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Abstract

Decades of research have shown that rare highly penetrant mutations can pro-
mote tumorigenesis, but it is still unclear whether variants observed at high-frequency
in the broader population could modulate the risk of developing cancer. Genome-
wide Association Studies (GWAS) have generated a wealth of data linking single
nucleotide polymorphisms (SNPs) to increased cancer risk, but the effect of these
mutations are usually subtle, leaving most of cancer heritability unexplained. Under-
standing the role of high-frequency mutations in cancer can provide new intervention
points for early diagnostics, patient stratification and treatment in malignancies with
high prevalence, such as breast cancer.

Here we review state-of-the-art methods to study cancer heritability using GWAS
data and provide an updated map of breast cancer susceptibility loci at the SNP and
gene level.

1 Introduction

Breast cancer is the most frequent cancer among women worldwide, representing ap-
proximately one third of all diagnosed malignancies. Breast cancer has a cumulative risk
of 5%, that is 5 in 100 newborns are expected to develop this malignancy during their
lifetime. While the survival in first-world countries is usually very high, about 70% of all
cases, breast cancer was still responsible for more than 600,000 deaths in 2018 [1, 2].
The mechanisms affecting cancer predisposition, tumorigenesis and progression are
still unclear; in the majority of cases, tumors are triggered by the accumulation of somatic
mutations, which impair critical cellular functions, like those controlled by the p53 tumor
suppressor pathway [3]. While the causal role of somatic mutations has been confirmed
by in-vitro and in-vivo models, there is limited understanding of whether inherited muta-
tions mediate the risk of developing cancer. Familial and cancer syndrome studies have
shown a causal role of inherited variants; usually, low frequency highly penetrant variants
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in cancer susceptibility genes (CSG), directly increase the risk of cancer in first-degree
relatives. In particular, breast cancer has been one of the first malignancies for which evi-
dence of inheritance has been found and whose CSGs have been identified [4], including
the well known BRCA1/2 genes [5, 6].

However, rare mutations explain only a small fraction of the risk of cancer in the
broader population, suggesting that cancer risk could be somehow mediated by high-
frequency low-penetrance mutations, such as single nucleotide polymorphisms (SNPs).
Recent advances in high-density genotyping arrays and DNA sequencing technologies
allow genotyping SNPs in large cohorts, paving the way to population-scale Genome
Wide Association Studies (GWAS). Currently, more than 100,000 SNP alleles have been
associated with various traits and diseases, of those around 5000 variants are associated
with various tumor types, including breast cancer [7].

The contribution of germline mutations to the inherited risk of cancer is estimated
through heritability analysis. Heritability estimates for cancer have been usually ob-
tained through familial studies; however, these estimates have not been replicated when
analysing inherited mutations in the broader population, thus leading to the concept of
missing cancer heritability [8]. Missing heritability could be apportioned to a number of
factors, including structural variants, gene-gene and gene-environment interactions, as
well as rare highly penetrant variants [9, 10]. Ultra rare variants, which are difficult to
detect with current technologies, have also shown to have a significant role in complex
diseases [11]. However, even accounting for rare highly penetrant variants and genome-
wide significant SNPs, the difference in risk between individuals is not completely ex-
plained [12].

There is strong evidence suggesting that the risk of complex diseases, such as can-
cer, can be explained by the co-inheritance of a large number of frequent variants with
subtle effects [13]. In this case, we consider a disease to be polygenic [14], thus we are
interested in quantifying the contribution of low-penetrance inherited mutations to cancer
risk. Here, we focus on narrow sense heritability, 2, that is the cumulative effect of all loci
on the phenotype variance [15]. Interestingly, using GWAS data, we can estimate the her-
itability explained by SNPs regardless of their statistical significance. Heritability analysis
is becoming a crucial step in recent cancer GWAS analyses, providing insights on the
inherited risk of many malignancies, including prostate [16, 17], cervical [18], testicular
germ cell tumor [19], and breast cancer [20].

Here we aim at providing an overview of state-of-the-art methods to estimate the
amount of heritability explained by SNPs and an updated reference of the genetic archi-
tecture of breast cancer at the SNP and gene level. We organised this review as follows;
in section 2, we introduce common notation and standard statistical analyses performed
in GWAS, and we then present state-of-the-art methods for the estimation of heritabil-
ity. Finally, in section 3, we systematically characterize current GWAS data available for
breast cancer, and propose a curated resource of SNPs and genes that can be used for
further investigations.

2 Estimating the risk of cancer explained by high-frequency
inherited mutations

DNA sequencing technologies have enabled the discovery of thousands of rare and
common variants that are associated with complex traits and diseases. While high-
throughput whole genome sequencing is now routinely used to detect both common
and low-frequency mutations across relatively small cohorts (< 10,000 individuals), cost-



effective genotyping arrays allow to carry out genetic studies at a population scale, albeit
limited to only known loci.

Population scale genotyping is pivotal to understand the role of high-frequency low
penetrant inherited mutations as genomic modifiers controlling quantitative traits and dis-
ease risk in the broader population. While highly penetrant mutations are often identified
in relatively small cohorts [21], quantifying the contribution of high-frequency but low pen-
etrance mutations requires genotyping large number of individuals.

