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ABSTRACT   

A machine learning algorithm was applied to predict the onset of flashover in archival 
experiments in a 1/5 scale ISO 13784-1 enclosure constructed with sandwich panels. The 
experiments were performed to assess whether a small-scale model could provide a better full-
scale correlation than the single burning item test.  

To predict the binary output a logistic regression model was chosen as machine learning 
environment. Because results indicated a high variance/low bias issue regularization was 
applied. It was found that lasso-regression significantly reduced the amount of variance at a 
negligible increase in bias.  

With the regularized model, it was possible to discern the predictive variables and determine 
the decision boundary. In addition, a methodology was put forward on how to use the decision 
boundary to iteratively update the learning algorithm. As a result, it was shown how a learning 
algorithm can be used to facilitate ongoing experimentation. At first as a crude guideline, and 
in later stages, as an accurate prediction algorithm.  

It is foreseen that, by iteratively updating the algorithm, by compiling existing and new 
experiments in databases, and by applying fire safety knowledge, the final learned algorithm 
will be able to make accurate predictions for unseen samples and test conditions. 
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LIST OF SYMBOLS AND ABREVIATIONS 

LOWERCASE 

𝑓 True decision boundary 

𝑓 Estimated decision boundary 



𝑖 Observation number 𝑖 from the historical dataset 

𝑙  The model-scale enclosure length [m] 

𝑙  The full-scale enclosure length [m] 

𝑚  Observation 𝑖 from the test set 

𝑚  Observation 𝑖 from the training set 

�̂�  The predicted probability of flashover for observation 𝑖 

�̂� ∗ The predicted probability of flashover for an experiment 𝑖* which has not been performed yet 

𝑡  Time to flashover 

𝑡  The model-scale burner time step [s] 

𝑡  The full-scale burner time step [s] 

𝑥  Input value for predictor 𝑗 and for observation 𝑖 [kW; m; s] 

𝑥 ∗  Input value for predictor 𝑗 and for an experiment 𝑖* which has not been performed yet [kW; m; s] 

𝒙  
[(𝑁 + 1) × 1] column vector containing all the values of the features for observation 𝑖, including 
the bias unit [kW; m; s] 

𝒙 ∗ 
[(𝑁 + 1) × 1] column vector with feature values for an experiment 𝑖* which has not been 
performed yet [kW; m; s] 

𝒙 ∗  
[(𝑁 + 1) × 1] column vector with feature values that are an element of the decision boundary for 
an experiment 𝑖* which has not been performed yet [kW; m; s] 

�̅�  Mean of input variable 𝑗 [kW; m; s] 

𝑦  The observed output value for observation 𝑖  

𝑦  The predicted output value for observation 𝑖 

�̂�  The location of the 𝑖  observation relative to 𝑓 
  

UPPERCASE 

𝐷  Deviance of the null model 

𝐷  Deviance on the cross-validation set 

𝐷  Deviance on the test set, i.e. the approximation of the generalization error 

𝐽 𝜽  Unregularized cost function 

𝐽(𝜽)  Unregularized cost function on test set 

𝐽(𝜽)  Unregularized cost function on training set 

𝐽 𝜽  Regularized cost function 

𝑀 Total amount of observations 

𝑀  Total amount of observations allocated to the test set 

𝑀  Total amount of observations allocated to the training set 

𝑁 Total amount of input variables 

𝑃 𝜽  Shrinkage penalty including lasso, ridge and elastic-net regression 

�̇�  The model-scale gas burner heat release rate [kW] 

�̇�  The full-scale gas burner heat release rate [kW] 

𝑿 [𝑀 × (𝑁 + 1)] matrix with all observations, i.e. with on every row the transpose of 𝒙𝒊 [kW; m; s] 

𝑋  Bias unit with value 𝑥 = 1 

𝑋  Input variable 𝑗, also referred to as predictor 𝑗 or feature 𝑗 [kW; m; s] 

𝑌 The variable on which the prediction is to be made, i.e. the output variable 

 

GREEK 

𝛼 Tuning, or hyper, parameter II 

𝜆 Tuning, or hyper, parameter I 

𝜃  True value for the regression coefficient 𝑗 



𝜽 
[(𝑁 + 1) × 1] vector containing the values of the regression coefficients, including the intercept 
𝜃  

𝜃  Estimated intercept regression coefficient 

𝜃  Estimated value for the regression coefficient 𝑗 
 

ABBREVIATIONS 

CV Cross-validation ML Machine learning 

HRR Heat release rate RCT Room corner test 

LogLik Log likelihood function SBI Single burning item test 

LOOCV Leave-one-out cross-validation SE Standard error 

    

INTRODUCTION 

Fire-classification of materials is a central element for ensuring safe building design. 
The classification of a product should in principle be arrived at based on its reaction to fire in 
a test that represents the end-use situation (often full-scale). However, as large-scale tests are 
often costly and labour intensive, a tendency exists to try to predict full-scale fire behaviour 
based on small-scale testing1–6. In order to justify such a scaling methodology, a thorough 
understanding of the fire behaviour is necessary7. While this is currently the case for many 
single burning items, a knowledge gap persists for the interaction of a growing fire and 
combustible linings in an enclosure. Therefore, large-scale testing is still needed to accurately 
classify such materials. 

