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1 Abstract 

2 The neuromuscular junction (NMJ) – a synapse formed between lower motor neuron and 

3 skeletal muscle fibre – represents a major focus of both basic and clinical neuroscience 

4 research. Although the NMJ is known to play an important role in many neurodegenerative 

5 conditions affecting humans, the vast majority of anatomical and physiological data 

6 concerning the NMJ come from lower mammalian (e.g. rodent) animal models. However, 

7 recent findings have demonstrated major differences between the cellular and molecular 

8 anatomy of human and rodent NMJs. Therefore, we undertook a comparative morphometric 

9 analysis of the NMJ across several larger mammalian species in order to generate baseline 

10 inter-species anatomical reference data for the NMJ, and to identify animal models that 

11 better represent the morphology of the human NMJ in vivo. Using a standardized 

12 morphometric platform (‘NMJ-morph’) we analysed 5,385 individual NMJs from lower/pelvic 

13 limb muscles (EDL, soleus and peronei) of 6 mammalian species (mouse, cat, dog, sheep, pig 

14 and human). There was marked heterogeneity of NMJ morphology both within and between 

15 species, with no overall relationship found between NMJ morphology and muscle fibre 

16 diameter or body size. Mice had the largest NMJs on the smallest muscle fibres; cats had the 

17 smallest NMJs on the largest muscle fibres. Of all the species examined, the sheep NMJ had 

18 the most closely-matched morphology to that found in humans. Taken together, we present 

19 a series of comprehensive baseline morphometric data for the mammalian NMJ and suggest 

20 that ovine models are likely to best represent the human NMJ in health and disease. 

21

22 Keywords: neuromuscular junction; comparative anatomy; NMJ-morph; mammalian; 

23 synapse

24  
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1 Introduction

2 The neuromuscular junction (NMJ) has been a focus of physiological research since the 

3 1800’s, representing an ideal, experimentally-accessible, model synapse (Clarac and 

4 Pearlstein 2007; Slater 2008, 2015, 2017; Szule et al. 2015; Rudolf et al. 2019). More recently, 

5 it has become clear that the NMJ’s critical role in signal transmission between lower motor 

6 neuron and skeletal muscle fibre makes it a major target in many neurodegenerative and 

7 neuromuscular conditions (Murray et al. 2010; Rudolf et al. 2016; Verschuuren et al. 2016; 

8 Rodríguez Cruz et al. 2018). Whilst the physiology of the NMJ has been well-studied across a 

9 wide range of invertebrate (Clarac and Pearlstein 2007) and vertebrate species, including 

10 humans (Wood and Slater 2001), far less is known about comparative NMJ morphology 

11 between mammalian species, especially with respect to humans (Jones et al. 2017). 

12 Moreover, small mammal animal models remain the mainstay of research into the 

13 contribution of the NMJ to many neurodegenerative conditions. 

14

15 In order to better understand the form and function of the NMJ in health and disease, 

16 particularly with regards to humans, it will be important to identify animal models that more 

17 closely mimic the human condition. Given the clear differences that have been recently 

18 reported in the cellular and molecular composition of human and mouse NMJs (Jones et al. 

19 2017), larger animal models might offer more appropriate alternatives. With major 

20 technological advances in gene editing technologies that have arisen over the past decade, 

21 there is a clear opportunity to establish large mammalian models of human disease (Eaton 

22 and Wishart 2017). However, although significant progress has been made in understanding 

23 the morphology of lower mammalian NMJs in several species using modern imaging 
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1 techniques, data from larger mammals remains sparse (Tello 1922; Anzenbacher and Zenker 

2 1963; Haddix et al. 2018).  

3

4 In the present study we sought to establish baseline reference datasets of NMJ morphology 

5 across multiple mammalian species (mouse, cat, dog, sheep, pig, human). By utilising our 

6 recently-developed NMJ-morph platform for comparative analysis of NMJ morphology (Jones 

7 et al., 2016), we have been able to generate comprehensive morphometric NMJ data from 

8 lower limb/hindlimb musculature of each species. 

