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HARMONIC MEASURE AND QUANTITATIVE CONNECTIVITY:
GEOMETRIC CHARACTERIZATION OF THE L?-SOLVABILITY OF
THE DIRICHLET PROBLEM

JONAS AZZAM, STEVE HOFMANN, JOSE MARTA MARTELL, MIHALIS MOURGOGLOU,
AND XAVIER TOLSA

AsstrAcT. It is well-known that quantitative, scale invariant absolute continuity
(more precisely, the weak-A., property) of harmonic measure with respect to sur-
face measure, on the boundary of an open set Q c R"*! with Ahlfors-David regular
boundary, is equivalent to the solvability of the Dirichlet problem in Q, with data in
LP(0Q) for some p < co. In this paper, we give a geometric characterization of the
weak-A., property, of harmonic measure, and hence of solvability of the L? Dirich-
let problem for some finite p. This characterization is obtained under background
hypotheses (an interior corkscrew condition, along with Ahlfors-David regular-
ity of the boundary) that are natural, and in a certain sense optimal: we provide
counter-examples in the absence of either of them (or even one of the two, upper
or lower, Ahlfors-David bounds); moreover, the examples show that the upper and
lower Ahlfors-David bounds are each quantitatively sharp.
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1. INTRODUCTION

A classical criterion of Wiener characterizes the domains in which one can solve
the Dirichlet problem for Laplace’s equation with continuous boundary data, and
with continuity of the solution up to the boundary. In this paper, we address the
analogous issue in the case of singular data. To be more precise, the present work
provides a purely geometric characterization of the open sets for which L? solvabil-
ity holds, for some p < oo, and with non-tangential convergence to the data a.e., thus
allowing for singular boundary data. We establish this characterization in the pres-
ence of background hypotheses (an interior corkscrew condition [see Definition 2.5
below], and Ahlfors-David regularity of the boundary [Definition 2.1]) that are in the
nature of best possible, in the sense that there are counter-examples in the absence
of either of them (or of even one of the two, upper or lower, Ahlfors-David bounds);
moreover, the examples show that the upper and lower Ahlfors-David bounds are
each quantitatively sharp (see the discussion following Theorem 1.5, as well as Ap-
pendix A, for more details.

Solvability of the L? Dirichlet problem is fundamentally tied to quantitative abso-
lute continuity of harmonic measure with respect to surface measure on the bound-
ary: indeed, it is equivalent to the so-called “weak-A.”~ property of the harmonic
measure (see Definition 2.16). It is through this connection to quantitative absolute
continuity of harmonic measure that we shall obtain our geometric characterization
of L? solvability.

The study of the relationship between the geometry of a domain, and absolute
continuity properties of its harmonic measure, has a long history. A classical result
of F. and M. Riesz [RR] states that for a simply connected domain € in the complex
plane, rectifiability of Q2 implies that harmonic measure for € is absolutely contin-
uous with respect to arclength measure on the boundary. A quantitative version of
this theorem was later proved by Lavrentiev [Lav]. More generally, if only a por-
tion of the boundary is rectifiable, Bishop and Jones [BJ] have shown that harmonic
measure is absolutely continuous with respect to arclength on that portion. They also
present a counter-example to show that the result of [RR] may fail in the absence of
some connectivity hypothesis (e.g., simple connectedness).

In dimensions greater than 2, a fundamental result of Dahlberg [Dah] establishes
a quantitative version of absolute continuity, namely that harmonic measure belongs
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to the class Ao, in an appropriate local sense (see Definitions 2.16 and 2.20 below),
with respect to surface measure on the boundary of a Lipschitz domain.

The result of Dahlberg was extended to the class of Chord-arc domains (see Def-
inition 2.8) by David and Jerison [DJ], and independently by Semmes [Sem]. The
Chord-arc hypothesis was weakened to that of a two-sided corkscrew condition (Def-
inition 2.5) by Bennewitz and Lewis [BL], who then drew the conclusion that har-
monic measure is weak-A., (in an appropriate local sense, see Definitions 2.16 and
2.20) with respect to surface measure on the boundary; the latter condition is similar
to the A condition, but without the doubling property, and is the best conclusion
that can be obtained under the weakened geometric conditions considered in [BL].
We note that weak-A, is still a quantitative, scale invariant version of absolute con-
tinuity.

More recently, one of us (Azzam) has given in [Azz] a geometric characterization
of the A, property of harmonic measure with respect to surface measure for domains
with n-dimensional Ahlfors-David regular (n-ADR) boundary (see Definition 2.1).
Azzam’s results are related to those of the present paper, so let us describe them in
a bit more detail. Specifically, he shows that for a domain Q with n-ADR boundary,
harmonic measure is in A, with respect to surface measure, if and only if 1) 0Q
is uniformly rectifiable (n-UR)', and 2) Q is semi-uniform in the sense of Aikawa
and Hirata [AH]. The semi-uniform condition is a connectivity condition which
states that for some uniform constant M, every pair of points x € Q and y € 9Q
may be connected by a rectifiable curve y = y(y, x), with v \ {y} ¢ Q, with length
{(y) < M|x — y|, and which satisfies the “cigar path” condition

(1.1) min {£(y(y,2)), £(y(z, x))} < Mdist(z,0Q), Yzevy.

Semi-uniformity is a weak version of the well known uniform condition, whose def-
inition is similar, except that it applies to all pairs of points x,y € Q. For example,
the unit disk centered at the origin, with the slit {—1/2 < x < 1/2,y = 0} removed, is
semi-uniform, but not uniform. It was shown in [AH] that for a domain satisfying a
John condition and the Capacity Density Condition (in particular, for a domain with
an n-ADR boundary), semi-uniformity characterizes the doubling property of har-
monic measure. The method of [Azz] is, broadly speaking, related to that of [DJ],
and of [BL]. In [DJ], the authors show that a Chord-arc domain 2 may be approx-
imated in a “Big Pieces” sense (see [DJ] or [BL] for a precise statement; also cf.
Definition 2.13 below) by Lipschitz subdomains Q' c Q; this fact allows one to re-
duce matters to the result of Dahlberg via the maximum principle (a method which,
to the present authors’ knowledge, first appears in [JK] in the context of BMO; do-
mains). The same strategy, i.e., Big Piece approximation by Lipschitz subdomains,
is employed in [BL]. Similarly, in [Azz], matters are reduced to the result of [DJ],
by showing that for a domain Q with an n-ADR boundary, Q is semi-uniform with a
uniformly rectifiable boundary if and only if it has “Very Big Pieces” of Chord-arc
subdomains (see [Azz] for a precise statement of the latter condition). As mentioned
above, the converse direction is also treated in [Azz]. In that case, given an inte-
rior corkscrew condition (which holds automatically in the presence of the doubling
property of harmonic measure), and provided that 0Q is n-ADR, the A, (or even
weak-Ao,) property of harmonic measure was already known to imply uniform recti-
fiability of the boundary [HM3] (although the published version appears in [HLMN];
see also [MT] for an alternative proof, and a somewhat more general result); as in

IThis is a quantitative, scale-invariant version of rectifiability, see Definition 2.3 and the ensuing
comments.
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[AH], semi-uniformity follows from the doubling property, although in [Azz], the
author manages to show this while dispensing with the John domain background
assumption (given a harmlessly strengthened version of the doubling property).

Thus, in [Azz], the connectivity condition (semi-uniformity), is tied to the dou-
bling property of harmonic measure, and not to absolute continuity. On the other
hand, in light of the example of [BJ], and on account of the aforementioned con-
nection to solvability of the Dirichlet problem, it has been an important open prob-
lem to determine the minimal connectivity assumption which, in conjunction with
uniform rectifiability of the boundary, yields quantitative absolute continuity of har-
monic measure with respect to surface measure. In the present work, we present a
connectivity condition, significantly milder than semi-uniformity, which we call the
weak local John condition (see Definition 2.13 below), and which solves this prob-
lem. Thus, we obtain a geometric characterization of the domains for which one has
quantitative absolute continuity of harmonic measure; equivalently, for which one
has solvability of the Dirichlet problem with singular (L”) data (see Theorem 1.3
below). In fact, we provide two geometric characterizations of such domains, one
in terms of uniform rectifiability combined with the weak local John condition, the
other in terms of approximation of the boundary in a big pieces sense, by boundaries
of Chord-arc subdomains.

Let us now describe the weak local John condition, which says, roughly speaking,
that from each point x € Q, there is local non-tangential access to an ample portion
of a surface ball at a scale on the order of dq(x) := dist(x, 0Q2). Let us make this a bit
more precise. A “carrot path” (aka non-tangential path) joining a point x € €, and
a point y € 9Q, is a connected rectifiable path y = y(y, x), with endpoints y and x,
such that for some A € (0, 1) and for all z € y,

(1.2) A (,2) < bal2),

where €(y(y, z)) denotes the arc-length of the portion of the original path with end-
points y and z. For x € Q, and N > 2, set

A, = AY := B(x, N6g(x)) N Q.

We assume that every point x € Q may be joined by a carrot path to each y in a “Big
Piece” of A,, i.e., to each y in a Borel subset F' C A,, with o(F) > 6o (A,), where
o denotes surface measure on 0€2, and where the parameters N > 2, A4 € (0, 1), and
0 € (0, 1] are uniformly controlled. We refer to this condition as a “weak local John
condition”, although “weak local semi-uniformity” would be equally appropriate.
See Definitions 2.9, 2.11 and 2.13 for more details. We remark that a strong version
of the local John condition (i.e., with 8 = 1) has appeared in [HMT], in connection
with boundary Poincaré inequalities for non-smooth domains.

Let us observe that the weak local John condition is strictly weaker than semi-
uniformity: for example, the unit disk centered a the origin, with either the cross
{-1/2 < x £ 1/2,y = 0} U {-1/2 <y < 1/2,x = 0} removed, or with the slit
{0 < x < 1,y = 0} removed, satisfies the weak local John condition, although semi-
uniformity fails in each case.

The main result in the present work is the following geometric characterization
of quantitative absolute continuity of harmonic measure, and of the L? solvability of
the Dirichlet problem. The terminology used here will be defined in the sequel.

Theorem 1.3. Let Q c R"™!, n > 1, be an open set satisfying an interior corkscrew
condition (see Definition 2.5 below), and suppose that 9Q is n-dimensional Ahlfors-
David regular (n-ADR; see Definition 2.1 below). Then the following are equivalent:
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(1) 0Q is Uniformly Rectifiable (n-UR; see Definition 2.3 below) and Q satisfies
the weak local John condition (see Definition 2.13 below).

(2) Q satisfies an Interior Big Pieces of Chord-Arc Domains (IBPCAD) condi-
tion (see Definition 2.14 below).

(3) Harmonic measure w is locally in weak-A« (see Definition 2.20 below) with
respect to surface measure o on 0€.

(4) The L? Dirichlet problem is solvable for some p < oo, i.e., for some p <
oo, there is a constant C such that if g € LP(0Q), then the solution to the
Dirichlet problem with data g, is well defined as u(x) := fan gdw”* for each
x € Q, converges to g non-tangentially, and enjoys the estimate

(1.4) [INcullzro) < Cligllireq) »

where N.u is a suitable version of the non-tangential maximal function of u.

Some explanatory comments are in order. The proof has two main new ingre-
dients: the implication (1) implies (2), and the fact that the weak-A., property of
harmonic measure implies the weak local John condition (this is the new part of (3)
implies (1)). In turn, we split these main new results into two theorems: the first
implication is the content of Theorem 1.5 below, and the second is the content of
Theorem 1.6. We remark that the interior corkscrew condition is not needed for (1)
implies (2) (nor for (2) implies (3) if and only if (4)). Rather, it is crucial for (3)
implies (1) (see Appendix A).

As regards the other implications, the fact that (2) implies (3) follows by a well-
known argument using the maximum principle and the result of [DJ] and [Sem] for
Chord-arc domains?, along with the criterion for weak-A., obtained in [BL]; the
equivalence of (3) and (4) is well known, and we refer the reader to, e.g., [HLe,
Section 4], and to [H] for details. The implication (3) implies (1) has two parts. As
mentioned above, the fact that weak-A., implies weak local John is new, and is the
content of Theorem 1.6. The remaining implication, namely that weak-A,, implies
n-UR, is the main result of [HM3]; an alternative proof, with a more general result,
appears in [MT], and see also [HLMN] for the final published version of the results
of [HM3], along with an extension to the p-harmonic setting.

We note that our background hypotheses (upper and lower n-ADR, and interior
corkscrew) are in the nature of best possible: one may construct a counter-example in
the absence of any one of them, for at least one direction of this chain of implications,
as we shall discuss in Appendix A. In addition, in the case of the n-ADR condition,
given any € > 0, the counter-examples for the upper (respectively, lower) n-ADR
property can be constructed in such a way as to show that no weaker condition of
the form H"(B(x,r) N 0Q) < "¢ (resp., H(B(x,r) N 0Q) > %), with r < 1, may
be substituted for a true n-ADR upper or lower bound. Moreover, the first example
shows that one cannot substitute the Capacity Density Condition (CDC)? in place
of the n-ADR condition: indeed, the example is an NTA domain, in particular, it
satisfies an exterior corkscrew condition, and thus also the CDC.

As regards our assumption of the interior corkscrew condition, we point out that,
as is well known, the n-ADR condition implies that the open set R"*! \ 9Q satisfies
a corkscrew condition, with constants depending only on n and ADR, i.e., at every
scale r, and for every point x € dQ, there is at least one component of R"*! \ 9Q

2See, e.g., [H, Proposition 13] for the details in this context, but the proof originates in [JK].
3The CDC s a scale invariant potential theoretic “thickness” condition, i.e., a quantitative version
of Weiner regularity; see, e.g., [AH].
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containing a corkscrew point relative to the ball B(x, r). Our last example shows that
such a component should lie inside Q itself, for each x and r; i.e., that Q should
enjoy an interior corkscrew condition.

As explained above, the main new contributions of the present work are contained
in the following pair of theorems,

Theorem 1.5. Let Q c R™ n > 1, be an open set, not necessarily connected, with
an n-dimensional Ahlfors-David regular (n-ADR) boundary. Then the following are
equivalent:

(1) 0Q is uniformly rectifiable (n-UR), and Q satisfies the weak local John con-
dition.

(i) Q satisfies an Interior Big Pieces of Chord-Arc Domains (IBPCAD) condi-
tion.

Only the direction (i) implies (ii) is new. For the converse, the fact that IBPCAD
implies the weak local John condition is immediate from the definitions. Moreover,
the boundary of a Chord-arc domain is n-UR, and an n-ADR set with big pieces
of n-UR is also n-UR (see [DS2]). As noted above, that (ii) implies the weak-A
property follows by well known arguments.

Theorem 1.6. Let Q C R"™!, n > 1, be an open set satisfying an interior corkscrew
condition and suppose that 0Q is n-dimensional Ahlfors-David regular (n-ADR). If
the harmonic measure for Q satisfies the weak-As condition, then Q satisfies the
weak local John condition.

Let us mention that the present paper is a combination of unpublished work of
two different subsets of the present authors: Theorem 1.5 is due to the second and
third authors, and was first posted in the draft manuscript [HM5]*; Theorem 1.6 is
due to the first, fourth and fifth authors, and appeared first in the draft manuscript
[AMT?2].

The paper is organized as follows. In the next section, we set notation and give
some definitions. In Part 1 of the paper (Sections 3-8), we give the proof of Theorem
1.5. In Part 2 of the paper (Sections 9-16) we give the proof of Theorem 1.6. Finally,
in Appendix A, we discuss some counter-examples which show that our background
hypotheses are in the nature of best possible.

We thank the referee for a careful reading of the paper, and for several helpful
suggestions that have led us to clarify certain matters, and to make improvements in
the presentation.

2. NOTATION AND DEFINITIONS

e Unless otherwise stated, we use the letters ¢, C to denote harmless positive con-
stants, not necessarily the same at each occurrence, which depend only on dimen-
sion and the constants appearing in the hypotheses of the theorems (which we
refer to as the “allowable parameters”). We shall also sometimes write a < b,
a 2 b, and a = b to mean, respectively, thata < Cb,a > cb,and 0 < c < a/b < C,
where the constants ¢ and C are as above, unless explicitly noted to the contrary.
In some occasions we will employ the notation a <3 b, a 23 band a =, b to
emphasize that the previous implicit constants ¢ and/or C may depend on some

4 An earlier version of this work [HM4] gave a direct proof of the fact that (1) implies (3) in Theorem
1.3, without passing through condition (2).
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relevant parameter A. At times, we shall designate by M a particular constant
whose value will remain unchanged throughout the proof of a given lemma or
proposition, but which may have a different value during the proof of a different
lemma or proposition.

e Our ambient space is R**!, n > 1.

e Q will always denote an open set in R"*!, not necessarily connected unless other-
wise specified.

e We use the notation y(x, y) to denote a rectifiable path with endpoints x and y, and
its arc-length will be denoted ¢(y(x,y)). Given such a path, if z € y(x,y), we use
the notation y(z, y) to denote the portion of the original path with endpoints z and
y.

e Weletej, j=1,2,...,n+ 1, denote the standard unit basis vectors in R"*1.

e The open (n + 1)-dimensional Euclidean ball of radius r will be denoted B(x, r).
For x € 0Q, a surface ball is denoted A(x, r) := B(x,r) N 0Q.

e Given a Euclidean ball B or surface ball A, its radius will be denoted rg or ra,
respectively.

e Given a Euclidean or surface ball B = B(x, r) or A = A(x, r), its concentric dilate
by a factor of « > 0 will be denoted «B := B(x, kr) or kA := A(x, kr).

e Given an open set Q C R"™!, for x € Q, we set 9o (x) := dist(x, Q).

e We let H" denote n-dimensional Hausdorff measure, and let o := H"| ;5 denote
the surface measure on 9.

e For a Borel set A c R*!, we let xa denote the usual indicator function of A, i.e.
xax)=1lifxe A, and ya(x) =0if x ¢ A.

e For a Borel set A ¢ R**!, we let int(A) denote the interior of A.

¢ Given a Borel measure u, and a Borel set A, with positive and finite 4 measure,
we set Jgfd,u = pu(A)! fAfd,u.

e We shall use the letter / (and sometimes J) to denote a closed (n + 1)-dimensional
Euclidean dyadic cube with sides parallel to the co-ordinate axes, and we let £(1)
denote the side length of . If £(1) = 27k, then we set k; := k. Given an n-ADR
set E ¢ R™!, we use Q (or sometimes P or R) to denote a dyadic “cube” on E.
The latter exist (see [DS1], [Chr], [HK]), and enjoy certain properties which we
enumerate in Lemma 2.23 below.

Definition 2.1. (n-ADR) (aka n-Ahlfors-David regular). We say that aset E C R,
of Hausdorff dimension n, is n-ADR if it is closed, and if there is some uniform
constant C such that

1
(2.2) c " <o(Alx,r) <Cr", Vre(0,diam(E)), x € E,

where diam(F) may be infinite. Here, A(x,r) := E N B(x,r) is the surface ball of
radius r, and as above, o := H"| g is the “surface measure” on E.

Definition 2.3. (n-UR) (aka n-uniformly rectifiable). An n-ADR (hence closed) set
E c R"™! is n-UR if and only if it contains “Big Pieces of Lipschitz Images” of R”
(“BPLI”). This means that there are positive constants ¢ and C, such that for each
x € E and each r € (0, diam(E)), there is a Lipschitz mapping p = px, : R" — R,
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with Lipschitz constant no larger than Cy, such that

H”(E NBx,HNp{zeR": |7 < r})) > .
We recall that n-dimensional rectifiable sets are characterized by the property that
they can be covered, up to a set of H" measure 0, by a countable union of Lipschitz
images of R"; we observe that BPLI is a quantitative version of this fact.

We remark that, at least among the class of n-ADR sets, the n-UR sets are pre-
cisely those for which all “sufficiently nice” singular integrals are L?>-bounded [DS1].
In fact, for n-ADR sets in R"*!, the L? boundedness of certain special singular inte-
gral operators (the “Riesz Transforms”), suffices to characterize uniform rectifiability
(see [MMV] for the case n = 1, and [NTV] in general). We further remark that there
exist sets that are n-ADR (and that even form the boundary of a domain satisfying
interior corkscrew and Harnack Chain conditions), but that are totally non-rectifiable
(e.g., see the construction of Garnett’s “4-corners Cantor set” in [DS2, Chapter 1]).
Finally, we mention that there are numerous other characterizations of n-UR sets
(many of which remain valid in higher co-dimensions); cf. [DS1, DS2].

Definition 2.4. (“UR character”). Given an n-UR set E ¢ R"*!, its “UR character”
is just the pair of constants (¢, Cy) involved in the definition of uniform rectifiability,
along with the ADR constant; or equivalently, the quantitative bounds involved in
any particular characterization of uniform rectifiability.

Definition 2.5. (Corkscrew condition). Following [JK], we say that an open set
Q c R™! satisfies the corkscrew condition if for some uniform constant ¢ > 0 and
for every surface ball A := A(x, r), with x € 0Q and 0 < r < diam(dQ), there is a
ball B(xa,cr) C B(x,r) N Q. The point xp C Q is called a corkscrew point relative to
A. We note that we may allow r < C diam(0Q2) for any fixed C, simply by adjusting
the constant c¢. In order to emphasize that B(xa, cr) C €, we shall sometimes refer to
this property as the interior corkscrew condition.

Definition 2.6. (Harnack Chains, and the Harnack Chain condition [JK]). Given
two points x, x"” € Q, and a pair of numbers M, N > 1, an (M, N)-Harnack Chain
connecting x to x’, is a chain of open balls By, ..., By C Q, with x € By, X’ € By,
Bi N Byyy # @ and M~ diam(By) < dist(By, Q) < M diam(By). We say that Q
satisfies the Harnack Chain condition if there is a uniform constant M such that for
any two points x, x" € Q, there is an (M, N)-Harnack Chain connecting them, with N
depending only on M and the ratio |x — x’|/ (min (6q(x), o (x))).

Definition 2.7. (NTA). Again following [JK], we say that a domain Q ¢ R™! is
NTA (Non-tangentially accessible) if it satisfies the Harnack Chain condition, and if
both Q and Qe := R™*! \ Q satisfy the corkscrew condition.

Definition 2.8. (CAD). We say that a connected open set Q ¢ R™! is a CAD
(Chord-arc domain), if it is NTA, and if 0Q is n-ADR.

Definition 2.9. (Carrot path). Let Q c R"*! be an open set. Given a point x €
Q, and a point y € JdQ, we say that a connected rectifiable path y = y(y, x), with
endpoints y and x, is a carrot path (more precisely, a A-carrot path) connecting y to
x, ify \ {y} € Q, and if for some A € (0, 1) and for all z € v,

(2.10) AL(y(y,2)) < 60(z2).

With a slight abuse of terminology, we shall sometimes refer to such a path as a
A-carrot path in CQ, although of course the endpoint y lies on 9Q2.
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A carrot path is sometimes referred to as a non-tangential path.

Definition 2.11. ((6, A, N)-weak local John point). Let x € Q, and for constants
#e0,1],1€(0,1),and N > 2, set

Ay = AY := B(x, N6g(x)) N Q.

We say that a point x € Q is a (6, 4, N)-weak local John point if there is a Borel set
F c AQV , with o(F) > OO'(AQV ), such that for every y € F, there is a A-carrot path
connecting y to x.

Thus, a weak local John point is non-tangentially connected to an ample portion
of the boundary, locally. We observe that one can always choose N smaller, for
possibly different values of 6 and A, by moving from x to a point x’ on a line segment
joining x to the boundary.

Remark 2.12. We observe that it is a slight abuse of notation to write A,, since the
latter is not centered on d€2, and thus it is not a true surface ball; on the other hand,
there are true surface balls, A’ := A(X, (N — 1)dq(x)) and AY := A(x, (N + 1)dq(x)),
centered at a “touching point” £ € 0Q with dq(x) = |x — |, which, respectively, are
contained in, and contain, A,.

Definition 2.13. (Weak local John condition). We say that Q satisfies a weak local
John condition if there are constants A € (0, 1), 8 € (0, 1], and N > 2, such that every
x € Qisa (6, A, N)-weak local John point.

Definition 2.14. (IBPCAD). We say that a connected open set Q ¢ R™*! has Interior
Big Pieces of Chord-Arc Domains (IBPCAD) if there exist positive constants r and
C,and N > 2, such that for every x € Q, with dg(x) < diam(9Q), there is a Chord-arc
domain Q, c Q satisfying

x e Q,.

dist(x, 0Qy) > ndq(x).

diam(Q,) < Coq(x).

a(0Q, N AN > na(AY) ~y nda(x)".

The Chord-arc constants of the domains Q, are uniform in x.

Remark 2.15. In the presence of an interior corkscrew condition, Definition 2.14 is
easily seen to be essentially equivalent to the following more standard “Big Pieces”
condition: there are positive constants 7 and C (perhaps slightly different to that in
Definition 2.14), such that for each surface ball A := A(x, r) = B(x,r) N 9Q, x € 9Q
and r < diam(0€), and for any corkscrew point x, relative to A there is a Chord-arc
domain Q, satisfying

xa € Qa

dist(xa, 0Qp) = nr.

Qp C B(x,Cr)yn Q.

a(0Qa N A(x, Cr)) = no(A(x,Cr)) = nr'.

The Chord-arc constants of the domains Q4 are uniform in A.

Definition 2.16. (A, weak-A, and weak-RH,). Given an n-ADR set E C R+
and a surface ball Ay := ByN E centered on E, we say that a Borel measure u defined
on E belongs to A (A) if there are positive constants C and s such that for each
surface ball A = BN E centered on E, with B C By, we have

o)

s
u(A), for every Borel set A C A.
a(A)

2.17) HA) < C(
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Similarly, we say that i € weak-A(Ap) if for each surface ball A = B N E centered
on E, with 2B C By,

a(A)
o (A)
We recall that, as is well known, the condition u € weak-A.(Ap) is equivalent to the

property that 4 < o in Ag, and that for some ¢ > 1, the Radon-Nikodym derivative
k := du/do satisfies the weak reverse Holder estimate

S
(2.18) u(A) < C( ) UQRA), for every Borel set A C A.

Va 2A
(2.19) (J[kqdv) < JC kdo =~ M, YA=BNE, with 2B C By,
A 24 a(4)
with B centered on E. We shall refer to the inequality in (2.19) as a “weak-RH,”
estimate, and we shall say that k € weak-RH,(Ao) if k satisfies (2.19).