In the last 30 years, genome-wide association studies (GWAS) have identified thou-
sands of SNPs associated with increased risk of many diseases. In this context, cancer
is not an exception; GWAS have been carried out on a broad spectrum of malignancies
leading to the identification of a plethora of SNPs associated with increased risk of cancer
[22]. However, experimental and analytical challenges have limited GWAS contribution in
understanding the mechanisms underpinning cancer heritability.

Since the focus of this review is on computational methods for cancer GWAS analy-
sis, we will focus on the methodological limits of SNP association tests, rather then issues
arising from different experimental designs. GWAS have also complex interpretability lim-
its; in particular, since variants often reside in non coding genomic regions, associations
between SNP genotype and a trait provides limited mechanistic insights.

Here, we will introduce methods for heritability analysis as a framework to dissect
the contribution of SNPs to the heritable risk of a disease, focusing on how to use these
methods to study cancer heritability.

2.1 Tests of association

We refer to a single nucleotide polymorphism (SNP), as a locus where two or more distinct
nucleotides are observed in a given population. Hereby, we assume SNPs to be bi-allelic,
that is only 2 nucleotides are observed or considered at a given locus; this is a reasonable
assumption for the vast majority of loci in the human genome.

We denote the most frequent nucleotide, as the major allele B, and the other as the
minor allele, b. Since human cells are diploid, there are three possible genotypes, namely
homozygous major (BB), heterozygous (Bb), and homozygous minor (bb).

For a binary phenotype, such as case-control studies, the association between the
genotype and the disease status (e.g. 0: normal, 1: affected) can then be tested using
a x? test with 2 degrees of freedom. For each SNP, the test is carried out by comparing
genotype counts in cases and controls, g;;, with their expected value, g;;, as follows:

-y

gij

where i is the disease status, j is one of the three possible genotypes and g;; = f; Vi,
with f; being the genotype frequency. While the above is the general formulation, the x>
association test can be adapted to different hypotheses and data [23].

Logistic regression can instead be used to account for confounders, like age or sex.
For a GWAS with N individuals and M SNPs, a logistic regression model can be defined
as follows:

Y=XB+e¢ (2)

where Y : N x 1 is a binary vector encoding the disease status, X : N x M is
the genotype matrix, with x;; being the number of minor alleles for the i-th locus of j-th
individual.



Under the model in Eq. 2, 8 represents the effect-size of all SNPs and e are the
error introduced by confounders. In presence of other covariates, C;, the regression is
extended to include those terms, such that Y = X3 + C181 + C282 + --- + €. Under
the null hypothesis of no association between the SNP and the disease, 8; ~ N(0,0?);
thus, the statistical significance of each effect-size can be tested using a Wald-test or
a likelihood-ratio test. While the above formulations are useful to understand the idea
behind association testing, in practice, these analyses require more complex models,
which account for population biases, such as structure and relatedness, and genotype
uncertainty.

While association analysis provides a mathematically tractable framework for testing
whether a SNP genotype is associated with a trait, it is prone to false discoveries. This is
largely due to SNP co-inheritance, a phenomenon usually referred to as linkage disequi-
librium (LD); during meiotic crossing-over, proximal SNPs are more likely to be inherited
together, resulting in a non-independence of their occurrence. From a statistical point
of view, LD inflates the test statistic of the variants co-inherited with true causal SNPs,
ultimately hindering the discovery of causal variants. LD for all genotyped SNPs in a
GWAS can be represented as a lower-triangular matrix, R : M x M, where 7”22]. is the LD
between the alleles in SNP i and j. However, it is important to note that LD estimates
are population-dependent and are biased by non-genotyped variants. Ultimately, finding
causal variants usually requires integration of functional data to prioritize alleles within a
given set of SNPs in LD [24].

To limit the number of false positives, GWAS studies usually apply a stringent family-
wise error correction; in this context, empirical studies have concluded that 5 x 10~% is
a reasonable threshold to filter false positives out [13]. While for large populations and
easily measurable phenotypes, such as height or blood pressure, it is possible to identify
robust associations for a large number of loci, in cancer studies only a handful of SNPs
pass correction for multiple hypotheses testing, resulting in the contribution of other loci
with subtle effects to be neglected.

Thus, it is becoming apparent that methods able to estimate the cumulative contri-
bution of multiple SNPs will be pivotal to maximize the information gained from GWAS.
The rationale behind grouping SNPs together is based on the hypothesis that multiple
variants in the same gene or pathway are more likely to have a stronger association with
the phenotype regardless of their individual statistical significance. This is particularly
true for cancer, whose inherited risk is thought to be mediated by a polygenic genetic
architecture.

2.2 Estimating the heritable risk

Whenever referring to heritability, clarity is paramount; in GWAS analysis, inheritance
does not refer to the amount of familial resemblance, rather to the effects of all inherited
genomic loci to the phenotypic variance [25]. While broad sense heritability encompasses
the effects of all genetic factors, narrow sense heritability accounts only for additive ge-
netic effects. Thus, narrow sense heritability can be estimated from GWAS data as the
cumulative contribution of all SNPs to the inherited risk.