The full-scale room corner test (RCT)8 used to be the standard for classification of linings in a 
variety of countries. However, because it requires rather large samples, it was neither 
considered to be cost- nor time efficient and it was therefore replaced with the new European 
intermediate-scale single burning item (SBI)9 test. The concept of scaling-down seems 
justified, as in 87 per cent of the cases the full-scale fire growth behaviour could be captured 
adequately by the intermediate-scale test10. Nevertheless, for materials such as sandwich 
panels, linear systems (e.g. cabling and piping)  and polycarbonate panels, the correlation 
proved to be less accurate10. New tests have been developed for some specimens, but the 
defining test for classification of sandwich panels remained with the SBI test. As such, it is 
foreseen that unwanted situations could arise due to the possible misclassification of sandwich 
panels. The risk is further magnified as sandwich panels are frequently used as free-standing 
or frame-mounted construction elements rather than as linings. Free-standing or frame-
mounded sandwich panels should be tested conform the large-scale ISO 13784-111 standard to 
represent the end-use situation. Therefore, the correlation between the SBI test and the ISO 
13784-1 can be further questioned12.  

For the aforementioned reasons, the dependency on large-scale testing remains for an accurate 
classification of sandwich panels13. Therefore, a new reduced scale test is needed to provide 
the industry with an accurate and time- and cost-effective method for quality control and 
product development. To this end, recent work by Yoshioka et al.14 and Leisted15 studied the 
correlation between various scale-models of the ISO 13784-1 and the full-scale compartment. 
In particular, Yoshioka et al.14 researched the predictive capabilities of a 1/3 scale-model and 
Leisted15 researched the application of both a 1/2 and 1/5 scale-model. The work by Leisted15 
is especially relevant for this paper as it has highlighted that a tool which can both identify 



experimental configurations for their knowledge benefit, and discern relevant parameters, 
would significantly reduce research time and cost, and therefore also augment the possibility 
of a successful research outcome.  

One possibility to develop a tool which can aid ongoing experimentation encompasses the 
application of machine learning (ML), which has already proven its merit in many fields. A 
foremost advantage of a ML algorithm is that it possesses the capability to learn by way of 
observation and experience, rather than by using rigid prescribed equations. Meaning that, a 
relatively simple learning algorithm can prompt different learned algorithms, which can be 
magnitudes more complex, for varying datasets and without the interference of the ML expert. 
The simplicity inherently means that the learning algorithm can analyse complex problems and 
large amounts of variables, whereas conventional techniques quickly get overwhelmed, either 
by the limitations of computational-time or computational-space or because they are too 
complex to be understood by humans.  

The currently proposed learning algorithm uses ML techniques to aid ongoing experimentation 
to derive a new intermediate-scale test procedure for sandwich panels with regards to the 
ISO 13784-1 standard. The regularized logistic regression model predicts flashover or 
no-flashover for a polyisocyanurate (PIR) sandwich panel exposed to various burning 
intensities within the physical confines of a 1/5 scale model of the standardised ISO 13784-1 
enclosure.  

EXPERIMENTAL SETUP 

The experimental data used for the ML algorithm is a selected version of the complete 
dataset that was performed by Leisted15 in an attempt to develop a screening method for the 
ISO 13784-1 enclosure. In particular, Leisted15 researched whether a scale model of the 
ISO 13484-1 would provide a better correlation than the SBI test, with respect to sandwich 
panels. Towards this end, different experiments were conducted at 1/2 and 1/5 scale, but 
because only a few 1/2 scale experiments were available, the remainder of this paper will focus 
on the 1/5 scale experiments.  

Geometrical scaling of the compartment and the gas burner 

Figure 1a shows the geometry of the full-scale ISO 13784-1 enclosure and Figure 1b shows 
the 1/5 scaled enclosure. The full-scale prescribed compartment dimensions were 3.60 m x 
2.40 m x 2.40 m (L x W x H) with a door opening of 0.80 m x 2.00 m (W x H), whereas the 
1/5 scale enclosure and door dimensions were scaled to respectively 0.72 m x 0.48 m x 0.48 m 
(L x W x H) and 0.16 m x 0.40 m (W x H). The walls and ceiling of both enclosures were made 
of a commercially available sandwich-panel with PIR foam core, for which the reference, i.e. 
full-scale, experiments had a material thickness of 0.10 m and the scaled experiments had a 
material thickness of either 0.06 or 0.10 m. 

The dimensions of the gas burner, and the height of the top of the gas burner to the inert floor, 
were also scaled with a 1/5 factor. That is, the prescribed ISO 13784-1 burner of 170 mm x 170 
mm x 200 m (L x W x H) was scaled to 34 mm x 34 mm x 40 mm (L x W x H). To ensure an 
even gas flow, the internal compartment height of the burner was increased from 40 mm to 100 
mm and the excess burner height was allowed to protrude trough the inert floor. 



 

 

 

a) b) 
Figure 1: a) Internal dimensions of the full-scale enclosure. b) Internal dimensions of the 1/5 
scale enclosure. Reused with permission from Leisted15. 