Definition 2.20. (Local A, and local weak-A,,). We say that harmonic measure
w is locally in A (resp., locally in weak-Ao) on 02, if there are uniform positive
constants C and s such that for every ball B = B(x, r) centered on 9Q2, with radius
r < diam(dQ)/4, and associated surface ball A = B N 0Q2,

A S
2.21) WP(A) < c(%) W’(A), YpeQ\4B, YBorel ACA,
(oA
or, respectively, that
oA\
222) WA < C(W) W’(2A), Y peQ\4B, YBorel ACA;
g

equivalently, if for every ball B and surface ball A = B N dQ as above, and for each
point p € Q\ 4B, WP € Ax(A) (resp., w” € weak-A(A)) with uniformly controlled
A (resp., weak-A,) constants.

Lemma 2.23. (Existence and properties of the ‘“dyadic grid”’) [DS1, DS2, Chr].
Suppose that E c R""! is an n-ADR set. Then there exist constants ay > 0, s > 0
and Cy < oo, depending only on n and the ADR constant, such that for each k € Z,
there is a collection of Borel sets (“cubes”)

Di:=1{Qj CE:je
where 3 denotes some (possibly finite) index set depending on k, satisfying
() E = ujQ’; for eachk € Z.
(ii) If m > k then either Q" C Q’;. or Q"N Q’; =0.
(iii) For each (j, k) and each m < k, there is a unique i such that Q'j‘. c Q.
(iv) diam(Q’;) <27k,
(v) Each Q’J‘. contains some “surface ball” A(x’; ap27%) := B(x’j‘., a2 NE.
(vi) H'({x € Q’; s dist(x, E \ Q’;) <927 < C H”(Q’;),for all k, j and for all
¥ € (0, ap).
A few remarks are in order concerning this lemma.

o In the setting of a general space of homogeneous type, this lemma has been proved
by Christ [Chr] (see also [HK]), with the dyadic parameter 1/2 replaced by some
constant 0 € (0,1). In fact, one may always take 6 = 1/2 (see [HMMM, Proof
of Proposition 2.12]). In the presence of the Ahlfors-David property (2.2), the
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result already appears in [DS1, DS2]. Some predecessors of this construction
have appeared in [Dal] and [Da2].

e For our purposes, we may ignore those k € Z such that 27 > diam(E), in the case
that the latter is finite.

e We shall denote by D = D(E) the collection of all relevant Q’J‘. ,l.e.,
D = U Dy,
where, if diam(E) is finite, the union runs over those k such that 27% < diam(E).

e Properties (iv) and (v) imply that for each cube Q € Dy, there is a point xgp € E,
a Euclidean ball B(xg, rp) and a surface ball A(xp, rg) := B(xg,rg) N E such that
ro ~ 27 ~ diam(Q) and

(2.24) A(xg,rg) C Q C A(xg,Crop),
for some uniform constant C. We shall refer to the point x¢ as the “center” of Q.

e For a dyadic cube Q € Dy, we shall set £(Q) = 2% and we shall refer to this quan-
tity as the “length” of Q. Evidently, by adjusting if necessary some parameters,
we can assume that

diam(Q) < €(Q) < diam(Q).
We shall denote

(2.25) Bo := B(xg,4((Q)), Ag = A(xg,44(Q)).

Notice that Q C Ap C Byp.

e For a dyadic cube Q € D, we let k&(Q) denote the dyadic generation to which Q
belongs, i.e., we set k = k(Q) if Q € Dy; thus, £(Q) = 27K,

e Given R € D, we set

(2.26) DR):={QeD:QCR}.
For j > 1, we also let
(2.27) Di(R) :={0 € DR) : Q) =27 ((R)} .

e For a pair of cubes Q’, Q0 € D, if Q' is a dyadic child of Q, i.e., if Q" C Q, and
£(Q) = 2¢6(Q’), then we write Q' < Q.

e For A > 1, we write
A0 ={x € E : dist(x, Q) < (1 - 1) €(Q)}.

With the dyadic cubes in hand, we may now define the notion of a corkscrew point
relative to a cube Q.

Definition 2.28. (Corkscrew point relative to Q). Let Q satisfy the corkscrew con-
dition (Definition 2.5), suppose that 9Q is n-ADR, and let Q € D(JQ). A corkscrew
point relative to Q is simply a corkscrew point relative to the surface ball A(xg, rg)
defined in (2.24).

Definition 2.29. (Coherency and Semi-coherency). [DS2]. Let E ¢ R™**! be an
n-ADR set. Let T ¢ D(E). We say that T is coherent if the following conditions
hold:

(a) T contains a unique maximal element Q(T) which contains all other elements
of T as subsets.

(b) If Q belongs to T, and if @ ¢ Q c Q(T), then Q € T.
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(c) Given a cube Q € T, either all of its children belong to T, or none of them
do.

We say that T is semi-coherent if conditions (a) and (b) hold. We shall refer to a
coherent or semi-coherent collection T as a free.

Part 1: Proof of Theorem 1.5

3. PRELIMINARIES FOR THE PROOF OF THEOREM 1.5

We begin by recalling a bilateral version of the David-Semmes “Corona decom-
position” of an n-UR set. We refer the reader to [HMM] for the proof.

Lemma 3.1. ((HMM, Lemma 2.2]) Let E c R™! be an n-UR set. Then given any
positive constants 1 < 1 and K > 1, there is a disjoint decomposition D(E) = GUSB,
satisfying the following properties.
(1) The “Good” collection G is further subdivided into disjoint trees, such that
each such tree T is coherent (Definition 2.29).

(2) The “Bad” cubes, as well as the maximal cubes Q(T), T C G, satisfy a
Carleson packing condition:

Yooo@)+ Y QM) < Cra(Q), VO e DE).
Q'cQ, Q€8 TcGg:0(McQ

(3) For each T C G, there is a Lipschitz graph I't, with Lipschitz constant at
most n, such that, for every Q € T,

3.2) sup dist(x,I'7) + sup dist(y, E) < n€(Q),
xeA*Q yEB*QﬂFT
where B*Q := B(xg, K{(Q)) and A*Q = B*Q N E, and xg is the “center” of Q
as in (2.24)-(2.25).

We remark that in [HMM], the trees T were denoted by S, and were called “stop-
ping time regimes” rather than trees.

We mention that David and Semmes, in [DS1], had previously proved a unilat-
eral version of Lemma 3.1, in which the bilateral estimate (3.2) is replaced by the
unilateral bound

(3.3) sup dist(x,T'7) < n6(Q), VYQEeT.

xEA*Q

Next, we make a standard Whitney decomposition of Qg := R™*! \ E, for a given
n-UR set E (in particular, Q is open, since n-UR sets are closed by definition). Let
W = W(Qg) denote a collection of (closed) dyadic Whitney cubes of Q, so that
the cubes in ‘W form a pairwise non-overlapping covering of Qr, which satisty

3.4) 4 diam(]) < dist(4/, E) < dist(/, E) < 40diam(/), VieW

(just dyadically divide the standard Whitney cubes, as constructed in [Ste, Chapter
VI], into cubes with side length 1/8 as large) and also

}Ldiam(ll) < diam(/,) < 4diam(/y),

whenever I and I, touch.
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We fix a small parameter 7o > 0, so that for any / € W, and any 7 € (0, 7], the
concentric dilate

(3.5) I'(t)y:=(1+71)l
still satisfies the Whitney property
(3.6) diam I ~ diam I (1) ~ dist (I*(7), E) ~ dist(I, E), 0<7<7y.

Moreover, for T < 7y small enough, and for any I, J € ‘W, we have that I"(7) meets
J*(1) if and only if 7 and J have a boundary point in common, and that, if / # J, then
I (1) misses (3/4)J.

Pick two parameters 7 < 1 and K > 1 (eventually, we shall take K = 173/%). For
0 € D(E), define

BT Wh={leW: Q) <) < K'*0(Q), dist(I, Q) < K'*£(Q)}.

Remark 3.8. We note that ‘W% is non-empty, provided that we choose n small
enough, and K large enough, depending only on dimension and ADR, since the
n-ADR condition implies that Q satisfies a corkscrew condition. In the sequel, we
shall always assume that 7 and K have been so chosen.

Next, we recall a construction in [HMM, Section 3], leading up to and including
in particular [HMM, Lemma 3.24]. We summarize this construction as follows.

Lemma 3.9. Let E ¢ R™! be n-UR, and set Qp := R"™! \ E. Given positive
constants 1 < 1 and K > 1, as in (3.7) and Remark 3.8, let D(E) = G U B, be the
corresponding bilateral Corona decomposition of Lemma 3.1. Then for each T C G,
and for each Q € T, the collection (W(é in (3.7) has an augmentation W*Q cw
satisfying the following properties.
(1) "W% cwW *Q = (WBJr U(M/B_, where (after a suitable rotation of coordinates)

each I € (WE lies above the Lipschitz graph I't of Lemma 3.1, each I €

‘WZ_ lies below I't. Moreover, if Q' is a child of Q, also belonging to T,

then W B+ (resp. "WZ_ ) belongs to the same connected component of Qg as

does (W*QJr (resp. (WZ,_) and (W*QJr N (WZJr # O (resp., (WB,_ N ‘WZ_ #0)

(2) There are uniform constants ¢ and C such that
en'?0Q) < &) < CK'*UQ), VI e W,
(3.10) dist(, Q) < CK'*0(Q), VI e Wy,
en'?6(Q) < dist(I*(1),I'1), Ve W, V7€ (0,7].
Moreover, given T € (0, 19], set
(3.11) Up=Uh,:= | ] int("@),  Ug:=UjuUy,
lewg*
and given T’, a semi-coherent subtree of T, define
(3.12) 0 =Qt(0:= | JUp.
QeT’

Then each of Q%, is a CAD, with Chord-arc constants depending only on n,,n, K,
and the ADR/UR constants for 0€ (see Figure 3.1).
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Ficure 3.1. The domains Q#,.

Remark 3.13. In particular, for each T C G, if Q’ and Q belong to T, and if Q’ is
a dyadic child of Q, then U}, U Ué is Harnack Chain connected, and every pair of

points x,y € U, U U, may be connected by a Harnack Chain in Qg of length at
most C = C(n, 1,1, K, ADR/UR). The same is true for Ué, U Ué.

Remark 3.14. Let 0 < 7 < 19/2. Given any T C G, and any semi-coherent subtree
T’ C T, define QF, = QF,(7) as in (3.12), and similarly set QF, = QF,(27). Then by
construction, for any x € Q=

dist(x, E) ~ dist(x, 0Q%,) ,

where of course the implicit constants depend on 7.

As in [HMM], it will be useful for us to extend the definition of the Whitney
region Uy to the case that Q € B, the “bad” collection of Lemma 3.1. Let ’W*Q be

the augmentation of ‘W OQ as constructed in Lemma 3.9, and set
W, 0€G,

(3.15) Wy = 0
;%% 0 QeB

For Q € G we shall henceforth simply write (Wié in place of ‘ng. For arbitrary
0 € D(E), good or bad, we may then define

(3.16) Ug=Ugr:= | ) int(I@).
IEWQ
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Let us note that for Q € G, the latter definition agrees with that in (3.11). Note that
by construction

(3.17) Up C iy € Qg : dist(y, E) > cn'*0(Q)} N B(xgp, CK'2£(Q)),

for some uniform constants C > 1 and 0 < ¢ < 1 (see (3.4), (3.7), and (3.10)). In
particular, for every Q € D if follows that

(3.18) U Ug C B(xg,K{(Q)) =: B}y.
0'eD(Q)
where we recall that D(Q) is defined in (2.26).

For future reference, we introduce dyadic sawtooth regions as follows. Given a
family F of disjoint cubes {Q;} C D, we define the global discretized sawtooth
relative to F by

(3.19) Dr =D\ ] D©y,

QjeF
i.e., Dy is the collection of all Q € D that are not contained in any Q; € ¥. We may
allow # to be empty, in which case Dy = D. Given some fixed cube Q, we also
define the local discretized sawtooth relative to ¥ by

(3.20) DHQ) =D\ | ] D©Q) =Dr nD(Q).
QjeF

Note that with this convention, D(Q) = Dg(Q) (i.e., if one takes ¥ = @ in (3.20)).

4. STEP 1: THE SET-UP

In the proof of Theorem 1.5, we shall employ a two-parameter induction argu-
ment, which is a refinement of the method of “extrapolation” of Carleson measures.
The latter is a bootstrapping scheme for lifting the Carleson measure constant, de-
veloped by J. L. Lewis [LM], and based on the corona construction of Carleson
[Car] and Carleson and Garnett [CG] (see also [HLw], [AHLT], [AHMTT], [HM1],
[HM2],[HMM]).

4.1. Reduction to a dyadic setting. To set the stage for the induction procedure, let
us begin by making a preliminary reduction. It will be convenient to work with a cer-
tain dyadic version of Definition 2.14. To this end, let x € Q, with do(x) < diam(0Q),
and set A, = AY = B(x, N6q(x)) N 0Q, for some fixed N > 2 as in Definition 2.11.
Let x € 0Q be a touching point for x, i.e., |[x — X| = do(x). Choose x; on the line
segment joining x to &, with dq(x1) = da(x)/2, and set Ay, = B(x1, Noq(x)/2) N OQ.
Note that B(x;, Nog(x)/2) C B(x, N6g(x)), and furthermore,

dist (B(x1 , N6a(x)/2), 0B(x, Nég(x)) > Sa(x) > %59(;0.

We may therefore cover A,, by a disjoint collection {Q,-}l’.‘;’ | € D(0Q), of equal length
(Qi) = 0q(x), such that each Q; C A, and such that the implicit constants depend
only on n and ADR, and thus the cardinality M of the collection depends on n, ADR,
and N. With E = 0Q, we make the Whitney decomposition of the set Qz = R\ E
as in Section 3 (thus, Q C Qg). Moreover, for sufficiently small r and sufficiently
large K in (3.7), we then have that x € Uy, foreachi = 1,2,..., M. By hypothesis,
there are constants 8y € (0, 1], 19 € (0, 1), and N > 2 as above, such that every z € Q
is a (6p, Ap, N)-weak local John point (Definition 2.11). In particular, this is true for
x1, hence there is a Borel set F' C A, with o(F) > 6yo(A,,), such that every y € F
may be connected to xj via a Ap-carrot path. By n-ADR, o(Ay,) = Zf;’ 1 0(Q;) and
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thus by pigeon-holing, there is at least one Q; =: Q such that o(F N Q) > 6,0(Q),
with 6; depending only on 6y, n and ADR. Moreover, the Ag-carrot path connecting
each y € F to x; may be extended to a A;-carrot path connecting y to x, where 4;
depends only on Ag.

We have thus reduced matters to the following dyadic scenario: let Q € D(0Q),
let Ug = Ugp: be the associated Whitney region as in (3.16), with 7 < 79/2 fixed,
and suppose that Uy meets Q (recall that by construction Ug C Qf = R™ 1\ E, with
E = 0Q). For x € Ug N Q, and for a constant 4 € (0, 1), let

(41) Fcar(x’ Q) = Fcar(xa Qa /1)

denote the set of y € O which may be joined to x by a A-carrot path y(y, x), and for
6 € (0, 1], set

4.2) To=Tgo0,2):={xcUpgnNQ: c(Feur(x,0, ) > 00(Q)}.

Remark 4.3. Our goal is to prove that, given 4 € (0,1) and 6 € (0, 1], there are
positive constants 17 and C, depending on 6, 4, and the allowable parameters, such
that for each Q € D(0Q), and for each x € Ty(0, 1), there is a Chord-arc domain
Q,, with uniformly controlled Chord-arc constants, constructed as a union UkI]’: of
fattened Whitney boxes I, such that

Uy € Q. € QN B(x, Coa(x)),
where U ’Q is the particular connected component of Uy containing x, and

4.4) o(0Q, N Q) > no(Q).

For some Q € D(0LQ), it may be that Ty is empty. On the other hand, by the
preceding discussion, each x € Q belongs to T¢(61, ;) for suitable Q,6; and A,
so that (4.4) (with § = 61, A = A1) implies

o0, NAy) > mo(Ay),

with n; = n, where Q is the particular Q; selected in the previous paragraph. More-
over, since x € Tg C Ugp, we can modify Q, if necessary, by adjoining to it one or
more fattened Whitney boxes I* with £(I) ~ £(Q), to ensure that for the modified Q,,
it holds in addition that dist(x, 0Q,) = €(Q) = da(x), and therefore Q, verifies all the
conditions in Definition 2.14.

The rest of this section is therefore devoted to proving that there exists, for a
given Q and for each x € Tp(6, 1), a Chord-arc domain Q, satisfying the stated
properties (when the set Tp(6, ) is not vacuous). To this end, we let 1 € (0, 1) (by
Remark 4.3, any fixed A < A; will suffice). We also fix positive numbers K > 174,
andn < K ~4/3 « 24, and for these values of n and K, we make the bilateral Corona
decomposition of Lemma 3.1, so that D(0Q) = GUB. We also construct the Whitney
collections (W% in (3.7), and W*Q of Lemma 3.9 for this same choice of 7 and K.

Given a cube Q € D(0Q), we set

4.5) D(Q):={Q cQ: UQ)/4<UQ) < U} .

Thus, D.(Q) consists of the cube Q itself, along with its dyadic children and grand-
children. Let

M:={0(Mhcg
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denote the collection of cubes which are the maximal elements of the trees T in G.
We define

“6) o = {O'(Q), if (MUB)ND.0) + 0,

0, otherwise.

Given any collection 9’ c D(9€), we set

4.7 m’) := Z .

Qe

Then m is a discrete Carleson measure, i.e., recalling that D(R) is the discrete Car-
leson region relative to R defined in (2.26), we claim that there is a uniform constant
C such that

4.8) m(D(R)) = Z ap < Co(R), VR € D(0Q).
QOCR

Indeed, note that for any Q" € D, there are at most 3 cubes Q such that Q" € D.(Q)
(namely, Q' itself, its dyadic parent, and its dyadic grandparent), and that by n-ADR,
a(Q) = o(Q), if Q" € D.(Q). Thus, given any R € D(0Q),

mOR) = Y ag < Y PIL()

OCR 0’ eMUB QCR: Q'€D.(Q)

s D, @) < Co®,
Q'e MUB: Q'CR

by Lemma 3.1 part (2). Here, and throughout the remainder of this section, a generic
constant C, and implicit constants, are allowed to depend upon the choice of the
parameters 7 and K that we have fixed, along with the usual allowable parameters.

With (4.8) in hand, we therefore have

moQ) _

4.9 My = <
(49) 0 oen@) 0(Q)

C <o

4.2. Induction Hypothesis and Outline of Proof. As mentioned above, our proof
will be based on a two parameter induction scheme. Given A € (0, 4] fixed as above,
we recall that the set F,-(x, Q, 1) is defined in (4.1). The induction hypothesis,
which we formulate for any a > 0, and any 6 € (0, 1] is as follows:



18 J. AZZAM, S. HOFMANN, J.M. MARTELL, M. MOURGOGLOU, AND X. TOLSA

There is a positive constant ¢, = cq(0) < 1 such that for any
given Q € D(0Q), if

(4.10) m(D(Q)) < ao(Q),

and if there is a subset Vo C Ug N Q for which

(4.11) ‘T[U Fear(x, 0, A)] > 00(0Q),

xEVQ
Hla,01|| then there is a subset Va C Vg, such that for each connected
component UiQ of Ug which meets V7, there is a Chord-arc

domain Q. which is the interior of the union of a collection
of fattened Whitney cubes I*, and whose Chord-arc constants
depend only on dimension, A, a, 8, and the ADR constants for
Q. Moreover, UiQ c QiQ C By N Q = Blxg, K(Q) N Q, and
i U((?QiQ N Q) = c,0(Q), where the sum runs over those i such
that U ’Q meets V*Q.

Let us briefly sketch the strategy of the proof. We first fix § = 1, and by induction
on a, establish H[My, 1]. We then show that there is a fixed { € (0, 1) such that
H[M, 0] implies H[ My, £6], for every 6 € (0, 1]. Iterating, we then obtain H[M,, 6]
for any 6; € (0,1]. Now, by (4.9), we have (4.10) with a = My, for every Q €
D(0L). Thus, H[My, 6;] may be applied in every cube Q such that To(01, 1) (see
(4.2)) is non-empty, with Vo = {x}, for any x € To(f;,4). For 4 < Ay, and an
appropriate choice of 6, by Remark 4.3, we obtain the existence of a Chord-arc
domain Q, verifying the conditions of Definition 2.14, and thus that Theorem 1.5
holds, as desired.

5. SOME GEOMETRIC OBSERVATIONS

We begin with some preliminary observations. In what follows we have fixed
A € (0,4;] and two positive numbers K > A4, and n < K3 <« 2%, for which
the bilateral Corona decomposition of D(A2) in Lemma 3.1 is applied. We now fix
ko € N, kg > 4, such that

(5.1) 2k < T o pkorl

- K
Lemma 5.2. Let Q € D(0Q), and suppose that Q' c Q, with £(Q") < 275¢(Q).

Suppose that there are points x € Ug N Q and 'y € Q’, that are connected by a
A-carrot path 'y = y(y, x) in Q. Then y meets Ug N Q.

Proof. By construction (see (3.7), Lemma 3.9, (3.15) and (3.16)), x € Ug implies
that

n'20(Q) < sa(x) < K'*H(Q).
Since 27% « 7, and £(Q’") < 27%¢£(Q), we then have that x € Q \ B(y, 2((Q")), so
v(y, x) meets B(y,2¢6(Q")) \ B(y,€(Q’)), say at a point z. Since y(y, x) is a A-carrot
path, and since we have previously specified that n < 1%,
Sa(2) 2 A(y(y,2)) 2 Ay -2 = Q") > n'*U(Q).
On the other hand

Sa(z) < dist(z, Q') < |z — y| < 26(Q") < K'2¢(Q).
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In particular then, the Whitney box I containing z must belong to ‘W, (see (3.7)),
so z € Uy . Note that z € Q since y C Q. O

We shall also require the following. We recall that by Lemma 3.9, for Qe T Cc G,
the Whitney region U has the splitting Uy = Ué U Uy, with Ué (resp. Uy,) lying
above (resp., below) the Lipschitz graph I't of Lemma 3.1.

Lemma 5.3. Let Q' C Q, and suppose that Q' and Q both belong to G, and moreover
that both Q" and Q belong to the same tree T C G. Suppose that y € Q' and
x € Ug N Q are connected via a A-carrot path y(y, x) in Q, and assume that there is
a point 7 € Y(y,x) N Ug N Q (by Lemma 5.2 we know that such a z exists provided
0Q) < 27%0(Q)). Then x € Ué if and only if z € U}, (thus, x € Uy, if and only if

ZE Ué,).

Proof. We suppose for the sake of contradiction that, e.g., x € U é and that z € U o
Thus, in traveling from y to z and then to x along the path y(y, x), one must cross
the Lipschitz graph I't at least once between z and x. Let y; be the first point on
v(y, x) N I't that one encounters after z, when traveling toward x. By Lemma 3.9,

K'20(0) 2 6o(x) 2 A(y(y, x)) > K4 (y(y, %)),

where we recall that we have fixed K > A7*. Consequently, £(y(y, x)) < K3/*£(Q),
so in particular, y(y, x) C B*Q := B(xg, K{(Q)), as in Lemma 3.1. On the other hand,
y1 ¢ B},,. Indeed, y; € I't, so if y; € B},,, then by (3.2), 5a(y1) < nf(Q’). However,

Sa() = Ay, y1) 2 A(y(,2) 2 Ay - 2 = Adist(z, Q) 2 4n'*0(Q),
where in the last step we have used Lemma 3.9. This contradicts our choice of
n < A%

We now form a chain of consecutive dyadic cubes {P;} C D(Q), connecting Q’ to
O, ie.,
Q =Py<Pi<Py<---<aPy<Pys1 =0,
where the introduced notation P; <t P;;y; means that P; is the dyadic child of Pj;1,
thatis, P; C Pi11 and €(Piy1) = 20(P;). Let P := Py, 1 < iy < M + 1, be the smallest
of the cubes P; such that y; € B’;l_. Setting P’ := P;,—, we then have that y; € B},
and y; ¢ B3, . By the coherency of T, it follows that P € T, so by (3.2),

54 da(y1) < nt(P).
On the other hand,

dist(y1, P') = K{(P') ~ K{(P),
and therefore, since y € Q' C P/,

(5.5) Sa(y1) = AU(y(y,y1) 2 Ay = yil = Adist(yr, P') 2 AKU(P).
Combining (5.4) and (5.5), we see that 4 < n/K, which contradicts that we have
fixedn < A%, and K > 174, O

Lemma 5.6. Fix A € (0, 1). Given Q € D(0Q2) and a non-empty set Vo C Ug N Q,
such that each x € Vg may be connected by a A-carrot path to somey € Q, set

(5.7) Fo:= | ) Fear(x, 0.0,
XEVQ

where we recall that F.q(x, Q, A) is the set of y € Q that are connected via a A-carrot
path to x (see (4.1)). Let Q' C Q be such that £(Q’) < 27%£(Q) and FonQ #@.
Then, there exists a non-empty set Voo C Ug N Q such that if we define Fy as in
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(5.7) with Q' replacing Q, then Fo N Q" C Fg. Moreover, for everyy € Vo, there
exist x € Vo, y € Q' (indeed 'y € Fo N Q') and a A-carrot path 'y = y(y, x) such that
yevy.

Proof. Foreveryy € Fp N Q’, by definition of Fy, there exist x € V and a A-carrot
path y = y(y, x). By Lemma 5.2, there is a point y* = y’(y) € y N Uy N Q (there can
be more than one y’, but we just pick one). Note that the sub-path y(y,y") C y(y, x)
is also a A-carrot path, for the same constant A. All the conclusions in the lemma
follow easily from the construction by letting Vo = Uyeryngr Y (). m|

Remark 5.8. It follows easily from the previous proof that under the same assump-
tions, if one further assumes that £(Q’) < 2750 £(Q), we can then repeat the argument
with both Q" and (Q’)* (the dyadic parent of Q') to obtain respectively Vo and
V(o). Moreover, this can be done in such a way that every pointin Vo (resp. V(o))
belongs to a A-carrot path which also meets V() (resp. V), connecting Ug and

Q.

Given a family F := {Q;} C D(9Q) of pairwise disjoint cubes, we recall that the
“discrete sawtooth” D¢ is the collection of all cubes in D(9Q) that are not contained
inany Q; € ¥ (see (3.19)), and we define the restriction of m (cf. (4.6), (4.7)) to the
sawtooth D¢ by

(5.9) me(D') = m(D' N Dy) = > .
0eD\(Ug;er D(Q)))
We then set
Il = sup @)
@ oo o@)

Let us note that we may allow ¥ to be empty, in which case Dy = D and mg is
simply m. We note that the following claim, and others in the sequel, remain true
when ¥ is empty; sometimes trivially so, and sometimes with some straightforward
changes that are left to the interested reader.