Heritability in the narrow sense is defined as the portion of variance explained by the
variance of the additive genetic effects, h? = % [15]. The phenotype Y can be parti-
tioned into two terms: a genotype term G and an environmental term E. The genotype
contribution can be further partitioned into an additive genetic effect (add), a dominant
genetic effect (dom) and an epistatic genetic effect (epi). Thus, a phenotype, Y, can be
expressedas Y = G + E = (add + dom + epi) + E.



By estimating heritability from GWAS data, we are assuming the variance of the phe-
notype P to be Var(P) = Var(G + E). Assuming independence between the terms, the
overall phenotype variance is explained by narrow sense heritability, other genetic factors,
and environmental effects as follows:

2 2 2 2
o (o} -+Ud o
S =h4 By h (3)
g g g

P P P

GWAS can be used to estimate narrow sense heritability, since germline variants
are accounting for additive genetic effects. However, the estimate obtained from the
genotyped SNPs, k%, p, is @ lower bound of the narrow sense heritability, %, < h?
since the genotyped loci are usually a subset of all the variants in the genome. Hereby,
we will refer to the term heritability as a synonym of narrow-sense heritability, which we
will denote as h2.

Advances in statistical genetics are leading to an increasing number of methods to
estimate the heritability explained by all genotyped SNPs, a quantity we will refer to as
genome-wide heritability. However, these methods provide limited insights into the ge-
netic architecture of a disease. While the reasons for this stall are probably multifaceted,
there are many challenges that affect the accuracy of heritability estimation methods. In
general, we would like to measure the contribution of the SNPs to a binary trait, that is the
disease status. However, many popular methods to estimate h? are working under the
assumption of continuous traits. This problem is overcome by introducing the concept of
liability [26]. Since most continuous traits can be approximated by a normal distribution,
binary traits have been modelled by a liability threshold model; thus, there is the underly-
ing assumption that disease risk follows a normal distribution, which represents the sum
of many independent and normally distributed genetic and environmental effects. Thus,
the binary phenotype represents whether the liability score exceeds a certain thresh-
old t. Hence, in a normally distribute population, the quantile distribution function at ¢
is the probability of the disease and is usually set from the observed prevalence in the

population. In this framework, the observed value of heritability, 2% ,,,..» can be easily
translated on the liability scale, hlzz’ability’ as follows:

B2 2O Wiapitiny

= 4
observed K(l _ K) ( )

where K is the incidence, z is the standard gaussian density.

Although mapping h? from the observed to the liability scale is straightforward, it is
important to check whether the assumptions made by a method hold for the study under
consideration. In particular, for many cancer types, the incidence can be extremely low
and so are the values of h?2 ; in both cases, the case-control ratio of the GWAS is

observed?
incremented by design. While this procedure increments %2, ... .., thus making heritability
detectable, it introduces a bias due to the difference between the real prevalence of the
disease and the one in the cohort.
We now move forward describing methods to estimate heritability from GWAS data,

highlighting their strength and weaknesses in the context of cancer GWAS analysis.

2.3 Methods for the estimation of genome-wide heritability

Estimates of genome-wide heritability can be obtained using a plethora of methods, each
working under specific hypotheses, using different estimators, and requiring different in-
put data. However, these methods estimate the heritability explained by genotyped SNPs



and it is common to refer to this quantity as array-heritability, 72 or SNP heritability,

array’
hQSNP'

Here we present state-of-the-art methods classified based on the required input, that
is either genotype data or SNP summary statistics. Methods using raw data require
genotype and covariates for each patient. Conversely, methods using summary statistics
require only SNP test statistics and standard errors, along with population-level parame-
ters that can be estimated from reference panels.

Here we describe methods using genotype data first as they are regarded as the
gold-standard in the field; we then introduce those using summary statistics highlighting
differences and advantages between the other class.

2.3.1 Estimating heritability from genotype data

Heritability is obtained by regressing the variance of the phenotype against the variance
of the genotype as defined in Eq. 2.

To do that, the vast majority of methods regress h? using linear mixed models (LMM)
[27, 28, 29, 30, 31]. The genomic-relatedness-based restricted maximum-likelihood ap-
proach (GREML, [27]), was the first to be introduced and it is routinely used for heritability
studies. GREML uses genotype data with allele frequency as input and regress h? us-
ing restricted maximume-likelihood. GREML assumes that effect sizes 5 and errors ¢ in
Eq. 2 are normally distributed with variance o—g and o2, respectively. The variance of the
phenotype then becomes:

var [Y] = Gag + Io? (5)

where G = X X7 /M is the genetic relationship matrix (GRM) between pairs of individuals
at M loci.

This method has been extended to account for differences in allele frequencies and re-
latedness. GREML has also been applied to binary traits [29], transforming the observed
heritability estimates on the liability scale r?, following the procedure outlined in Eq.4.
However, this procedure should be used with caution when analysing cancer data, since
GREML works under the assumption that the phenotype is normally distributed. While
the liability model is a good approximation for diseases with high prevalence, REML as-
sumptions do not hold when study prevalence does not match the true population preva-
lence; this leads to consistently biased estimates [32], thus suggesting that GREML-like
approaches are not appropriate to analyse cancer data [33].