9

10

11
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1 Methods

2 Animals

3 All animal studies were performed in accordance with the Animals (Scientific Procedures) Act 

4 1986. No animals were sacrificed specifically for this project: tissue was sampled from animals 

5 in existing studies (after experimental endpoints had been reached) or from animals 

6 submitted for euthanasia (to Dryden Farm or The Roslin Institute). Four mammalian species 

7 were investigated: cat (N = 3; mean age = 12.6 years), dog (N = 3; mean age = 6.6 years), sheep 

8 (N = 3; mean age = 16 months) and pig (N = 3; mean age = 18 months). Full details are provided 

9 in Supplementary Table 1. In addition, comparative data from mouse (N = 3; mean age = 12 

10 weeks) and human (N = 21; mean age = 67 years) was obtained from our reference archive 

11 (including previously published data; Jones et al. 2017). All previous human studies were 

12 covered by the requisite ethics approvals (NHS Lothian REC: 2002/1/22, 2002/R/OST/02; NHS 

13 Lothian BioResource: SR719, 15/ES/0094).

14

15 Tissue sampling

16 Animals were euthanised and samples were harvested within 1 hour post-mortem. Three 

17 individual animals from each species (cat, dog, sheep, and pig) were sampled. To facilitate 

18 cross-species comparison, previously studied muscles were selected (Jones et al. 2017): 

19 extensor digitorum longus, peroneus longus, peroneus brevis and soleus. Given the substantial 

20 difference in gross anatomy between the species (e.g. dogs lack a soleus; sheep and pigs have 

21 combined peronei) every effort was made to sample equivalent muscles based on standard 

22 descriptions of veterinary anatomy (Aspinall and Cappello 2015; Done et al. 2009; König, 

23 Horst Erich et al. 2014; Fails and Magee 2018). 

24
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1 Full-length muscle fibres from origin to insertion (2-3 cm in length) were dissected from each 

2 of the hindlimb muscles and immediately fixed in 4% paraformaldehyde (PFA) for 3-4 hours. 

3 Muscle samples were then washed with 1x phosphate-buffered saline (PBS) and micro 

4 dissected into small bundles of 10-15 individual fibres. All remaining fat and connective tissue 

5 was removed to reduce potential background staining.

6

7 NMJ immunohistochemistry

8 NMJs were immunolabelled by modifying an established protocol (Jones et al. 2017) to 

9 visualize pre-synaptic nerve terminal proteins (SV2 and 2H3) and post-synaptic acetylcholine 

10 receptors (AChRs).

11

12 Muscle fibres were placed in the following sequence of solutions (made up in 1xPBS unless 

13 otherwise specified): glycine (0.1M pH 10.4) for 15 min to reduce tissue auto-fluorescence; 

14 1xPBS wash for 15 min; tetramethylrhodamine -bungarotoxin (TRITC -BTX, BTIU00012, 

15 VWR International Ltd.) 2 µg/mL for 15 min to label AChRs; 4% Triton X-100 for 1.5 hrs for 

16 tissue permeabilization; then a blocking solution of 4% bovine serum albumin (BSA) and 2% 

17 Triton X-100 for 30 min. Tissue was then incubated overnight (at room temperature) with the 

18 primary antibodies (in blocking solution): mouse monoclonal anti-SV2 IgG (to label synaptic 

19 vesicles) and mouse monoclonal anti-2H3 IgG (to label neurofilament) (both at 1:50 dilution; 

20 Developmental Studies Hybridoma Bank, University of Iowa). This was followed by 4 x 20 min 

21 PBS washes; overnight incubation (at 4°C) with the secondary antibodies (Alexa 488-donkey 

22 anti-mouse IgG; 1:400 dilution; A21202, Life Technologies); then 4 x 20 min PBS washes. 

23 Muscle samples were finally mounted on glass slides in Mowiol and kept in dark storage to 

24 prevent photobleaching. 

