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Abstract 
 

Spinal cord injuries disrupt signalling from the brain leading to loss of limb, locomotion, sexual 

and bladder function, usually irreversible in humans. In zebrafish, recovery of function occurs 

in a few days for larvae or a few weeks for adults due to regrowth of axons and de novo 

neurogenesis. Together with its genetic amenability and optical clarity, this makes zebrafish a 

powerful animal model to study circuit reorganisation after spinal cord injuries. With the fast 

evolution of techniques, we can forecast significative improvements of our knowledge of the 

mechanisms leading to successful or failed recovery of spinal cord function. We review here 

the present knowledge on the subject, the new technological approaches and we propose future 

directions of research. 

 

 

Introduction: establishment of neural circuits in zebrafish spinal cord 
 

During the development of the spinal cord of zebrafish, a well-defined order of cell integration 

and connection occurs leading to fully functional circuits. Getting a better knowledge of these 

regulated processes allow us to study how they might be de novo used to repair the damaged 

spinal cord after an injury or if new mechanisms are involved, or both. 

  

During embryogenesis, spontaneous activity appears at the 30-somite stage and displays a 

characteristic pattern of connectivity showing ipsilateral connection and rostro-caudal action 

potential propagation [1]. The control of locomotion then matures through sequential changes 

in the operation of motor circuit in the spinal cord [2][3]. Motoneuron ensembles emerge, 

first forming small local networks that coalesce and grow, leading to a global synchronization 

of their activity, before recruiting interneurons [4].  

The chronology of establishment of the circuits of descending V2a interneurons has been 

determined from behaviour analysis: the early-born interneurons project first into the spinal 

cord to connect with early-born motoneurons to achieve fast dynamics movements, whereas 

later-born V2a neurons connect more laterally in a parallel layer with late-born motoneurons 

to allow slow locomotion [5]. Indeed, V2a interneurons operate as a single interconnected layer 

without spatially distinct arrangement, but ensure a correct chronology of connections with 

target motoneurons through individual differences in weights and probabilities of interaction 

[6]. Motoneurons are then selectively recruited by a microcircuit formed by Rohon-Beard and 

V2a neurons directly interacting through monosynaptic connections to achieve fast locomotion 

during the escape response [7]. Down to the molecular scale, the escape response requires an 

asymmetry of electrical synapses between Mauthner neuron axons and commissural local 

interneurons, based on two distinct pre and post-synaptic Connexins [8]. 

 



In contrast to the brain [9], a full atlas at cellular resolution of the spinal circuit in unlesioned 

fish and after regeneration is still missing. 

 

 

Towards a “new” spinal cord: circuit reorganisation 
 

Cells 

After a spinal cord injury, neurons die and they, or their function need to be replaced. In 

zebrafish, regeneration occurs through complex interactions between different cell types and 

is orchestrated by a range of signals, as reviewed in [10].  

Amongst the cells involved in this process, immune cells are key players. Neutrophils are 

recruited early after an injury and transiently contribute to inflammation [11][12]. Contrary to 

the situation in the adult brain [13], microglia do not appear to play a major role in larval spinal 

cord repair, where peripheral macrophages are controlling axonal regeneration through the 

production of the tumour necrosis factor (TNF) effecting a decrease of the levels of interleukin-

1 beta released from neutrophils. 

Other cells contribute to the structural reorganisation of the injury site, like glial cells, whose 

proliferation and bridging activity is partly promoted by Ctgfa in adult fish [14]. In larvae, 

Wnt/Beta-catenin signalling controls the production of extracellular matrix components from 

fibroblasts, in particular Collagen XII, which in turn promotes axonal regeneration [15] (Figure 

1A). 

 

Lesion induces regenerative neurogenesis from resident progenitors under the influence of 

developmental and regeneration-specific signals. Serotonin [16] and dopamine [17] can 

promote spinal motor neuron regeneration by acting on the proliferation of pMN-like 

progenitors. Bioinformatic analyses of gene expression after injury can identify gene regulatory 

programmes associated with successful regeneration. One such analysis [18] has recently 

confirmed the regulation of Wnt [15] and Notch signalling [19], as well as providing evidence 

for the importance of other pathways in repair that need to be followed up in functional 

experiments. 

 

Axons 

Spinal cord injuries induce a local calcium wave that is followed by a terminal wave that 

regulates axon fragmentation [13]. This axon fragmentation disrupts the signal transmission 

from brain to spinal cord. The re-establishment of axonal connections from proximal to distal 

of the lesion is thus essential for recovery of function. A recent study has shown, using live 

two-photon imaging and laser injuries, that axons of Mauthner neurons can regenerate almost 

completely in a few days, are remyelinated and re-establish synapses [21]. The regeneration is 

supported by an active transport of mitochondria along axons and is stimulated by cyclic 

adenosine monophosphate (cAMP) [22] in line with previous findings [23]. Axonal growth is 

also under control of the ubiquitin ligase PHR through cyfip2- and JNK-pathways. 