Claim 5.10. Given Q € D(0Q), and a family ¥ = Fp = {Q;} € D(Q) \ {Q} of
pairwise disjoint sub-cubes of Q, if Im#llco) < 1/2, then each Q' € D¢ N D(Q),
each Q; € ¥, and every dyadic child Q;. ofany Q; € F, belong to the good collection
G, and moreover, every such cube belongs to the same tree T C G. In particular,
T := Dy N D(Q) is a semi-coherent subtree of T, and so is T := (DFr UF UF )N
D(Q), where F' denotes the collection of all dyadic children of cubes in F.

Indeed, if any Q" € Dy N D(Q) were in M U B (recall that M := {Q(T)}1cg is
the collection of cubes which are the maximal elements of the trees T in G), then by
construction agp = o-(Q’) for that cube (see (4.6)), so by definition of m and mg, we
would have

1

@) mr @) o L

o(Q) o(Q') 2
a contradiction. Similarly, if some Q; € ¥ (respectively, Q;. € F’) were in MU B,
then its dyadic parent (respectively, dyadic grandparent) Q;‘. would belong to D N
D(Q), and by definition ag, = O'(Q;‘.), so again we reach a contradiction. Conse-
quently, 7 U 7" U (Dgy N D(Q)) does not meet M U B, and the claim follows.
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6. CONSTRUCTION OF CHORD-ARC SUBDOMAINS

For future reference, we now prove the following. Recall that for Q € G, Uy has
precisely two connected components U 3 in R™1\ 9Q.

Lemma 6.1. Let Q € D(OQ), let ky be such that 2K > 2% > 100K, see (5.1), and
suppose that there is a family F = Fp = {Q;} € D(Q) \ {O} of pairwise disjoint
sub-cubes of Q, with ||[mgllcg) < 1/2 (hence by Claim 5.10, there is some T C G
with T 2 (DgF UF U F') N D(Q)), and a non-empty subcollection F* C F, such
that:

i) €Q)) < 27k16(Q), for each cube Qj eFr;

(i) the collection of balls {KB = B(xg,,kKl(Q))) : Q; € F*}is pairwise

disjoint, where k > K* is a suﬁiczently large positive constant; and

(iii) F* has a disjoint decomposition ¥* = ¥ U F*, where for each Q; € F;,
there is a Chord-arc subdomain Qi C Q, consisting of a union of fattened

Whitney cubes I, with U C Q*, C B* = B(xg;, K{(Q))), and with
uniform control of the Chord-arc constants

Define a semi-coherent subtree T* C T by
= {Q' € D(Q): Qjc Q forsome Qj € 7:*} ,

and for each choice of + for which ¥ is non-empty, set

U 2,

Qj€7:1*

(6.2) Qf = 0% |

Then for « large enough, depending only on allowable parameters, Qié is a Chord-
arc domain, with chord arc constants depending only on the uniformly controlled
Chord-arc constants of QE/ and on the other allowable parameters. Moreover, Qié C

B*Q NQ = B(xg, K{(Q)) N Q, and Qié is a union of fattened Whitney cubes.

Remark 6.3. Note that we define Qié if and only if F. is non-empty. It may be that
one of 7, ¥ is empty, but ¥, and ¥* cannot both be empty, since F* is non-empty
by assumption.

Proof of Lemma 6.1. Without loss of generality we may assume that Qg + is not
contained in Q% for all Q; € ¥ (otherwise we can drop those cubes from ).
On the other hand, we notice that Qié is a union of (open) fattened Whitney cubes
(assuming that it is non-empty): each in has this property by assumption, as does
Qf. by construction. '

We next observe that if QJé (resp. Qé) is non-empty, then it is contained in Q.
Indeed, by construction, Q+ is non-empty if and only if # is non-empty. In turn,
¥ is non-empty if and only if there is some Q; € ¥ such that Uy P Q* < Q,
and moreover, the latter is true for every Q; € ¥/, by definition. But each such 0;
belongs to T*, hence U 5. C Q7. again by construction (see (3.12)). Thus, Q7, meets
Q, and since Q. C R”“ \ 0Q, therefore Q7. ¢ Q. Combining these observations,
we see that Qé c Q. Of course, the same reasoning applies to Qé, provided it is
non-empty.

In addition, since T* c T, and since K > K'/2, by Lemma 3.9 we have Q$* C
B*Q = B(xg, K{(Q)). Furthermore, QZ/_ - B*Qj := B(xg;, Kt(Q))), and since £(Q;) <
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27k1£(Q) < (100K)~16(Q), we obtain
dist(Qi Q)+ diam(QZj) <3K6(Q)) < 3K27M0(0) < €(Q).
Thus, in particular, Q— C B* and therefore also Qié C B*Q.

It therefore remains to establish the Chord-arc properties. It is straightforward to
prove the interior corkscrew condition and the upper n-ADR bound, and we omit the
details. Thus, we must verify the Harnack Chain condition, the lower n-ADR bound,
and the exterior corkscrew condition.

6.1. Harnack Chains. Suppose, without loss of generality, that QE is non-empty,
and let x,y € Q*, with [x — y| = r. If x and y both lie in Q,, or in the same QE,"

then we can connect x and y by a suitable Harnack path, since each of these domains
is Chord-arc. Thus, we may suppose either that 1) x € Q7. and y lies in some Q, ,
J

or that 2) x and y lie in two distinct Qa and Qa . We may reduce the latter case
J1 2

to the former case: by the separation property (ii) in Lemma 6.1, we must have
rz Kmax(diam(STr ) diam(€;, )) so given case 1), we can connect x € Q, t0
J1

the center z; of some I* c Uy, pA and y € Q+ to the center z, of some I, C U
where 01, 0> € T*, with Q;, C 0; c 0, and f(Q) ~ r, i = 1,2. Finally, we can
connect z; and zp using that !Yr is Chord-arc.

Hence, we need only construct a suitable Harnack Chain in Case 1). We note that
by assumption and construction, U é/_ cQLN QJéj.

Suppose first that

(6.4) lx =yl =r<cQ),
where ¢’ < 1 is a sufficiently small positive constant to be chosen. Since y € Q+ C
B* we then have that x € ZB* so by the construction of Q¥, and the separatlon

property (i1), it follows that 6Q(x) > cl(Q;), where c is a uniform constant depending
only on the allowable parameters (in particular, this fact is true for all x € Q7. OZB* 0,

so it does not depend on the choice of ¢’ < 1). Now choosing ¢’ < ¢/2 (eventually,
it may be even smaller), we find that 5q(y) > (¢/2)¢(Q;). Moreover, y € Q+ C B*

implies that 6o(y) < K€(Q;). Also, since x € ZB* we have that dg(x) < 2K€(QJ)
Since Q+ and Q7. are each the interior of a un10n of fattened Whitney cubes, it
follows that there are Whitney cubes [ and J, with x € I*, y € J*, and

o) = 6J) =~ 6Q)),

where the implicit constants depend on K. For ¢’ small enough in (6.4), depending
on the implicit constants in the last display, and on the parameter 7 in (3.5), this can
happen only if I* and J* overlap (recall that we have fixed 7 small enough that /* and
J* overlap if and only if I and J have a boundary point in common), in which case
we may trivially connect x and y by a suitable Harnack Chain.

On the other hand, suppose that

lx =yl =r>cQ)).
Letz € U*_ cC QLN Q+ , with dist(z, (9!2*) {(Q;) (we may find such a z, since
U *t isa un10n of fattened Whitney cubes, all of length £(I") =~ £(Q)); just take z to

be the center of such an /*). We may then construct an appropriate Harnack Chain
from y to x by connecting y to z via a Harnack Chain in the Chord-arc domain Q*j,

and z to x via a Harnack Chain in the Chord-arc domain Q%.
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6.2. Lower n-ADR and exterior corkscrews. We will establish these two prop-
erties essentially simultaneously. Again suppose that, e.g., QE is non-empty. Let
X € (')QJé, and consider B(x, r), with r < diam QE ~k €(Q). Our main goal at this
stage is to prove the following:

(6.5) |BCx, N\ Qp| = er,

with ¢ a uniform positive constant depending only upon allowable parameters (in-
cluding «). Indeed, momentarily taking this estimate for granted, we may combine
(6.5) with the interior corkscrew condition to deduce the lower n-ADR bound via the
relative isoperimetric inequality [EG, p. 190]. In turn, with both the lower and upper
n-ADR bounds in hand, (6.5) implies the existence of exterior corkscrews (see, e.g.,
[HM2, Lemma 5.7]).

Thus, it is enough to prove (6.5). We consider the following cases.

Case 1: B(x,r/2) does not meet 6Q+ for any Q; € F;. In this case, the exterior
corkscrew for Q+ associated with B(x r/2) easily implies (6.5).

Case 2: B(x,r/2) meets 6951_ for at least one Q; € ¥, and r < Kl/zf(Qjo), where
Qj, is chosen to have the largest length £(Q ,) among those Q; such that 895}, meets
B(x,r/2). We now further split the present case into subcases.

Subcase 2a: B(x, r/2) meets 8QJéj0 at a point z with 5q(z) < (M«k'/?)"1€(Q},), where
M is a large number to be chosen. Then B(z, (M«'/*)~'r) c B(x,r), for M large
enough. In addition, we claim that B(z, (Mk'/?)~'r) misses QF. U ((Ujxj, Q;rzj).
The fact that B(z, (M«'/?)~'r) misses every other Qé/_, Jj # jo, follows immediately

from the restriction r < «'/2£(Q j»)» and the separation property (ii). To see that
B(z, (M«'/%)~1r) misses QF,, note that if |z — y| < (M«k'/?)~!r, then

8a(y) < da(@) + (M) ™'r < (M)~ + M7") £6(Q))) < €(Qj,).
for M large. On the other hand,

S 2 Q). YyeQf NBE«kUQ)),
by the construction of Q7. and the separation property (ii). Thus, the claim follows,

for a sufficiently large (fixed) choice of M. Since B(z, (M«'?)~1r) misses Q}Z and
all other Qaj, we inherit an exterior corkscrew point in the present case (depending

on M and k) from the Chord-arc domain Qaj_ . Again (6.5) follows.
0

Subcase 2b: da(z) > (MKI/Z)‘IK(QJ-O), for every z € B(x,r/2) N 6(25/0 (hence
0a(2) =k €(Qj,), since Qéjo - B*Qjo). We claim that consequently, x € 9I*, for
some I with £(I) = £(Qj,) 2 r, such that intI* C Qa To see this, observe that
it is clear if x € 695}_0 (just take z = x). Otherwise, by the separation property

(ii), the remaining possibility in the present scenario is that x € U, N 9Qx., for

some Q' € T* with Q;; c @', in which case do(x) ~ £(Q") > £(Qj,). Since also

00(x) < |x =zl +00(2) Skk €(Qj,), for any z € B(x,r/2) N 89+/_ , the claim follows.
0

On the other hand, since x € 695, there is a J € ‘W with £(J) = £(Q},), such that
J* is not contained in Qa We then have an exterior corkscrew point in J* N B(x, r),
and (6.5) follows in this case.

Case 3: B(x,r/2) meets (’)Q+ for at least one Q; € ¥, and r > Kl/zt’(Qjo) where
as above Qj, has the largest length £(Qj,) among those Q; such that (')Q+j meets
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B(x,r/2). In particular then, r > 2K{(Q;)) = diam(B’éj ) > diam(QJéj ), since we
0 0
assume k > K*.

We next claim that B(x, r/4) contains some x; € 0QF, N 695. This is clear if
x € 0Q7. by taking x; = x. Otherwise, x € 0Q;, for some Q; € . Note that
Up, © Blxg,. K(Q)) < B(x,2K((Q))). Also, U & c Qi
other hand we note that if z € U = we have by (3. 17)

|z - xo, = 6a(z) 2 n'*0(Q) = n'*2M€(Q)) > K(Q;)
by our choice of k. By this fact, and the definition of Q7+, we have
Ué C Q}—'* \ B(x,3K{(Q))) .

Using then that Qf. is connected, we see that a path within Qf. joining Uéj with
Ué must meet dB(x,3K€(Q;)). Hence we can find y* € Qf. N dB(x,3K{(Q))).
By Lemma 3.9, Q7. and Q7. are disjoint (they live respectively above and below the
graph I't), so a path joining y* and y~ within dB(x, 3K£(Q j)) meets some x1 € 0Q7, N
0B(x,3Kt(Q;)). On the other hand, x| ¢ Q+ , since Q*j C B* ~C B(x,3K{((Q))).
Furthermore, x; € dB(x,3K{(Q;)) C KB*j, so by assumption (11) we necessarily

by construction. On the

have that x; ¢ Q_ak for k # j. Thus, x| € 695, and moreover, since B(x, r/2) meets
895,- (at x) we have £(Q;) < €(Qj,). Therefore, x; is the claimed point, since in the
current case 3K{(Q;) < 3K{(Q;) < r.

With the point x; in hand, we note that
(6.6) B(xy,r/4) c B(x,r/2) and B(xi,r/2) C B(x,r).
By the exterior corkscrew condition for QF,,
(6.7) |BCer, r/H\ QL | > o™,

for some constant ¢; depending only on n and the ADR/UR constants for 9€2, by
Lemma 3.9. Also, for each QE}_ whose boundary meets B(xy, r/4) \ Q; (and thus
meets B(x, r/2)),

. . . « 2Kr
(6.8) KM diam(By)) < k4 diam(By, ) < 2Kk'4(Q;,) < <
in the present scenario. Consequently, !/ 4B*Qj C B(xy,r/2), for all such Q;.

We now make the following claim.

Claim 6.9. On has
(6.10) |BGe, r/2)\ QY| = o™,

for some cy > 0 depending only on allowable parameters.

Observe that by the second containment in (6.6), we obtain (6.5) as an immediate
consequence of (6.10), and thus the proof will be complete once we have established
Claim 6.9.

Proof of Claim 6.9. To prove the claim, we suppose first that

6.11) Z < C—lr”+1,

where the sum runs over those j such that B* “meets B(xy,r/4) \ Q+ ., and ¢y is the
constant in (6.7). In that case, (6.10) holds Wlth ¢>» = c1/2 (and even with B(xy, r/4)),

*
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by definition of QE (see (6.2)), and the fact that Qg, C B*Qj. On the other hand, if
(6.11) fails, then summing over the same subset of indices j, we have

(6.12) CK Y Q)=

We now make a second claim:

* + Cl n+l

Claim 6.13. For j appearing in the previous sum, we have
(6.14) | (B, \ By )\ Q. | = c oy,

for some uniform ¢ > 0.

Taking the latter claim for granted momentarily, we insert estimate (6.14) into
(6.12) and sum, to obtain

(6.15) DK By, \ By )\ QF | 2

By the separation property (ii), the balls !/ 4B*Qj are pairwise disjoint, and by as-

; + * : . 1/4 p= nF O+ _
sumption QQ/ - BQ,—' Thus, for any given ji, « Ble \ Ble misses UJQQ,. More

J
over, as noted above (see (6.8) and the ensuing comment), K1/4B*Q]_ C B(xy,r/2) for

each j under consideration in (6.11)-(6.15). Claim 6.9 now follows. |

Proof of Claim 6.13. There are two cases: if $x!/ 4B*Qj C R™!'\ QF,, then (6.14) is

trivial, since x > 1. Otherwise, %K1/4B*Qv contains a point z € dQ%,. In the latter
J
case, by the exterior corkscrew condition for QF,,

Bz, 27 KU\ G| 2 kKA > 1B,

since k > 1. On the other hand, B(z, 2" '«'/*K€(Q))) c K1/4B*Qi, and (6.14) follows,
finishing the proof of Claim 6.13. ' m|

Next, (6.6) and (6.10) yield (6.5) in the present case and hence the proof of Lemma
6.1 is complete. O

7. StEP 2: PrROOF OF H[ M, 1]

We shall deduce H[ My, 1] (see Section 4.2) from the following pair of claims.
Claim 7.1. H|O0, 8] holds for every 6 € (0, 1].
Proof of Claim 7.1. If a = 0 in (4.10), then ||m||¢g) = 0, whence it follows by Claim
5.10, with ¥ = @, that there is a tree T C G, with D(Q) c T. Hence T’ := D(Q)

is a coherent subtree of T, so by Lemma 3.9, each of Q%, is a CAD, containing U é,
respectively, with QF, C B*Q by (3.18). Moreover, by [HMM, Proposition A.14]

Q C 0Q7, NOQ,
so that o(Q) < o(0Q%, N Q). Thus, H[0, 6] holds trivially. |

Claim 7.2. There is a uniform constant b > 0 such that Hla,1] — Hla + b, 1],
for all a € [0, My).

Combining Claims 7.1 and 7.2, we find that H[ My, 1] holds.

To prove Claim 7.2, we shall require the following.



26 J. AZZAM, S. HOFMANN, J.M. MARTELL, M. MOURGOGLOU, AND X. TOLSA

Lemma 7.3 ([HM2, Lemma 7.2]). Suppose that E is an n-ADR set, and let m be a
discrete Carleson measure, as in (4.7)-(4.9) above. Fix Q € D(E). Let a > 0 and
b > 0, and suppose that m(D(Q)) < (a+ b) 0(Q). Then there is a family F = {Q;} C
D(Q) of pairwise disjoint cubes, and a constant C depending only on n and the ADR
constant such that

(7.4) Im#llc) < Cb,
b
75) (o)< 25 00,
ﬂad

where Fpaa :=1{Qj € F : m(D(Q) \{Q}}) > aoc(Q))}.

We refer the reader to [HM?2, Lemma 7.2] for the proof. We remark that the lemma
is stated in [HM2] in the case that E is the boundary of a connected domain, but the
proof actually requires only that E have a dyadic cube structure, and that o be a non-
negative, dyadically doubling Borel measure on E. In our case, we shall of course
apply the lemma with E = 9Q, where Q is open, but not necessarily connected.

Proof of Claim 7.2. We assume that H[a, 1] holds, for some a € [0, Mj). Let us set
b = 1/(2C), where C is the constant in (7.4). Consider a cube Q € D(0Q) with
m(D(Q)) < (a+ b)a(Q). Suppose that there is a set Vo C Ugp N Q such that (4.11)
holds with 8 = 1. We fix k| > kg (see (5.1)) large enough so that 2k > 100K.

Case 1: There exists Q" € Dy, (Q) (see (2.27)) with m(D(Q")) < ac(Q’).

In the present scenario 6 = 1, that is, o(Fg) = 0(Q) (see (4.11) and (5.7)), which
implies o(Fp N Q") = o(Q"). We apply Lemma 5.6 to obtain Vor C Ugr N Q and the
corresponding F o which satisfies o(Fg/) = 07(Q’). That s, (4.11) holds for Q’, with
6 = 1. Consequently, we may apply the induction hypothesis to Q’, to find V}, C
V¢, such that for each U!, meeting V7, there is a Chord-arc domain QiQ, D UiQ,
formed by a union of fattened Whitney cubes with Qi , C B(x’Q, K6(Q))NQ, and

(7.6) Z T(0QL, N Q') > cao(Q)).
iU iQ, meets V;,
By Lemma 5.6, and since k; > kg, each y € VE, lies on a A-carrot path connecting

some y € Q' to some x € Vp; let Vg denote the set of all such x, and let UE"
(respectively, U*Q,) denote the collection of connected components of Uy (resp., of
Ug) which meet Va* (resp., V7,). By construction, each component U‘Q, € UZ,
may be joined to some corresponding component in U?;, via one of the carrot paths.
After possible renumbering, we designate this component as U, we let x;, y; denote

the points in VZ* nU ’Q and in Va nU iQ,, respectively, that are joined by this carrot
path, and we let y; be the portion of the carrot path joining x; to y; (if there is more
than one such path or component, we just pick one). We also let Va = {x;}; be the
collection of all of the selected points x;. We let ‘W; be the collection of Whitney
cubes meeting y;, and we then define

Qi = 0, Uint( U I)U Ul .
IeW;

By the definition of a A-carrot path, since £(Q") =4, €(Q), and since Qi is a CAD,
one may readily verify that QiQ is also a CAD consisting of a union Ui/}’ of fattened
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Whitney cubes /;;. We omit the details. Moreover, by construction,
0Q,NQ>dQ, N,
so that the analogue of (7.6) holds with Q' replaced by Q, and with ¢, replaced by
Ck,Cq-
It remains to verify that QiQ C B*Q = B(xg, K{(Q)). By the induction hypothesis,
and our choice of ki, since £(Q’) = Z‘klf(Q) we have
Q) C By NQ = Blxg, KHQ))HNQCB,NQ.
Moreover, Uy C By, by (3.18). We therefore need only to consider I* with I € W,.

For such an I, by definition there is a point z; € INy; and y; € Q’, so that z; € y(y;, X;)
and thus,

5a(z) < lzi = yil < €0iyzi) < i, xi) < A '8a(x) < A7 — xpl < AT'CKV20(Q),

where in the last inequality we have used (3.17) and the fact that x; € Ugp. Hence,
for every z € I* by (3.4)

|z = xol < diam(21) + |z; = yil + [yi — xol < Clz; — yil + diam(Q) < K{(Q),
by our choice of the parameters K and A.

We then obtain the conclusion of H[a + b, 1] in the present case.

Case 2: m(D(Q")) > ao(Q’) for every Q" € Dy, (Q).

In this case, we apply Lemma 7.3 to obtain a pairwise disjoint family ¥ = {Q;} C
D(Q) such that (7.4) and (7.5) hold. In particular, by our choice of b = 1/(2C),

(7.7) Imzlle) < 1/2,
so that the conclusions of Claim 5.10 hold.
We set
(1.8) Fo:=0\(Je)).
7’
define
(7.9)  Fgood :=F \ Foaa = {Qj € F : m(D(Q) \{Q)}) < ac(Q))} .
and let
GW:LJQr
7:gaud
Then by (7.5)
(7.10) o(FoUGo) = po(Q),

where p € (0, 1) is defined by
a+b < My+b
a+2b~ My+2b

(7.11) ‘1-pe(0,1).

We claim that
(7.12) 0Q) <27M0Q), VY O; € Froou-

Indeed, were this not true for some Q;, then by definition of ¥,,4 and pigeon-holing
there will be Q;. € D(Q;) with f(Q;.) = 27k ¢(Q) such that m(Z)(Q;.)) < aO'(Q;.).
This contradicts the assumptions of the current case.

Note also that Q & Fgooq by (7.12) and Q ¢ Fpaa by (7.5), hence F € D(Q) \ {Q}.
By (7.7) and Claim 5.10, there is some tree T C Gsothat T” = (DF UF UF') N
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D(Q) is a semi-coherent subtree of T, where ¥’ denotes the collection of all dyadic
children of cubes in F.

Case 2a: o(Fy) > %pO'(Q).

In this case, Q has an ample overlap with the boundary of a Chord-arc domain
with controlled Chord-arc constants. Indeed, let T = D¢ N D(Q) which, by (7.7)
and Claim 5.10, is a semi-coherent subtree of some T C G. Hence, by Lemma 3.9,
each of QF, is a CAD with constants depending on the allowable parameters, formed
by the union of fattened Whitney boxes, which satisfies QF, C B*Q N Q (see (3.11),
(3.12), and (3.18)). Moreover, by [HMM, Proposition A.14] and [HM2, Proposition
6.3] and our current assumptions,

QN3 = o(Fo) = £(Q).

Recall that in establishing H[a + b, 1], we assume that there is a set Vo C Up N Q
for which (4.11) holds with 6 = 1. Pick then x € Vj and set V}, := {x} C V. Note
that since Ug = Uy, U U, it follows that x belongs to either U/, N Q or U;, N Q. For
the sake of specificity assume that x € U é N Q hence, in particular, U (5 cQr cQ.
Note also that U 5 is the only component of Uy meeting V*Q. All these together give
at once that the conclusion of H[a + b, 1] holds in the present case.

Case 2b: o(F) < 5 po(Q).
In this case by (7.10)

(7.13) o(Go) > go(Q)-

In addition, by the definition of Fg0q (7.9), and pigeon-holing, every Q; € Fy40q has
a dyadic child Q; (there could be more children satisfying this, but we just pick one)
so that

(7.14) m(D(Q;-)) < ao-(Q;-).

Under the present assumptions 6 = 1, that is, o(Fp) = o(Q) (see (4.11) and (5.7)),
hence o(Fp N Q;.) = a-(Q’,). We apply Lemma 5.6 (recall (7.12)) to obtain VQ} -
UQ;, N Q and FQ} which satisfies O'(FQ}) = O'(Q;.). That is, (4.11) holds for Q;., with
6 = 1. Consequently, recalling that Q;. e T c G (see Claim 5.10), and applying
the induction hypothesis to Q’, we find V* C VQr such that for each U -, meeting

VQ,, there is a Chord-arc domain QDt D U i formed by a union of fattened Whitney
J

cubes with Qé, c B*Q, N Q. Moreover, smce in particular, the cubes in F along

with all of the1r ch11dren belong to the same tree T (see Claim 5.10), the connected

component U overlaps with the corresponding component U +, for its child, so we

may augment Q by adjoining to it the appropriate component U oo form a chord

arc domain
+* _ + +
(7.15) QQj = QQ} U UQj.
Moreover, since K > 1, and since Q’/. C Qj, we have that B*, C B*Q,, hence QZ?' C
P J J
B*Q/ by construction.

By a covering lemma argument, for a sufficiently large constant x > K*, we may

extract a subcollection Tg od C Tgood so that {KB*QI_}QI.ET”;()M is a pairwise disjoint
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family, and
U Q,c U SKBY .
Qje7:goozl QjET;:md
In particular, by (7.13),
(7.16) D @)z Y T(Q) = (Go) 2 por(Q),
Qj eﬁuod Q_je?_gaod

where the implicit constants depend on ADR, K, and the dilation factor «.
By the induction hypothesis, and by construction (7.15) and n-ADR,

(7.17) o(Q;N0Qg)) 2 0(Q) 2 0(Q)),

where Qg is equal either to szj or to Qéj @if (7.17) holds for both choices, we
arbitrarily set Qg = QEJ,).

Combining (7.17) with (7.16), we obtain

(7.18) Z o(Q; N 8Q,) 2 7 (Q).
0,7,

ood

We now assign each Q; € 7—;"00 ;4 cither to ¥ or to ¥, depending on whether
we chose Qg satisfying (7.17) to be Qaj, or Qéj. We note that at least one of the
sub-collections ¥ is non-empty, since for each j, there was at least one choice of
“+7 or “-” such that (7.17) holds for the corresponding choice of Q¢.. Moreover, the

two collections are disjoint, since we have arbitrarily designated Q'Qj = Qa in the
J
case that there were two choices for a particular Q;.