Page 6 of 34Journal of Anatomy



For Peer Review Only

7

1

2 Confocal imaging & NMJ-morph analysis

3 NMJ images were acquired on Nikon A1R FLIM and Zeiss Axiovert LSM510 confocal 

4 microscopes using established protocols for large volume imaging (Jones et al. 2016; 2017). 

5 Muscle fibres were imaged on an Olympus IX71 microscope and Hamamatsu C4742-95 

6 camera with Openlab Improvision software using the same guidelines (Jones et al, 2016; 

7 2017). For each individual muscle (n = 135) an average of 40-60 NMJs/muscle fibres were 

8 imaged, where possible. Muscle fibre diameters were measured subsequently from randomly 

9 identified fibres using standard light microscopy (Jones et al. 2016; 2017). It was not possible 

10 to record correlated NMJ and muscle fibre measurements from single identified fibres.

11

12 Image analysis was performed using the standardized ‘NMJ-morph’ approach to quantify 21 

13 individual morphological variables in each NMJ (including pre- and post-synaptic variables and 

14 associated nerve/muscle measurements; Jones et al, 2016; 2017 and Boehm et al, 2020). In 

15 total, 5,385 NMJs were analysed across the 6 species, sampled from 135 muscles of 36 

16 individual animals/patients (with mouse and human data pooled from Jones et al. 2017). 

17

18 Data Availability Statement

19 All experimental data are contained within the figures and tables. All raw data files (including 

20 confocal micrographs and data spreadsheets) are freely available upon request.

21

22 Statistical analysis
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1 All statistical analyses were performed in GraphPad Prism Software (Version 8). Individual 

2 statistical tests are detailed in main text and figure legends. Statistical significance was 

3 considered to be P < 0.05.

4
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1 Results 

2 Building on our recent work reporting marked differences between NMJ morphology in 

3 humans and mice (Jones et al. 2017), we initially set out to extend our knowledge of NMJ 

4 morphology across a wider range of mammalian species: cat, dog, sheep and pig. Basic 

5 background data relating to individual animals used in this study, including source and breed, 

6 is provided in Supplementary Table 1.

7

8 The choice of muscles for examination (extensor digitorum longus, peroneus longus, peroneus 

9 brevis and soleus; EDL, PL, PB and S respectively) was determined by our previously published 

10 human and mouse datasets (Jones et al. 2017) as well as their accessibility for dissection. The 

11 gross anatomy of hindlimb muscles in cat, dog, sheep and pig (Figure 1) does reveal some 

12 species-specific differences (e.g. the dog lacks soleus, whilst both sheep and pig lack peroneus 

13 brevis) that likely represent functional and/or evolutionary adaptations. Nevertheless, every 

14 attempt was made to source the equivalent muscles in each species based on existing 

15 descriptions of veterinary and comparative anatomy (Aspinall and Cappello 2015; Done et al. 

16 2009; König, Horst Erich et al. 2014; Fails and Magee 2018). NMJs from each muscle/species 

17 were immunohistochemically-labelled, imaged and subjected to morphometric analyses 

18 using NMJ-morph, according to our established protocols (Jones et al, 2016; 2017 and Boehm 

19 et al, 2020). In total, 5,385 NMJs were analysed across the 6 species, sampled from 135 

20 muscles of 36 individual animals/patients (with mouse and human reference data obtained 

21 from Jones et al. 2017).

22

23 Initial qualitative observations revealed marked inter-species heterogeneity of NMJ 

24 morphology (Figure 2). Mouse NMJs displayed a typical ‘pretzel’ shaped morphology, a well-
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1 established observation in multiple previous studies (Marques et al, 2000). In marked 

2 contrast, human NMJs were much smaller and possessed a characteristic ‘nummular’ 

3 morphology (Jones et al, 2017). Of the other mammalian species, cat and dog NMJs were 

4 striking in their dissimilarity, with cat NMJs being particularly small and dog NMJs being 

5 amongst the largest examined (equivalent in size to mouse NMJs). In comparison, sheep and 

6 pig NMJs appeared quite similar to one another in overall morphology, and most closely 

7 resembled the human NMJs on initial inspection. In addition, and as expected, there was 

8 notable variation of individual NMJ morphology within individual muscles (Jones et al, 2016; 

9 2017).