Furthermore, PHR is crucial for correcting mis-directed sprouts and thus controlling the 

robustness of circuit reorganisation in the zebrafish spinal cord [24]. Another protein, 

Semaphorin4D,  involved in axon guidance, is overexpressed after spinal cord injury in young 

adult fish, enhancing axon regeneration and functional recovery [25] (Figure 1B). 

 

Besides molecular signalling, mechanical properties of the injured spinal cord may play an 

important role for axonal regrowth. Indeed,  in rodents, scar formation after spinal cord injuries, 

leading to a reduction in tissue stiffness [26], inhibits axonal regrowth, while the spinal cord 

tissue in adult fish transiently increases its stiffness (see Figure 1C), reaching a maximum when 



regrowing axons cross the injury site [27]. This suggests that higher axonal regrowth occurs in 

stiffer tissue, as already observed in other models [28]. There may be a positive feedback loop, 

since previous findings have indicated that mechanical properties of the spinal cord are 

determined by cellular distribution and axon orientation [29], and that, in the context of 

morphogenesis, cell migration is triggered by stiffening of the tissue [30].  

 
Therefore, after injury, neuronal and axonal regeneration create a new network with a motor 

output similar to the unlesioned fish but incorporating different and/or new neurons and 

likely a different wiring. This renewed circuitry needs thus to be analysed in detail to 

understand the differences from the initial one and the dynamics of its establishment, using 

recent technological advances described below (see Table 1 for an overview).  

 

New approaches to study and understand SC neural circuit reorganisation 
 

In order to decipher the role of the different cell types during spinal cord circuit reorganisation, 

it is necessary to be able to identify them by expression of specific reporters, e.g. for 

neurotransmitters, or to be able to manipulate them, by genetic ablation or optogenetics. A 

recent tool, CaSSA has been developed based on CRISPR/cas9 technology allowing to create 

genetic switches that can be used for instance to generate lineage-specific genetic mutations 

[31].  

 

To reliably determine the effects of such mutations on the spinal network, observation and 

measurement must be performed on a cohort of animals. Using 3D printing, mounting single 

embryos can be standardized in a specifically designed microwell plate, optimised for imaging 

[32]. A similar technique has been developed, dedicated to spinal cord regeneration studies, by 

incorporating a millifluidic system to stabilize zebrafish larvae in homeostatic condition during 

long-term imaging sessions [33]. 

 

This long-term observation, combined with fast 3D imaging, is essential to capture the 

dynamics of cellular and axonal reorganisation. Amongst other techniques, light-sheet 

microscopy is particularly efficient for long-term fast 3D imaging by keeping phototoxicity 

much lower than other microscopy techniques. This allows for example to determine how 

neurons become mature during development by live lineage tracing and measurement of neural 

activity [4].  

 

Extracting useful information from these observations relies on image processing tools, such 

as image registration, multimodal volumetric reconstructions, or 3D cell segmentation and 

tracking. Indeed, image drifts due the microscope instabilities or animal movements need to be 

compensated. A recent study obtained successfully registered volumes of fast (>120 Hz) 

beating zebrafish heart imaged over 24h allowing to study heart morphogenesis during 

development together with cell migration in intact and injured heart [34]. This might be then 

applied to images of the spinal cord during regeneration. Combining images from optical and 

electron microscopy, interneuron circuits could be analysed and showed a specific synaptic 

connectivity with large motoneurons from dorsally located interneurons, active only during 

fast locomotion [35]. Massive 3D cell tracking analysis, allowing single cell fate mapping in 

living fish, can be achieved using a new framework for interactive analysis on big datasets 

[36]. Cell morphology changes during tissue reorganisation can also be analysed, for instance 

using the software RACE which performs automated 3D cell segmentation and shape 

extraction [37].  

 



At the tissue scale, as discussed earlier, mechanical forces play a role in reorganisation of the 

spinal cord. Brillouin imaging is being used to determine non-invasively mechanical properties 

of  living larvae during regeneration, showing an immediate decrease of viscoelasticity 

properties just after the injury followed by a gradual increase [38].  

 

Analyses of cell and tissue morphology and dynamics are not sufficient for understanding how 

the new spinal network is functionally organised. Functional imaging, mainly by recording 

fluctuations of calcium concentrations, thus holds a central tool in the exploration of neural 

circuits. Volumetric calcium imaging can now be more accessible by installing an additional 

module to a standard two-photon microscope, for example an axicon Bessel module allowing 

fast (50 volumes/s) calcium imaging of spinal projection neurons [39]. This can then be used 

to measure network dynamics of hindbrain reticulospinal neurons, with potential applications 

in the spinal cord [40]. Enabling faster action potential recordings, in vivo voltage imaging is 

now possible through the use of Voltron, an hybrid “chemigenetic” voltage indicator which 

allows recording of spikes of a dozen of neurons at the millisecond time scale simultaneously 

for several minutes while recording behaviour [41]. 