Froude scaling of the gas burner HRR and gas burner duration 

To ensure that a correlation would exists across the scales, the Froude scaling technique was 
used to scale down the size of the fire with respect to the geometric scaling of the enclosure15. 
In particular, the gas burner HRR and the gas burner duration were scaled with respectively 
Equation (1)16 and Equation (2)16.  

�̇�

�̇�
=

𝑙

𝑙

⁄

  (1) 

  

𝑡

𝑡
=

𝑙

𝑙

⁄

  (2) 

  
Here �̇�  is the model-scale HRR, �̇�  is the full-scale burner HRR, 𝑡  is the model-scale burner 
timestep, 𝑡  is the full-scale burner timestep, 𝑙  is the full-scale length and 𝑙  is the model-
scale length. It should be noted that, for Equation (1) 𝑙  and 𝑙  refer to the compartment length, 
whereas for Equation (2) 𝑙  and 𝑙  refer to the material thickness.  

The aforementioned equations were applied to the ISO 13784-1 standard, which specifies a gas 
burner HRR equal to 100 kW for the first 10 min, 300 kW for the next 10 min, and 0 kW for 
the last 10 min, i.e. the observation period. The end of the test is either the 30 min mark or the 
onset of flashover, whichever occurs first. Equation (1) was applied to the prescribed ISO 
13784-1 gas burner HRR, which resulted in a scaled gas burner HRR of 1.79 kW during the 
first time step, and 5.37 kW during the second time step. Furthermore, the duration of each 
burner intensity was determined with Equation (2) to be either 465 s or 600 s for insulation 
thicknesses of 0.06 m and 0.10 m, respectively. Lastly, research17,18 showed that fires in 
commercial premises were often much higher than the prescribed 300 kW and had a longer 
duration than 30 min. Therefore, Leisted15 added two gas burner regimes with a third burner 
intensity and two regimes with a continuous burner output to allow for more (severe) testing 
conditions. The burner regimes were denoted with three subsequent numbers, one for every 
time step, that can take the following values: 0 for 0 kW, 1 for 1.79 kW, 5 for 5.37 kW and 10 



for 10.74 kW. The scaled stepwise burner regimes are depicted in Figure 2a and the scaled 
continuous burner regimes in Figure 2b. 

  
a) b) 

Figure 2: a) The stepwise burner regimes and b) The continuous burning regimes for the 0.10 
m material thickness (timestep of 600 s) and the 0.06 m material thickness (timestep of 465 s).

Experimental data from the 1/5 scale experiments  

The sandwich panels were exposed in the 1/5 scale model to the aforementioned scaled burner 
regimes and the specimen HRR was recorded with the oxygen consumption theory. Figure 3a 
and b depicts the specimen HRR for respectively the 0.10 m and 0.06 m thick material. 

  
a) b) 

Figure 3: The specimen HRR profile when exposed to different gas burner regimes for a) The 
0.10 m thick sandwich panel and b) The 0.06 m thick sandwich panel. 

 
The dashed lines indicate those tests which did not lead to flashover, i.e. test number 1, 3 and 
9 for the 0.10 m thick material and test number 2 and 4 for the 0.06 m thick material. Although 
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the onset of flashover was visually observed during the experiments, i.e. flames propagating 
outside the boundaries of the enclosure, it can also be deduced from the graph as a sudden spike 
in the HRR. It should be noted that, on the onset of flashover the burner was turned off 
regardless of the predefined burner regime. Figure 4a and b show graphs from a 1/5 scaled 
experiment with no-flashover and with flashover, respectively.  

  
a) b) 

Figure 4: a) 1/5 scale experiment resulting in no-flashover. b) 1/5 scale experiment resulting 
in flashover. Reused with permission from Leisted15. 
 
THE MACHINE LEARNING ENVIRONMENT 

The 14 experimental observations (𝑀 = 14) depicted in Figure 3 are a selected subset 
of all the 1/5 scale experiments performed by Leisted15. Originally, also the presence of a joint 
in the specimen build up and the burner location in the enclosure were varied. These aspects 
were not considered for the ML analysis as only a few data points were available. Furthermore, 
one training example was omitted due to poor burner mounting, causing it to have a slight 
outwards angle. This resulted in a divergence of the output variable, when compared to its two 
equivalents. As the burner angle is considered vertical in the experimental setup, this 
observation was omitted.  

The experimental observations used for the ML algorithm are summarized in Appendix Table 
1, which in the remainder of the manuscript is referred to as the historical dataset. The time to 
flashover 𝑡  is listed as an informative feature for the reader but will not be used in the ML 
model as it is not an a priori known variable. Capital letters are used to denote the output 
variable 𝑌 and the five (𝑁 = 5) input variables 𝑋  (1 < 𝑗 < 𝑁).  The values of the variables 

are denoted with lowercase letters 𝑥  and 𝑦  for every 𝑖  observation (1 ≤ 𝑖 ≤ 𝑀) and 𝑗  
input variable. The following list summarizes the input and output variables together with the 
boundaries defined by the historical dataset: 

- The output variable 𝑌, with 𝑦 ∈ {0,1} for respectively flashover and no-flashover. 
- Three burning intensities 𝑋 , with 𝑥 ∈ {0 kW;  1.79 kW; 5.37 kW; 10.74 kW}. 
- The thickness of the material 𝑋 , with 𝑥 ∈ {0.06 m, 0.10 m}. 
- The planned duration of each burning intensity 𝑋 , with 𝑥 ∈ {465 s, 600 s}. 