10

11 Quantitative NMJ-morph analysis was then performed on the complete dataset of 5,385 

12 NMJs (Figures 3 and 4; Table 1). Pooling NMJ data across all muscles sampled (EDL, PL, PB, S) 

13 facilitated a comparison of ‘average’ NMJ morphology in each species for all 21 individual pre- 

14 and post-synaptic variables generated by NMJ-morph (Table 1). Statistical comparison of 

15 these values was then performed with reference to our existing human (Jones et al., 2017) 

16 dataset. 

17

18 The majority of core NMJ variables were significantly larger in both mouse (6/11 variables) 

19 and dog (10/11 variables) compared to humans; these differences were also matched by 

20 significantly greater axonal diameters in both species. At the opposite end of the spectrum, 

21 cat NMJs were significantly smaller than human NMJs (in 5/11 core variables). In contrast, 

22 quantitative analysis of both sheep and pig NMJs revealed a closer similarity to human NMJs, 

23 with the vast majority of variables in both species (19/21 in sheep; 18/21 in pig) showing no 

24 statistically significant differences.
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1

2 To determine whether these observations were reflective of NMJ morphology at the level of 

3 individual muscles, datasets from each species were segregated into distinct muscle groups: 

4 EDL, PL, PB and S (Figure 4). Compared with the marked variation in ‘average’ NMJ 

5 morphology observed between species (Figures 2 and 3; Table 1) NMJ morphology within 

6 identified anatomical muscles from a single species was found to be relatively uniform. 

7 Compared with the marked variation in average NMJ morphology between species (Figures 

8 2 and 3; Table 1) the differences that exist between individual muscles within a species (Jones 

9 et al. 2016) are much less pronounced. Moreover, there was no overt pattern to suggest a 

10 relationship between NMJ morphology and muscle fibre type (e.g. fast-twitch/slow-twitch) 

11 or anatomical ‘identity’ at the whole muscle level. For example, in both humans and mice, the 

12 largest relative NMJs were found in soleus (an archetypal slow twitch muscle) whereas in 

13 sheep and pigs, soleus contained the smallest relative NMJs (Figure 4).

14

15 We next investigated the relationship between NMJ size and muscle fibre diameter. Previous 

16 studies have suggested a significant positive correlation between NMJ size and muscle fibre 

17 diameter (Kuno et al. 1971; Harris and Ribchester 1979; Slack et al. 1983; Balice-Gordon and 

18 Lichtman 1990), as well as an inverse relationship between NMJ size and body mass (Paul 

19 2001; Slater 2017). We performed a correlation analysis of muscle fibre diameter against each 

20 of 18 pre- and post-synaptic NMJ variables across all species (Figure 5). Despite modest 

21 correlations for individual variables in some species (e.g. pig and human; Figure 5) no overall 

22 relationship was observed for the majority of NMJ variables across the pooled data for all 
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1 species. This finding suggests that muscle fibre diameter is not the sole/major determinant of 

2 NMJ size and morphology. 

3

4 Finally, we wanted to determine whether relative body size/mass was contributing to NMJ 

5 size/morphology. When taken together with our previous observations, we found no clear 

6 relationship between NMJ size/morphology, muscle fibre diameter, and/or body size (Figure 

7 6). For example, the greatest disparity between NMJ size and muscle fibre diameter was 

8 observed between the two smallest animals included in the study, with the mouse possessing 

9 the largest NMJs on the smallest muscle fibres, and the cat displaying the smallest NMJs on 

10 the largest muscle fibres. In contrast, the three largest species by weight (sheep, pig and 

11 human) had the most closely matched ‘NMJ size/fibre size’ pairings, with sheep and humans 

12 showing the most similarities. 