 

Neural activity measurements require efficient and reliable calcium signal analysis. Generic 

toolboxes have been made available in the few past years, proposing complete and modular 

pipelines [42] [43], or tools which are more specialized, like image registration used to reduce 

false spike detection [44]. However, results and in particular estimation of neural assemblies 

can strongly vary depending on the algorithm used [45]. As those tools have been dedicated to 

analysing signals in the brain, they may need some adaptation for use in spinal cord studies. 

 

Beyond observing the spontaneous activity of neurons, larvae can be stimulated by optical, 

acoustic, mechanical or electrical stimuli eliciting various responses, such as fast escape 

behaviour or swimming speed regulation. Electrical stimulation has been used to record the 

response of multiple larvae simultaneously [46]. A local mechanical stimulation can be 

achieved by using optical trapping to directly apply forces on otoliths stimulating the vestibular 

system, which mimicks acceleration or roll movements independently of other neural systems 

[47]. Optogenetics, using channelrhodopsins for in vivo optical manipulations, make it possible 

to efficiently inhibit or activate neurons [48]. This has been applied to spinal V2b interneurons, 

showing that swimming speed is modulated by their activity [49]. 

 

The integration of different imaging modalities and photo-stimulation on the same microscope 

permit to simultaneously record neuron activity and behavioural analysis on freely moving 

zebrafish larvae [50]. This was used for screening effects of neuroactive drugs and might be 

applied for screening pro-regenerative drugs in the spinal cord. 

 

Beyond imaging technologies, machine learning approaches, in particular unsupervised 

clustering methods have been developed to detect the different categories of movements during 

swimming, showing that larvae rely on a specific and limited set of locomotion patterns [51].  

 

Genetic approaches, also benefiting from advanced computational approaches, can provide 

large amount of information on tissue changes at single-cell level during development. In 

particular, single-cell RNA sequencing has been combined with transposon-based barcoding 

[52] or CRISPR-Cas9 barcoding [53] to map cell lineages in animals at different stages of 

development. These approaches might be successfully used on lesioned animals. 

 

 



Conclusion and future directions 
 

Understanding how neural circuits reorganise after a spinal cord injury has major potential 

clinical applications but remains a challenge today. However, we posit that elucidating the 

mechanisms underlying successful functional recovery in a vertebrate spinal cord can be 

achieved through the development and use of well-controlled and quantitative methods 

presented here (Figure 2). 

 

Further progress can be foreseen by recent trends in standardisation and optimization of 

experimental conditions. First, inducing controlled lesions, like : laser-induced lesions [54] and 

electric neurectomy [12], will help standardise the procedures and the interpretation of the 

experiments. Sample preparation can be also standardized and optimized, in particular through 

the use of 3D printing or polymer stamping [32][33]. Indeed, the flexibility and very low cost 

of those techniques make them highly accessible to any laboratory. 

 

Moreover, highly detailed and fast dynamics of spinal cord development or repair is now 

accessible thanks to a recent development in super-resolution imaging, based on advanced 

light-sheet microscopy [55]. This allowed observation of growth cone dynamics in the spinal 

cord in which newly differentiated neurons expressed random combinations of fluorophores 

and measurement of clathrin dynamics during endocytosis and organelle morphology 

(mitochondria, Golgi apparatus) in neural progenitor in the brain. This could certainly be 

applied to the spinal cord. 

 

In complement with these techniques, artificial intelligence approaches, like deep learning or 

data mining, will become more accessible and widespread to improve data quality and deal 

with the increasing amount of information contained in datasets produced by high-resolution 

or high-throughput imaging and genetic techniques. 

 

Lastly, in order to build a better conceptual view of re-establishment of neural circuits, 

mathematical modelling would be highly beneficial. Of growing use in other fields of biology, 

this modelling effort would ultimately bring us a unified understanding of the complex and 

highly dynamic cellular and molecular mechanisms underlying successful spinal cord 

regeneration. 

 

Given the recent progresses in deciphering neural circuits in zebrafish and with these new 

technologies, it is now time to apply multidisciplinary efforts in understanding the 

reorganisation of spinal circuits after injury that allow return of function. 
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Figure 1 

 

Figure1: Circuit reorganisation after a spinal cord injury.  

A: Schematic view of recent findings on signals involved in regeneration of motoneurons and 

axons. (ERG: Ependymo-Radial Glial cell); B: Axons are regenerating upon control by 

ubiquitin ligase PHR and cAMP stimulate re-myelination and mitochondria transport 

(adapted from [22, 24]); C: Spinal cord stiffness increases after an injury in adult Zebrafish 

(adapted from [27}) 

 

 

 



 
 

 

Figure 2 

 

Figure2: Integrated workflow of the use of new technologies for understand spinal cord 

circuit reorganisation. Important progress is being made in the different techniques used for 

studying circuits in intact and injured spinal cord of zebrafish, from genetic manipulation and 

analysis to mathematical modelling. A full integration of these approaches as schematized 

here is the key for future research in this field. 

 