Many different ML algorithms can be applied to predict a binary output, i.e. flashover or no-
flashover, of which most are referred to as a black box, meaning that it is practically impossible 
to fully comprehend all the implications of what happens in the in-between state of giving the 
algorithm the data and the algorithm coming up with a prediction. Therefore, the choice was 
made to use a logistic regression model, which is by far the most transparent trained ML 



algorithm. In other words, after performing the regression all input can be clearly ranked in 
terms of importance and all input can be measured in terms of effect on the output.  

The logistic regression model divides the five-dimensional space, defined by the input features 
𝑋 , into a flashover and no-flashover zone with a so-called estimated decision boundary (DB) 

𝑓. By doing this, it is implicitly assumed that a true division 𝑓 exists, which corresponds with 
test setups 𝑖 for which input vector 𝒙 = {𝑥 ; 𝑥 ; … ; 𝑥 } results in a 50 per cent flashover 

chance. As 𝑓 is almost always unknown, the goal of the ML algorithm is to make an 
approximation 𝑓 of 𝑓. In two dimensions, i.e. for two input features, and considering a linear 
DB, 𝑓 represents a line 𝜃 + 𝜃 𝑋 = 𝜃 𝑋 , see Figure 5. The estimated regression coefficients 
𝜃  and the estimated intercept regression coefficient 𝜃  determine the position and direction of 

𝑓 in space and are an approximation of the ideal regression coefficients 𝜃 , which in turn 
represent the location and direction of 𝑓 in space.  

 
Figure 5: Graphical interpretation of the decision boundary 𝑓, represented by the red line, 
which separates flashover (𝑦 = 1) from no-flashover (𝑦 = 0). 

The Decision Boundary 

Equation (3) shows the general form of 𝑓 for a first order linear model. Note that an extra 
feature, i.e. the bias unit 𝑋  with 𝑥 = 1, is added to the feature set to accompany the estimated 
intercept regression coefficient 𝜃 , which allows the use of matrix notations.  

𝑓 = 0 ⟺ 𝜃 𝑋 + 𝜃 𝑋 + ⋯ + 𝜃 𝑋 = 0 (3) 

  
Once the regression coefficients are estimated, Equation (4) can be used to predict the location 
�̂�  of the 𝑖  training example relative to𝑓. Meaning that if �̂� = 0 the observation is situated 
on 𝑓. Otherwise, the observation is situated either above or below 𝑓. 

�̂� =
?

0 ⇔ 𝜃 𝑥 + 𝜃 𝑥 + ⋯ + 𝜃 𝑥 =
?

0 

⟺ 𝑿𝜽 =
?

0 
(4) 

  
Substituting the feature values of an observation from Appendix Table 1 in Equation (4) will 
result in an output value �̂� ∈ ℝ. As the output of interest is binary, i.e. flashover or 
no-flashover, the sigmoid function, Equation (5), is used to scale �̂�  to a value 0 < �̂� < 1, as 
shown in Figure 6.  

x 2



�̂� =
1

1 + 𝑒 ̂
 (5) 

  
It should be noted that other functions exist which have the same effect, but the logistic function 
is preferred due to its traceability, interpretability and smoothness19. The obtained value can be 
interpreted as a measure of confidence in the prediction, i.e. the probability �̂�  that for the 𝑖  
training example the input vector 𝒙  results in flashover (𝑦 = 1). Observations situated on 𝑓 
return a value of �̂� = 0.5 and observations far removed from 𝑓 return a value close to zero or 
close to one (signifying high confidence in the prediction). 

 
Figure 6: Graphical interpretation of the sigmoid function. 

 
In practice, the following interpretations are made in conjunction with Equation (5) to come 
to the actual predicted output for the 𝑖  training example 𝑦 , i.e. flashover or no-flashover. 

 
if 0.5 ≤ �̂� < 1 then 𝑦 = 1 

if 0 < �̂� < 0.5 then 𝑦 = 0 
 (6) 

  

Cost Function for Unregularized Logistic Regression 

The estimated values for the regression coefficient matrix 𝜽 are those which minimize the 

difference between 𝑓 and 𝑓, i.e. minimize the cost function 𝐽 𝜽 . The cost function, used for 
the model, is represented by Equation (7).  

𝐽 𝜽 = −
1

𝑀
𝑦 log �̂� + 1 − 𝑦 log 1 − �̂�  (7)  

  
The right-hand part of the equation is usually referred to as the log likelihood (log lik) function, 
as shown in Equation (8). 

𝐽 𝜽 = −
1

𝑀
log lik 𝜽  (8)  

  
Equation (8) is usually minimized with mathematical and statistical programs, e.g. Matlab, 
Python, R, that have built-in optimization algorithms. The process of optimizing the cost 
function is commonly referred to as fitting the model. 