To proceed, as in Lemma 6.1 we set

T ={0Q' € D(Q): Qj c Q' for some Q; € iy}
which is semi-coherent by construction. For #° non-empty, we now define
(7.19) a5 =0 J( | Q).

Qje‘ﬁj

Observe that by the induction hypothesis, and our construction (see (7.15) and the
ensuing comment), for an appropriate choice of +, Uéj C Qp, C BZ,-’ and since
Q) < 2-k1£(Q), by (7.18) and Lemma 6.1, with F* = T;ood, each (non-empty)
choice of Qié defines a Chord-arc domain with the requisite properties.

Thus, we have proved Claim 7.2 and therefore, as noted above, it follows that
H[ My, 1] holds. O

8. STEP 3: BOOTSTRAPPING 6

In this last step, we shall prove that there is a uniform constant £ € (0, 1) such that
for each 6 € (0,1], H[My,0] = H|[M,,{0]. Since we have already established
H[My, 1], we then conclude that H[ M, 6,] holds for any given 6, € (0, 1]. As noted
above, it then follows that Theorem 1.5 holds, as desired.

In turn, it will be enough to verify the following.

Claim 8.1. There is a uniform constant € (0, 1) such that for every a € [0, M),
6 € (0,11, & € (0,1), and b = 1/(2C) as in Step 2/Proof of Claim 7.2, if H[ My, 0]
holds, then

Hla,(1 - 9)0] = Hla+b,(1 —9B)d].
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Let us momentarily take Claim 8.1 for granted. Recall that by Claim 7.1, H[0, 6]
holds for all 8 € (0, 1]. In particular, given 6 € (0, 1] fixed, for which H[M,, 6] holds,
we have that H[0, 6/2] holds. Combining the latter fact with Claim 8.1, and iterating,
we obtain that H[kb, (1 — 2‘1,8")9] holds. We eventually reach H[ My, (1 — 2‘1/3V)9],
with v ~ My/b. The conclusion of Step 3 now follows, with ¢ := 1 — 2718,

Proof of Claim 8.1. The proof will be a refinement of that of Claim 7.2. We are
given some 6 € (0, 1] such that H[ M, 6] holds, and we assume that H|[a, (1 — #)0]
holds, for some a € [0, My) and & € (0,1). Set b = 1/(2C), where as before C is
the constant in (7.4). Consider a cube Q € D(0Q) with m(D(Q)) < (a + b)o(Q).
Suppose that there is a set Vo € Up N Q such that (4.11) holds with 6 replaced
by (1 — 9B)6, for some S € (0,1) to be determined. Our goal is to show that for
a sufficiently small, but uniform choice of 3, we may deduce the conclusion of the
induction hypothesis, with C,45, cq+p in place of Cy, c,.

By assumption, and recalling the definition of Fy in (5.7), we have that (4.11)
holds with constant (1 — 98)6, i.e.,

(8.2) o(Fg) > (1 -9p)00(Q).

As in the proof of Claim 7.2, we fix k; > ko (see (5.1)) large enough so that
2K > 100K. There are two principal cases. The first is as follows.

Case 1: There exists Q" € Dy, (Q) (see (2.27)) with m(D(Q")) < ac(Q’).

We split Case 1 into two subcases.

Case la: o(FpoN Q') > (1 = 9o (Q).

In this case, we follow the Case 1 argument for 6 = 1 in Section 7 mutatis mu-
tandis, so we merely sketch the proof. By Lemma 5.6, we may construct Vo and
Fo sothat Fp N Q" = Fp and hence o(Fg') > (1 — ¥)80(Q’). We may then apply
the induction hypothesis H[a, (1 —9)6] in Q’, and then proceed exactly as in Case 1
in Section 7 to construct a subset V; C Vp and a family of Chord-arc domains Q’Q
satisfying the various desired properties, and such that

D 09,0 0) = cuo(Q) 2k Cut(Q).
i:UiQ meets V*Q

The conclusion of H[a + b, (1 — ¥8)0] then holds in the present scenario.
Case 1b: o(Fp N Q') < (1 = b (Q").

By (8.2)

(1 -9B)00(Q) < 0(Fg) = c(FoNn Q') + Z a(Fon Q).
07eD;, (QMQ')

In the scenario of Case 1b, this leads to

(1-98)0c(Q)+ (1=9B)0 > o(Q") = (1 -9B)6c(Q)
0"eD; (O\Q')

SU-0c(@)+ Y, oFenQ),
Q€D (D'}
that is,

83) (1-B0c(Q)+(1-9p0 > o@H< > o(FenQ).
Q"D (DO} Q"eDy (OO}
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Note that we have the dyadic doubling estimate
a(Q") < 0(Q) < Mo (Q"),
Q"€ (DO}
where M| = M (ky,n, ADR). Combining this estimate with (8.3), we obtain

o > a@Hs D oFenQ").

9
(1 _ﬁ)ﬁ + (1 -9p)
1 0"eDy (DOMQ'} 0"eD (DO Q'}

We now choose § < 1/(M+1), so that (1-8)/M; > 3, and therefore the expression in
square brackets is at least 1. Consequently, by pigeon-holing, there exists a particular
Qf € Dy, (Q) \ {Q'} such that

(8.4) 00(Q)) < (Fo N Q).

By Lemma 5.6, we can find Vs such that FoNQ( = Fy, where the latter is defined
as in (5.7), with QE)’ in place of Q. By assumption, H[Mj, 6] holds, so combining
(8.4) with the fact that (4.10) holds with a = My for every Q € D(9Q), we find that
there exists a subset V;g C VQg, along with a family of Chord-arc domains {QiQé,}i
enjoying all the appropriate properties relative to Q. Using that £(Q[) =, {(Q),
we may now proceed exactly as in Case 1a above, and also Case 1 in Section 7, to
construct Va and {Q%}; such that the conclusion of H[a + b, (1 — 998)8] holds in the

Q
present case also.

Case 2: m(D(Q")) > ao(Q’) for every Q" € Dy, (Q).

In this case, we apply Lemma 7.3 to obtain a pairwise disjoint family ¥ = {Q;} C
D(Q) such that (7.4) and (7.5) hold. In particular, by our choice of b = 1/(2C),
Im#lle) < 1/2.

Recall that Fg is defined in (5.7), and satisfies (8.2). We define Fo = Q\ (U# Q))
as in (7.8), and Fgooq := F \ Fpaa as in (7.9). Let Gy := Ug_-gwd Q;. Then as above
(see (7.10)),

(8.5) o(Fo U Go) =2 po(Q),

where again p = p(My, b) € (0, 1) is defined as in (7.11). Just as in Case 2 for 6 = 1
in Section 7, we have that

(8.6) €Q) <27MUQ), Y Q)€ Fyooar and ¥ c D)\ {0}
(see (7.12)). Hence, the conclusions of Claim 5.10 hold.

We first observe that if o(Fg) > €0(Q), for some & > 0 to be chosen (depending
on allowable parameters), then the desired conclusion holds. Indeed, in this case,
we may proceed exactly as in the analogous scenario in Case 2a in Section 7: the
promised Chord-arc domain is again simply one of Q%,, since at least one of these
contains a point in Vy and hence in particular is a subdomain of Q. The constant
cq+p 1n our conclusion will depend on &, but in the end this will be harmless, since £
will be chosen to depend only on allowable parameters.

We may therefore suppose that
(8.7) o(Fp) < e0(Q).

Next, we refine the decomposition F = Fgpoq U Fraq. With p as in (7.11) and (8.5),
we choose 8 < p/4. Set

\7:(1) — {Qj c 7—;700[1 : O'(FQ N Q/) > (1 - 4ﬁﬁp_1)00'(Qj)} >

good *
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2 ._ (1)
and define Tg cod = Feood \ 7‘; vod L€

7:17(;21 = {Qj € Fraa : 0(FoNQj) > Qa(Qj)} ,

@ ._ (1)
and define " = Fpaa \ F, -
We split the remaining part of Case 2 into two subcases. The first of these will be
easy, based on our previous arguments.

Case 2a: There is Q; € ¥, such that £(Q;) > 271 £(Q).

By definition of Tb(ic)z’ one has o(Fg N Q;) > 6o(Q;). By pigeon-holing, Q; has
a descendant Q’ with £(Q’) = 27%1¢(Q), such that o(F oN Q) > 00(Q). We may
then apply H[M), 8] in Q’, and proceed exactly as we did in Case 1b above with the
cube Q(, which enjoyed precisely the same properties as does our current Q. Thus,
we draw the desired conclusion in the present case.

The main case is the following.
Case 2b: Every Q; € 7-‘;;31 satisfies £(Q;) < 27k ¢(0).

Observe that by definition,

(8.8) o(Fo N Q)) < (1-4980"")00(Q)). VQje 7‘;(33,61’
and also
8.9) F(Fon Q) <60(Q), VQjeF,

Set Fi := F \ 7";5()) 4+ For future reference, we shall derive a certain ampleness

estimate for the cubes in 7. By (8.2),

(8.10) (1-8p)00(Q) < o(Fg) < o(Fo)+ ) o(Q)+ Y o(Fon Q)
F

F@

good

< e0(Q) + Y o(Q)) + (1 - 49p™") 60(Q).
F

where in the last step have used (8.7) and (8.8). Observe that
(8.11) (1-9p)0 = (4p™" = 1) 9o + (1 - 498p™") 6.
Using (8.10) and (8.11), for £ < (4p~! — 1)986, we obtain
27 (4p7! - 1) 900 (Q) < ) 0(Q))
F

and thus

(8.12) 7(Q) < C(@,p.B.0) ), 0(Q)).
Fa

We now make the following claim.

Claim 8.13. For & chosen sufficiently small,

max| Y o(Q)), Y. o(Q))| > 85(Q).

(1) (1)
Gtguad (f’-bazl
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Proof of Claim 8.13. If 27—'“) 0(Q;) 2 eo(Q), then we are done. Therefore, sup-
ood

pose that ’

(8.14) D (@) < 87(Q).

F

good

We have made the decomposition

—_ ¢ 2 &) ()
(8.15) F = 7:good U 7:good U 7:bad U ﬂad'
Consequently
a(Fg) < ), o(Fon Q)+ ) o(Fan Q)+ 0(er(Q)) ,
2 Fbad
good

where we have used (8.7), and (8.14) to estimate the contributions of F(, and of
F o> Tespectively. This, (8.2), (8.8), and (8.9) yield

(1=9B)0| > (@) + D (@] < (1 - PHr(Q) < o(Fg)

o Tt
< (1-49Bp71)0 > 0@+ Y a(Q)+6 ) 0(Q)) + O (67(Q)) .
(2) (1) (2)
7:goad ﬁmd 7:de

In turn, applying (8.11) in the latter estimate, and rearranging terms, we obtain

(8.16)  (4p™' = 1)IBY D 7(Q) —9BO ) o(Q) < Y (0 + O (c0(Q)) -

(2) (D)
T;glaod bad T}md

. 1 2
Recalling that Go = Ug,,,,Q;, and that Feood = f‘foi Y 7_;501)) 4> We further note that

by (8.5), choosing £ <« p, and using (8.7) and (8.14), we find in particular that
0
(8.17) 2, Q) = 50(0).

Applying (8.17) and the trivial estimate 27_.(2) o(Q;) < o(Q) in (8.16), we then have
bad

9660|1- 2] Q) = |4 - 1)050E - 90| o(©)
< (7' =190 D Q) -9 Y. o(Q) < ) 0(Q)) + 0 (e0(Q)) .

(2) (2) (1)
good 7_nbad 7_bad

Since p < 1, we conclude, for & < (4C)~'1986, that

1
7P00(Q) < ) Q).

(1)
ﬂad

and Claim 8.13 follows. O

With Claim 8.13 in hand, let us return to the proof of Case 2b of Claim 8.1. We
begin by noting that by definition of Tb(it)l, and Lemma 5.6, we can apply H[My, 6]
to any Q; € Tb(alzl, hence for each such Q; there is a family of Chord-arc domains

{QiQ,-}i satisfying the desired properties.
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Now consider Q; € fgf;; - Since ?;S()) 2 € Fgoods by pigeon-holing Q; has a dyadic
child Q;. satisfying
(8.18) m(D(Q)) < ao(Q)).

(there may be more than one such child, but we just pick one). Our immediate goal
is to find a child Q}’ of Qj, which may or may not equal Q}, for which we may
construct a family of Chord-arc domains { Q‘é,.,}i satisfying the desired properties. To
this end, we assume first that Q;. satisfies '

(8.19) o(FgN Q;-) >(1- 19)00'(Q;-).

In this case, we set Q;.’ = Q;., and using Lemma 5.6, by the induction hypothesis
Hla, (1 — 9)0], we obtain the desired family of Chord-arc domains.

We therefore consider the case
(8.20) o(FgN Q;) <(1- 19)90'(Q;.).

In this case, we shall select Q}’ * Q}. Recall that we use the notation Q" < Q to
mean that Q”” is a dyadic child of Q. Set

7r={ef a0 0f 0.
Note that we have the dyadic doubling estimate

(8.21) D @) <o) < Mir(Q)),
Q;/equ//
where M; = M;(n, ADR). We also note that
(8.22) (1-4980" 10 = (1 —4B8p )90+ (1 - D)6
. e)
By definition of Tg od’

(1-40pp™)00(Q)) < T (FoNQ)) = o(Fon Q)+ > a(FonQ)).
o7y

By (8.20), it follows that
(1 - 40pp™")00(Q)) + (1= 498p™)0 > (@) = (1 - 498~ )0e(Q))

o<y
< (1-90o(Q)) + Z T(Fon Q).
o7y
In turn, using (8.22), we obtain

(1= 4807 )000(Q) + (1= 49Bp™)0 D> o(Q)) < ). o(Fon Q).
0jeFy 0j<Fy

By the dyadic doubling estimate (8.21), this leads to
[(1=4po7 oMt + (1= 40807 )]0 Y. a(@)) < > o(Fon Q).

/7 " /7 4
Qj<F; Qj<F;

Choosing 8 < p/(4(M; + 1)), we find that the expression in square brackets is at least
1, and therefore, by pigeon holing, we can pick Q;.’ € 7—'} " satisfying

(8.23) T(FonQY) > 60(Q)).
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Hence, using Lemma 5.6, we see that the induction hypothesis H[ M, 6] holds for
Q;.’ € 7-"} ’’_ and once again we obtain the desired family of Chord-arc domains.

Recall that we have constructed our packing measure m in such a way that each
Q; € ¥, as well as all of its children, along with the cubes in DF N D(Q), belong
to the same tree T; see Claim 5.10. This means in particular that for each such Q;,
the Whitney region Ug, has exactly two components U, 5’_ C Q7F, and the analogous

statement is true for each child of Q;. This fact has the following consequences:

(1) . 7 (1)
Remark 8.24. Foreach Q; € ¥, ;. and for the selected child Q7 of each Q; € ¥,

the conclusion of the induction hypothesis produces at most two Chord-arc domains
+ + + + : i i ;=

QQ./_ >U 0, (resp. QQ}, >U Q},), which we enumerate as QQ,- (resp. QQ;,), i=1,2,

with i = 1 corresponding “+”, and i = 2 corresponding to “-”, respectively.

[T3R2]

Remark 8.25. Foreach Q; € T;{i}) > the connected component U 3]_ overlaps with the
i

/7
Qj

+

o7

to it the appropriate component U 5 , to form a chord arc domain
J

corresponding component U?,, for its child, so we may augment Q! , by adjoining

i . Qi i
QQ_, = QQ;,UU E

By the induction hypothesis, for each Q; € 7-'17(;31 U 7-';01; , (and by n-ADR, in the

case of T;{i()) d), the Chord-arc domains QiQ, that we have constructed satisfy
J

D,0(0;n89)) 2 0(Q)),

1

where the sum has either one or two terms, and where the implicit constant depends
either on My and 6, or on a and (1 — ¢)6, depending on which part of the induction
hypothesis we have used. In particular, for each such Q;, there is at least one choice
of index i such that Qin =: Qg, satisfies

(8.26) a(Q;NdQ;) 2 7(Q))

(if the latter is true for both choices i = 1,2, we arbitrarily choose i = 1, which
we recall corresponds to “+). Combining the latter bound with Claim 8.13, and
recalling that € has now been fixed depending only on allowable parameters, we see
that

o(QjN Q) 2 7(Q)
0 eriyur,

good
1 1 « .
For Q; € Tb(a; U 7’;03)61, as above set BQ/_ := B(xg;, K{(Q})). By a covering lemma

argument, we may extract a subfamily F* C Tb(izi u Fd

« .
go0d such that {KBQ]_}QJ_GT* is

pairwise disjoint, where again k > K* is a large dilation factor, and such that

(8.27) > (0N Q) 24 (Q)

QjE?'_*

Let us now build (at most two) Chord-arc domains QiQ satisfying the desired prop-
erties. Recall that for each Q; € ¥, we defined the corresponding Chord-arc domain
Qg = Q’Qj, where the choice of index i (if there was a choice), was made so that
(8.26) holds. We then assign each Q; € ¥~ either to ¥ or to ¥, depending on
whether we chose Qg; satisfying (8.26) to be Qle = QJéj, or QQQ/_ = Qé/. We note
that at least one of the sub-collections ¥, is non-empty, since for each j, there was
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at least one choice of index i such that (8.26) holds with Qg := Qin. Moreover, the

two collections are disjoint, since we have arbitrarily designated Qg = QIQ_ (cor-
J
responding to “+”) in the case that there were two choices for a particular Q;. We
further note that if Q; € 7, then Qg = Qa D Ua.
- ' J J

We are now in position to apply Lemma 6.1. Set
T = {Q’ € D(Q): Q; c Q forsome Q; € T*} ,

which is a semi-coherent subtree of T, with maximal cube Q. Without loss of gener-
ality, we may suppose that #. is non-empty, and we then define

Q) =01, U

and similarly with “+” replaced by “-”, provided that F* is also non-empty. Observe
that by the induction hypothesis, and our construction (see Remarks 8.24 and 8.25,
and Lemma 3.9), for an appropriate choice of “+”, Uéj Cc Qg C B*Qj, and since

Q) < 27k1¢(Q), by (8.27) and Lemma 6.1, each (non-empty) choice defines a
Chord-arc domain with the requisite properties. This completes the proof of Case
2b of Claim 8.1 and hence that of Theorem 1.5. O

Part 2: Proof of Theorem 1.6

9. PRELIMINARIES FOR THE PROOF OF THEOREM 1.6

9.1. Uniform rectifiability. Recall the definition of n-uniform rectifiable (n-UR)
sets in Definition 2.3. Given a ball B c R"*!, we denote

1
©.1) bBE(B) = inf —( sup dist(y, L)+ sup dist(y, E)),
L r(B)\cEnB yeLNB
where the infimum is taken over all the affine n-planes that intersect B. The following
result is due to David and Semmes:

Theorem 9.2. Let E ¢ R™! be n-ADR. Denote oo = H"|  and let D be the associ-
ated dyadic lattice. Then, E is n-UR if and only if, for any € > 0,

> Q@ <CEc®) foralReD.

QeD:OCR,
bB(3Bg)>¢

For the proof, see [DS2, Theorem 2.4, p.32] (this provides a slight variant of The-
orem 9.2, and it is straightforward to check that both formulations are equivalent).
Remark that the constant 3 multiplying By in the estimate above can be replaced by
any number larger than 1.

Recall also the following result (see [HLMN] or [MT]).
Theorem 9.3. Let Q C R"™!, n > 1, be an open set satisfying an interior corkscrew

condition, with n-ADR boundary, such that the harmonic measure in Q belongs to
weak-As. Then 0Q is n-UR.
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9.2. Harmonic measure. From now on we assume that Q ¢ R™*! is an open set
with n-ADR boundary such that the harmonic measure in Q belongs to weak-A.
We denote by o the surface measure in 9QQ, that is, o = H"| go. We also consider the
dyadic lattice D associated with o as in Lemma 2.23. The AD-regularity constant
of 9Q is denoted by Co.

We denote by w” the harmonic measure with pole at p of €, and by g(-,-) the
Green function. Much as before we write dq(x) = dist(x, Q).

The following well known result is sometimes called “Bourgain’s estimate’:
Lemma 9.4. [Bou]. Let Q C R™! pe open with n-ADR boundary, x € 0Q, and
0 < r < diam(0Q)/2. Then
9.5) W (B(x,2r)) > ¢ >0, forallye Qn B(x,r)
where ¢ depends on n and the n-ADRity constant of 0C2.

The following is also well known.

Lemma 9.6. Let Q C R™! be open with n-ADR boundary. Let p,q € Q be such
Ip = ql = 46a(q). Then,

w"(B(q,460(q)))
Sa(g)! .

We remark that the previous lemma is also valid in the case n > 1 without the
n-ADR assumption. In the case n = 1 this holds under the 1-ADR assumption, and
also in the more general situation where Q satisfies the CDC. This follows easily
from [AH, Lemmas 3.4 and 3.5]. Notice that n-ADR implies the CDC in R"*! (for
any n), by standard arguments.

gp.q9=C

The following lemma is also known. See [HLMN, Lemma 3.14], for example.

Lemma 9.7. Let Q € R"! be open with n-ADR boundary and let p € Q. Let B be a
ball centered at 0 such that p ¢ 8B. Then

ch(p, x)dx<C w(4B)
B

r(By1"

Lemma 9.8. Let Q C R"™! be open with n-ADR boundary. Let x € 0Q and 0 < r <
diam(Q). Let u be a non-negative harmonic function in B(x, 4r) N Q and continuous
in B(x,4r) NQ such that u = 0 in HQ N B(x, 4r). Then extending u by 0 in B(x, 4r) \ﬁ,
there exists a constant a > 0 such that, for all y,z € B(x,r),

|u(y)—u(z)|£C(|y_Z|) sup uSC('y_Z|) J[ u,
r B(x,2r) r B(x47)

where C and « depend on n and the AD-regularity of 9Q. In particular,

uy)<C (69(}])) sup u<C (69—(}7)) J[ u.
r B(x,2r) r B(x,4r)

The next result provides a partial converse to Lemma 9.6.

Lemma 9.9. Let Q C R™! be open with n-ADR boundary. Let p € Q and let Q € D
be such that p ¢ 2B¢. Suppose that w?(Q) = w”(2Q). Then there exists some q € Q
such that

Q) < balg) ~ dist(q, Q) < 4 diam(Q)
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and

w(20)
70y <cgp,q.

Proof. For a given ky > 2 to be fixed below, we can pick P € D(Q) with {(P) =
2750£(Q) such that

WP (P) ~k, w’(Q).
Let ¢p be a C* function supported in Bp, ¢p = 1 on P, and such that ||[Vpplle <

1/€(P). Then, choosing kg small enough so that p ¢ 50Bp, say, and applying Cac-
cioppoli’s inequality,

W(20) ~ W(Q) ~, W(P) < f opdi? = - f V,2(p.y) Vep(y) dy

12
S | Vyep.yldy s é’(P)”( JC IVyg(p,y)lzdy)
{(P) Jpy Bp

1/2
sf(P)"—l( Jgg |g(p,y)|2dy) < (P! JfB g(p,y)dy.

Applying now Lemmas 9.8 and 9.7 and taking kg small enough so that 24Bp N 9Q C

20, for any a € (0, 1) we get

. W Q4Bp) _ L, 0" 20)
(P!

g(p,y)dy < a” JC gp.ydy<a
f€3Bp:5Q(y)Saf(P) 6Bp (P!

From the estimates above we infer that

wP(2Q) <k, E(P)"! JC g(p,y)dy + a” W"(20).
ye3Bp:6q(y)=al(P)

Hence, for a small enough, we derive

W(20) <4y (P! f ¢(p.y) dy.

ye3Bp:6q(y)=al(P)

which implies the existence of the point g required in the lemma. O

9.3. Harnack chains and carrots. It will be more convenient for us to work with
Harnack chains instead of curves. The existence of a carrot curve is equivalent to
having what we call a good chain between points.

Let x € Q, y € Q be such that 6o(y) < da(x), and let C > 1. A C-good chain
(or C-good Harnack chain) from x to y is a sequence of balls By, By, ... (finite or
infinite) contained in € such that x € B; and either

e lim; ., dist(y, B;) = 0if y € 9Q, or
e y € By if y € Q, where N is the number of elements of the sequence if this
is finite,

and moreover the following hold:

Bj N Bj+1 # @ for all j,

C~! dist(B;,0Q) < r(B;) < C dist(B;, dQ) for all j,

F(Bj) <Cr(Byif j>1i,

for each 7 > 0 there are at most C balls B; such that r < r(B;) < 2.
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Abusing language, sometimes we will omit the constant C and we will just say “good
chain” or “good Harnack chain”.

Observe that in the definitions of carrot curves and good chains, the order of x and
y is important: having a carrot curve from x to y is not equivalent to having one from
y to x, and similarly with good chains.

Lemma 9.10. There is a carrot curve fromx € Qtoy € Q if and only if there is a
good Harnack chain from x to y.

Proof. Lety be a carrot curve from x to y. We can assume y € Q, since if y € 9Q, we
can obtain this case by taking a limit of points y; € Q converging to y. Let {B }7 !
be a Vitali subcovering of the family {B(z, 6a(z)/10) : z € y} and let rp; stand for the
radius and xg; for the center of Bj. So the balls B; are disjoint and 5B; cover y. Note

that forr > 0, if < rg; < 2t,

g, =1 < H'(y(xp,,7)) < Sa(xg,) ~ rp, < 2t.
In particular, since the B;’s are disjoint, by volume considerations, there can only
be boundedly many B; of radius between 7/2 and 7, say. Moreover, we may order
the balls B; so that x € 5By and B}, is a ball By such that 5B, N 5B; # @ and 5B

contains the point from y N (Up:58,ns Bj#0 5By, which is maximal in the natural order
induced by 7 (so that x is the minimal point in ). Then for j > i,

rB; ~ 6Q(XBJ.) < |xBj — xp;| + 0a(xp,) < Hl(y(xBi,y)) + 0q(xp,) < 7B,
This implies 5B1,5B5, ... is a C-good chain for a sufficiently big C.

Now suppose that we can find a good chain from x to y, call it By,...,By. Lety
be the path obtained by connecting their centers in order. Let z € y. Then there is a
jsuch that 7 € [xB;, XB;,, ], the segment joining XB; and XB;, . Since {B;}; is a good
chain,

H'(/(2,y)) < |2 = xp,,,| + H' (/(xp,,,, ) < 7o,y + 2, S 1) % Sa(2).
i=)
We would like to note that the implicit constants do not depend on N. Indeed, from
the properties of the good chain it easily follows that

Z Z Z rp;, < 2C2 B
=Jj

12A1<C1<2k
BI

Thus, y is a carrot curve from x to y. O

10. Tue MAIN LEMMA FOR THE PROOF OF THEOREM 1.6

Because of the absence of doubling conditions on harmonic measure under the
weak-Aq, assumption, to prove Theorem 1.6 we cannot use arguments similar to the
ones in [AH] or [Azz]. Instead, we prove a local result which involves only one pole
and one ball which has its own interest. This is the Main Lemma 10.2 below.

