of f . Then T is bounded on Lr(∂Ω;Cm) for any
q ≤ r < p.

In our case the role of T is played by the sublinear operator f 7→ Ñ2,a(u), where
u is the solution of the Dirichlet problem Lu = 0 with boundary data f . In the
statement of the theorem above, the specific enlargement factors (2∆, 3∆) do not
play a significant role. Hence it will suffice to establish estimate (3.1) with 2∆
replaced by 8m∆, and with f vanishing on 16m∆ for some m > 1 to be determined
later.

The operator T : f 7→ Ñ2,a(u) is sublinear and bounded on Lq, by assumption.
To prove (3.1) for this choice of T we shall establish the following reverse Hölder
inequality.

Proposition 3.2. Let a > 0 and let L and p0 be as in Theorem 1.1. Then for any

p ∈ (1, p0(n−1)
n−2 ) there exist K(p) > 0 such that if |Bi(x)| ≤ K(p)δ(x)−1 holds for

the first order coefficients of the operator L then
(

1

|∆|

∫

∆

|Ñ2,a(u)|
p dx′

)1/p

≤ C

(

1

|8m∆|

∫

8m∆

|Ñ2,a(u)|
q dx′

)1/q

, (3.2)

holds for all 1 ≤ q ≤ p. Here u solves Lu = 0 in Ω and f = u
∣

∣

∂Ω
vanishes on

16m∆.

We are also free to choose the aperture a for which we establish (3.2). The
norms of the nontangential maximal function operators with varying apertures are
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all equivalent, up to a constant that depends on this aperature. (See [32] or [23]
for a proof of this on CAD domains.) With (3.2) in hand, Theorem 3.1 gives

‖Ñ2,a(u)‖Lr(Rn−1) ≤ C‖f‖Lr(Rn−1), (3.3)

establishing Lr solvability of the Dirichlet problem for the operator L for q ≤ r < p,
thus proving Theorem 1.1.

It remains to establish Proposition 3.2. Let us define

M1(u)(Q) = sup
y∈Γa(Q)

{u2(y) : δ(y) ≤ d}, (3.4)

M2(u)(Q) = sup
y∈Γa(Q)

{u2(y) : δ(y) > d}.

Here d = diam(∆) and u2 is the L2 average of u

u2(y) =

(

−

∫

Bδ(y)/2(y)

|u(z)|2 dz

)1/2

.

It follows that

Ñ2,a(u) = max{M1(u),M2(u)}.

We first estimate M2(u). Pick any Q ∈ ∆, and to this end we prove the following
proposition, which requires our modified corkscrew regions.

Proposition 3.3. Let ∆ be a boundary ball of radius d and let Q ∈ ∆. Then
for any y ∈ Γ(Q) with δ(y) > d, the set A := {P ∈ 2∆ : y ∈ Γa(P )} has size
comparable to 2∆.

Proof. Since y ∈ Γ(Q), there exists a Q0 ∈ Sa(y) such that Q ∈ ∆(Q0, aδ(y)).
From the fact that δ(y) > d and using the Ahlfors-David regularity, we have that
σ(∆(Q, d) ∩∆(Q0, aδ(y))) > cdn−1, for a constant c depending only on a and on
the chord-arc geometry. Moreover, ∆(Q, d) ∩∆(Q0, aδ(y)) ⊂ A, which proves the
proposition.

�

Moreover,

P ∈ A =⇒ y ∈ Γa(P ) =⇒ u2(y) ≤ Ñ2,a(u)(P ).

Hence for any Q ∈ ∆,

M2(u)(Q) ≤ C

(

1

|2∆|

∫

2∆

[

Ñ2,a(u)(P )
]q

dσ(P )′
)1/q

.

It remains to estimate M1(u) on ∆. Consider any s ∈ (p′0, p0). Recall the
expressions of the form |u|s/2−1u that arise in Lemmas 2.11 and 2.12, and set
v = |u|s/2−1u. As in (2.5), v2 denotes the L2 average over the appropriate interior
ball.

We next claim that, given the fact that u vanishes on 3∆ ⊂ m∆, we have for
any Q ∈ ∆ and for x ∈ Γa(Q) with δ(x) = h, and for P ∈ C(Q, h) := {P : x ∈
Γa(P ), h/2 < |P −Q| < h},

v2(x) . (hd)1/2Aã(∇v)(P ) (3.5)
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where

A2
ã(∇v)(P ) = d−1

∫

Γ2d
ã (P )

|∇v|2(z)δ(z)1−ndz.

Here, the parameter ã will be determined later, and the truncated corkscrew region
is defined to be Γ2d

ã (P ) := Γã(P ) ∩B(P, 2d).