Model Performance and the Deviance and 𝑹𝟐 Metric 

In order to determine 𝜽 while still being able to evaluate the model performance, the historical 
dataset is split into two parts: The training set and the test set. As such, the cost on the training 
set 𝐽(𝜽)  can be calculated with Equation (7) when only taking into account those 
observations which are allocated to the training set, and by replacing 𝑀 with the total amount 
of training observations 𝑀 . The training set is then used to fit the model and the test set is 
used to report on the anticipated ability of the fitted model to accurately predict flashover or 
no-flashover on “unseen” observations, i.e. the approximation of the generalization error. The 
reason for using the test set is that the data examples used to calculate 𝐽(𝜽)  do not classify 
as unseen anymore, and thus give an optimistic approximation of the generalization error. The 
deviance on the test set 𝐷 , see Equation (9), is a metric which is commonly used to 
approximate the generalization error for logistic regression20. It denotes the difference between 
the fitted model and the ideal model, i.e. the saturated model. As such, the higher the deviance, 
the worse the performance of the model. It should be noted that, when 𝐷  is evaluated over 
multiple lists a conservative approach is usually taken and the simplest model, defined by the 
minimum 𝐷  plus one standard error (SE), is considered to be the most parsimonious 
model21, which in the remainder of the manuscript is referred to as the ideal scenario. 

𝐷 = − 2 𝑦 log �̂�  + 1 − 𝑦 log 1 − �̂� … 

… + 2 𝑦 log 𝑦  + 1 − 𝑦 log 1 − 𝑦  

= −2 log lik (𝜽) 

(9)  

  
The model without any features is referred to as the null model, i.e. the worst model, and makes 
predictions solely with the intercept regression coefficient 𝜃 . The deviance of the null model 
𝐷  is calculated with Equation (10) and can be used as a benchmark for 𝐷 . As 𝐷  and 𝐷  
might be difficult to interpret, especially due to the dependency on the amount of observations, 
they can be used to derive the 𝑅  value (0 ≤ 𝑅 ≤ 1), see Equation (11).  A value of unity 
(𝑅 = 1) represents a perfect fit, while 𝑅 = 0 signifies a scenario where the features do not 
add anything to the regression. 

𝐷 = −2 log lik (𝜃 ) (10)  

  

𝑅 = 1 −
𝐷

𝐷
 

(11)  

  
In order to avoid an exceptionally good (or bad) allocation of observations to the test or training 
set the procedure is randomized. As such, The model was fitted and 𝐷  was calculated as the 
average over a 1000 randomly generated training lists 𝑀 = 8 and test lists 𝑀 = 6. The 
values found for 𝐷  and 𝐷  were respectively ≈ 13 and ≈ 10. It can thus be concluded that 
the fitted full model performed worse than the null model. The causes and possible solutions 
for this phenomenon are further elaborated in the next section.  



Bias and Variance 

To improve the performance of the model the type of error is determined first. This is 
particularly important as the type will dictate the possible solutions. A high variance error 
signifies a 𝑓 which is too flexible. As such, the model will find a pattern that is not actually 
true in the real world22, see Figure 7a. On the other hand, a model suffering from high bias will 
not be flexible enough to capture the intricacies of a training set, see Figure 7b. 

  
  

a) b) 
Figure 7: Illustration of a decision boundary 𝑓, red line, which represents a) A high 
variance/low bias and b) A high bias/low variance scenario. 
 
At this point it should be clear that a decrease in bias will inevitably mean an increase in 
variance and vice versa. As such, the ideal situation is a trade-off between the two types of 
error. A learning curve, or a priori knowledge, allows to assess whether a model suffers from 
high bias or high variance. In addition, learning curves are also a tool to determine the effect 
of an increasing training set size on the model performance. To construct the learning curve, 
the amount of 𝑀  was varied from one to ten while the amount of 𝑀  was kept constant 
at four. For each new training list size, the model was fitted and 𝐷  and 𝐷  were 
calculated as the average over a 1000 randomly selected lists. 

 
 

 

a) b)  
Figure 8: a) The learning curves of the unregularized model indicate a high variance/low bias 
error. b) The predicted probability of flashover �̂�  (red circles) on the training set with the 
unregularized model coincides with the experimentally observed values (blue crosses) and 
implies that the model suffers from high dimensionality. 

 

  
From Figure 8a it can be seen that 𝐷  is approximately zero for every training set size. 
Whereas, the high value for 𝐷  implies that the model fails to generalize to unseen 
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observations. As such, there remains a large gap between 𝐷  and 𝐷 , which is typical for 
a high variance/low bias case. In addition, Figure 8b shows that the predicted probability of 
flashover �̂� , indicated by the red circles, perfectly matches the experimentally observed output 
𝑦 , indicated by the blue crosses, for every training examples 𝑚  of one random training 
list. This is an indication that the model suffers from high dimensionality, which in turn would 
explain the high variance/low bias error. Strictly speaking, high dimensionality refers to the 
case where the amount of observations 𝑀 is smaller than the number of features 𝑁21. 
Because, many of the same considerations apply when 𝑀 is only slightly larger than 𝑁, the 
next section will further elaborate the concept of high dimensionality. 