A second class of methods adapts the Haseman-Elston regression [34] to GWAS
analysis, specifically focusing on case-control studies [35, 32, 36]. The Phenotype Cor-
relation - Genotype Correlation method (PCGC) does not rely on normality assumptions,
but instead obtains heritability estimates by considering the relationship between phe-
notypic and genotypic correlations between individual 7 and individual j. The phenotypic
correlation, E(y;y;) can be written as a generic function of the heritabily and the genotypic
correlation :

E(yiy;) = f(h*,Gij) (6)

In its simplest formulation, considering only additive quantitative phenotypes and no
specific study design confounders, f(h% G;;) = h?G;; and h? can be estimated by least
squares as follows:

h? = argmin Z [yiy; — h?Gyj] (7)
1,3,%97]



Case-control studies, extreme phenotypes, studies with related individuals are all
modelled by using an appropriate f(h?, G;).

For binary phenotypes, the phenotypic correlation, E(y;y;), is accounted for to obtain
estimates of heritability on the liability scale. The general consensus is that PCGC is
better suited for binary phenotypes, being more robust to different covariates and cohort
size.

Methods using genotype data are considered the gold-standard for heritability analy-
sis and are readily available as part of many bioinformatics packages [37, 38]. However,
these methods require access to high-performance computing (HPC) infrastructures and
genotype data; while HPC facilities are routinely found in academic and industrial environ-
ments, access to cancer patients’ genotype is usually difficult, due to privacy concerns,
thus limiting their use in practice.

2.3.2 Estimating heritability from summary statistics data

There has been an increasing interest in estimating heritability using GWAS summary
statistics to overcome the limitations imposed by methods requiring genotype data [39,
40, 41, 42, 43]. Summary statistics are usually publicly available, since genotype infor-
mation cannot be traced back from regression weights, and the analysis is not compu-
tationally taxing. Here we review how genome-wide heritability can be estimated from
GWAS summary statistics.

The most widely used approach to estimate heritability from summary statistics is the
LD score (LDSC) regression method [39, 44]. LDSC computes heritability estimates by
regressing h? as follows:

N
E[x}] = Mh% +Na+1 (8)

where XJQ- is the summary statistic of the j-th SNP for a GWAS with N individuals and

M variants. Here [; is a quantity called LD score, computed as I; = > X r7;, that is
by summing up the correlation coefficients of all the SNPs in a window of prefixed size
from the j-th variant. Here, Na + 1 is a term introduced to account for confounding bias,
which can be estimated as the intercept of the linear regression between the LD score
of each variant and its test statistic. The heritability is regressed using reweighted least
squares, where the weights are adjusted to account for heteroscedasticity of the test
statistic. LDSC is also implemented as part of the SUMHER software, which improves the
original LDSC model by taking into account allele frequency [42].

Recently, PCGC has also been extended to take summary statistics in input (s-PCGC,
[41]). It has been shown that LDSC and s-PCGC are almost equivalent in absence of
covariates with strong effects [45], although s-PCGC is recommended in presence of
effects that could severely skew the liability distribution.

The methods discussed so far have been shown to be sensitive to the input data and
trait properties, e.g. low or high heritability, low or high disease prevalence. This is due
to the assumptions made by each model, which must be carefully considered as part of
the analysis [46, 47, 45].

Although estimating heritability from genotype data usually leads to more accurate es-
timates, summary statistics proved to be sufficient to obtain accurate heritability estimates
across a number of phenotypes [48]. Moreover, the negligible computational burden of
summary statistics methods has made them the preferred approach for population scale
studies [49] and the steppingstone to estimate the heritability of SNP groups.

Nonetheless, genome-wide heritability analyses have major interpretability limits. The
estimate of h? gives a measure of the contribution of all genotyped SNPs to the heritable



risk, which is usually an underestimation for cancer, in part due to the low prevalence
of the disease. Importantly, current heritability studies do not provide insights into the
mechanisms underpinning disease risk; thus, the focus has shifted on estimating the
heritability explained by SNPs in functional genomic regions to provide a mechanistic
interpretation of GWAS associations.

2.4 Methods for partitioning heritability

The vast majority of methods providing genome-wide heritability estimates usually as-
sume that all genotyped SNPs have the same contribution to heritability. This assumption
has already been questioned in literature [28], since it is more reasonable to assume that
the amount heritability explained by a group of SNPs depends on the genomic region
where they are located, e.g. promoter or coding regions. Thus, it is becoming apparent
that estimating the heritability explained by SNPs residing in functional loci could give
further insights in the genetic architecture of a disease.

Finucance et al. proposed a stratified LD score regression method (s-LDSC, [50]),
which has been used to study the UK Biobank cohort. The method computes the her-
itability explained by SNPs belonging to a list of 53 functional binary classes, such as
coding regions or histone marks. To do that, s-LDSC estimates the heritability explained
by C functional categories, as follows:

E;] =N 7l(j,c)+Na+1 (9)
ceC

where the LD-score is computed only over the SNPs within the c-th class and 7. is
the per-SNP heritability contribution of the c¢-th class. Thus, the portion of heritability of
one class with LSV variants is: h? = LNP7.. Recently, the model has been extended
to account for continuous annotations, such as GC content or recombination rate [51].