Proof of (3.5). For any P ∈ C(Q, h), since x ∈ Γa(Q), it follows that x ∈
Γ1+2a(P ) and so there is a sequence of corkscrew points xj associated to the point
P at scales rj ≈ 2−jh, j = 0, 1, 2, . . . with x0 = x. By the Harnack chain condition,
for each j there is a number N and a constant C such that there exists n ≤ N balls

B
(j)
k of radius≈ 2−jh with CB

(j)
k ⊂ Ω, xj−1 ∈ B

(j)
1 , xj ∈ B

(j)
n , and B

(j)
k ∩B

(j)
k+1 6= ∅.

Therefore we can find another chain of balls with the same properties for a larger

but fixed choice of N so that 4B
(j)
k ⊂ Ω and B

(j)
k+1 ⊂ 2B

(j)
k .

Considering the whole collection of balls B
(j)
k for all j = 0, 1, 2, . . . and k =

1, 2, . . . , n(j) ≤ N it follows that we have an infinite chain of balls, the first of
which contains x0, converging to the boundary point P , with the property that any
pair of consecutive balls in the chain have roughly the same radius and whose 4-fold
enlargements are contained in Ω. We relabel these balls Bj(xj , rj) with centers xj

and radii rj ≈ t−jh for some t < 1 depending on N .
We next claim that, for any ε > 0,

∣

∣

∣

∣

∣

−

∫

Bj

|v|2(z)dz −−

∫

Bj+1

|v|2(z)dz

∣

∣

∣

∣

∣

≤ εt−j−

∫

Bj

|v|2(z)dz+Cε,th

∫

2Bj

|∇v|2(z)δ(z)1−ndz

(3.6)
The argument proceeds in two steps. The first step is to obtain (3.6) but with

2Bj on the left hand side. That is,

∣

∣

∣

∣

∣

−

∫

Bj

|v|2(z)dz −−

∫

Bj+1

|v|2(z)dz

∣

∣

∣

∣

∣

≤ εt−j−

∫

2Bj

|v|2(z)dz+Cε,th

∫

2Bj

|∇v|2(z)δ(z)1−ndz

(3.7)
In the second step, we show that

−

∫

2Bj

|v|2(z)dz ≤ −

∫

Bj

|v|2(z)dz + εt−j−

∫

2Bj

|v|2(z)dz + Cε,th

∫

2Bj

|∇v|2(z)δ(z)1−ndz

(3.8)
From (3.8), we choose ε > 0 small enough to see that

−

∫

2Bj

|v|2(z)dz ≤ 2−

∫

Bj

|v|2(z)dz + Cε,th

∫

2Bj

|∇v|2(z)δ(z)1−ndz (3.9)

and use this estimate in (3.7) to obtain (3.6). Here, and in the following estimates,
the constant Cε,t is not necessarily the same at each occurrence.

The arguments for (3.7) and (3.8) are essentially the same - both are essentially
Poincaré-type inequalities with an application of Cauchy-Schwarz. We give the
argument assuming that v is differentiable, which can be justified by replacing v by
a smooth approximation in the Sobolev space.
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To prove (3.7), define the map T (x) = rj/rj+1(x− xj) + xj+1 from Bj to Bj+1.
(In the case of (3.8), T is just dilation.) Then

|v2(T (x))− v2(x)| ≤

∫

ℓ∈[x,T (x)]

|∇v2(ℓ)| dℓ (3.10)

where [x, T (x)] is the line from x to T (x).
Averaging x over Bj , using the triangle inequality, and observing that the col-

lection of lines [x, T (x)] is contained in 2Bj, gives
∣

∣

∣

∣

∣

−

∫

Bj

|v|2(z)dz −−

∫

Bj+1

|v|2(z)dz

∣

∣

∣

∣

∣

≤ C′t−jh−

∫

2Bj

|v(z)||∇v(z)|dz (3.11)

Applying Cauchy-Schwarz to the right hand side of (3.11) gives (3.7), noting
that δ(z) ≈ t−jh.

The claim (3.5) results from summing the averages in (3.6) as follows.
Set

Uj := −

∫

Bj

|v|2(z)dz −−

∫

Bj+1

|v|2(z)dz

Because u vanishes on the boundary, the averages −
∫

Bj
|v|2(z)dz are converging to

zero ([14], section 7). Therefore, for any choice of η > 0, we choose M large enough
so that −

∫

BM
|v|2(z)dz < η, and for j < M ,

−

∫

Bj

|v|2(z)dz =

M
∑

k=j

Uk +−

∫

BM

|v|2(z)dz <

M
∑

k=j

|Uk|+ η.