13
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1 Discussion

2 The current study presents comparative reference/baseline data for NMJ morphology across 

3 6 mammalian species (Table 1; Figure 6). We reveal marked species-specific differences in 

4 NMJ morphology across a range of anatomically-defined muscle groups in the mammalian 

5 lower limb/hindlimb. We report marked heterogeneity of NMJ morphology both within and 

6 between species, with no relationship found between NMJ morphology and muscle fibre 

7 diameter or body size. Of all the species examined in this study, the sheep NMJ was found to 

8 most closely resemble the human NMJ. 

9

10 The finding of marked heterogeneity in NMJ morphology across a range of mammalian 

11 species questions the extent to which NMJ form and function in one species can automatically 

12 be translated to our understanding of NMJ form and function in another mammalian species. 

13 Whilst there are undoubtedly many aspects of NMJ form and function that have been 

14 successfully replicated across mammalian species, it is possible to envisage a scenario 

15 whereby responses to degenerative or disease stimuli could elicit distinct species-specific 

16 responses at the NMJ. Indeed, this may (at least in part) help to explain why many studies of 

17 NMJ-related diseases in mouse models have not been successfully translated to human 

18 patients (e.g. in motor neuron diseases such as amyotrophic lateral sclerosis; Dupuis and 

19 Loeffler 2009; Clerc et al. 2016). However, this may reflect only one aspect of multi-factorial 

20 issues contributing to the poor therapeutic translation of clinical trials (Tosolini and Sleigh 

21 2017; Mitsumoto et al. 2014).

22

23 Our finding that pig, and particularly sheep, NMJs more closely resemble human NMJs than 

24 those in mice, cats and dogs, suggests that the utilisation of large animal models may be more 
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1 appropriate and accurate for understanding human NMJs in health and disease. Indeed, many 

2 new spontaneous and genetically-altered large animal models of neurological and 

3 neuromuscular disease have recently been reported (Eaton and Wishart 2017). For example, 

4 porcine models of spinal muscular atrophy (Walters and Prather 1969; Lorson et al. 2011; 

5 Prather et al. 2013; Duque et al. 2015) and ovine models of Batten disease (Weber and Pearce 

6 2013; Eaton et al. 2019) are now both available for basic, pre-clinical and clinical studies. Thus, 

7 the incorporation of large mammalian models into research programmes is likely to yield 

8 important new insights into NMJ biology, as well as the development of effective therapies 

9 for neuromuscular conditions.

10

11 Correlation analyses of NMJ morphology and muscle fibre diameter in the present study add 

12 significant experimental support to refute the hypothesis that the former is largely dictated 

13 by the latter (Kuno et al. 1971; Harris and Ribchester 1979; Slack et al. 1983; Balice-Gordon 

14 and Lichtman 1990).  Our data therefore support previous studies suggesting a disconnection 

15 of NMJ morphology and muscle fibre size in rodents, primates and humans (Anzenbacher and 

16 Zenker 1963; Jones et al. 2017). However, it is important to note that this observation is 

17 distinct from the relationship that has been shown to exist between the size of an NMJ and 

18 its corresponding muscle fibre when undergoing atrophy and hypertrophy in situations of 

19 muscle wasting, exercise or hormonal manipulation (e.g. as has been reported in the mouse 

20 bulbocavernosus muscle; Balice-Gordon and Lichtman 1990). It remains unclear, therefore, 

21 as to which factors directly determine NMJ morphology in vivo, although recent studies have 

22 suggested that the identity of the motor neuron itself is likely to exert a strong influence 

23 (Jones et al. 2016; 2017). 

24
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1 Given that muscle fibre diameter does not determine the absolute size/morphology of any 

2 given NMJ it appears that the ‘ratio’ between NMJ size and muscle fibre diameter represents 

3 a unique characteristic in each species, and one that is furthermore independent of body mass 

4 (Figure 6). This notion was previously proposed for different muscles within the rat (Oda 

5 1985), but here we extend these findings to show that it persists across multiple mammalian 

6 species. 