Let B ¢ R™*! be a ball centered at Q and let p € Q. We restate Definition 2.20 in
the following form: w? satisfies the weak-Ao condition in B if for every gy € (0, 1)
there exists dg € (0, 1) such that the following holds: for any subset E ¢ B N 9%,

(10.1) 0c(E)<600(BNIQ) = P(E)<ew’(2B).
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In the next sections we will prove the following.

Main Lemma 10.2. Let Q ¢ R"™! have n-uniformly rectifiable boundary. Let Ry €
D and let p € Q \ 4Bg,, be a point such that

c€(Ry) < dist(p, dQ) < dist(p, Ry) < ¢~ €(Ry)

and wP(Ry) = ¢’ > 0. Suppose that w? satisfies the weak-As condition in Bg,.
Then there exists a subset Con(Ry) C Ry and a constant ¢’ > 0 with o(Con(Ry)) >
c¢” o(Ry) such that each point x € Con(Ry) can be joined to p by a carrot curve.
The constant ¢” and the constants involved in the carrot condition only depend on
¢, c’,n, the weak-Ao condition, and the n-UR character of 0€.

The notation Con(-) stands for “connectable”.

It is easy to check that Theorem 1.6 follows from this result. First notice that the
assumptions of the theorem imply that 9Q is n-uniformly rectifiable by Theorem 9.3.
Consider now any x € Q and take a point £ € 9Q such that |x — &] = dqo(x). Then we
consider the point p in the segment [x, &] such that |p — €| = % 0o(x). By Lemma
9.4, we have

WP(B(, §60(0)) 2 1,

because p € %B(f, %59()6)). Hence, by covering B(¢, %69()5)) NoQ with cubes R € D
contained in B(&, 3—‘69(x)) N 0Q with side length comparable to 5q(x) we deduce that
at least one these cubes, call it Ry, satisfies w”(Rg) = 1. Further, by taking the side
length small enough, we may also assume that p ¢ 4Bg,. Since w? satisfies the
weak-Aq, property in Bg, (by the assumptions in Theorem 1.6), we can apply the
Main Lemma 10.2 above and infer that there exists a subset F' := Con(Ry) C Ry with
o(F) = ¢ 0(Ry) = 6q(x)" such that all y € F can be joined to x by a carrot curve,
which proves that Q satisfies the weak local John condition and concludes the proof
of Theorem 1.6.

Two essential ingredients of the proof of the Main Lemma 10.2 are a corona
type decomposition (whose existence is ensured by the n-uniform rectifiability of
the boundary) and the Alt-Caffarelli-Friedman monotonicity formula [ACF]. This
formula is used in some of the connectivity arguments below. This allows to connect
by carrot curves corkscrew points where the Green function is not too small to other
corkscrew points at a larger distance from the boundary where the Green function
is still not too small (see Lemma 11.11 for the precise statement). The use of the
Alt-Caffarelli-Friedman formula is not new to problems involving harmonic mea-
sure and connectivity (see, for example, [AGMT]). However, the way it is applied
here is new, as far as we know.

Two important steps of the proof of the Main Lemma 10.2 (and so of Theorem 1.6)
are the Geometric Lemma 14.5 and the Key Lemma 15.2. An essential idea consists
of distinguishing cubes with “two well separated big corkscrews” (see Section 13.4
for the precise definition). In the Geometric Lemma 10.2 we construct two disjoint
open sets satisfying a John condition associated to trees involving this type of cubes,
so that the boundaries of the open sets are located in places where the Green function
is very small. This construction is only possible because the associated tree involves
only cubes with two well separated big corkscrews. The existence of these cubes is
an obstacle for the construction of carrot curves. However, in a sense, in the Key
Lemma 15.2 we take advantage of their existence to obtain some delicate estimates
for the Green function on some corkscrew points.



HARMONIC MEASURE AND QUANTITATIVE CONNECTIVITY 41

We claim now that to prove he Main Lemma 10.2 we can assume that Q =
R™1\ Q. To check this, let Q, p, and Ry satisfy the assumptions in the Main
Lemma. Consider the open set V = R"*! \ Q. Then the harmonic measure w” in Q
coincides with the harmonic measure w"’/ in V (the fact that V is not connected does
not disturb us). Thus V, p, and Ry satisfy the assumptions in the Main Lemma, and
moreover V = R"™1\ 9Q = R\ gV. Assuming the Main Lemma to be valid in this
particular case, we deduce that there exists a subset Con(Ry) C Ry and a constant
¢” > 0 with o(Con(Ry)) > ¢”" 0(Rp) such that each point x € Con(Ry) can be joined
to p by a carrot curve in V. Now just observe that if vy is one of this carrot curves
and it joints p and x € Con(Rp) C dV = 9L, then v is contained in V except for its
end-point x. By connectivity, since p € {2 N 7y, v must be contained in Q, except for
the end-point x. Hence, 7y is a carrot curve with respect to Q.

Sections 11-16 are devoted to the proof of Main Lemma 10.2. To this end, we
will assume that Q = R"!\ 5Q.

11. THE ALT-CAFFARELLI-FRIEDMAN FORMULA AND THE EXISTENCE OF SHORT PATHS

11.1. The Alt-Caffarelli-Friedman formula. Recall the following well known re-
sult of Alt-Caffarelli-Friedman (see [CS, Theorems 12.1 and 12.3]):

Theorem 11.1. Let B(x,R) ¢ R™! and let u;,u, € W“-3(B(x,R)) N C(B(x,R))
be nonnegative subharmonic functions. Suppose that uj(x) = u(x) = 0 and that

up-up = 0. Set
1 IVu;(y)]?
Jix,r) = —2f l—y,de,
r= Jparn 1y —
and

(11.2) J(x,r) = Ji(x,r) Jo(x, 7).

Then J(x,r) is a non-decreasing function of r € (0,R) and J(x,r) < oo for all r €
(0,R). That is,

(11.3) J,r) <J(x,p) <o for 0<ri <ry <R
Further,

1
(11.4) Ji6 1) < 5 ll ey

In the case of equality we have the following result (see [PSU, Theorem 2.9]).

Theorem 11.5. Let B(x, R) and uy, u; be as in Theorem 11.1. Suppose that J(x, r,) =
J(x,rp) for some 0 < r, < r, < R. Then either one or the other of the following
holds:

(@) uy =0in B(x,rp) orup = 0in B(x,rp);
(b) there exists a unit vector e and constants ki, ky > 0 such that

m@) =k ((-x-o", w) =k (y-x) e, in B(x, rp).

We will also need the following auxiliary lemma.

Lemma 11.6. Let B(x,R) ¢ R™!, and let {u;}is1 € W"2(B(x,R)) N C(B(x,R)) a
sequence of functions which are nonnegative, subharmonic, such that each u; is har-
monic in {y € B(x,R) : u;(y) > 0} and u;(x) = 0. Suppose also that

1_
lttilleo,Bxp) < C1 R and  luilluipe gy < C1 R
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for alli > 1. Then, for every 0 < r < R there exists a subsequence {u; }x>1 which
converges uniformly in B(x,r) and weakly in WY2(B(x, r)) to some function u €
WY2(B(x, r)) N C(B(x, r)), and moreover,

2 2
(11.7) lim f Vi, ()| dy = fB [Vu(y)l dy

koo Sy Iy — ! (o) y = !

Proof. The existence of a subsequence {u;, };>1 converging weakly in W12(B(x, 1))
and uniformly in B(x, r) to some function u € W2(B(x, r)) N C(B(x, r)) is an im-
mediate consequence of the Arzela-Ascoli and the Banach-Alaoglu theorems. The
identity (11.7) is clear when n = 1, and quite likely, for n > 1 this is also well known.
However, for completeness, we will show the details (for n > 1).

Consider a non-negative subharmonic function v € WL2(B(x,R)) N C(B(x,R))
which is harmonic in {y € B(x,R) : v(y) > 0} so that v(x) = 0. For 0 < r < R and
0 <6 < R~-r,let p be aradial C* function such that yp ) < ¢ < XBxr+s)- Let
&) = c;l ly|'™ be the fundamental solution of the Laplacian. For € > 0, denote
ve = max(v, €) — €. Then we have

Vo)
f|| O = f Vre(y) V(E(x — ) v @)(y) dy

|n 1
e, f Ve () ECx = ¥) V() Ve y) dy

—Cn fvvs()/) VyS(X =) ve(y) e(y) dy =cy(y — L - 13).

Using the fact that v, is harmonic in {v, > 0} and that &(x — -)v. ¢ € Wé’z({va >
0} N B(x, R)) since ¢ is compactly supported in B(x, R), v = 0 on d{v, > 0}, and x is
far away from {v, > 0}, it follows easily that /; = 0. On the other hand, we have

25 = f V2 9)(y) VyE(x — y) dy — f ve(y)? V,E(x = y) Voo (y) dy

= (- f 1) V,E(x — ) Vo) d.
Thus,

Vv (y)P
f I| : (}|)n)|1 e(y)dy = —cn f Vve(y) E(x = y) ve(y) Vo(y) dy

+ 2 [ 002 98- Ve dy.

Taking into account that supp Ve is far away from x, letting € — 0, we obtain
Vv
[ o ey = = [ 90180 -3)00) Tty

c
+ f v(y)? VyE(x — ) V() dy.
Using the preceding identity, it follows easily that

2 2
2 u(y>| f| (y|z|1 )i

k—o0 |

Indeed, limy_, o ul-,(()c)2 = u(x)z. Also, it is clear that

tim [ 109,860 Vo) dy = [ ) 9,80-3) Vet .
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Further,

f Vi, () ECx — ) 4, () Vep(y) dy = f Vit () E(x - y) u(y) Vo) dy

+ f Vit () ECx = ) (3, () — u(y)) Vo) dy

k—o0

- | Vu@y)Ex - y)u(y) Ve(y) dy,

by the weak convergence of u;, in W!2(B(x,R)) and the uniform convergence in
B(x,r + 9), since supp Ve is far away from x.

Let ¢ be aradial C* function such that xg(,—s5) < ¥ < xB(x,». The same argument
as above shows that

; 2 Vu 2
f k(y)l1 V0 dy f I (y)lll//(y)d
k—>o<> Iy |
Consequently,

\v/ ; 2 ; 2 2
limsupf | btk()’)|1 f k(y)l o) dy = f (,V)|1 o) dy,
k—o0 B(x,r) |y x| k_>°° |y | X"

and also
Vu;, ()2 Vu; (y)) 2
liminf f WO gy » i [y = f “OF 3 dy.
k=co Jpeer [y — X" koo J |y = x| ly — x|"=

Since ¢ > 0 can be taken arbitrarily small, (11.7) follows. |

Lemma 11.8. Let B(x,2R) C R"!, and let uy,uy € W'2(B(x,2R)) N C(B(x, 2R)) be
nonnegative subharmonic functions such that each u; is harmonic in {y € B(x,2R) :
ui(y) > 0}. Suppose that u;(x) = uy(x) = 0 and that u; - up = 0. Assume also that

lluilloo,pxor) < Cr R and  lullipe pxor) < LR fori=1,2.
For any € > 0, there exists some 6 > 0 such that if
J(x,R) < (1+6)J(x,1R),
with J(-,-) defined in (11.2), then either one or the other of the following holds:

(@) lluilloo. By < R or lUzlloo Bx.p) < ER;
(b) there exists a unit vector e and constants ki, k, > 0 such that

ller — k1 (= %) - @) lloo,Bx,p) < ER, lluz — k2 ((- = x) - @) |lco,Bx,R) < ER.

The constant ¢ depends only on n,a, Cy, &.

Proof. Suppose that the conclusion of the lemma fails. Then, by replacing u;(y) by
% u;(Ry + x), we can assume that x = 0and R = 1. Let &€ > 0, and for each 6 = 1/k
and i = 1, 2, consider functions u; ; satisfying the assumptions of the lemma and such
that neither (a) nor (b) holds for them. By Lemma 11.6, there exist subsequences
(which we still denote by {u; x}x) which converge uniformly in B(0, %) and weakly in

W2(B(0, %)) to some functions u; € W'2(B(0, %)) N C(B(, %)) and moreover,
Vu: 2 \v, 2
i [ DO f VuOPE,
k—eo Jpo I Bo.) DI

both for r = 1 and r = 1/2. Clearly, the functions u; are non-negative, subharmonic,
and u; - up = 0. Hence, by Theorem 11.5, one of the following holds:
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(@) u; =0in B(0,1) or up = 01in B(0, 1);
(b’) there exists a unit vector ¢ and constants k;, k» > 0 such that

w@) =k (- e, wy) =k (y-e), in B0, ).

However, the fact that neither (a) nor (b) holds for any pair u; x, u2 x, together with
the uniform convergence of {u;}x, implies that neither (a’) nor (b’) can hold, and
thus we get a contradiction. m|

11.2. Existence of short paths. Let p € Q and A > 1. For x € 9Q, we write
x € WA(p,A) if for all 0 < r < 6q(p),
-1 o(B(x,1) < WP (Bx.r) < A o(B(x,r)) .
o (B(x,6a(p))) o (B(x,6a(p)))
We will see in Section 12 that, under the assumptions of the Main Lemma 10.2, for
some A big enough,

(11.9) a(WA(p, A) N Ry) 2 o(Ro).

Lemma 11.10. Let p € Q, x9 € WA(p,A), and r € (0,0a(p)). Then there exists
q € B(xg, r) such that, for some constant k € (0,1/10),

(a) 6alq) = «r, and

(b)
Kw"(B(xO,r)) < o(pog) < k7! w”(B(xo,r))'

=1 -1

The constant k depends only on A, n, and Cy, the AD-regularity constant of 0QQ.

Proof. This follows easily from Lemmas 9.6 and 9.9. O

Lemma 11.11 (Short paths). Let p € Q, xo € WA(p, A), and for 0 < rg < 6a(p)/4,
0 < 19,49 < 1, let g € Q be such that

60(q)

Sa(p)y

Then there exist constants Ay > 1 and 0 < aj;,A1 < 1 such that for every r €
(ro,a(p)/2), there exists some point ¢’ € Q such that

(11.12) q € B(xo,10), dalq) 271010, &(p.q) = Ao

0a(q’)
Sa(p)"’

(with k as in Lemma 11.10) and such that q and ¢’ can be joined by a curve y such
that

(11.13) ¢’ € B(xo, A7), 6a(q) = «klxo—¢'| > «r, g(p,q") > A

v C {y € B(xgp,Ar) : dist(y, 0Q) > aj ro}.
The parameters A1,A1,a; depend only on Cy, A, Ay, Tg and the ratio r/ry.

Proof. All the parameters in the lemma will be fixed along the proof. We assume
that A; > «~! > 1. First note that we may assume that r < ZAI1 |xo — p|. Otherwise,
we just take a point ¢’ € Q such that |p — ¢’| = da(p)/2, which clearly satisfies the
properties in (11.13). Further, both ¢ and ¢’ belong to the open connected set

U:={xeQ:g(p,x)>crroda(p)™}

for a sufficiently small ¢; > 0. The fact that U is connected is well known. This
follows from the fact that, for any A > 0, any connected component of {g(p,-) > A}
should contain p. Otherwise there would be a connected component where g(p, -)—A1
is positive and harmonic with zero boundary values. So, by maximum principle,
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g(p,-) — A should equal A in the whole component, which is a contradiction. So there
is only one connected component.

We just let y be a curve contained in U. Note that

1
dis((U,0Q) = ¢ Sa(p)' "« = ar,
for a sufficiently small @ > 0 because, by boundary Holder continuity,

da(x) )“ 1
oa(p)] da(py*!

if dist(x, 0Q) < 6a(p)/2. Further, the fact that g(p,x) < c|x — p|'™ ensures that
U C B(p,Cdq(p)), for a sufficiently big constant C depending on r/ry.

gp,x) < (

So from now on we assume that r < 2A1‘1|x0 — p|. By Lemma 11.10 we know
there exists some point g € Q such that
(11.14)
— 0
g€ B(xo,k'r), 6@ =r>«klxo—ql >«60@) =«r, g(p.q =c 2@

Sa(p)"”’

with ¢ depending on « and A.

Assume that g and ¢ cannot be joined by a curve vy as in the statement of the
lemma. Otherwise, we choose ¢’ = ¢ and we are done. For ¢ > 0, consider the open
set

V' = {x € B(xo, 3A17) : g(p, X) > trg 5a(p)™"}.
We fix ¢ > 0 small enough such that ¢, € V? ¢ V’. Such ¢ exists by (11.12) and
(11.14), and it may depend on A, A, r/ry.

Let V; and V; be the respective components of V’ to which ¢ and g belong. We
have

VinV, =0,

because otherwise there is a curve contained in V' C B(xy, %Alr) which connects ¢
and g, and further this is far away from 0Q. Indeed, we claim that

(11.15) dist(V', 9Q) 2, A.tr/ry T0-

To see this, note that by the Holder continuity of g(p, -) in B(xo, %Al r), forall x € V',
we have

Sa(x)\*
Sy S g(p,x) s sup g(p,y)( A )
a(p) yeB(xo.1A1r) 17

Sa(x)\"
< f g(p,y)dy(i‘2 )
B(x0,3A17) r

Ar (5Q(x))"
A oyt \Arr

where in the last inequality we used Lemma 9.7 and that xo € WA(p, A). This yields
our claim.

<Ay,

Next we wish to apply the Alt-Caffarelli-Friedman formula with

ur(x) = xv, Sa(p)" g(p, x) —tro)",
ur(x) = xv, (6a(p)" g(p,x) —tro)".
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It is clear that both satisfy the hypotheses of Theorem 11.1. Fori =1,2and 0 < s <

Apr, we denote
1 IVui(y)?
Ji(x0, 5) = _2f ——dy,
5% JBxo,s) 1y — Xol

so that J(xg, s) = Ji(xo, ) J2(xg, s). We claim that:
(i) Ji(xo,8) Sp Lfori=1,2and 0 < s < 3A;r.
(i) Ji(x0,27) 2/ | fori=1,2.

The condition (i) follows from (11.4) and the fact that

N
11.16 ) S
( ) gp.y) s Salp)

which holds by Lemma 9.7 and subharmonicity, since xyp € WA(p, A). Concerning
(i1), note first that

for all y € B(xy, $),

2 8(DY) a0
\ Sa(p)' =2 <6
[Vur ()| < da(p) 500) Sty 0a(p) Salp)’

where we first used Cauchy estimates and then the pointwise bounds of g(:,-) in
(11.16) with s = 6q(y). Thus, using also that g € V2 we infer that u;(y) > try/2
in some ball B(q, ctry) with ¢ possibly depending on A, A,r/rg. Analogously, we
deduce that uy(y) > trp/2 in some ball B(g, ctrg). Let B be the largest open ball
centered at ¢ not intersecting dV; and let ygp € dV; N dB. Then, by considering the
convex hull H c B of B(q, ctrg) and yo and integrating in spherical coordinates (with
the origin in yp), one can check that

f Vuildy 2 rg*".

H

An analogous estimate holds for u,, and then it easily follows that
Jl(-xO’ 2"0) Z[ 1’

which implies (ii). We leave the details for the reader.

=1 forallye B(qg,toro/2),

From the conditions (i) and (ii) and the fact that J(x, r) is non-decreasing we infer
that
J(x0,8) A 1 for2r <s< 1A;r.
and also
(11.17) Ji(x0,8) A, 1 fori=1,2and2r <s < iAlr.
Assume that %Al = 2" for some big m > 1. Since J(xyp, s) is non-decreasing we
infer that there exists some 4 € [1, m — 1] such that
J(x0,2"*'r) < C(A, A, r/r0) " I (x0, 2" ),
because otherwise, by iterating the reverse inequality, we get a contradiction. Now
from Lemma 11.8 we deduce that, given any &£ > 0, for m big enough, there are
constant k; = 1,/r, 1 and a unit vector e such that
(11.18) [luy = k1 (- = x0) - ) lloo.Bexg.2nm) + 112 = k2 (¢ = %0) - €)lloo gy 2ir) < €27
As a matter of fact, |[uilleo pix, 2015 FAdr/r 2y by (11.4), (11.17), and (11.16);
||u,~||Lipa,B(x0’2h+|r) SA AR Qhp)l-a by Lemma 9.8; and the option (a) in Lemma 11.8
cannot hold (since we have ||u;llo p(xy20r) ®A.Ar/r0 2mp.
In particular, for & small, (11.18) implies that if ¢’ := xo + 2h=1re. then one has
u1(q") =aar/r 21} and also that

w1 (y) =aarm 2" >0 forally € B(g/,2"%r).
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Thus B(¢’,2"2r) ¢ Q and so ¢’ is at a distance at least 2"~ from 4Q, and also
u(q) 2" r
salpy M sa(py

Further, since ¢ and ¢’ are both in V| by definition, there is a curve y which joins ¢
and ¢’ contained in V; satisfying

g(p.q) =

dist(y, 0Q) RALALrTy T05

by (11.15). So ¢’ satisfies all the required properties in the lemma and we are done.
O

12. TYPES OF CUBES

From now on we fix Ry € D and p € Q and we assume that we are under the
assumptions of the Main Lemma 10.2.

We need now to define two families HD and LD of high density and low density
cubes, respectively. Let A > 1 be some fixed constant. We denote by HD (high
density) the family of maximal cubes Q € D which are contained in Ry and satisfy

p p
WQQ) _ , w'(2Ry)
o(20) o(2Ro)
We also denote by LD (low density) the family of maximal cubes Q € 9 which are
contained in Ry and satisfy

w’(Q) <A w”(Ro)

a(0) (Ro)
(notice that w”(Rp) ~ wP(2Rp) ~ 1 by assumption). Observe that the definition of
the family HD involves the density of 2(Q, while the one of LD involves the density

of 0.
We denote

By = U Q and Bp= U 0.

QeHD QelD

Lemma 12.1. We have
1 1
o(By) < 1 o(Ry) and wP(Br) < 1 WP (Ro).

Proof. By Vitali’s covering theorem, there exists a subfamily / ¢ HD so that the
cubes 20, Q € I, are pairwise disjoint and

J20cJso
QeHD Qel
Then, since o is doubling, we obtain

o(By) 5 ) | 0(20) < % >

Qel Qel

wP(20)

1
o’ (2Ro) T(2Ro) 5 + o(Ro).

Next we turn our attention to the low density cubes. Since the cubes from LD are
pairwise disjoint, we have

W BY= Y Q<5 Y T PRy < 1w R,

OelD g T (Ro)
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From the above estimates and the fact that the harmonic measure belongs to weak-
A (cf. (10.1)), we infer that if A is chosen big enough, then

1
wP(Br) < g0 wP(2Bg,) < 7 w?(Ry)

and thus . . .

W?(By UBp) < 7 WP (Ro) + 1 WP (Ry) < 3 w?(Ro).
As a consequence, denoting Go = Ry \ (Bg U Br)), we deduce that

1
wP(Go) = 3 w’(Ro) = w’(2Bg,),
which implies that
0(Go) 2 0(2Bg,) = 0(Ro),
again using the fact that w” belongs to weak-A., in Bg,. So we have:
Lemma 12.2. Assuming A big enough, the set Gy := Ry \ (By U By)) satisfies
WGy ~1 and (Gy) ~ o(Ry),

with the implicit constants depending on Co and the weak-As condition in Bg,.

We denote by G the family of those cubes Q € D(Ry) which are not contained in
UpenpuLp P- In particular, such cubes Q € G do not belong to HD U LD and
1 WP (Ro) < w’(Q) < W’ (20) <A w”(2Ro)'

o(Ry) — o(Q) — o(20) o (2Ro)
From this fact, it follows easily that G is contained in the set WA(p, A) defined in
Section 11.2, assuming A big enough, and so Lemma 12.2 ensures that (11.9) holds.

(12.3) A”

The following lemma is an immediate consequence of Lemma 11.10.

Lemma 12.4. For every cube Q € G there exists some point zg € 2B N Q such that
0a(zg) = ko €(Q) and

48%)

o(Ro)’

for some kg, c3 > 0, which depend on A and on the weak-Ao constants in Bg,.

(12.5) 8(p,zg) > c3

If zg € 2Bg N Q and 6q(zg) > ko £(Q), we say that zg is ko-corkscrew for Q. If
(12.5) holds, we say that zg is a c3-good corkscrew for Q. Abusing notation, quite
often we will not write “for Q™.

We will need the following auxiliary result:

Lemma 12.6. Let Q € D and let zp be a A-good c4-corkscrew, for some A, c4 > 0.
Suppose that €(Q) > c5€(Ry). Then there exists some C-good Harnack chain that
Jjoins zg and p, with C depending on A, cs.

Proof. Consider the open set U = {x € Q : g(p,x) > 1£(Q)/d(Rp)}. This is con-
nected and thus there exists a curve y C U that connects zp and p. By Holder
continuity, any point x € Q such that do(x) < da(p)/2, satisfies

Sa(x) )" 1
L(Ro)] Roy

g(p,x) < C(
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Since g(p,x) > A(Q)/0(Rp) Zes.a E(Ry)'™ for all x € U, we then deduce that
dist(U, 0Q) > cg {(Rp) for some cg > 0 depending on A and c5. Thus,

dist(y, 8Q) > cg £(Ry).

From the fact that g(p,x) < |p — x| for all x € Q, we infer that any x € U

satisfies
Q)
A—<g(p,x) < ——.
TRy 8P =
Therefore,
1/(n-1)
o(Ro)
- —_— <1 L(Ro).
lp—xl < (/l{f(Q)) Ses,a T(Ro)

So U C B(p, Cs £(Ryp)) for some C, depending on A and c¢s. Next we consider a Besi-
covitch covering of y with balls B; of radius c¢f(Rp)/2. By volume considerations, it
easily follows that the number of balls B; is bounded above by some constant C3 de-
pending on A and cs, and thus this is a C-good Harnack chain, with C = C(4,¢5). O

Lemma 12.7. There exists some constant k| with 0 < k1 < ko such that the following
holds for all A > 0. Let Q € G, Q # Ry, and let zp be a A-good ky-corkscrew. Then
there exists some cube R € G with Q € R C Ry and {(R) < C{(Q) and a A'-good
Kk1-corkscrew zg such that zg and zg can be joined by a C'(1)-good Harnack chain,
with I’ > 0 and C depending on A.

The proof below yields a constant A’ < A. On the other hand, the lemma ensures
that zp is still a x;-corkscrew, which will be important for the arguments to come.

Proof. This follows easily from Lemma 11.11. For completeness we will show the
details.