From (3.6) together with the fact that the collection 2Bj has finite overlap and
the union belongs to Γd

a(y
′),

−

∫

B0

|v|2(z)dz ≤
M
∑

j=0

|Uj|+η ≤ η+ε

M
∑

j=0

t−j(

M
∑

k=j

|Uk|+η)+Cε,th

∫

Γ2d
ã (P )

|∇v|2δ(z)1−ndz

(3.12)
where the aperture ã is chosen sufficiently large (depending only on the constants
defining the geometry of the domain Ω) such that for each j ≥ 0 we have 2Bj ⊂
B(xj , δ(xj)/2) ⊂ Γ2d

ã (P ).

Interchanging the order of summation,
∑M

j=0 t
−j
∑M

k=j |Uk| ≤
∑M

k=0 |Uk|
∑

j≤k t
−j

makes it apparent that if we now choose ε so that ε < (1− t)/2 in (3.12), then we
have

−

∫

B0

|v|2(z)dz ≤
M
∑

j=0

|Uj |+ η ≤ Cε,th

∫

Γ2d
ã (P )

|∇v|2δ(z)1−ndz + 2η. (3.13)

.
Letting η → 0 gives a variant of (3.5), for the average−

∫

B0
|v|2(z)dz rather than for

v22(x) = −
∫

B(x,δ(x)/2) |v|
2(z)dz. However, the estimate for −

∫

B0
|v|2(z)dz is sufficient

by an argument exactly like that for (3.9).

We use (3.5) to average over P ∈ C(Q, h). (We now omit reference to the
aperture.) Since σ(C(Q, h)) ≈ hn−1, we have for x ∈ Γ(Q) :
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v2(x) . h3/2−nd1/2
∫

C(Q,h)

A(∇v)(P )dσ(P ) . d1/2
∫

C(Q,h)

A(∇v)(P )

|P −Q|n−3/2
dσ(P )

(3.14)
Because C(Q, h) ⊂ 2∆, we see that

M1(v2)(Q) . d1/2
∫

2∆

A(∇v)(P )

|P −Q|n−3/2
dσ(P ) (3.15)

By the fractional integral estimate, this implies that

(

1

|∆|

∫

∆

[M1(v2)(P )]r dσ(P )

)1/r

≤ Cd
(

1
|2∆|

∫

2∆[A(∇v)(P )]2 dσ(P )
)1/2

≤ Cd
(

1
|T (m∆|)

∫

T (m∆)
|∇v(x)|2 dx

)1/2

(3.16)

where 1
r = 1

2 − 1
2(n−1) and m = m(ã) > 2 is such that T (m∆) contains all points

x ∈ Γ2d
ã (P ) for any P ∈ 2∆.

To further estimate (3.16) we use the Lemma 2.14, recalling that |∇v|2 =
|u|s−2|∇u|2:

(

1

|T (m∆|)

∫

T (m∆)

|∇v(x)|2 dx

)1/2

. d−1

(

1

|T (2m∆|)

∫

T (2m∆)

|u(x)|s dx

)1/2

,

whenever the solution Lu = 0 vanishes on at least 3m∆.
By Lemma 2.14, we therefore have that

(

1

|∆|

∫

∆

[M1(v2)(P )]r dσ(P )

)1/r

≤ C
(

1
|T (2m∆|)

∫

T (2m∆) |u(x)|
s dx

)1/2

≤ C
(

1
|T (4m∆|)

∫

T (4m∆)
|u(x)|q dx

)s/2q

(3.17)

Rewriting (3.17) in terms of u, and choosing rs/2 = p, gives

(

1

|∆|

∫

∆

[M1(us)(P )]p dσ(P )

)1/p

≤ C
(

1
|T (4m∆|)

∫

T (4m∆) |u(x)|
q dx

)1/q

≤ C
(

1
|(4m∆|)

∫

(4m∆)
[Ñq(u)(P ]q dσ(P )

)1/q

.

The final step is to replace the us averages by u2 ones, as well as the Ñq by Ñ2.
This can be done thanks to (2.18) (see [14, Proposition 3.5] or the corresponding
statement in [19]) to give us

(

1

|∆|

∫

∆

[M1(u2)(P )]p dσ(P )

)1/p

≤ C

(

1

|(8m∆|)

∫

(8m∆)

[Ñ2(u)(Q)]q dσ(Q)

)1/q

(3.18)
We now conclude that (3.2) holds for p = rs/2. Since r = 2(n− 1)/(n− 2) this

implies that p = s(n−1)/(n−2). Given that we can take any s ∈ (p′0, p0) the claim
of Proposition 3.2 follows.
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