7

8

9

10

11

12
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18
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1 Figure Legends

2 Figure 1. Gross anatomy of hindlimb muscles in cat, dog, sheep, and pig 

3 Representative photographs illustrating gross muscle morphology in each species. The 

4 proximal end of the limb is on the right-hand side of the image. A block of tissue containing 

5 full-length muscle fibres (from origin to insertion) was sampled from each of the selected 

6 muscles. Note the species-specific absence of certain muscles – dog lacks soleus, sheep and 

7 pig lack peroneus brevis. EDL: Extensor Digitorum Longus; PL: Peroneus Longus; PB: Peroneus 

8 Brevis; SOL: Soleus. Scale bar = 2 cm.

9

10 Figure 2. Heterogeneity of mammalian NMJs

11 Representative confocal micrographs of ‘average’ NMJs from each species (ranked according 

12 to body mass). The selected NMJ images most closely represent the ‘average’ morphology 

13 (size, shape) across the limb muscles sampled (EDL, soleus, peronei). Mouse NMJs are 

14 typically ‘pretzel’ shaped; human NMJs have a ‘nummular’ morphology. Of the species 

15 represented, sheep and pig NMJs appear most similar to human NMJs. Images have been 

16 pseudo-coloured for display purposes; all analysis has been performed on grayscale images. 

17 SV2/2H3 = synaptic vesicle and neurofilament (green); -BTX (-bungarotoxin) = 

18 acetylcholine receptors (magenta). Scale bar = 20 µm (across all images). 

19

20 Figure 3. NMJ-morph analysis reveals inter-species variations in NMJ morphology

21 Comparison of ‘average’ NMJ morphology in each species for a range of pre- and post-

22 synaptic variables. Data for each morphological variable is pooled by muscle identity (EDL, PL, 

23 PB, S) for each species and statistical comparison is made with the human NMJ. Boxes contain 

24 the mean (+) and median (line) values for each NMJ variable and extend from the 25th to 75th 

25 percentiles, with the whiskers representing the maximum and minimum values. Compared to 

26 humans, mouse and dog NMJs are significantly larger, with equivalent differences in axon 

27 calibre. In contrast, sheep and pig NMJs are the most similar to humans, with the majority of 

28 NMJ variables showing no significant differences between the species (see also 

29 Supplementary Table 1). In total, 5,385 individual NMJs were analysed [Cat: N = 3 animals, n 

30 = 12 muscles, 465 NMJs; Dog: N = 3, n = 9, 341 NMJs; Sheep: N = 3, n = 9, 313 NMJs; Pig: N = 

31 3, n = 9, 446 NMJs; Mouse: N = 3, n = 24, 960 NMJs; Human: N = 21, n = 72, 2860 NMJs. Mouse 
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1 and human data from Jones et al. 2017]. One–way ANOVA with Dunnett’s post hoc analysis 

2 (for parametric variables) and Kruskal-Wallis test with Dunn’s post hoc analysis (for non-

3 parametric variables) *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. 

4

5 Figure 4.  NMJ-morph analysis of inter-muscle variations in NMJ morphology

6 The pooled data in Figure 3 has been segregated to demonstrate ‘average’ NMJ morphology 

7 for individual muscles (EDL, PL, PB, S). Compared with the marked inter-species variation, the 

8 differences between individual muscles are much less pronounced.

9

10 Figure 5. No significant relationship between NMJ morphology and muscle fibre diameter 

11 Scatterplots demonstrating the correlation between size-related NMJ variables and muscle 

12 fibre diameter. Each data point represents an individual muscle (mean of 40 NMJs / 40 muscle 

13 fibres). Despite modest correlations for some variables, there is no significant relationship 

14 between NMJ size and muscle fibre diameter across the species investigated. Mouse = purple 

15 circles; Cat = green squares; Dog = blue triangles; Sheep = orange diamonds; Pig = black stars; 

16 Human = grey circles. Correlation coefficients (Pearson) are for individual species (within the 

17 box) and all species pooled (above the box). *p < 0.05; **p < 0.01; ***p < 0.001. 