By choosing A = A(A) > 0 big enough, Gy N @ € WA(p, A) and thus there exists
some xg € O N WA(p, A). We let

k1 = min (ko, k),

where kq is defined in Lemma 12.4 and « in Lemma 11.10 (and thus it depends only
on A and Co). We apply Lemma 11.11 to xq, g = zp, with ry = 3r(Bgp), 4o = 4, and
r = 4r(Bp). To this end, note that

1 1
Salq) = k1 €Q) = ki 7 Lr(Bo)) = k1 73 ro.
Hence there exists ¢’ € B(xp, A1r) such that

0a(q")

(12.8) Salq) 2 klxo—ql2kr,  gp.q)24 -~
da(p)

and such that g and ¢’ can be joined by a curve y such that
(12.9) v C {y € B(xgp,A1r) : dist(y, 0Q) > aj ro},

with 11,A1, a; depending on Cy, A, A, k1. Now let R € D be the cube containing xg
such that

1 ’
5 r(Br) <|xo —q'| < r(Bg).
Observe that
r(Br) > |xo —¢'|l > r=4r(Bg) and r(Bg) <2lxo — q'| < 2A;1r $3 L(Q).
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Also, we may assume that £(R) < £(Ry) because otherwise we have €(Q) = A; da(p)
and then the statement in the lemma follows from Lemma 12.6. So we have Q0 ¢
R C Ry.

From (12.8) we get
1
6a(@) = klxo—¢'| = > kr(Bg) = 2k €(R) > k1 £(R)

and
2k €(R)

a(Ro)
Hence, ¢’ is a A’-good «;-corkscrew, for I’ = c1,2«.

g(p.q") = c

From (12.9) and arguing as in the end of the proof of Lemma 12.6 we infer that
Zg = g and zg = ¢’ can be joined by a C(1)-good Harnack chain. O

From now on we will assume that all corkscrew points for cubes Q € G are ;-
corkscrews, unless otherwise stated.

13. THE CORONA DECOMPOSITION AND THE KEY LEMMA

13.1. The corona decomposition. Recall that the b3 coeflicient of a ball was de-
fined in (9.1). For each Q € D, we denote

bB(Q) = bBya(100By).

Now we fix a constant 0 < & <« min(l,«;). Given R € D(Rp), we denote by
Stop(R) the maximal family of cubes Q € D(R) \ {R} satisfying that either Q ¢ G
or bB(Q) > &, where Q is the parent of Q. Recall that the family G was defined in
(12.3). Note that, by maximality, Stop(R) is a family of pairwise disjoint cubes.

We define
TR) :={Q € DR) : A S € Stop(R) such that Q C S}.
In particular, note that Stop(R) ¢ T(R).

We now define the family of the top cubes with respect to R as follows: first we
define the families Top, for k > 1 inductively. We set

Top; = {R € D(Ry) N G : {(R) = 27'%4(Ry)).

Assuming that Top,, has been defined, we set

Topy.y = | (Stop(®) N G),

ReTopy,
and then we define
Top = U Topy.
k>1

Notice that the family of cubes QO € D(Ry) with £(Q) < 2-10¢(Ry) which are not
contained in any cube P € HD U LD is contained in (getop T(R), and this union is
disjoint. Also, all the cubes in that union belong to G.

The following lemma is an easy consequence of our construction. Its proof is left
for the reader.
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Lemma 13.1. We have

Top c G.
Also, for each R € Top,
T(R) c G.
Further, for all Q € T(R) U Stop(R),
a(Q)
wWw’RQ)<CA——.
20) o(Ro)

Remark that the last inequality holds for any cube Q € Stop(R) because its parent

Q belongs to T(R) and so Q is not contained in any cube from HD, which implies
P (D) a(Q) A QD
that w?(20) < WP (20Q) S A 755 ~ A 55
Using that 0Q is n-UR (by the assumption in the Main Lemma 10.2), it is easy to
prove that the cubes from Top satisfy a Carleson packing condition. This is shown
in the next lemma.

Lemma 13.2. We have
Z o (R) < M(s) 7(Ry).

ReTop
Proof. For each Q € Top we have

q@= > oP@+ >  aP+olo\ | P)

PeStop(Q)NG PeStop(Q)\G PeStop(Q)
Then we get
(13.3) Do > > P
QcTop QeTop PeStop(Q)NG
N e Y O'(Q\ U P).
QeTop PeStop(Q)\G QeTop PeStop(Q)

Note now that, because of the stopping conditions, for all Q € Top, if P € Stop(Q) N
G, then the parent P of P satisfies bBsa(100B5) > &. Hence, by Theorems 9.2 and
9.3,

o(P) < > o(P) < C(&) o(Ry).
QeTop PeStop(Q)NG PED(R0):bBsa(100B5)>e

On the other hand, the cubes P € Stop(Q) \ G with Q € Top do not contain any
cube from Top, by construction. Hence, they are disjoint and thus

o(P) < 0(Rp).
Q¢cTop PeStop(Q)\G
By an analogous reason,
> O'(Q v P) < o(Ro).
QcTop PeStop(Q)

Using (13.3) and the estimates above, the lemma follows. |

Given a constant K > 1, next we define

(13.4) G = {x € Gy : Z yr(x) < K},
ReTop
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By Chebyshev and the preceding lemma, we have

1 M(e)
o(Go \ G§) < o(Ro \ G) < Ef D, xrdo < == 0(Ro).
Ro ReTop
Therefore, if K is chosen big enough (depending on M(e) and the constants on the
weak-A., condition), by Lemma 12.2 we get

damG@s%awm

and thus .
7(Gp) = 5 7(Go) 2 7(Ro).

We distinguish now two types of cubes from Top. We denote by Top, the family
of cubes R € Top such that T(R) = {R}, and we set Top, = Top \ Top,. Notice that,
by construction, if R € Top,, then HB(R) < . On the other hand, this estimate may
fail if R € Top,.

13.2. The truncated corona decomposition. For technical reasons, we need now
to define a truncated version of the previous corona decomposition. We fix a big
natural number N > 1. Then we let Top") be the family of the cubes from Top with
side length larger than 2~V ¢(Ry). Given R € Top™ we let T)(R) be the subfamily of
the cubes from T(R) with side length larger than 2~V£(Ry), and we let Stop(N )(R) be
a maximal subfamily from Stop(R) U Dy (Rp), where Dy (Ry) is the subfamily of the
cubes from D(Ry) with side length 27N E(Ry). We also denote Tople) = Top(N ) NTop,

and Top"" = Top™ N Top,,.

Observe that, since Top™”) c Top, we also have

XR(X) < Z Yr(x) <K forall x € G(I)(.
ReTop™ ReTop

13.3. The Key Lemma. The main ingredient for the proof of the Main Lemma 10.2
is the following result.

Lemma 13.5 (Key Lemma). Given n € (0, 1) and A € (0, c3] (with c3 as in (12.5)),
there exists an exceptional family EX(R) C Stop(R) N G satisfying

o(P) £no(R)
PeEX(R)
such that, for every Q € Stop(R) N G \ EX(R), any A-good corkscrew for Q can be
Jjoined to some A’-good corkscrew for R by a C(A,n)-good Harnack chain, with A’
depending on A,n.

This lemma will be proved in the next Sections 14 and 15. Using this result, in
Section 16 we will build the required carrot curves for the Main Lemma 10.2, which
join the pole p to points from a suitable big piece of Ry. If the reader prefers to
see how this is applied before its long proof, they may go directly to Section 16. A
crucial point in the Key Lemma is that the constant ¢ in the definition of the stopping
cubes of the corona decomposition does not depend on the constants A or 7 above.

To prove the Key Lemma 13.5 we will need first to introduce the notion of “cubes
with well separated big corkscrews” and we will split T™(R) into subtrees by in-
troducing an additional stopping condition involving this type of cubes. Later on,
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in Section 14 we will prove the “Geometric Lemma”, which relies on a geometric
construction which plays a fundamental role in the proof of the Key Lemma.

13.4. The cubes with well separated big corkscrews. Let Q € D be a cube such
that bB(Q) < Cye. For example, Q might be a cube from Q € T™(R) U Stop™(R),
with R € Top"”’ (which in particular implies that H3(R) < &). We denote by Lo a best
approximating n-plane for b3(Q), and we choose zb and ZZQ to be two fixed points in
By such that dist(ziQ,LQ) = r(Bp)/2 and lie in different components of R\ Lo.
So z{Q and z2Q are corkscrews for Q. We will call them “big corkscrews”.

Since any corkscrew x for Q satisfies dq(x) > «1 €£(Q) and we have chosen € < «,
it turns out that

dist(x, Lo) > %Kl 00) > £ £(Q).

As a consequence, x can be joined either to zb or to zzQ by a C-good Harnack chain,
with C depending only on n, Cy, k1, and thus only on n, Cy and the weak-A,, con-
stants in Bg,. The following lemma follows by the same reasoning:

Lemma 13.6. Let Q, Q' € D be cubes such that bB(Q), bB(Q’) < Cye and Q' is the
parent of Q. Let z’Qz’Q fori = 1,2, be big corkscrews for Q and Q' respectively.
Then, after relabeling the corkscrews if necessary, ZiQ can be joined to ZiQ/ by a C-
good Harnack chain, with C depending only on n, Cy, k1.

Given I' > 0, we will write 9 € WSBC(I') (or just Q € WSBC, which stands
for “well separated big corkscrews”) if bB(Q) < Cue and the big corkscrews le, ZZQ
can not be joined by any I'-good Harnack chain. The parameter I" will be chosen
below. For the moment, let us say that I'"! < &. The reader should think that in
spite of bB(Q) < Cae, the possible existence of “holes of size C ££(Q) in 0€)” makes
possible the connection of the big corkscrews by means of I'-Harnack chains passing
through these holes. Note that if H8(Q) < C4e and Q ¢ WSBC(I'), then any pair of
corkscrews for Q can be connected by a C(I')-good Harnack chain, since any of
these corkscrews can be joined by a good chain to one of the big corkscrews for Q,
as mentioned above.

13.5. The tree of cubes of type WSBC and the subtrees. GivenR € TopE)N ), denote
by Stopyysec(R) the maximal subfamily of cubes O € D(R) which satisfy that either

e O ¢ WSBC(I'), or
o 0¢TV(R).
Also, denote by Twsgc(R) the cubes from D(R) which are not contained in any
cube from Stopygpc(R). So this tree is empty if R ¢ WSBC(I'). Notice also that
Stopwsec(R) ¢ Twsec(R).
Observe that if Q € Stopygpc(R), it may happen that O ¢ WSBC(I'). However,

unless Q = R, it holds that O € WSBC(I"”), with I” > I depending only on I" and C
(because the parent of Q belongs to WSBC(I)).

For each Q € Stopygpc(R) \ Stop(R), we denote
SubTree(Q) = D(Q) N TM(R), SubStop(Q) = Stop(R) N D(Q).

So we have
TV®R) = Twssc®U | ] SubTree(0),
QeStopwspc(R)
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and the union is disjoint. Observe also that we have the partition

(13.7)  Stop(R) = (Stopywsac(R) N Stop(R)) U g SubStop(Q).
QeStopwspc(R)\Stop(R)

14. THE GEOMETRIC LEMMA

14.1. The geometric lemma for the tree of cubes of type WSBC. Let R € TopzN)
and suppose that Twspc(R) # @. We need now to define a family End(R) of cubes
from P, which in a sense can be considered as a regularized version of Stopygpc(R).
The first step consists of introducing the following auxiliary function:

d, = inf 4 + dist(x, ,  forx e R™!,
k()= inf - (0Q) +disi(x.Q)),  forx

Observe that dg is 1-Lipschitz.
For each x € 0Q we take the largest cube Q. € P such that x € Q, and

I .
(14.1) U@ = 355 yleanx dr(y).

We consider the collection of the different cubes Q,, x € dQ, and we denote it by
End(R).

Lemma 14.2. Given R € Top;)N), the cubes from End(R) are pairwise disjoint and
satisfy the following properties:

(a) If P € End(R) and x € 50Bp, then 100 £(P) < dg(x) <900 £(P).

(b) There exists some absolute constant C such that if P, P’ € End(R) and 50BpN
50Bp: # @, then C~1€(P) < £(P") < C {(P).

(c) For each P € End(R), there at most N cubes P’ € End(R) such that 50Bp N
50Bp: # @, where N is some absolute constant.

(d) If P € End(R) and dist(P, R) < 20 £(R), then there exists some Q € Twspac(R)
such that P C 220 and €(Q) < 2000 £(P).

Proof. The proof is a routine task. For the reader’s convenience we show the de-
tails. To show (a), consider x € 50Bp. Since dg(-) is 1-Lipschitz and, by definition,
dr(xp) > 300 £(P), we have

dr(x) = dp(xp) — |x — xp| = dr(xp) — 50 r(Bp) = 300 £(P) — 200 £(P) = 100 £(P).
To prove the converse inequality, by the definition of End(R), there exists some
7' € P, the parent of P, such that
dr(z) < 300 £L(P) = 600 ((P).
Also, we have
lx — 2’| < |x = xp| + |xp — 2’| <50 7(Bp) + 2£(P) < 300 £(P).

Thus,
dr(x) < dr(z') + Ix = 2’| < (600 + 300) £(P).
The statement (b) is an immediate consequence of (a), and (c) follows easily from
(b). To show (d), observe that, for any S € Twspc(R),
dgr(xp) < £(S) + dist(xp, S) < £(P) + €(S) + dist(P,S)
300 300 - 300 '

{(P) <
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Thus,
£(S) + dist(P, S)
{(P) g ————————=,
(P) < 299
In particular, choosing S = R, we deduce

{(R) + dist(P,R) 21
99 < 299 {(R) < {(R),
and thus, using again that dist(P, R) < 20{(R), it follows that P ¢ 22R. Let Sg €
Twsac(R) be such that dg(xp) = €(S() + dist(xp, So), and let Q € D be the smallest
cube such that Sy € Q and P c 22Q. Since Sy € R and P C 22R, we deduce that
So C Q C R, implying that Q € Twsgc(R).

So it just remains to check that £(Q) < 2000 ¢(P). To this end, consider a cube
é D S such that

E(P) + £(S o) + dist(P, S g) < £(Q) < 2(E(P) + £(S o) + dist(P, S ).

oP) <

From the first inequality, it is clear that P C 20 and then, by the definition of Q, we
infer that Q C Q. This inclusion and the second inequality above imply that

Q) < Q) < 2(¢(P) + €(S o) + dist(xp, S o)) = 4€(P) + 2 dr(xp).
By (a) we know that dr(xp) < 900 £(P), and so we derive £(Q) < 2000 £(P). O

Lemma 14.3. Given R € Top", if 0 € End(R) and dist(P,R) < 20£(R), then
bB(Q) < Ce and Q € WSBCI"), with I" = ¢¢I, for some absolute constants
C, Ce > 0.

Proof. This immediate from the fact that, by (d) in the previous lemma, there exists
some cube Q' € Twspc(R) such that Q c 220’ and £(Q’) < 2000¢(Q), so that
bB(Q’) < g and Q' € WSBC(I). O

As in Section 3, we make a standard Whitney decomposition of the open set Q.
With a harmless abuse of notation we let ‘W = “W(Q) denote a collection of (closed)
dyadic Whitney cubes of €, so that the cubes in ‘W form a pairwise non-overlapping
covering of Q, which satisfy for some My > 20 and Dy > 1

(i) 101 c Q;
(i) Myl N IQ + @,
(iii) there are at most Dy cubes I’ € ‘W such that 10/ N 10/’ # @. Further, for

such cubes I’, we have €(I") =~ €(I), where £(I") stands for the side length of
I.

From the properties (i) and (ii) it is clear that dist(/, 0Q) =~ €(I). We assume that the
Whitney cubes are small enough so that

1
14.4) diam(/) < — dist(/, 0Q2).
100
To construct this Whitney decomposition one just needs to replace each cube I € W,

as in [Ste, Chapter VI], by its descendants I’ € Dy (1), for some fixed k > 1.

For each I € ‘W, as much as in Lemma 9.6, we denote by B’ a ball concentric
with [ and radius Cs¢(I), where Cs is a universal constant big enough so that
wP (B
g( I)n—l

g(p,x) < for all x € 41,
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and whenever p ¢ 51. Obviously, the ball B intersects dQ, and the family {B’};cqy
does not have finite overlapping.

Given a bounded measurable set F ¢ R™! with |[F| > 0, and a function f €
L} (®R"™1), we denote by mp f the mean of f in F with respect to Lebesgue measure.

That is,
mrpf = ffa’x.
F

To state the Geometric Lemma we need some additional notation. Given a cube
R’ € Twsac(R), we denote by Twspc(R’) the family of cubes from D with side length
at most £(R") which are contained in 100Bgs and are not contained in any cube from
End(R). We also denote by E‘na(R’) the subfamily of the cubes from End(R) which
are contained in some cube from TWSBC(R’). Note that TWSBC(R’) is not a tree, in
general, but a union of trees. Further, from Lemma 14.2(a), it follows easily that

Twsac(R) U Stopwsac(R) € Twsec(R) N D(R).

Lemma 14.5 (Geometric Lemma). Let 0 < y < 1, and assume that the constant
I' = I'(y) in the definition of WSBC is big enough. Let R € TOpZN) N WSBC(') and
let R" € Twsgc(R) be such that ((R") = 2750¢(R), with ko = ko(y) > 1 big enough.
Then there are two open sets Vi, Vo C CBr N Q with disjoint closures which satisfy
the following properties:

(@) There are subfamilies ' W; C ‘W such that V; = ey, 1.1int(J).

(b) Each V; contains a ball B; with r(B;) ~ {(R’), and each corkscrew point
for R’ contained in 2Br N V; can be joined to the center z; of B; by a good
Harnack chain contained in V;. Further, any point x € V; can be joined to z;
by a good Harnack chain (not necessarily contained in V;).

(c) Foreach Q € (Twsac(R) U Stopyspc(R)) N D(R’) there are big corkscrews
z{Q € Vi N 2Bg and zzQ € Vo N 2By, and if Q is an ancestor of Q which
also belongs to Twsgc(R) N D(R’), then ziQ can be joined to Zi@ by a good
Harnack chain, for eachi = 1,2.

(d) (VU dVy) HBBR/ c Upemm,) 2Bp.

(e) For each P € End(R’) such that 2Bp N 10Bg: # @, let Wp be the family of
Whitney cubes I C V| U V, such that 1.11N AV, U Vo) N 2Bp # @, so that

AV N 2Bp C U 1.17.

IeWp
Then
(1)
&P
marg(p,-) <y AP for each I € Whp,
o(Ro)
and
(i1)
DL s Py and D W(B) s WP(CBp),
IGWP IGWP

for some universal constant C > 1.
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The constants involved in the Harnack chain and corkscrew conditions may depend
ong I, and y.S

14.2. Proof of the Geometric Lemma 14.5. In this whole subsection we fix R €
TopéN) and we assume Twspc(R) # @, as in Lemma 14.5. We let R’ € Tywsgc(R) be
such that £(R") = 2750 ¢(R), with ko = ko(y) > 1 big enough, as in Lemma 14.5, and
we consider the associated families ?WSBC(R/) and Igﬁa(R’).

Remark 14.6. By arguments analogous to the ones in Lemma 14.3, it follows easily
that if Q € :FWSBC(R’), for R € Twsac(R) such that £(R’) = 27%¢(R), then there
exists some cube S € Twspc(R) such that Q c 228 and €(S) < 2000£(Q). This
implies that b3(Q) < C & and Q € WSBC(cgI') too.

In order to define the open sets Vi, V, described in tA}}e lemma, ﬁrﬂve need to
associate some open sets U(Q), Ux(Q) to each Q € Twspc(R’) U End(R’). We
distinguish two cases:

e For Q € TWSBC(R’), we let J;(Q) be the family of Whitney cubes I € W
which intersect

{y € 20By : dist(y, Lp) > "/* £(Q)}

and are contained in the same connected component of R™*! \ Ly as ziQ, and
then we set
Ui(Q) = U 1.1int(I).
1eJi(Q)

e For Q € EF]H(R’) the definition of U;(Q) is more elaborated. First we con-
sider an auxiliary ball EQ, concentric with By, such that 198 C EQ C 20Bg
and having thin boundaries for w”. This means that, for some absolute con-
stant C,

(14.7)  wP({x € 2Bq : dist(x, dBg) < tr(Bp)}) < CtwP(2Bg) forall ¢ > 0.

The existence of such ball EQ follows by well known arguments (see for
example [To, p.370]).

Next we denote by J(Q) the family of Whitney cubes I € ‘W which
intersect EQ and satisfy £(I) > 0£(Q) for 6 € (0,1) depending on 7y (the
reader should think that # < & and that § = 277! for some j1 > 1), and we
set

(14.8) U(Q) = U 1.1int(7).
1€ (Q)
For afixedi =1 or 2, let {Dj.(Q)} j=0 be the connected components of U(Q)

which satisfy one of the following properties:
— either z’Q € D;(Q) (recall that Z’Q is a big corkscrew for Q), or

— there exists some y € Dj.(Q) such that g(p,y) > y€(Q)o(Ry)~' and

there is a Ce(7, 6)-good Harnack chain that joins y to ziQ, for some con-
stant Cg(7, 8) to be chosen below.

>To guarantee the existence of the sets V; and the fact that they are contained in Q we use the
assumption that Q = R"™! \ Q.
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Then we let Ui(Q) = U; Di(Q) After reordering the sequence, we assume

that zQ e D 0(Q). We let J i(Q) be the subfamily of cubes from J(Q) con-
tained in U; (Q)

In the case Q € TWSBC(R’), from the definitions, it is clear that the sets U;(Q) are
open and connected and

(14.9) U@ nUxQ) =2

In the case Q € Eﬁa(R’), the sets U;(Q) may fail to be connected. However, (14.9)
still holds if I" is chosen big enough (which will be the case). Indeed, if some com-
ponent Di. can be joined by Cg(y, 6)-good Harnack chains both to zlg and ZZQ, then

there is a C(y, #)-good Harnack chain that joins z1Q to ZZQ, and thus Q does not belong
to WSBC(cel') if T is taken big enough, which cannot happen by Lemma 14.3. Note
also that the two components of

{y € Bg : dist(y, Lg) > &' €(Q))
are contained in D(l)(Q) U D%(Q), because hB(Q) < Ce and we assume 0 < &.

The following is immediate:

Lemma 14.10. Assume that we relabel appropriately the sets U;(P) and corkscrews
szor Pe TWSBC(R’) U End(R’) Then for all Q, Q € TWSBC(R’) U End(R’) such that
Q is the parent of Q we have

(14.11) [20-25] C U@ N UKQ)  and  [z5.25] < Ua(Q) N Ux(0).

Further,
dlst([ZQ, 1,0Q) > ct(Q) fori=1,2,

where ¢ depends at most on n and Co.

The labeling above can be chosen inductively. First we fix the sets U;(T") and
corkscrews xiT for every maximal cube T from TWSBC(R') (contained in 100Bg- and
with side length equal to €(R’)). Further we assume that, for any maximal cube T,
the corkscrew x%. is at the same side of Lg: as zk,, for each i = 1, 2 (this property will
be used below). Later we label the sons of each T so that (14.11) holds for any son
Q of T. Then we proceed with the grandsons of 7, and so on. We leave the details
for the reader.

The following result will be used later to prove the property (e)(i).
Lemma 14.12. Suppose that the constant ko(y) in Lemma 14.5 is big enough. Let

Qe EF\H(R’) and assume 6 small enough and Ce(y, 0) big enough in the definition of
UQ). If y € B satisfies g(p,y) >y {(Q) o(Ro)™", then'y € U\(Q) U Ux(Q).

Recall EQ is the ball with thin boundary appearing in (14.7).

Proof. By the definition of U;(Q), it suffices to show that y belongs to some compo-
nent D;(Q) and that there is a Cg(7y, 8)-good Harnack chain that joins y to ziQ. To this
end, observe that by the boundary Holder continuity of g(p, -),

) s’ s’ £Q)
iy <0 2€ (555) mmstrr <€ (TG G5

where in the last inequality we used Lemma 9.7. Thus,

Sa() = ey ¢ Q),
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and if 6 is small enough, then y belongs to some connected component of the set
U(Q) in (14.8). By Lemma 14.2(d) there is a cube Q' € Twspsc(R) such that O C
220" and €(Q’) = €(Q). In particular, WA(p,A) N Q' D Gy N Q" # @ and thus, by
applying Lemma 11.11 with ¢ = y and ro = Cr(By) (for a suitable C > 1), it follows
that there exists a «j-corkscrew y* € C(y) Bg, with C(y) > 20 say, such that y can
be joined to y’ by a C’(y)-good Harnack chain. Assuming that the constant ky(y) in
Lemma 14.5 is big enough, it turns out that y* € 2By~ for some Q" € Twsgc(R) such
that 22Q” > Q. Since all the cubes S such that Q ¢ § € 220" satisfy bB(S) < Ce,
by applying Lemma 13.6 repeatedly, it follows that y' can be joined either to le or

ZZQ by a C”(y)-good Harnack chain. Then, joining both Harnack chains, it follows
that y can be joined either to zb or z2Q by a C"”’(y)-good Harnack chain. So y belongs
to one of the components D;’ assuming Ce (7, ) big enough. |

From now on we assume 6 small enough and Cs(y, 8) big enough so that the
preceding lemma holds. Also, we assume 6 < £*. We define

V) = g UiQ), Vo= g U>(0).

0eTwsac(R)UENd(R) QcTwspc(R)UEN(R')
Next we will show that
VinV, = o.

Since the number of cubes Q € :FWSBC(R’) U EFIB(R’) is finite (because of the trun-
cation in the corona decomposition), this is a consequence of the following:

Lemma 14.13. Suppose I is big enough in the definition of WSBC (depending on
0). For all P, Q € Twsgc(R') U End(R’), we have

Ui(P)n Ux(Q) = @.

Proof. We suppose that £(Q) > £(P) We also assume that U;(P) N U(Q) # @ and
then we will get a contradiction. Notice first that if £(P) = €(Q) = 277 ¢(R’) for some
j = 0, then the corkscrews z} and ZiQ are at the same side of Ly for each i = 1,2.
This follows easily by induction on ;.

Case 1. Suppose first that P,Q € :I:WSBC(R’). Since the cubes from J>(Q) have
side length at least cel/* £(Q), it follows that at least one of the cubes from 7, (P)
has side length at least ¢’ £'/# £(Q), which implies that £(P) > ¢’ &'/* £(Q), by the
construction of U (P).

Since U1 (P) N Uy(Q) # @, there exists some curve y = y(z}p, ZZQ) that joins z}, and
22Q such that dist(y, Q) > c&'/? £(Q) because all the cubes from J>(Q) have side
length at least ce'/* £(Q), and the ones from J;(P) have side length > cel/*eP) >
ce'? Q).