An alternative approach uses the heritability estimator from summary statistics, HESS
[52], to partition the genome in 1703 independent loci [53] and to then estimate the ex-
plained heritability as follows:

h2 — NBR_IB - M
local N—_M

where 3 are the summary statistics for a GWAS with N individuals and M SNPS. R~}
is the inverse of the LD matrix approximated by a singular value decomposition, since
the inverse usually does not exist due to linkage disequilibrium between SNPs. While for
each category, s-LDSC partitions the whole genome in just two classes, HESS divides the
genome in multiple regions (see supplementary figure S1). The scope of partitioning is to
test whether a category has an heritability enrichment, that is the SNPs in the category
explains a larger amount of h? compared to the genome-wide estimate. If r7 is the
heritability explained by the M, SNPs belonging to annotation k, the quantity (h3/Mj;)M
is on the same scale of the genome-wide estimate; thus, in absence of any enrichment,
the heritability for the single SNP %% /M;, should be approximately equal to the genome-
wide estimate h%/M.

While partitioning methods could provide insights into genomic regions explaining a
large proportion of heritability, there are still limits to use partitioned heritability to study
cancer GWAS. Both HESS and LDSC are not robust for small sample sizes and low
heritability diseases; this usually has the effect of providing erroneous negative local
heritability estimates, suggesting that new robust estimators are needed to maximize the
utility of these analyses.



Table 1: Breast cancer heritability estimates in European populations. For each
study, we report the heritability estimate on the liability scale (%}), the reported standard
error or the 95% confidence intervals (Cl) and the disease prevalence.

Cancer (subtype) h2y Cases/controls
Breast 0.096

(ER negative) [57] (Cl=[0, 0.199]) 1,998/3,263
Breast 0.1104

(Self-reported) 49 | (s..0.0221) 7,480/329,679
Breast [58] 0.13 (s.e.=0.011) | 122,977/105,974

3 The genetic landscape of breast cancer

The genetics of breast cancer has been extensively studied due to its relatively high
prevalence and incidence in the broader population. The first three GWAS on breast
cancer were published in 2007 and new targeted studies have been conducted in different
populations. To date, the Breast Cancer Association Consortium (BCAC) is the largest
breast cancer GWAS in Europeans, including more than 120,000 cases [54]; moreover,
new genome-wide significant SNPs have been recently found in the same cohort using
imputation [55]. Conversely, the UK Biobank (UKBB, [56]) represents the study with the
largest total number of individuals (N > 300,000) and unbiased disease prevalence.

In this section we review the main results on breast cancer heritability, and then sum-
marise and characterise susceptibility loci and genes for this malignancy.

3.1 Heritability estimates

The estimation of heritability from high-frequency variants for cancer presents multiple
challenges and the results are highly dependent on the cohort and downstream process-
ing. However, as novel studies with large cohorts are released and targeted GWAS are
carried out, it is reasonable to expect that understanding cancer risk in the broader pop-
ulation will be possible.

While the exact heritability estimate varies across GWAS studies, there is a consen-
sus estimate of breast cancer heritability being h? ~ 0.1 on the liability scale (see Tab.
1). This value is significantly smaller than previous familial estimates, h? ~ 0.3, although
there is mounting evidence that this value could be an overestimation [31, 33]. Samp-
son et al. report values of heritability, estimated via GREML, between 0.092 and 0.25,
after adjusting for age, minor allele frequency and gender [57]. While the authors anal-
ysed GWAS data calibrated for cancer studies, the cohort is considerably smaller than the
UKBB and BCAC cohorts. Jiang et al. analysed the BCAC cohort using LDSC regression
[58], finding an heritability estimate h? ~ 0.13; interestingly, when excluding genome-wide
significant SNPs and their linked loci, the heritability estimate is significantly smaller, sug-
gesting that up to 45% of the total heritability is explained by genome-wide significant
variants. Estimates obtained by LDSC on the UKBB cohort show remarkably coherent
estimates, despite the prevalence of the malignancy being significantly smaller than other
studies[49].

Recently, there has been increasing interest in identifying functional elements, such
as histone mark or DNA | hypersensitive regions, explaining breast cancer heritability.
However, analyses performed using stratified LDSC regression on the UKBB and BCAC
cohorts were inconclusive [49]. Nonetheless, there is evidence suggesting that taking into
account SNP location and functional effects in the analysis could provide useful insights
on the role of inherited variants for cancer [59, 60, 61]. On this point, using local co-



heritability between breast, lung, and prostate cancer [62, 58], a pattern of local risk
inheritance has been found. This result provides preliminary evidence that improvements
in the analysis of partitioned heritability could be useful to discover loci across the human
genome mediating the risk of multiple cancers.

3.2 Breast cancer risk loci across the human genome

Heritability studies have shown that high-frequency inherited mutations explain a signifi-
cant proportion of breast cancer risk. We then move forward to identify SNPs and genes
that are associated with increased risk of breast cancer in the broader population; ulti-
mately, we aim at providing an updated map of breast cancer susceptibility genes across
the human genome.

We obtained SNPs data from the GWAS Catalog [7], which reports more than 143, 000
SNPs across 3,522 studies. We then retrieved SNPs associated with breast cancer in
European populations and mapped SNPs to genes, after applying quality control filters
(see Supplementary Methods and Supplementary Figure S2). We also discarded SNPs,
approximately half of the total reported, that did not reach genome-wide statistical sig-
nificance set at p < 5 x 10~%; usually, p-values above this threshold are indicative of a
small population size or old genotyping arrays, thus we preferred to filter those out as a
conservative approach for our downstream analysis.