18

19 Figure 6. Schematic overview of NMJ morphology, muscle fibre diameter, and body size 

20 Schematic diagram illustrating the relationship between NMJ size, muscle fibre diameter and 

21 body weight. For each species, the mean values for AChR area and muscle fibre diameter are 

22 depicted (Table 1) to provide an accurate visual representation of inter-species 

23 differences/similarities. Of the species investigated, the starkest contrast is between the two 

24 smallest animals; the mouse has the largest NMJs on the smallest muscle fibres, the cat has 

25 the smallest NMJs on the largest muscle fibres. Sheep and pig are most similar to human, with 

26 sheep and human bearing the closest resemblance. Overall, there is no relationship between 

27 NMJ size, muscle fibre diameter and body mass; the ratio between NMJ size and muscle fibre 

28 diameter is therefore unique to each species. Scale bar = 20 µm.

29

30

31

32
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1 Table 1
Mouse

N = 3, n = 24 
960 NMJs

Cat 
N = 3, n = 12

465 NMJs

Dog 
N = 3, n = 9
341 NMJs

Sheep 
N = 3, n = 9
313 NMJs

Pig
N = 3, n = 9
446 NMJs

Human
N = 21, n = 72

2860 NMJs

Core variables

pre-synaptic
1) Nerve Terminal Area (μm2) 304.0**** ± 11.7 98.5 ± 5.4 305.1*** ± 24.9 153.9 ± 14.3 197.6 ± 24.7 122.7 ± 5.98
2) Nerve Terminal Perimeter (μm) 327.4**** ± 9.4 272.1*** ± 13.9 441.0**** ± 31.7 231.7* ± 12.3 234.7* ± 18.6 151.1 ± 6.53
3) Number of Terminal Branches 30.0 ± 1.2 101.4**** ± 7.4 95.6**** ± 8.5 45.5 ± 4.4 40.0 ± 6.0 28.0 ± 1.40
4) Number of Branch Points 26.0 ± 0.9 57.6*** ± 6.9 62.9**** ± 3.5 26.4 ± 2.6 38.5* ± 3.2 14.0 ± 0.85
5) Total Length of Branches (μm) 166.7**** ± 4.8 128.7** ± 7.7 215.7**** ± 13.5 109.5 ± 8.1 134.5** ± 12.0 69.3 ± 3.28
post-synaptic
6) AChR Area (μm2) 424.2*** ± 14.1 159.6 ± 9.3 420.8*** ± 35.1 182.2 ± 14.0 239.5 ± 25.2 206.7 ± 8.0
7) AChR Perimeter (μm) 275.8** ± 8.8 332.7**** ± 16.5 536.5**** ± 41.7 241.6* ± 15.2 221.7 ± 18.6 152.2 ± 5.8
8) Endplate Area (μm2) 678.2*** ± 24.3 333.2 ± 19.9 858.9**** ± 85.0 365.4 ± 16.8 384.2 ± 38.5 351.5 ± 14.4
9) Endplate Perimeter (μm) 118.8 ± 2.9 91.4 ± 3.0 139.1** ± 10.2 85.1 ± 3.8 95.5 ± 7.3 98.7 ± 2.6
10) Endplate Diameter (μm) 42.2 ± 1.2 30.9 ± 1.1 48.1** ± 3.4 30.3 ± 1.4 32.2 ± 2.0 36.0 ± 0.9
11) Number of AChR Clusters 2.6 ± 0.2 3.2 ± 0.4 3.8 ± 0.5 4.9 ± 0.4 3.7 ± 0.5 3.9 ± 0.2