Let P be the ancestor of P such that 5(?) = £(Q). From the fact that U{(P) N
Us(Q) # @, we deduce that 20Bp N 20Bg # @ and thus 2085 N 20By # @, and so
20B3 c 60Bg. This implies that z}% is in the same connected component as zé and
also that dist([z,, z%], 4Q) 2 €(Q), because hB(100Bp) < & < 1 and they are at the
same side of L.

Consider now the chainP =P, Cc P, C...C P, = F, so that P;, is the parent of
P;. Form the curve v’ = y’(zlﬁ, Z}D) with endpoints Zlﬁ and z}, by joining the segments
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[Z;)i, Z,l)iﬂ]. Since these segments satisfy

dist([zp,. zp,,,1,0Q) > c €(Py) > c €(P) > c ' £(Q),

it is clear that dist(y’, 0Q) > c &'/4 €(Q).

Next we form a curve y” = y”(z(), z,) which joins z;, to z;, by joining [le,z,lﬁ],
y’(z%, zp), and y(z},,zzg). It follows easily that this is contained in 90Bg and that
dist(y”,0Q) > c'/? £(Q). However, this is not possible because le and zzQ are in

different connected components of R"*!'\ Ly and bB(Q) < & < &!/?

ex ).

(since we assume

Case 2. Suppose now that Q € EFIH(R’). The arguments are quite similar to the ones
above. In this case, the cubes from J,(Q) have side length at least 6 £(Q) and thus
at least one of the cubes from 71 (P) has side length at least ¢ 6 £(Q), which implies
that £(P) > ¢’ 0€(Q).

Now there exists a curve y = y(z},, ZQQ) that joints z}, and zZQ such that dist(y, 0Q) >
¢ 6% £(Q) because all the cubes from J>(Q) have side length at least 8 £(Q), and the
ones from 7| (P) have side length 8 £(P) > ¢ 6> £(Q).

We consider again cubes P and Pi,...,P,, defined exactly as above. By the
same reasoning as above, dist([z]Q,zlﬁ],GQ) > €(Q). We also define the curve y’ =

y’(z%, z}g) which joins z%; to z}, in the same way. In the present case we have
dist(y’,0Q) = €(P) > c0£(Q).

Again construct a curve Y’ = )’"(ZIQ, ZZQ) which joins ZIQ to ZZQ by gathering [ZIQ, Zlﬁ],
y’(z%;, z},), and y(z}g, ZZQ). This is contained in CBy (for some C > 1 possibly depend-
ing on y) and satisfies dist(y”,0Q) > ¢ £(Q). From this fact we deduce that ZIQ
and zzQ can be joined by C(6)-good Harnack chain. Taking I" big enough (depending

on C(6)), this implies that the big corkscrews for Q can be joined by a (csI')-good
Harnack chain, which contradicts Lemma 14.3.

gase 3. Finally suppose that P € Eﬁa(R’). We consider the same auxiliary cube
P and the same curve y = y(z},,zzQ) satisfying dist(y, 0Q) > c6{(P). By joining
the segments [z%i,zfyiﬂ], we construct a curve y, = yé(z%, Z%) analogous to y' =
y’(zlﬁ, zp) from the case 2, so that this joins z% to z3 and satisfies dist(y}, Q) 2 €(P).

77

We construct a curve v that joins zllj to z% by joining y(z},,zzQ), [z2Q,z?I3], and

yé(z%, Z%,). Again this is contained in CByg and it holds dist(y’”’, dQ) > ¢ 6 £(P). This
implies that Z}D and zf, can be joined by C(#)-good Harnack chain. Taking I' big

enough, we deduce the big corkscrews for P can be joined by a (c¢I')-good Harnack
chain, which is a contradiction. O

By the definition of V| and V; it is clear that the properties (a), (b) and (c) in
Lemma 14.5 hold. So to complete the proof of the lemma it just remains to prove (d)
and (e).

Proof of Lemma}iS(d). Let x € (V] UdV,) N 10Bg.. We have to show that there
exists some § € End(R’) such that x € 2Bg. To this end we consider y gjﬂ such
that |x — y| = dq(x). Since xg € 99, it follows that y € 20Bg.. Let S € End(R’) be
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such that y € S. Observe that

(14.14) £(S) < ﬁ dr(y) < ﬁ (6(R") + 20 r(Bg')) = %0

We claim that x € 2Bgs. Indeed, if x ¢ 2By, taking also into account (14.14), there
exists some ancestor Q of S contained in 100Bg such that x € 2By and dq(x) =
|x —y| = €(Q). From the fact that S C Q c 100Bg we deduce that Q € :i:WSBC(R’).
By the construction of the sets U;(Q), it is immediate to check that the condition
that 6o(x) =~ £(Q) implies that x € U (Q) U U>(Q). Thus x € V| UV, and so
x ¢ d(V1 U Vy) = gV U dV, (for this identity we use that dist(Vy, V2) > 0), which is
a contradiction. O

(R < %K(R').

To show (e), first we need to prove the next result:

Lemma 14.15. For eachi = 1,2, we have

AV N 10Bg C U UK Q).
QcEnd(R")

Proof. Clearly, we have

dV; N 10Bg C U AU(P) U U UK Q).

PeTwsac(R): QcEnd(R)):
PﬂlOBR/;tQ QﬂlOBRI¢®
So it suffices to show that
(14.16) L) oupynovin10Br = 2.
PeTwsac(R):
PN10Bg 2

Let x € QU;(P) N 8V; N 10Bg., with P € Twsgc(R'), P N 10Bg # @. From the
definition of U;(P), it follows easily that

(14.17) Sa(x) > e/4eP).

On the other hand, by Lemma 14.5(d), there exists some Q € EF]E!(R’) such that
X € 2Bg. By the definition of U;(Q), since 6 < &, it also follows easily that

{y € 2By : 6a(y) > £/20(Q)} c Vi U V,.
Hence, dist(dV; N 2By, 0Q)) < e'2£(Q), and so
(14.18) sa(x) < 2 ¢(Q).
We claim that £(Q) < €(P). Indeed, from the fact that x € dU;(P) C 30Bp, we

infer that
30Bp N 2BQ * 0.

Suppose that £(Q) > €(P). This implies that Bp C 33Bg. Consider now acube S C P
belonging to End(R’). Since Bs N 33Bp # @, by Lemma 14.2 (b) we have

{(Q) = US) < UP),
which proves our claim. Together with (14.17) and (14.18), this yields
e U(P) < 5a(x) s &2 L(Q) < &2 U(P),

which is a contradiction for £ small enough. So there does not exist any x € dU;(P)N
0V; N 10Bg’, which proves (14.16). ]
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Proof of Lemma 14.5(e). Let P € EF\H(R’) be such that 2Bp N 10Bg # @. The
statement (i) is an immediate consequence of Lemma 14.12. In fact, this lemma
implies that any y € 2Bp such that g(p,y) > y £(P) o (Rp)~! is contained in U;(P) U
U,(P) and thus in V| U V,. In particular, y ¢ d(V; U V,) = 9V U dV,. Thus, if
y € 2Bp N dV;, then

{(P)

a(Ro)

It is easy to check that this implies the statement (i) in Lemma 14.5(e) (possibly after
replacing y by Cy).

gp,y)<vy

Next we turn our attention to (ii). To this end, denote by Jp the subfamily of the
cubes Q € End(R’) such that 30Bp N 2Bp # @. By Lemma 14.15,

(14.19) oV N 2Bp C U AU(Q) N 2Bp.
QeJp

‘We will show that

(14.20) Z oIy < €PY"  and Z W”(B") < wP(CBp),
IGWP IE(WP

where ‘Wp is the family of Whitney cubes I C V| U V; such that L.IINA(V,UVa)N
2Bp # @. To this end, observe that, by (14.19) and the construction of U;(Q), for
each I € Wp there exists some Q € Jp such that I € 30B¢ and either £(1) = 6£(Q)
or 1.1 N 8§Q # @. Using the n-ADRity of o, it is immediate to check that for each
Q€ Jp,

D>y s a0

1C3OBQZ
UD=6((Q)

Also,

> ownys ) H'QINGBg) s H'(0Bo) < €(Q)".
IeW: IeWw
1.171n3Bp#2 1.11N8Bo#2

Since the number of cubes Q € Jp is uniformly bounded (by Lemma 14.2(b)) and
{(Q) ~ £(P), the above inequalities yield the first estimate in (14.20).

To prove the second one we also distinguish among the two types of cubes I € Jp
above. First, by the bounded overlap of the balls B! such that £(I) = 6 £(Q), we get

(14.21) Z w"(B) < w"(CBp),
1c30Bg
o(1~06(Q)
since the balls B in the sum are contained CBp for a suitable universal constant
C > 1. To deal with the cubes I € ‘W such that 1.17 N 9By # @ we intend to use the
thin boundary property of EQ in (14.7). To this end, we write

Z wP(B') = Z Z w’(B") < Z WP (Up-in diam(Q)(aEQ))’

TeWw: k20 IeW: k>0
1.1INdBo+@ 1.1INdBp+2

«nH=27%6(Q)
where U (A) stands for the d-neighborhood of A. By (14.7) it follows that

W"(Uy-g)(9Bg)) $ 27" wP(C'By),



HARMONIC MEASURE AND QUANTITATIVE CONNECTIVITY 63

and thus
D, WP(B') 5 w"(C'By) < W (CBp),

deWw:
1.171n3By#

for a suitable C > 1. Together with (14.21), this yields the second inequality in
(14.20), which completes the proof of Lemma 14.5(e). m|

15. Proor or THE KEY LEMMA

We fix Ry € D and a corkscrew point p € Q as in the preceding sections. We
consider R € Top;)N) and we assume Twsgc(R) # @, as in Lemma 14.5. We let
R’ € Twsec(R) be such that £(R) = 2_k0€(R), with kg = ko(y) > 1 big enough.

Given A >0andi = 1,2, we set
(15.1)  Hi(R") ={Q € Stopyspc(R) N DR )N G : g(p, ziQ) > AL(Q) o-(Ro)‘l},

so that by Lemma 12.4, Stopyggc(R) N D(R') N G = H{(R) U Hy(R"). Here we
are assuming that the corkscrews ziQ belong to the set V; from Lemma 14.5, that 1 is
small enough, and we are taking into account that, by the arguments in Section 13.4,
any corkscrew for Q can be joined to one of the big corkscrews le by some C-good
Harnack chain.

Lemma 15.2 (Baby Key Lemma). Let p, Ry, R, R’ be as above. Given A > 0, define
also Hi(R") as above. For a given T > 0, suppose that

0'( U Q)ZTO'(R').

QeH;(R")

If v is small enough in the definition of V; in Lemma 14.5 (depending on T and 1),
then

LR

o (Ro)’

8(p, Zig,) > c(4,71)

Remark that I" depends on y (see Lemma 14.5), and thus the families WSBC(T'),
Stopwspc(R), Hi(R") also depend on y. The reader should thing that ' — oo as
vy — 0.

A key fact in this lemma is that the constants A, 7 can be taken arbitrarily small,
without requiring € — 0 as A7 — 0. Instead, the lemma requires y — 0, which does
not affect the packing condition in Lemma 13.2.

We denote
Bdy(R’) = U Wp,
PEENd(R"):2BpN10By £2
with ‘Wp as in the Lemma 14.5. That is, ‘Wp is the family of Whitney cubes I C

Vi U V, such that 1.17 N (Vi U Vo) N2Bp # @. So the family Bdy(R’) contains
Whitney cubes which intersect the boundaries of V; or V; and are close to 10Bg-.

Let us introduce some extra piece of notation. Given ¢ € R"! and 0 < r < s we
let

Alg.r,s) = B(q,5) \ B(q. 7).

To prove Lemma 15.2, first we need the following auxiliary result.
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Lemma 15.3. Let p, Ry, R, R’ be as above and, fori =1 or 2, let Q € H;(R’). Let V;
be as in Lemma 14.5 and let g € Q be a corkscrew point for Q which belongs to V.
Denote r = 2¢(R") and for 6 € (0, 1/100) set

A% = {x€A(g,r,2r) NQ : 6a(x) > 6r).

Then we have

1 (r,y)
g(p,q) < — sup g£P. g(g, x)dx
" yeainy, 000 Jag

6(1/2
25 [ e [ s
r A(g,r,2r) A(q,r,2r)

1
> D f |8(p. %) Vg(q, x) = Vg(p. ) g(g, »)| dx.
y (D Jor

IeBdy(R’

Let us note that the fact that g is a corkscrew for Q contained in V; implies that
dist(g, dV;) = £(Q), by the construction of the sets V; in Lemma 14.5.

Proof. We fix i = 1, for definiteness. Recall that Vi = (J;eqy, 1.1int(J). For each
I € Wy, consider a smooth function r7; such that yo9; < 177 < x1.007 With [|[V7]le <
&0)~" and

n:= Z n=1 onV;N10Bg \ U 21.
IeW, IeBdy(R’)

It follows that suppr C V1 and so suppn N V> = @, and also

supp(V) N 10Bp < | | 21
IeBdy(R’)

Let ¢g be a smooth function such that xg,1.2-) < @0 < XB(g,1.8r), With [[Vplle <
1/r. Then we set
¥ = neo.
So ¢ is smooth, and it satisfies
supp Vo € (A(g,r,2r) N Vi) U U 21.
IeBdy(R’)
Observe that, in a sense, ¢ is a smooth version of the function x .-y, -

Since g(p,q) = g(p,q) ¢(g) and g(p,-) ¢ is a continuous function from W&’Z(Q),
we have

gmm=memwwW@mm

= L 8(p, x) Vo(x) Vg(q, x) dx + fg o(x) Vg(p, x) Vg(g, x)dx
=1+ 0.

First we estimate I>. For € with 0 < & < 1/10, we consider a smooth function

¢ such that xpgesag) < Pe < XBg2e0(q)> With [[Veellw < 1/(€60(g)). Since
©Ye = g, We have

L= fQ @e(x) Vg(p, x) Vg(g, x)dx + fQ e(xX)(1 = @s(x)) Vg(p, x) Vg(g, x) dx

= IZ,a + IZ,b-
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To deal with I, we use the fact that for x € B(q, 2e0q(q)) we have

(p.9)
IVe(g, X < — and  |Vg(p,x)| < 8r9)
kv =dl 5a(q)
Then we get
(P.9) 1 (p.9)
Il < 24 dx < £2Y ¢ 50(q) = £ 8(p, q).

80(q) JBgresaq) X —al" T 0a(q)

Let us turn our attention to I . We denote ¢ = ¢(1 — ¢,). Integrating by parts,
we get

Iy = f Ve(p. ) VW g(g, () dx - f Ve(p©) VU(x) g(q, ) dx.

Observe now that the first integral vanishes because i g(g, ) € Wé’z(Q) N C(ﬁ) and
vanishes at dQ and at p. Hence, since Viy = Vo — V., we derive

by = f Ve(p. x) Vo) g(q.x)dx + f Ve(p, ) Vo) gq, ¥ dx = Is + L.

To estimate Iy we take into account that [Vog| < Xa(g.s60(9).2600(¢)/(€00(q)), and
then we derive

4] < [Ve(p, x)l g(g, x) dx.

€00(q) Jage00(@).2¢0))
Using now that, for x in the domain of integration,

g(p,q)

and |[Vg(p,x)| < )
8 50(q)

1
IS oty

we obtain
1 1 8(p.q)
£da(q) (eda(@))! dalg)

From the above estimates we infer that

I4] < (eda(@)"! < e8(p, q).

8p.q) <l + I3 + ceg(p, q).
Since neither I nor I3 depend on g, letting € — 0 we get

gp,q) < | + 15

< \ f o(p, ) V() V(g x) dx — f Ve(p, ) V() (g, ) dx

< f IVe(0)l|g(p, x) Vg(q. x) — Vg(p, x) g(g, x)| dx.

We denote _
F= U 21,
IeBdy(R’)
Al = {x € A(q,12r,1.8) NV \ F : 6a(x) > 61},
and

A5 ={x€A(g,12,1.8) NV, \ F:a(x)<6r.
Next we split the last integral as follows:

(15.4) 8(p.q) < fx Vo)l |8(p. x) Vg(q. x) — Vg(p, x) g(q, x)| dx

+ L V(0! [g(p. x) V(g x) = Vg(p, x) g(q, x)| dx

o
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+ f~ V(0! |g(p, x) Vg(g, x) — Vg(p, x) g(q, x)| dx
F
=Ji+Jr+J;5.
Concerning J;, we have

Ve 0l < 520 and Ve(g 0l s 520 forallxe A0

6a(x) 00(x)
Thus, using also that |V¢| < 1/r outside F,

|
(15.5) Nl oap 82N

8(g, x)dx.
T xentny, 92(%)  Ja

Regarding J,, using Cauchy-Schwarz, we get

1
(15.6) nss fx l9(p. ) V(g 3) — Vg(p. ) g(q. 1) dx

1 1/2 1/2
s—( f_ g(p,x>2dx) ( ﬁ |Vg<q,x)|2dx)

r Ar,(S Ar,6

1 1/2 1/2
+—( ﬁ |Vg(p,x)|2dx) ( ﬁ g(q,x)zdx) .

r Ar,6 Ar,ri

To estimate the integral f; , g(p, x)2 dx, we take into account that, for all x € ;415,

g(p,x) <6 JE g(p.y)dy.
A(gq,r,2r)

5 5% 2
j; 8(p,x)"dx $ — (f g(p,x)dx) )
Ars r A(q,r,2r)

Next we estimate the integral f; , Vg(q, x)|? dx. By covering Xr,g by a finite fam-
ily of balls of radius /100 and applying Caccioppoli’s inequality to each one, it

follows that
1
f V(g 0P dx < — f £(q, x dx.
Ars r A(gq,1.1r,1.9r)

g(g,x) < JC g(g,y)dy forall x € A(g, 1.1r,1.97),
A(q,r,2r)

Then we deduce

Since

we get

2
1 1
f~ Ve(g, 0P dx 5 - f 8(g, X7 dx s — ( f g(q,x)dX) :
Ars = JAg.1.1r,1.9r) r A(g.r.2r)

So we obtain

1/2 1/2
( f_ o(p. ) dx) ( f_ Ve(a, x)|2dx)
Ar,z)‘ Ar.(S

S "+2f g(p,x)dxf g(q, x)dx.
r Alg,r,2r) A(q,r,2r)
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By interchanging, p and g, it is immediate to check that an analogous estimate holds
for the second summand on the right hand side of (15.6). Thus we get
6&/ 2

-3 f 8(p, x)dx f (g, x) dx.
r A(g,r,2r) A(q,r,2r)

Concerning J3, we just take into account that [Vo| < 1/4(I) in 21, and then we
obtain

(15.7) I <

1
s ) 0 f2 I|g(p,X)Vg(q,X)—Vg(p,X)g(q,X)|dx-

IeBdy(R’)
Together with (15.4), (15.5), and (15.7), this yields the lemma. |

Proof of Lemma 15.2. We fix i = 1, for definiteness. By a Vitali type covering
theorem, there exists a subfamily H{(R") C H{(R’) such that the balls {8B¢} 0cFL(R)

are disjoint and
> @ Y o

QeHi (R QcH) (R)
By Lemma 15.3, for each Q € ﬁl(R’) we have
1 8(p,y)
g(p.7p) S = sup 8z, x) dx

T ye2BpVi:50(0)26R) 0Q(Y) Azlyr2r)
50/2

1
+ ¢(p. 1) dx f g(ch. %) dx
s fA(zg,r,zn Achr2n 2

1
Z 70 Ll|g(p, X) Vg(z. x) = Vg(p, x) g(zp. x)| dx

IeBdy(R’)
= 11(Q) + L(Q) + I(0Q),
with » = 2€(R’). Since g(p, le) > A(Q)/o(Ry), we derive

(158) ro(R)sd D, @< D ep.zp)€Q)" o(Ro)

QeH(R) QeHI(R)

3
<D LHQUQ o(Ro).

J=1 geH (R

Estimate of ZQeﬁl(R’) 1(0) £(0)""!. We have

> n@u!

QeHI(R")

<

SN =

g(p,y) Z f g(ZIQ,x)dxf(Q)n—l'
A

sup
YE2BR NV1:00(y)206(R’) 6Q(y) 0c H (R") (ZQ r,2r)

Note now that

> | gy S DA 5 | , 2y WO

QeH (R 0eH| (R
< f ldx < (RY™!,
ZBRI
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where we used the fact that the cubes 40, with Q € Hi(R), are pairwise disjoint.
Since r ~ £(R’), we derive

>, LUy s sup 0D o ),

QeH (R YE2BR NV 1:60()26L(R’) 6a(y)

Estimate of ) 0cF, (R L(0Q) £(Q)*"!. First we estimate fA (b2 g(p, x) dx by apply-
ing Lemma 9.7:

P (8 Bg
f g(p, x)dx < f gp,x)dx < OR Y™ w (/ Rl)
A(le,r,Zr) 2B (R~

R' rn+2
<ury T8 ,
o(Ro) o (Ro)
So we have
- 52/ .
Z B Q™ < ro(Ro) Z f 1 8(zp. ) dx ((Q)"
QEHI(R’) 0 Qeﬁl(R’) A(ZQ,r,Zr)
6(1/2
S w*(4Q) dx
ro(Ro) LBR’ Z
QeH(R")
a/2 @/2 ,
< 0 1dx < M o(R)
ro(Ro) Ja, a(Ro)

Estimate of 0ef, (R,)I3(Q) £(Q)"'. Note first that, for each I € Bdy(R’), since

le ¢ 41, using the subharmonicity of g(p,-) and g(le, -) in 41, and Caccioppoli’s
inequality,

1 f 1 1 1
- | 18P, 0)Vg(zy, x)|dx < — sup g(p, x) f IVe(zg, x)ldx
i 09l dx 5 775 5up a0

< ()" masg(p, ) marg(zg, ).
By very similar estimates, we also get
1
— | |Vs(p, 0, %) dx < ey - 0 )-
w0 f2 1| 8(p. ) 8(z0. )| dx < €1 mazg(p. ) masg(zg.-)
Recall now that, by Lemma 14.5(e)(i),
{(P)
marg(p,-) <Y ———
418(p Y (Ro)
for each I € ‘Wp, with P € EFIH(R’) such that 2Bp N 10Bg + @.

We distinguish two types of Whitney cubes I € Bdy(R’). We write I € T if
&) > v'2¢(P) for some P such that I € Wp and 2Bp N 10Br # @, and we
write / € T, otherwise (there may exist more than one P such that I € ‘Wp, but if
Wp N Wp # @, then £(P) =~ £(P")). So we split

D B@UOT < Y T mag(p, ) mag(zgy, ) €Q)"

QcHI(R) QcH (r) 1€BAY(R)

(15.9) = D D D> Y =SS,

ocH () I<T OcH () I€T2
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Concerning the sum S| we have

sisy 0 Ay (el o

£ = o(Ro)
QeHi(R") PeEnd(R): I€WpNTi
2BpN10By 2

YN D s masho 0!

QeHi(R") PeEnd(R): 1eWp
2BpN10Bp 0

Next we take into account that

Q)" marg(zy, ) < W"(4Q),

where x; stands for the center of 7 and C > 1 is some absolute constant. This follows
from Lemma 9.7 if x; is far from Q, and it can be deduced from Lemma 9.4 when x;
is close to Q (in this case, w*(4Q) =~ 1). Then we derive

ST

QeH (R") PeEnd(R'): 1eWr
2BpN10Bg #2

Since ZQeﬁl(R’) w(4Q) < 1 for each I, we get

sisy? Y Y "

BT L 7(Ro)
PeEnd(R’): 1eWr
2BpN10By #0

By Lemma 14.5(e)(ii), we have }};cqy, £(I)" < £(P)", and so we deduce

1/2 Z o(P) Y o(R)
= o(Ro) ~ " o(Ro)
PeEnd(R’):
2BpN10Bp #0

S15y

Next we turn our attention to the sum S, in (15.9). Recall that

D DLl mag(p,) muglzp,) €Q)".

OcH\ () I€T2

Let us remark that we assume the condition that I € “Wp for some 2P € EFrd(R’)
such that 2Bp N 10Bg: # @ to be part of the definition of / € T;. Using the estimate
marg(p,-) < wP(B') &(I)'™", we derive

Sas D, D W' (BYmyglzp,) (O
QeH, (R I€T2

= Z Z ot Z Z ...=tA+B.

QEﬁ] (R") 1€T>:20IN20Bp+2 Qeﬁl R) 1€T>:20IN20Bp=2

To estimate the term A we take into account that if 20/N20Bg # @ and I € Wp, then
¢(P) < £(Q) and thus £(]) < 71/2 £(Q) because I € T,. As a consequence, I C 21Bg
and also, by the Holder continuity of g(zéz, -), if we let B be a ball concentric with B’

with radius comparable to £(Q) and such that dist(le, B) = £(Q), we obtain

r(B’) @ o
W) mBg(ZlQ,‘) <Y 2

1
myp8(2p,7) < ( o
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where @ > 0 is the exponent of Holder continuity. Hence,

A<y"/2 Z Z Z wP(B).

QeHi(R") PeEnd(R): I€WpNT:
2BpN10By #2
20BpN20Bp#o

By Lemma 14.5(e)(ii), we have } ey, wP(B') < w”(CBp), and using also that, for
P as above, CBp C C'By for some absolute constant C’, we obtain

/2 V¥ Palt /2 O-(Q) /2 O-(R/)
A<y Z w’(C'Bg) Sy Z ik 57 Sy
Q€H; (R") Q€H, (R")

Finally, we turn our attention to the term B. We have

B= Z Z WP (B") masg(zg. ) Q)"
0eh; (r") [€T2:20IN20Bo=2

= > W'(BY f >, 8z, X) ((Q)"" dx

IeT, Q€H, (R"):20IN20By=0
< Z wP (B JC Z w*(8Bg) dx.
IeT, Q€H; (R"):20IN20Bp=0

We claim now that, in the last sum, if one assumes that 20/ N 20Bp = @, then

dist(1, 8Bg) = ¢y~ "2 £(I). To check this, take P € End(R’) such that I € Wp. Then
note that

{(P) £ — 300 dr(xp) < 300 — (dist(xp, Q) + £(Q))

< ﬁ (dist(xp, I) + diam(J) + dist(I, 8B) + CL(Q)).