We found 719 significant variants (see Fig. 1A) reported by 26 different studies, which
are within 50kb from 311 genes (see Supplementary Table 1, we consider a 50kb window
to include regulatory regions in the analysis). Interestingly, of those 719 reported vari-
ants, 108 are reported in more than one study, while 311 are reported only once; while
this provides preliminary evidence to support the robustness of a reported association,
differences in tag SNP selection and reporting criteria across studies will likely result in
different SNPs being reported for the same susceptibility haplotype (see Supplementary
Methods and Supplementary Figure S2 ).

We observed that most variants account for limited increase in risk, with average
odds ratio OR : 1.11, and ranging from 1.02 for rs17529111 to 1.59 for rs62235635 (See
Supplementary Figure S3,S4); moreover, the odds ratio for rs62235635 is still well below
the strongest reported cancer association, that is for SNP rs995030-G in testicular germ
cell tumors (OR: 2.26) [63].

The risk allele frequency for breast cancer is 0.37 on average, ranging from 0.005 to
0.98 (Supplementary Figure S5). Unsurprisingly, the data suggests a negative-correlation
between cancer risk and allele frequency (see Fig. 1B). In particular, SNP rs62235635 in
PITPNB, which is the variant with the lowest frequency, is also the one with the highest
odds ratio OR : 1.589. This is consistent with other studies, which have shown that SNPs
with detrimental impact are less frequently observed in the broader population because
are likely to be subject to negative selection [51, 64].

We then analyzed the functional impact of each SNP associated with breast cancer
(see Fig. 1C) and found that the vast majority of SNPs reside in introns or intergenic re-
gions, with only a negligible fraction located in coding regions and possibly causing detri-
mental changes, such as missense variations or stop codon gain. While functional ge-
nomics techniques are continuously improving, testing functional effects of cancer SNPs
will likely remain challenging, since phenotypic changes are going to be subtle and dif-
ficult to detect (Supplementary Figure S6). Nonetheless, we found that 89% of breast
cancer SNPs are in or around a coding region, suggesting that most of them could act
as cis-regulator of an upstream or downstream gene. We then used this information to
compile a draft panel of genes associated with breast cancer heritability.
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Table 2: Breast cancer susceptibility loci in European populations. We report SNPs
associated with increased risk of breast cancer, whose odds-ratios (OR) are in the 95"
percentile among all those reported in the GWAS catalog for this malignancy. For each
SNP, we report the rsid, the cytogenic region, the reported odds ratio (OR), the functional
consequence as sequence ontology term, the nearest gene, the reported risk allele fre-
quency and the PUBMED id of the study.

RISK ALLELE
SNPS REGION | OR CONTEXT GENES FREQUENCY PUBMEDID
rs62235635 | 22q12.1 | 1.59 intron variant PITPNB 0.0065 29059683
rs11571833 | 13g13.1 | 1.58 stop gained BRCA2 0.01 29058716
rs62235681 | 22q12.1 | 1.58 intergenic variant CHEK2 0.0085 29059683
rs1314913 | 14924.1 | 1.57 intron variant RAD51B 23001122
rs62237615 | 22gq12.1 | 1.55 intron variant TTC28 0.0082 29059683
rs62237573 | 22q12.1 | 1.53 intron variant TTC28 0.0092 29059683
13803662 | 16qi12.1 | 1.5 | MNoncoding transcript CASC16 23001122
exon variant

rs2229882 5q11.2 | 1.45 synonymous variant MAP3K1 0.06 24493630
rs2981579 | 10g26.13 | 1.43 intron variant FGFR2 0.42 20453838
rs10771399 | 12p11.22 | 1.39 intergenic variant PTHLH 24325915
rs16886448 | 5q11.2 | 1.37 intron variant MAP3K1 0.07 24493630
rs7726354 5q911.2 | 1.37 intron variant MIER3 0.06 24493630
rs16886034 | 5qg11.2 | 1.36 intergenic variant 0.08 24493630
rs16886364 | 5q11.2 | 1.36 intron variant MAP3K1 0.07 24493630
rs3822625 5911.2 | 1.36 synonymous variant MAP3K1 0.07 24493630
rs16886397 | 5q11.2 | 1.36 intron variant MAP3K1 0.07 24493630
rs16886113 | 5g11.2 | 1.35 | regulatory region variant 0.08 24493630

rs614367 11913.3 | 1.34 intergenic variant LINC01488 0.16 24493630
rs78540526 | 11913.3 | 1.34 intergenic variant LINC01488 0.08 25751625
rs1017226 5g11.2 | 1.33 intron variant AC008937.2;MAP3K1 0.08 24493630
rs9397437 6025.1 1.32 intergenic variant CCDC170 0.07 29058716
rs1219648 | 10g26.13 | 1.32 intron variant FGFR2 0.42 20872241
rs75915166 | 11913.3 | 1.31 | regulatory region variant 0.06 25751625
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3.3 Genes associated with breast cancer susceptibility

We analysed 104 genes, out of the 311 in total, reported in at least 2 studies and associ-
ated with a Hugo symbol (Supplementary figure S7). It is worth noting that a gene can be
reported multiple times because the same variant might have been reported in multiple
studies or because different variants are mapped to the same genes.