Considerations in High-Dimensionality 

Appendix Table 1 shows that there are no more than five observations in the least prevalent 
class, i.e. no-flashover. Whereas some rules of thumb advise a minimum of 10-20 observations 
of the least prevalent class per feature considered23. According to this rule of thumb, to evaluate 
all five features, approximately 50-100 no-flashover observations would be needed. This 
suggests that the model is too complex for the recorded number of observations. The reason 
for the earlier mentioned high variance/low bias error can thus be attributed to the lack of 
observations relative to the number of features. As high dimensionality problems are becoming 
more and more frequent, mainly due to the large feature collection possibilities of the internet22, 
numerous solutions were developed, of which one is explored in the next section. 

Cost Function for Regularized Logistic Regression 

In order to solve the high-dimensionality problem the choice was made to apply subset 
selection, i.e. evaluating the effect of deleting certain features. For the model at hand 
approximately 32 (2 ) different subsets exist. As such, a shrinkage method was applied to 
avoid having to identify every possible subset and consequently run the model ≈ 32 times. 
Shrinkage effectively introduces a shrinkage penalty 𝑃 (𝜃 ) to the cost function applied to the 
training set, see Equation (12)24. For 𝛼 = 0, the estimated regression coefficients of non-
predictive features are reduced towards zero, also referred to as ridge-regression. For 𝛼 = 1 
the regression coefficients of non-predictive features are reduced to exactly zero, also referred 
to as lasso regression. A value of 0 < 𝛼 < 1 represents an elastic-net regression, which can be 
seen as a trade-off between ridge-regression and lasso-regression. The reason for evaluating 𝛼 
is that, it is difficult to know a priori which regression method will perform best. Lasso-
regression will outperform ridge-regression when only a few features are related to the response 
and vice versa. The tuning parameter 𝜆 controls the trade-off between the log-likelihood 
function and the shrinkage penalty 𝑃 (𝜃 ). For 𝜆 →  ∞, all coefficients will be near or exactly 
zero, which defines the null model. For 𝜆 → 0 the effect of the shrinkage penalty becomes 
negligible and the cost function is again represented by Equation (7).  

𝐽 𝜽 = −
1

𝑀
log lik (𝜽) + 𝜆𝑃 (𝜃 ) 

where 𝑃 𝜃 =
1

2
(1 − 𝛼)𝜃 + 𝛼 𝜃  

(12) 

  



It is advised to standardise the features with Equation (13) when applying shrinkage to make 
sure all inputs have a standard deviation equal to one and a mean equal to zero19. As such, the 
magnitude of the regression coefficients will only be affected by the size of 𝜆 and not by the 
scaling differences between the features. 

𝑥 =
𝑥 − �̅�

1
𝑀

∑ 𝑥 − �̅�

, 𝑓𝑜𝑟 𝑗 = 1 … 𝑁 
(13) 

  
It should be noted that, applying subset selection on a limited historical dataset could result in 
the deletion of information that might be relevant. Therefore, a preference exists to increase 
the number of observations in order to resolve high dimensionality. Although this is not always 
possible, the fire safety community should strive towards an easily accessible databases in 
which experimental results are compiled. Recent steps towards this goal were undertaken by 
Naser,25 who compiled a library of 12,000 data-points for fire-tested timber members. 

Cross-Validation 

The introduction of the hyperparameters 𝛼 and 𝜆 gives rise to another problem. Namely that, 
for every possible combination of 𝛼 and 𝜆 the model must first be fitted on the training set. 
After which, the best model can be chosen as the one that minimizes 𝐷 . As such, the test 
set cannot be used anymore to approximate the generalization error, because the test 
observations do not classify as truly unseen anymore, i.e. they were used to establish the ideal 
hyperparameter combination. In order to fit the model, determine the ideal hyperparameters 
and be able to approximate the generalization error, the historical dataset must be split into 
three parts. The training set to fit the model, the cross-validation (CV) set to determine the ideal 
hyperparameters, and the test set to calculate the generalization error. Unfortunately, the 
available dataset is not large enough to be split in three ways while still allowing enough data 
for training and cross-validation. For this reason, it was decided to only split the data into a 
training and CV set and use 𝐷  as an approximation of 𝐷 . In contrast to the training set, 
the CV set was only used to establish the hyperparameters. As such the model never truly 
‘learns’ from the CV set and thus 𝐷  will be a better approximation of 𝐷  than 𝐷 . 
Nevertheless, as there is no subset to calculate the approximation of the generalization error 
the unbiased performance of the model cannot be reported. It should be noted that, the absence 
of 𝐷  is not a problem for the model at hand, as the goal is to provide a guideline for the user 
on which experiment to conduct next, rather than providing the industry with a finished 
prediction tool for flashover or no-flashover. 

Leave-One-Out Cross-Validation (LOOCV) was applied19
, rather than randomly assigning 

observations to different lists. For LOOCV, the model is fitted on 𝑀 − 1 data examples and 
the remaining 𝑖  data example is used to calculate the cross-validation deviance. The process 
is then repeated 𝑀 times, with for every run a different data example to be used as CV, and 
consequently 𝐷  is calculated as the average over 𝑀 observations19. The advantage of LOOCV 
is the absence of randomness in allocating observations to subsets and the possibility to fit the 
model on almost the complete dataset. With the LOOCV method the null model deviance was 
found to be ≈ 21, which will be used as a benchmark in the following section. 