Using that I N 2Bp # @, diam(/) < Cyl/zé’(P) < {(P), and £(Q) < dist(1,8Bp), we
get

1 . .
{(P) < 300 (dist(Z,8Bg) + 3r(Bp) + C £(Q)) < C dist(/,8Bp) + ﬁ {(P),

which implies that
oIy < Cy'"? e(Py < Cy'/? dist(1, 8By),
and yields our claim.
Taking into account that the balls {8Bp} 0cF, (R
nuity of w(0Q \ cy~'/21), for all x € 41 we get

> w'(8Bg) < w'(0Q\ ey 1) < ¥,
QeH; (R"):20IN20By=2

Bsy? Y w(By<y? Y > W,

IeT, PGEFIH(R’)Z IeWpNT,
2BpN10Bg @

Recalling again that ey, w”(B') < wP(CBp), we deduce

P) o(R)

B <vyY? g P(CBp) < v*/? § o < /2 .

4 2, w(CBrsy 2 Ry ST TR
PeENnd(R’): P<ENnd(R’):

2BpN10Bg #@ 2BpN10Bg: #@

are disjoint and the Holder conti-

Thus,
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Remark that for the second inequality we took into account that P is contained in a
cube of the form 22P" with P’ € Twsgc(R) and £(P’) = £(P), by Lemma 14.2. This
implies that w?”(CBp) < w”(C'Bp) < o(P") o(Ry)™' < o(P) r(Ry)~".

Gathering the estimates above and recalling (15.8), we deduce

ro(R) < sup 8(p.7) a(R) o (Ry) + 6“* (R + y** o(R)).
V2B (V) :5a()250R") 0Q(Y)
So, if § and y are small enough (depending on A, 7), we infer that

Ato(R) < sup 8(p.7) a(R") o(Ry).
V2B V1 :60()250R") 00(Y)
That is, there exists some yg € 2Bg N V| with §a(yo) = § £(R’) such that

8p,yo) AT
sa(y) ~ o(Ro)’
with ¢ depending on A, 7. Since Z}e' and yg can be joined by a C-good Harnack chain
(for some C depending on ¢ and 7y, and thus on 4, 7), we deduce that

g(p, leg/) o c(A,7)
{R) 7 o(Ry)’
as wished. O

Lemma 15.10. Let n € (0,1) and A > 0. Choose v = y(A,T) small enough as in
Lemma 15.2 with T = n/2. Assume that the family WSBC(T') is defined by choosing
I" big enough depending on vy (and thus on A and n) as in Lemma 14.5. Let R €
Top;N) and suppose that Twsgc(R) # @. Then, there exists an exceptional family
Exwsac(R) C StOpWSBC(R) NG satisfying
o(P) <no(R)
PeExwsac(R)
such that, for every Q € Stopygpc(R) N G \ Exwssc(R), any A-good corkscrew for

O can be joined to some A’-good corkscrew for R by a C(A,n)-good Harnack chain,
with ' depending on A, 1.

Proof. For any R € DkO(R) N Twsec(R), with ky = ko(y), we define H;(R’) as in
(15.1), so that

Stopwsec(R) N G N D(R") = Hi(R") UHLy(R).

For each R’, we set
2
Exwssc(R) = | ] {Q € HiR) : Zpenry o(P) < 7o (R},
i=1
That is, for fixed i = 1 or 2, if 3 pep g 0(P) < 70 (R’), then all the cubes from
H;(R’) belong to Exywspc(R’). In this way, it is clear that

(15.11) > oP)<2ro(R) = na(R).
PeExwspc(R')

We claim that the A-good corkscrews of cubes from Stopysgc(R) N G N D(R') \
Exwsec(R’ ) can be joined to some A- -good corkscrew for R’ by a C- -good Harnack
chain, with 1 depending on 4,7, and Cc depending on I' and thus on 4, 77 too. Indeed,
if O € Hi(R’) \ Exwsgc(R’) and ZQ is A-good corkscrew belonging to V; (we use the
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notation of Lemma 15.2 and 14.5), then 3’ pepy, g 0(P) > 70 (R’) by the definition
(R

_ o(Ro)*
corkscrew, which by Lemma 14.5(c) can be joined to z’Q by a C-good Harnack chain.

above and thus Lemma 15.2 ensures that g(p, Zﬁe') > c(A4,7) So Zﬁe’ is az—good

In turn, this A- good corkscrew for R’ can be joined to some A’-good corkscrew for R
by a C’-good Harnack chain, by applying Lemma 13.6 ko times, with C” depending
on ko and thus on 4 and 7.

On the other hand, the cubes Q € Stopyggc(R)NG which are not contained in any
cube R’ € Dy, (R) N Twsec(R) satisty £(Q) > 27k0¢(R), and then, arguing as above,
their associated A-good corkscrews can be joined to some A’-good corkscrew for R
by a C’-good Harnack chain, by applying Lemma 13.6 at most ko times. Hence, if
we define

Exwsec(R) = U Exwsec(R"),
ReDyy (R)

taking into account (15.11), the lemma follows. ]

Proof of the Key Lemma 13.5. We choose I' = I'(4,7) as in Lemma 15.10 and
we consider the associated family WSBC(I'). In case that Twsgc(R) = @, we set
Ex(R) = @. Otherwise, we consider the family Exwsgc(R) from Lemma 15.10, and
we define

Ex(R) = (Exwssc(R) N Stop(R)) U U (SubStop(Q) N G).
Q€Exwsec(R)\Stop(R)

It may be useful for the reader to compare the definition above with the partition of
Stop(R) in (13.7). By Lemma 15.10 we have

doas Y aP)<na®).

PeEX(R) Q<cExwsgc(R)

Next we show that for every P € Stop(R) N G \ Ex(R), any A-good corkscrew for
P can be joined to some A’-good corkscrew for R by a C(4, n7)-good Harnack chain.
In fact, if P € Stopygpc(R), then P € Stopyygpc(R) N G \ Exwspc(R) since such
cube P cannot belong to SubStop(Q) for any Q € Stop\ygpc(R) \ Stop(R) (recall the
partition (13.7)), and thus the existence of such Harnack chain is ensured by Lemma
15.10. On the other hand, if P ¢ Stopygpc(R), then P is contained in some cube
Q(P) € Stopygpc(R) \ WSBC(I'). Consider the chain P =Sy c S, Cc---C Sy =
Q(P), so that each §; is the parent of S;_;. For 1 < i < m, choose inductively a
big corkscrew x; for §; in such a way that x| is at the same side of Lp as the good
A corkscrew zp for P, and x;, is at the same side of Lg, as x; for each i. Using
that B(S;) < Ce < 1 for all j, it easy to check that the line obtained by joining
the segments [zp, x1], [x1, X2],. .. ,[Xm—1, Xn] 1S @ good carrot curve and so gives rise
to a good Harnack chain that joins zp to x,,. It may happen that x,, is not a A-good
corkscrew. However, since Q(P) ¢ WSBC(I), it turns out that x,, can be joined to
some c3-good corkscrew zg(p) for Q(P) by some C(I')-good Harnack chain, with c3
given by (12.5) (and thus independent of A and 7), because Q(P) € G. Note that since
A < ¢3, Zg(p) 1s also a A-good corkscrew. In turn, since Q(P) ¢ Exwsgc(R), zo(p) can
be joined to some A’-good corkscrew for R by another C’(4, 7)-good Harnack chain.
Altogether, this shows that zp can be connected to some A’-good corkscrew for R by
a C"(4,n)-good Harnack chain, which completes the proof of the lemma. O



HARMONIC MEASURE AND QUANTITATIVE CONNECTIVITY 73

Below we will write EX(R, 4, n7) instead of Ex(R) to keep track of the dependence
of this family on the parameters A and 7.

16. Proor oF THE MAIN LEmMma 10.2

16.1. Notation. Recall that by the definition of Gé{ in (13.4), 3 retop XYR(X) < K for

all x € Gg . For such x, let O be the smallest cube from Top that contains x, and
URo)

denote np(x) = log, 70)* 50 that Q € Dy, (Ro). Next let Ny € Z be such that

o({x € G§ 1 np(x) < No - 1}) = %O’(GOK),

and denote B
GE ={xeGf : no(x) < No - 1)
Fix
N=Ny-1,
and set
T, = Dy(Ro) U Top{”,
and also

T, = Top\ \ Dy(Ro)
(N)

(recall that Top,,"” and TopE)N ) were defined in Section 13.2). Soif R € T, \ Dy(Ry),
then Stop”"(R) coincides the family of sons of R, and it R € T}, this will not be the
case, in general. Next we denote by T, and T, the respective subfamilies of cubes
from T/, and T}, which intersect GX.

For j > 0, we set
T{):{ReTb: Z /\/Q:jonR}.
Q€T,:0DR

‘We also denote

Si:{QeD: 0 € Stop"(R) for some R € T/, Sy = Usj,
J

and we let T{; be the subfamily of cubes R € T, such that there exists some Q € Si_]
such that Q O R and R is not contained in any cube from S’Z with k > j.

16.2. Two auxiliary lemmas.
Lemma 16.1. The following properties hold for the family T}i:

(a) The cubes from T}) are pairwise disjoint and cover Gk, assuming No big
enough.

(b) IfR € T;, then €(R) ~ €(R).

(c) Given R € D(Ry) with £{(R) > c{(Ry) (for example, R € T;) and 1 > 0, if
Zg is a A-good corkscrew point for R, then there is a C(A, c)-good Harnack
chain that joins zg to p.

Proof. Concerning the statement (a), the cubes from T,lJ are pairwise disjoint by
construction. Suppose that x € G(I){ is not contained in any cube from T}j. By

the definition of the family Top®, this implies that all the cubes Q C Ry with
27NURy) < €(Q) < 2710¢(Ry) containing x belong to T,. However, there are at
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most K cubes Q of this type, which is not possible if N is taken big enough. So the
cubes from T}y cover G(I)( .

The proof of (b) is analogous. Given R € Tll), all the cubes Q which contain R and
have side length smaller or equal tha}i 2710¢(Ry) belong to T,. Hence there at most
K — 1 cubes Q of this type, because GX N R # @. Thus, £(R) > 27K-10¢(R).

The statement (c) is an immediate consequence of (b) and Lemma 12.6. m]

Lemma 16.2. Let Q € T}, U T, for some j > 2 and let zg be a A-good corkscrew for
0O, with A > 0. There exists some constant yo(A, K) > 0 such if £(Q) < vo(4, K) €(Ry),
then there exists some cube R € Sy, such that R > Q with a A’-good corkscrew zg
for R such that zg can be joined to zg by a C(A, K)-good Harnack chain, with A’
depending on A and K.

Proof. We assume yp(4, K) > 0 small enough. Then we can apply Lemma 12.7 K+1
times to get cubes Ry, ..., R, satisfying:

® OCR SRy C...C Ry and {(Rg+1) < 2710(Ry),
e each R; has an associated A’-good corkscrew zg, (with A" depending on 4, K)
and there exists a C(4, K)-good Harnack chain joining zg and zg,, .. ., Zgg,, -

Since O N 5(’)( # @, at least one of the cubes Ry, ..., Rk, say R, does not belong
to Top. This implies that R; € TM(R) for some R € Tj,. LetR € Stop® )(R) be
the stopping cube that contains Q. Then Lemma 14.5 ensures that there is a good
Harnack chain that connects zg; to some corkscrew zg for R. Notice that £(R;) ~,
{(Q) ~ak U(R) because Q C R C R;. This implies that g(p, zr) ~k.a1 8(P,2r;) *k.a
8(p,zp). Further, gathering the Harnack chain that joins zg to zz and the one that
joins zg; to zg, we obtain the good Harnack chain required by the lemma. m|

16.3. The algorithm to construct good Harnack chains. We will construct good
Harnack chains that join good corkscrews from “most” cubes from Dy (Rp) that in-
tersect 5{){ to good corkscrews from cubes belonging to R € T}j, and then we will
join these latter good corkscrews to p using the fact that £(R) ~ €(Rp). To this end
we choose 17 > 0 such that

1 o(GK
N — —2,
2K o(Ro)

and we denote

m = max Z XR(X)

*€Gy ReT,

(so that m < K) and we apply the following algorithm: we set a,,+; = c3, so that
(12.5) ensures that for each Q € T,UT), there exists some good a,,1-good corkscrew
zp. For j=m,m—1,...,1, we perform the following procedure:
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(1) Join aj;1-good corkscrews of cubes Q from T{;’l U Ti“ such that £(Q) <
c;. {(Ry) to a}—good corkscrews of cubes R(Q) from S}7 U...u Si by C;.—
good Harnack chains, with a;. < aji1, so that R(Q) is an ancestor of Q.
This step can be performed because of Lemma 16.2, with c;. = yo(ajs1, K)

;., and C} depend on a1 and K.

in the lemma. The constants a;., c
(2) Set
NC; = U Ex(R,d,n),
ReT-l’;
and join a;.—good corkscrews for all cubes Q € Si \ NC; to aj-good

corkscrews for cubes R(Q) € Ti by Cj-good Harnack chains, with
a; < a;., so that R(Q) is an ancestor of Q. To this end, one applies Lemma
13.5, which ensures the existence of such Harnack chains connecting
a}—good corkscrew points for cubes from S[]; \ NC; to aj-good corkscrew

points for cubes from Ti. The constants a; and C; depend on a;. and K.

After iterating the procedure above for j = m,m —1...,1 and joining some Har-
nack chains arisen in the different iterations, we will have constructed C-good Har-
nack chains that join a,,+1-good corkscrew points for all cubes Q € T, not contained
in UT=1 Upenc; P to ai-good corkscrews of some ancestors R(Q) belonging either
T}j or, more generally, such that £(R(Q)) = £(Ry). The constants c;., a;., aj, Cj worsen
at each step j. However, this is not harmful because the number of iterations of the
procedure is at most m, and m < K.

Denote by Iy the cubes from Dy (Rp) which intersect (76( and are not contained in
any cube from {P € NC; : j = 1,...m]}. By the algorithm above we have constructed
good Harnack chains that join a,,;1-good corkscrew points for all cubes Q € Iy to
some a-good corkscrew for cubes R(Q) € D(Ry) with {(R(Q)) = {(Rp). Also, by
applying Lemma 16.1 (c) we can connect the a;-good corkscrew for R(Q) to p by a
good Harnack chain.

Consider now an arbitrary point x € 56( N Q, with Q € Iy. By the definition

of 5(1)( and the choice N = Ny, all the cubes P € D containing x with side length
smaller or equal than €(Q) satisfy b5(P) < . Then, by an easy geometric argument
(see the proof of Lemma 13.5 for a related one) it is easy to check that there is a
good Harnack chain joining any good corkscrew for Q to x. Hence, for all the points
x € Uger, ON 5(1){ there is a good Harnack chain that joins x to p.

Finally, observe that, for each j, by Lemma 13.5,

dapy=) > aP)<n ) o® <R < % o(GX).

PeNG; ReT-]i PEeEX(R.a’.m) ReT-l’;

Therefore,

m

_ 1 -
3N P < 2 0(GK) < 5 o(GE),
. 2K 2
Jj=1 PeNC;
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and thus
— i 1 -
D o) = o(GY) - Z 2, o(P) = 5 0(G) = a(Ro).
Qely j=1 P€NCj
This finishes the proof of the Main Lemma 10.2. O

APPENDIX A. SOME COUNTER-EXAMPLES

We shall discuss some counter-examples which show that our background hy-
potheses in Theorem 1.3 (namely, n-ADR and interior corkscrew condition) are nat-
ural, and in some sense in the nature of best possible. In the first two examples, Q is a
domain satisfying an interior corkscrew condition, such that 0 satisfies exactly one
(but not both) of the upper or the lower n-ADR bounds, and for which harmonic mea-
sure w fails to be weak-A., with respect to surface measure o on JQ2. In this setting,
in which full n-ADR fails, there is no established notion of uniform rectifiability,
but in each case, the domain will enjoy some substitute property which would imply
uniform rectifiability of the boundary in the presence of full n-ADR. Moreover, these
examples may be constructed in such a way that the failure of the condition (either
upper or lower n-ADR) can be expressed quantitatively, with a bound that may be
taken arbitrarily close to a true n-ADR bound; see (A.3) and (A.6) below.

In the last example, we construct an open set 2 with n-ADR boundary, and for
which w € weak-A, with respect to surface measure, but for which the interior
corkscrew condition fails, and dQ2 is not n-UR.

Example 1. Failure of the upper n-ADR bound. In [AMT1], the authors construct
an example of a Reifenberg flat domain Q ¢ R™*! for which surface measure o =
H"| yq is locally finite on 9Q, but for which the upper n-ADR bound

(A.1) o(Alx,r)) < Cr'*

fails, and for which harmonic measure w is not absolutely continuous with respect
to 0. Note that the hypothesis of Reifenberg flatness implies in particular that Q and
Q= R\ Q are both NTA domains, hence both enjoy the corkscrew condition,
so by the relative isoperimetric inequality, the lower n-ADR bound

(A2) o(A(x,r)) = cr"

holds. Thus, it is the failure of (A.1) which causes the failure of absolute continuity:
in the presence of (A.1), the results of [DJ] apply, and one has that w € A(0), and
that Q) satisfies a “big pieces of Lipschitz graphs” condition (see [DJ] for a precise
statement), and hence is n-UR. We note that by a result of Badger [Bad], a version of
the Lipschitz approximation result of [DJ] still holds for NTA domains with locally
finite surface measure, even in the absence of the upper n-ADR condition.

In addition, given any & > 0, the construction in [AMT1] can be made in such a
way that (A.1) fails “within £”, i.e., so that
(A3) oc(A(x,r) <Cr™®, VYxedQ, r<l.
Let us sketch an argument to explain why this is so; we refer the interested reader to
[AMT1] for more details.

The domain Q in [AMT1] is obtained by enlarging a Wolff snowflake, that we
will denote here by D. Both Q and D are d-Reifenberg flat, with ¢ as small as wished
in the construction (recall that Wolff snowflakes can be taken 0-Reifenberg flat, with
0 as small as wished).
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It is shown in [AMT1, Theorem 3.1] that for all x € 0Q and r < 1,
(A4) H"(B(x,r) N 0Q) < max(r", r*u(B(x, Cr))) < max(r", u(B(x, Cr)))

where u is some measure supported on 0D satisfying w(B(x,r)) 2 "~ for all x in
some compact set £ C 0Q N dD, and some « > 0. In the construction in [AMT1],
the authors take ¢ = wp, the harmonic measure for D. Further, from results of Kenig
and Toro it follows that harmonic measure in a 6-Reifenberg flat domain D satisfies

wp(B(x,1) < Pwp(B(x, 1)), YxedD, r<l,
with € = 0 as 6 — 0 (see [KT, Theorem 4.1]). As a consequence, the measure u
satisfies
w(B(x,r) <%, VxeR"™ r<l,
with & as small as wished depending on ¢. From (A.4), it follows that
H'(B(x,r) N 0Q) < max(¥",r"™®°) <%, VxedQ,r<1l1.

Example 2. Failure of the lower n-ADR bound. In [ABHM, Example 5.5], the au-
thors give an example of a domain satisfying the interior corkscrew condition, whose
boundary is rectifiable (indeed, it is contained in a countable union of hyperplanes),
and satisfies the upper n-ADR condition (A.1), but not the lower n-ADR condition
(A.2), but for which surface measure o fails to be absolutely continuous with respect
to harmonic measure, and in fact, for which the non-degeneracy condition

(A5) AcCA,:=B(x1060(x)NIQ, oA)>1-noA,) = w*'(A)=>c,
fails to hold uniformly for x € Q, for any fixed positive n7 and ¢, and therefore w
cannot be weak-A., with respect to . We note that in the presence of the full n-
ADR condition, if Q2 were contained in a countable union of hyperplanes (as it is
in the example), then in particular it would satisfy the “BAUP” condition of [DS2],
and thus would be n-UR [DS2, Theorem 1.2.18, p. 36].

Moreover, given any € > 0, the parameters in the example of [ABHM] can be
chosen in such a way that the lower ADR bound fails “within £, i.e., so that

(A.6) H"(A(x,r)) 2 min(r7"*,r"), Vxe€ Q.
To see this, we proceed as follows. We follow closely the construction in [ABHM,

Example 5.5], with some modification of the parameters. Fix & > 0, and set
Ck = 2—k(n+a) .

Fork > 1,and n > 2, set
o= {(nn e R™ 1 =27F x e A0, 2-%k¢y) + e Z"),

where for x € R”, A(x,r) := {y € R" : |x —y| < r} is the usual n-disk of radius r
centered at x. Define

Q=R (U %), Q=R
each of which is clearly open and connected. Notice that Q satisfies the interior
Corkscrew condition (since the sets X; are located at heights which are sufficently

separated). Moreover, it is easy to see that 9Q) satisfies the upper ADR condition and
that R" x {0} c 0Q.

On the other hand, the lower ADR bound fails. To see this, let X = (x,0) € 9Q,
and choose 7, € Z" and X; = (cx Mixr,27%) € I € 0Q such that X; — X. Set
By = B(Xy,27%72), and observe that H"(B; N 0Q)/(27*") ~ 27%1¢ — 0 as k — oo, or
equivalently

H"(B; N dQ) ~ 1™,
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where By has radius r; ~ 2%, and & = ne. We shall show that this behavior is in
fact typical, and that (A.6) holds, with & in place of &.

Let ") := a)g and a)i) = wgz)k denote harmonic measure for the domains Q and
Q) respectively.
Claim. 0" (F) = 0, with F := R" x {0}. Thus, in particular (A.5) fails.

It remains to verify (A.6), and the claim. As regards the former, note that for
X = (x,0) € F, we have the trivial standard lower n-ADR bound H"(A(X, r)) = ",
whereas for X = (x,27%) € 3, we have

r", r<2—8kck,
—kne .n —ck
(A7) H"po(B(X, 1) = H"|50,(B(X, 1)) 2 27, 2% srsc
k 2—knarn . o <r< 2—k+l
r, r> 27k

The first and fourth of these estimates are of course the standard lower n-ADR bound.
For r < ¢, the second estimate is bounded below by 2-knepn and in turn, with
r < 27K, the second and third estimates are therefore bounded below by

2—kn8rn > rn+na — rn+s

which yields (A.6) with &’ = ne in place of &.

Let us now prove the claim. We first recall some definitions. Given an open set
O c R™!, and a compact set K C O, we define the capacity of K relative to O as

cap(K, 0) = inf{ff IVgl*dY : ¢ € CJ(O), ¢ > 1in K}.
o

Also, the inhomogeneous capacity of K is defined as

Cap(K) = inf{ f (I + V¢l dY : ¢ € CY(R), ¢ > 1in K}.
R'H'l

Combining [HKM, Theorem 2.38], [AH_,Theorem 2.2.7] and [AH, Theorem 4.5.2]
we have that if K is a compact subset of B, where B is a ball with radius smaller than
1, then

(A8) cap(K, 2B) 2 Cap(K) 2 sup u(K)
M

where the implicit constants depend only on n, the sup runs over all Radon positive
measures u supported on K, for which

1
W (X) I=f W%sl, V X € supp u.
0

Fix k > 2, and set
B=pk:= Zk(n_])ck = pkn=Do—k(n+e) _ 2—k(1+g)’
by definition of ¢;. Our next goal is to show that

(A9) cap(B(Xo, 5) N T, B(X0,25)) = 5", Xo:=(x0.27 ") ex, B<s<1.
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For a fixed Xj and s, write K = B(Xp, s) N Zg, set y = 2kne =1 j| . and note that
for X € K, similarly to (A.7), we have

r, r< Z_Skck s
e —1 2"‘”%2 , 2%k <r<c
(A.10) U(B(X,r)) = 2"%s L
2kneyn o< r<s
Qknegn s g,

To compute W(u)(X) for X € K write

2 F
W) (X) :f “(B;EXI D) di f f f f I+ I+ HI+1V.
2 skck

Then, since s > 8 = 2K~ l)ck p-k(i+e),

< dt
I+ 11 < 2kegl (2_8kck + 2"‘”8ch
2

1
ﬁt:kck 5

)< 2ok=De 7l < 1,

Furthermore, the last two estimates in (A.10) easily imply that 771/ + IV < 1 and
hence W(u)(X) < 1 for every X € K. This, (A.8), and (A.10) imply as desired (A.9):

cap(B(Xo, 5) N Tk, B(X0,25)) 2 u(K) 2 5"
Set
Pei={(x.2"-g) eR}" : xeR"},

and observe that for X € Py,

B < 6;x(X) = dist(X, Q) = dist(X, Xx) < 28.
Recall that F = R" x {0}, and define

u(X) == w(F), X e Q.

Observe that u € W2(Q)NC (Q_k) since 9€) is ADR (constants depend on k but we
just use this qualitatively) and y is a Lipschitz function on 0. Fix Z; € Py and
let Z) € % be such that |[Zy — Z| = dist(Zy, 0C%) < 2B. Let Qz, = Q; N B(Z), %2"‘),

which is an open connected bounded set. We can now apply the usual capacitary
estimates (see, e.g., [HKM, Theorem 6.18]) to find a constant @ = a(n) > 0 such

that
27 s
w(Zy) < exp (—a f ) (2kp)* = 27k,
3p

where we have used (A.9), the definition of 8, and the fact that u = 0 on 9Q; N
B(Z!,27%=1). Note that the last estimate holds for any Zo € Py and therefore, by the
maximum principle,

u(x, ) < 279 (x,f) ey, t>27%-p.
In particular, if we set Xy := (0,...,0,1) € Rﬁ“, then by another application of the
maximum principle,
WX (F) < W(F) = u(Xo) 527 -0,

as k — oo, and the claim is established.

Example 3. Failure of the interior corkscrew condition. The example is based on the
construction of Garnett’s 4-corners Cantor set C C R? (see, e.g., [DS2, Chapter 1]).
Let Iy be a unit square positioned with lower left corner at the origin in the plane, and

in general foreach k =0, 1,2,..., we let I} be the unit square positioned with lower
left corner at the point (2k, 0) on the x-axis. Set Qg := Ip. Let Q; be the first stage of
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the 4-corners construction, i.e., a union of four squares of side length 1/4, positioned
in the corners of the unit square /1, and similarly, for each k, let {; be the k-th stage
of the 4-corners construction, positioned inside ;. Note that dist(€y, Q1) = 1 for
every k. Set Q := U Q4. It is easy to check that 0Q is n-ADR, and that the non-
degeneracy condition (A.5) holds in € for some uniform positive 1 and ¢, and thus
by the criterion of [BL], w € weak-A (o). On the other hand, the interior corkscrew
condition clearly fails to hold in € (it holds only for decreasingly small scales as k
increases), and certainly 9Q) cannot be n-UR: indeed, if it were, then 9 would be
n-UR, with uniform constants, for each k, and this would imply that C itself was n-
UR, whereas in fact, as is well known, it is totally non-rectifiable. One can produce
a similar set in 3 dimensions by simply taking the cylinder Q" = Q x [0, 1]. Details
are left to the interested reader.
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