We assigned the highest reported odds ratio, OR,,,,.., and focused on those with the
highest effect-size (see Fig. 2A). There are 20 genes with an OR,,,.. > 1.2, with the
top 10 genes having OR,,... > 1.28; we hereby refers to these genes as breast cancer
susceptibility genes (BCSGs, see Fig. 2B,C).

We then analyzed the functional role of BCSGs to identify possible mechanisms me-
diating breast cancer heritability. After performing literature curation, we found that 4
BCSGs control cell cycle, whereas 5 others are involved in DNA repair and invasion (see
Fig. 3), which are fundamental processes underpinning all cancers [65, 66]. It is im-
portant to note that CASC16 has been reported as a cancer susceptibility gene, but its
functional role remains unclear.

We identified 4 BCSGs, namely CHEK2, FGFR2, MAP3K1 and TTC28, which con-
trol critical steps of the cell cycle. CHEK2 is a tumour suppressor gene activated upon
DNA damage, which activates genes controlling basic cellular activities, such as apop-
tosis, DNA repair, and cell cycle arrest. The mechanism is triggered via activation of
TP53, BRCA1 or BRCA2 proteins [67]. Mutations in this gene are known to lead to the
dysregulation of cell cycle and thus facilitate malignant transformation of the cell, and
development of various types cancer, including breast cancer [68]. Mutations in CHEK2
gene mediate response to anthracycline based chemotherapy in breast cancer patients
[69]. FGFR2 (Fibroblast growth factor receptor 2) negatively modulates activity of ESR1
and can inhibit estrogen signalling [70]. It has been clearly shown that FGFR2 mediates
cancer susceptibility and mutations at this locus can account for an increase in the risk of
breast cancer of up to 16% [71]. FGFR2 is also a member of the fibroblast growth factor
receptor (FGFR) family, which controls upregulation of MAPK, PI3K/AKT, STAT and PLC~
signaling pathways. These pathways are involved in cancer mediating processes, such as
cancer cell proliferation, differentiation, invasion, survival and carcinogenesis [72, 73, 74].
The mitogen-activated protein kinase kinase kinase 1 (MAP3K1) is a serine/threonine ki-
nase having a role in signal transduction cascades, like MAPK, ERK, NF-xB, JNK or
JUN pathway, which control critical cellular processes, including apoptosis, proliferation
and differentiation [75]. Mutations in this gene affect kinase activity and are identified as
oncogenic drivers [76]. TTC28 is a gene with oncogenic activity required during the cell
cycle for condensation of spindle midzone microtubules, formation of the midbody, and
completion of cytokinesis [77]. The gene resides in the proximity of the CHEK2 gene,
thus suggesting a possible pattern of co-inheritance.

A second group includes 3 genes, namely BRCA2, RAD51B and LINC01488, which
mediates repair mechanisms upon double-strand DNA breaks. BRCA2 is a well known
cancer susceptibility gene, whose mutations are associated with 69% increase in risk of
breast cancer and 17% increase in risk of ovarian cancer[78]. Mutations in this gene
are also linked to other malignancies, including stomach, pancreatic and prostate cancer
[79]. BRCA2 is also a therapeutic target of the FDA approved PARP inhibitors Rucaparib
[80] and Niraparib [81]. For RAD51B there is evidence of association with familial breast
cancer due to common variations [82]. In detail, RAD51B (RAD51 paralog B) encodes a
protein which creates a complex with other RAD51 paralogs promoting binding of RAD51
upon DNA damage [83, 84]. Damaged DNA prevents successful replication and cause a
cell cycle arrest and apoptosis. Overexpression of RAD51 is usually found in tumors and
mediates drug resistance [85]. Haploinsufficiency of RAD51B causes mild hypersensitiv-
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ity to DNA-damaging agents favoring chromosome aberrations and aneuploidy in human
cells by impairing RAD51 function [86]. LINC01488, also known as CUPID1, is a long non
coding RNA regulated by estrogen and located in the 11q13 cytogenic band, which is as-
sociated with increased risk of breast cancer[87]. CUPID1, and the neighboring IncRNA
CUPID2, have been shown to affect homologous-repair (HR) and non-homologous end
joining (NHEJ) DNA repair mechanisms by impairing RAD51 recruitment.

We finally report 2 BCSGs, namely MIER3 and PTHLH, that are known to control in-
vasion. MIER3 (MIER family member 3) together with MIER1/2 and BAHD1 (vertebrate
protein that promotes heterochromatin formation and gene repression) repress expres-
sion of the steroid hormone receptor gene ESR1 [88]. MIERS is reported to act as tumor
suppressor [89] and is a known cancer susceptibility gene [90]. The Parathyroid Hor-
mone Like Hormone (PTHLH), which encodes the Parathyroid hormone-related protein
(PTHrP), is a gene responsible for the humoral hypercalcemia of the malignancy, mam-
mary development and lactation[91, 92]. During lactation it facilitates delivery of maternal
calcium to milk and thus play a role in regulation of bone and mineral metabolism. By ac-
tion through PTH1 receptors, PTHrP contributes to formation of bone metastasis through
promotion of osteoclast formation and bone resorption [93]. It is important to note that
FGFR2, MIER3 and LINC01488 are also involved in estrogen signaling, which regulates
mammary gland development and is one of the main risk factors for breast cancer.