RESULTS AND DISCUSSION 

To determine the hyperparameters the model was fitted with the LOOCV method by 
minimizing Equation (12) for different combinations of 𝛼 and 𝜆. It was found that a lasso-
regression model (𝛼 = 1) gives the best performance in combination with a tuning parameter 𝜆 
of approximately 0.01. The lasso-regression model with 𝜆 = 0.01 effectively reduces the 
regression coefficients 𝜃  to zero, i.e. lasso-regression considers the features 𝑋  not 
relevant for the prediction of flashover or no-flashover. As such the model is reduced from five 
to three features. With the lasso-regression model it was possible to obtain a model 
performance on the CV set of 𝐷 ≈ 2, or a 𝑅 ≈ 0.91, which is a considerable improvement 
compared to the null model with 𝐷 ≈ 21.  

A careful interpretation of the subset selection is necessary as the ML algorithm does not know 
the principles of fire safety engineering, and thus solely makes conclusions based on the data 
it is presented with. In particular, by implementing the shrinkage parameter it is implicitly 
assumed that the emphasis of the model is directed towards making predictions on unseen 
observations based upon the current historical dataset, and not so much on explaining the 
underlying correlations between the variables of the historical dataset itself. The difference can 
be found in the fact that for explanatory modelling the focus is to reduce the bias, i.e. make 
accurate predictions on the training set. Whereas for predictive modelling the objective is to 
reduce both bias and variance, for which it might be necessary to sacrifice some theoretical 
accuracy. The latter was accurately described by Shmueli26 as: “To explain or to predict”. 

 
Figure 9: The model was fit on the complete historical dataset to determine the final definition 
of the regression coefficients. For the trained model, different assumptions were made for 
burning intensity three 𝑥 . The resulting curves divide the space into a flashover zone, above 
the colored curve, and a no-flashover zone, below the colored curve. 
 
Lastly, in order to arrive at the learned algorithm, i.e. determine the final regression 
coefficients, the complete historical dataset was used for training, in conjunction with the 



earlier defined hyper-parameters. To allow for a two-dimensional plot, the decision boundary 
was calculated for a set of fixed values for X3. In other words, new feature combinations 𝒙 ∗ 
were determined, with 𝑥 ∗ = 0, 𝑥 ∗ = 𝑥 ∗or 𝑥 ∗ = 2𝑥 ∗, such that the learned model assesses 
the probability of flashover as �̂� ∗ = 0.5, see Equation (5). As such, each coloured line of 
Figure 9 divides the space into a flashover zone, see Figure 10a, situated above the line and 
denoting a �̂� ∗ ≥ 0.5, and a no-flashover zone, see Figure 10b, situated below the line and 
denoting a �̂� ∗ < 0.5. Due to the limited amount of observations any extrapolations which does 
not comply with the following conditions should be treated with caution: 𝑥 > 1 kW, 𝑥 > 𝑥 , 
6 < 𝑥 < 10 and 𝑥 > 465. 

  
a) b) 

Figure 10: For a third burning intensity equal to zero, the following areas can be discerned 
in Figure 9: a) In blue, the input vectors for which the model predicts a higher than 50 percent 
chance of flashover. b) In red, the input vectors for which the model predicts a lower than 50 
percent chance of flashover, i.e. no flashover. 
 
It is important to understand that herein the aforementioned “learned algorithm” relates to the 
(historical) dataset available at a given point in time. In other words, the final regression 
coefficients are not truly ‘final’ from this point onwards, but are rather intended to be updated 
as more data becomes available. In practice, the algorithm will thus alternate between being 
learned and learning, as elaborated in the following paragraph. 

The now learned model can be used to define future experiments that would result in the 
greatest knowledge benefit for the user and for the algorithm itself. That is, the decision 
boundary (DB) identifies the test conditions with input vectors 𝒙 ∗ = {𝑥 ∗; 𝑥 ∗; … ; 𝑥 ∗}, as 
shown in Figure 11, for which new experiments are predicted to have a 50 percent probability 
of flashover and a 50 percent probability of no-flashover. In addition, the further removed from 
the DB, the higher is the confidence of the learned model in predicting the outcome of the 
experiment (flashover above the DB and no-flashover below the DB). Therefore, the user and 
model will gain (almost) no additional knowledge from experiments with input values far 
removed from the DB, as the outcome of the experiment will be known’ a priori. On the other 
hand, the experimental outcome of 𝒙 ∗  may lead to new knowledge in an area previously 
unexplored. This can be explained by the fact that the probability of flashover and no-flashover 
being equal to each other, in a zone with limited available test date, is close to zero. Meaning 
that, the model requires further evaluations in this area to update its prediction accuracy. After 



every experiment 𝒙 ∗ , the newly obtained knowledge can be used iteratively to update the 
learned algorithm, and as such the learned algorithm becomes again a learning algorithm. The 
significant benefit of using machine learning, and thus the model set out herein, is that the 
model does not need recoding or rewriting to accommodate a changing dataset. That is, for 
every update the ML algorithm will re-evaluate the values for α and λ and change them 
accordingly. For example, if at one point more variables that are correlated to the output (rather 
than not) are analysed, the model will prefer ridge-regression over lasso-regression by changing 
α to a value closer to zero. 