Derived variables

pre-synaptic
12) Average Length of Branches (μm) 6.7**** ± 0.2 1.4 ± 0.1 2.6 ± 0.2 3.0 ± 0.4 4.4 ± 0.6 3.0 ± 0.1
13) Complexity 4.9 ± 0.1 5.7** ± 0.1 5.9** ± 0.1 4.9 ± 0.1 5.1 ± 0.1 4.1 ± 0.1
post-synaptic
14) Average Area of AChR Clusters (μm2) 238.5**** ± 8.5 75.8 ± 8.6 175.4**** ± 12.6 54.8 ± 6.8 113 ± 12.9 71.7 ± 2.7
15) Fragmentation 0.40 ± 0.0 0.51 ± 0.0 0.53 ± 0.1 0.67 ± 0.0 0.48 ± 0.0 0.58 ± 0.0
16) Compactness (%) 64.4 ± 0.6 49.5 ± 1.1 50.4 ± 1.8 51.0 ± 3.1 64.5 ± 2.3 61.6 ± 0.6

Page 25 of 34 Journal of Anatomy



For Peer Review Only

26

17) Overlap (%) 64.2 ± 0.5 45.9 ± 1.1 53.1 ± 1.1 66.4 ± 3.0 71.1 ± 3.6 49.6 ± 1.1
18) Area of Synaptic Contact (μm2) 267.9**** ± 9.5 72.4 ± 4.5 224.4** ± 18.1 122.0 ± 13.4 175.0 ± 24.2 105.2 ± 5.1

Associated nerve & muscle variables

19) Axon Diameter (μm) 3.1**** ± 0.1 0.96 ± 0.1 1.8**** ± 0.22 1.1 ± 0.09 1.2 ± 0.1 0.84 ± 0.0
20) Muscle Fibre Diameter (μm) 40.2* ± 0.5 84.3** ± 3.5 77.2 ± 3.33 63.0 ± 3.29 76.6 ± 6.7 59.9 ± 2.1
21) Number of Axonal Inputs 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.00 1.0 ± 0.00 1.1 ± 0.1 1.0 ± 0.0
1
2
3 Table 1. Baseline morphological data for the mammalian NMJ – 6 species

4 Complete NMJ-morph data for the 6 species. Values are the mean (± SEM) for each NMJ variable pooled across all muscles sampled (EDL, PL, 

5 PB, S) in each species. N = individual animals; n = individual muscles; total NMJs per species listed below. All statistical comparisons performed 

6 in relation to the human data; one–way ANOVA with Dunnett’s post hoc analysis (parametric variables) and Kruskal-Wallis test with Dunn’s 

7 post hoc analysis (non-parametric variables). *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. No asterisk indicates non-significant result. 

8 Mouse and human data reproduced from Jones et al, 2017.
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Boehm et al., Supplementary Table 1

Species Mouse Cat Dog Sheep Pig

Sex (M:F) 0:3 0:3 2:1 3:0 0:3

Age 12 weeks 12.6 ± 3.1 years
(min 12, max 16)

6.6 ± 4.6 years 
(min 4, max 12)

1.3 ± 0.2 years
(min 1.3, max 

1.5)

0.34 years
(min 0.33, max 

0.35)

Weight ≃ 19 g 4.3 ± 1.4 kg
(min 3.2, max 5.3) ≃ 39 kg 75 kg 75.6 ± 7.5 kg

(min 67, max 80)

Breed CD1 Domestic 
short-haired

Labrador, 
Staffie X, Lurcher Texel crosses Largewhite X 

landrace

Sampled 
muscles EDL, PL, PB, S EDL, PL, PB, S EDL, PL, PB EDL, PL, S EDL, PL, S

Reason for cull Experimental

Aggression, 
hyperthyroidism, 

chronic kidney 
disease

Aggression, 
neoplasia, joint 

pain

Colony 
management

Colony 
management

Supplementary Table 1. Background data of study animals 

All species sourced from the animal facilities at the University of Edinburgh (Centre for 
Discovery Brain Sciences; Roslin Institute; Dryden Farm). Ages for each animal/species 
equivalent to adulthood. Numerical data are mean ± standard deviation (SD). EDL: Extensor 
Digitorum Longus. PL: Peroneus Longus. PB: Peroneus Brevis. S: Soleus
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