Taken together, the BCSGs identified in our analysis directly mediates cancer phe-
notypes and co-morbidities related to breast cancer. Upon further investigation, we also
found these genes to be reported in many cancer panels (see Supplementary Figure 8)
[94, 95], thus suggesting also a possible link between somatic and inherited mutations.

4 Future directions

Decades of familial cancer studies provide evidence for a causal role of inherited genomic
mutations, but these results have not been replicated by GWAS, when analyzing high-
frequency mutations in the broader population. However, recent advances in sequencing
and genotyping technologies, combined with accurate statistical methods, are enabling
the identification of variants and quantify the heritable risk of many common malignancies,
including breast cancer.

Here we provided an updated overview of SNPs and genes associated with breast
cancer susceptibility, showing how variants in genes controlling cell cycle, DNA repair
and invasion could modulate the risk of developing this disease. Since breast cancer
susceptibility genes are often mutated in breast tumors, we speculate that a possible link
between inherited and somatic mutations might exist and could provide new targets for
clinical applications, including treatment and patients stratification. In particular, it is still
difficult to dissect the functional role of the polymorphisms and how they may interact on
a common mechanism, such as RAD51 regulation.

It will be of interest in long term follow up studies e.g. ‘Generations’ study, to see
whether the type of breast cancer that develops is related to these polymorphisms, and
to understand prevention studies e.g. hormone suppression in those with estrogen regu-
lated polymorphic genes.

However, current experimental and analytical limitations lead us to believe that identi-
fying the biological components modulating the risk of breast cancer and other oncolog-
ical diseases will require substantial advances in statistical genetics. Moreover, experi-
mental systems should be put in place to systematically validate the findings, and update
and improve models. Taken together, heritability analysis is emerging as a powerful tool
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to quantify the effect of variants with subtle effects, but new robust methods able to iden-
tify biological units, such as genes or pathways, are needed to translate analytical results
into biological and clinical findings.
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Figure 1: Breast cancer susceptibility loci across the human genome. A) Phenogram
[96] of the 719 reported SNPs associated with breast cancer. Each SNP is represented
by circles, and stacked symbols represent a locus for which multiple studies have re-
ported an association. The color codes distinguish the reported odds-ratio (OR). Red
circles denote those with stronger effect, OR > 1.31, that are only 5% of the total. B)
Distribution of the odds-ratios (OR) and risk allele frequencies (AF). The central scatter
plot shows the ORs and AFs for each SNP, where the top and right side are the cor-
responding histograms of OR and AF, respectively. For SNPs reporting only regression
coefficients, 3, we transformed these values in odds-ratios as follows OR = exp(3). ORs
are charatecterized by a long-tail distribution, whereas AF seems uniformly distributed. It
is important to note the correlation between OR and AF, with rare variants have consis-
tently stronger effects. C) Functional classification of the variants reported by the GWAS
catalog.

16



A REBSH2 cHe2

[ ]
Jices
CASC16
1.5- °
MAP3K1
JGFR2
1.4 - JPTHLH
MIER3
INC01488
[ ¢
S ceoc7g
X 1 3 -
g 1 EsR1
£ NAJC1
P USHBPL, JzABAMjNRB
TERT JOGLUT3 ANKLEL
1.2 -
° ° °
[ ] ° e oo ]
° ° o0
o ® . ° ° °
1.1- o0 ° [ ] ° ) [ ] ° [ ] Poaps [ ] ° o ° [ ]
L) ° (] o _o00 ® e o
e o LIPS e® © o . o oo oo
o ¢ © ® o® |0 ° ° e o °
1.0 - | | | | | | | | | | | [ T L R B | |
1 2 3 4 5 6 7 8 9 10 11 1213 1415161718 19 22
Chromosome
B) Q)
= intergenic_variant
B missense_variant
e - mm- B non_coding_transcript_exon_variant
mmm regulatory_region_variant
| stop_gained
MIER3- BRCAZ gy B synonymous_variant

"
IS
B
o
)

a4 6 8 1‘0 12 2I IIJ é é 1‘0
Total Number of Reported Variants Number of Unique Variants

o
~

Figure 2: Breast cancer susceptibility genes. A) For each gene, we report the variants
that are mapped within 50Kb of the gene body and the corresponding odds-ratios (ORs);
variants reporting only regression coefficients were transformed into ORs by computing
OR = exp(). The 10 genes with highest OR were further characterized below. B) Num-
ber of reported variants for each gene. It is important to note that the same gene could
harbor different variants, or the same variant could have been reported in multiple stud-
ies. C) Number of unique variants grouped by gene and mutation effect. Only BRCA2,
CHEK2 and MAP3K1 harbor exon variants.
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FGFR2 triggers the RAS pathway, which activates downstream MAP3K1, thus promoting
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it. PTHLH induces FAK phosphorylation, leading to increased invasion, which is in turn
inhibited by MIERS. Finally, both RAD51B and BRCAZ2 are active in DNA repair, whereas
LINC01488 (CUPID2) mediates this process by impairing RAD51 recruitment.
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