 
Figure 11: For a third burning intensity equal to zero in Figure 9, the decision boundary is the 
interface between the blue, flashover, and red, no-flashover, area. The interface denotes the 
input vectors, green crosses, for which the new test condition 𝒙 ∗  is predicted to have a 50 
percent chance of flashover and a 50 percent chance of no-flashover.  
 
CONCLUSION 

As the SBI test cannot guarantee an accurate classification for sandwich panels the 
dependency on the full-scale ISO 13784-1 test remains. As the latter is time nor cost efficient 
the need arises to derive a specific intermediate-scale test for screening purposes. Recent work 
by Leisted15 showed promising results based upon a constant Froude number and a 1/5 scale 
model of the ISO 13784-1 test. The tool derived in this study demonstrates how ML can assists 
such work by providing an easy-to-use tool that can determine the relevant parameters and 
derive experiments which maximize the knowledge benefit.  

With the LOOCV and lasso-regression method the ideal hyperparameters were determined. As 
a result, two of the five features were found to be non-predictive, with respect to the given 
historical dataset. By letting the algorithm determine which features are relevant for the 
response it was shown how machine learning can be used to discern the relevant experimental 
parameters. As a result, the user can decide either to delete the non-predictive features (and 
thus (possibly) introduce other experimental parameters) or amend the pre-defined parameter 
constraints. It can be argued that for the small dataset used herein, the added value over simple 
reasoning is small. Nevertheless, over time, new collaborations and ideas will inevitably lead 
to more parameters. Whereas a non-learning algorithm needs to be rewritten for every new 
input, the learning-algorithm evolves with the database without the interference of the 
machine-learning expert. 



The logistic regression model was used to create the decision boundary (DB) to identify the 
combinations of input values that are predicted to result in a 50 per cent chance of flashover 
and a 50 percent chance of no-flashover. By identifying the areas where the model, and likely 
the user, have low confidence, it was demonstrated how the ML algorithm can help identify 
new experimental setups for their knowledge benefit. In addition, with every new experiment 
the learning-algorithm can iteratively update its DB and progress from a guidance tool to a 
more accurate prediction method. Nevertheless, a limited dataset inevitably means that the 
algorithm cannot capture all the physics, as it can only learn from the data it is presented with. 
As such, predictions with a limited database, i.e. at an early stage, should be used in 
combination with engineering judgement and within the boundaries prescribed by the historical 
dataset. 

The flexibility of machine learning algorithms is unmatched in current models. Thanks to this, 
it might prove to be part of the solution for an ever-changing application of innovative materials 
and design solutions. Nonetheless, to arrive at a fully learned model that can be used 
universally, i.e. an algorithm for which the regression coefficients are permanently fixed, a 
large amount of data is needed. The tool presented herein partly overcomes the challenges 
associated with limited data as it is foreseen that the algorithm will develop as the database 
grows. In other words, the algorithm will make more crude predictions at first, and increasingly 
more accurate predictions as more data becomes available. In addition to the improved fidelity, 
the algorithm is expected to become more and more valuable with time due to the increasing 
complexity and size of the available dataset. 

Nevertheless, the end-goal of the research, for which the work presented herein is considered 
to provide a valuable contribution, is to create a screening tool that can be used by anyone to 
predict the output of large-scale and intermediate-scale tests. For example, it can be used for. 
the single burning item test and the room corner test, as well as for various compartment 
geometries and materials based on parameters obtained from bench scale tests such as the cone 
calorimeter. Therefore, all the currently available fire test results need to be compiled in a 
database and new reaction to fire tests must be defined for their knowledge. Still, due to various 
limitations such as anonymity issues and the destructive nature of reaction to fire tests, this 
widespread data sharing platform is not deemed viable in the foreseeable future. Therefore, the 
envisioned algorithm will have to be a symbiosis between fire safety science and machine 
learning. This symbiosis will allow current science to fill in the knowledge gaps inherent to a 
limited database, and in turn allow machine learning to complement and enhance the 
knowledge-base in fire safety engineering. 
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APPENDIX 

Appendix Table 1: The experimental data which will be used for the ML algorithm, i.e. the 
historical dataset. Reproduced from Leisted15 

 i 𝑿𝟏 [kW] 𝑿𝟐 [kW] 𝑿𝟑 [kW] 𝑿𝟒 [m] 𝑿𝟓 [s] Y [-] 𝐭𝐟𝐨 [s] 
1 1.79 5.37 0 0.10 600 0 - 
2 1.79 5.37 0 0.06 465 0 - 
3 1.79 5.37 0 0.10 600 0 - 
4 1.79 5.37 0 0.06 465 0 - 

5 1.79 5.37 10.74 0.10 600 1 1270 
6 1.79 5.37 10.74 0.06 465 1 1009 
7 1.79 5.37 10.74 0.10 600 1 1249 
8 1.79 5.37 10.74 0.06 465 1 963 

9 1.79 1.79 1.79 0.10 600 0 - 

10 1.79 5.37 5.37 0.10 600 1 1322 

11 5.37 5.37 0 0.10 600 1 847 
12 5.37 5.37 0 0.06 465 1 775 

13 1.79 5.37 10.74 0.06 465 1 1010 
14 1.79 5.37 10.74 0.06 465 1 1066 

 

 


