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Abstract 

Saccharin (SAC) is an emerging contaminant, widely detected in the environment, with potential 

ecotoxicity risks to aqueous organisms and human beings. Wastewater treatment plants (WWTPs) 

are key sources and sinks of SAC, and play a vital role in eliminating SAC entering the environment. 

An overview is provided of the potential ecotoxicity of SAC, its occurrence in the aqueous 

environment, and its degradation performance in WWTPs. SAC treatments, including physical, 

chemical (mainly advanced oxidation processes AOPs), biological, and hybrid processes, and 

possible degradation mechanisms are also considered. Of the various SAC removal processes, we 

find that adsorption-based physical methods exhibit relatively poor performance in terms of SAC 

removal, whereas chemical methods, especially hydroxy radical-mediated oxidation processes, 

possess excellent capacities for SAC elimination. Although biological degradation can be efficient 

at removing SAC, its efficiency depends on oxygen supply and the presence of other co-existing 

pollutants. Hybrid aerobic biodegradation processes combined with other treatments including 

AOPs could achieve complete SAC reduction. Furthermore, novel adsorbents, sustainable chemical 

methods, and bioaugmentation technologies, informed by in-depth studies of degradation 

mechanisms and the metabolic toxicity of intermediates, are expected further to enhance SAC 

removal efficiency and enable comprehensive control of SAC potential risks. 

 

Keywords: artificial sweeteners; water treatment ;micro-contaminants; absorption; advanced 

oxidation process; aerobic degradation 
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1. Background 

Artificial sweeteners (ASs) have recently been recognized as emerging micro-contaminants because of 

their environmental persistence and widespread detection in the aqueous environment (Lange et al., 2012; 

Scheurer et al., 2010; Weihrauch and Diehl, 2004). ASs are widely consumed in considerable quantities 

nowadays as sugar substitutes because of their high-intensity sweetness (Kroger et al., 2006; Subedi and 

Kannan, 2014).Saccharin (SAC) is one of the most popular artificial sweeteners owing to its low price, 

and sweetness that is about 300 times greater than sugar(Table 1)(Lange et al., 2012). Having been 

approved by several food and drink regulators, including the Food and Drink Federation, SAC is widely 

consumed by humans as a calorie-free artificial sweetener in more than 90 countries (Kulkarni, 2018). It 

is believed that SAC may pass unchanged through the human body, and then reach wastewater treatment 

plants (WWTPs) as domestic effluent, after which the treated effluent provides the main source of SAC 

in receiving water bodies from which it can be abstracted and recirculated as drinking/tap water (Buerge 

et al., 2011; Scheurer et al., 2010). Moreover, SAC and its salts (such as saccharin sodium, also called 

SAC in the literature) are applied in substantial concentrations in nickel-plating, personal care and 

pharmaceutical products, antiseptics, preservatives, antistatic agents, feeds, etc. (Buerge et al., 2011; 

Cohen et al., 2008; Rashidi and Amadeh, 2009; Spoelstra et al., 2016; Watanabe et al., 2015; Zygler et 

al., 2009). 

[Table 1] 

SAC has been the focus of a gradually increasing controversy since it was first synthesized in 

1879(Cooper, 1985; Weihrauch and Diehl, 2004). The primary issue associated with SAC was its adverse 

effects on animals(e.g. carcinogenesis), and therefore probably on humans(Cooper, 1985). Increasingly, 

environmental and public health concerns have been raised about SAC on account of its long-term 

application, wide detection in the aqueous environment, and its low, but not negligible, hazard and risk 

potential to aquatic organisms(Luo et al., 2019). SAC may be a weak carcinogen causing cancer of the 

urinary tract, even bladder tumors in male rats (Oser, 1985; Uçar and Yilmaz, 2015). SAC-fed zebra fish 

have experienced elevated levels of cholesteryl ester transfer protein activity in hypercholesterolemia 

(Kim et al., 2011). SAC may also be one of the main causative factors behind paediatric inflammatory 

bowel disease, by disturbing gut bacteria (Li et al., 2016; Qin, 2012, 2016, 2019). Previous studies have 

also suggested that SAC can induce liver inflammation in mice (Bian et al., 2017).Negative effects of 

SAC have also been observed on plants, where by SAC promotes an increase in the micronucleus of 

plant roots, the higher concentration indicating greatergeno-toxicity of certain compounds(Ma et al., 

1995) with concomitant cytotoxic and mutagenic impacts on plants(Oliveira et al., 2017).Furthermore, 

Davididou et al. (2019) found that the degradation products of SAC, having undergone transformations 

after exposure to solar radiation, were more environmentally toxic than the parent compound SAC, based 
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on chronic toxicity assessment by monitoring Vibrofischeri bioluminescence. SAC is also a major soil 

metabolite of certain sulfonylurea herbicides, and so could seep into groundwater, eventually 

contaminating natural waterbodies such as rivers and lakes (Buerge et al., 2011). Therefore, the 

elimination of SAC from the aquatic environment is of utmost importance. 

A comprehensive study focusing on the fate and mitigation strategies of saccharin in water matrix is still 

a missing element from literature. Such a study could provide a coherent body of knowledge on the topic, 

guidance for future research, and guidelines for policymakers and stakeholders. With this in mind, the 

aim of the present work is to review analytical methods for determining SAC, the occurrence and 

distribution of SAC in aqueous environment, and the efficiency of several SAC elimination approaches. 

2. Review methodology 

Given that SAC is hydrophilic, we consider the aqueous environment to act as a key sink of SAC. Taking 

this perspective, “saccharin”, “water”, and “wastewater” were used as topic words in searching for papers 

and patents in Web of Science, Scopus, and Google Scholar(as supplementary) without restriction on 

publication date. Related documents (>100) were selected to summarize research findings on the 

identification, occurrence, and distribution of SAC in the aqueous environment. We also examined 

research into applied and potential SAC treatment technologies and their mechanisms for SAC 

degradation in water and wastewater processes. 

3. Results and discussion 

3.1 Analytical methods for SAC quantification 

A highly-sensitive, accurate method for SAC determination is an important prerequisite for carrying out 

detailed investigation into the fate of SAC at trace levels from ng/L to g/L in the aqueous environment. 

Most recent studies of water and wastewater quality have placed emphasis on physicochemical indicators 

(such as pH, color, temperature, odor, etc.),chemical oxygen demand (COD) content, nitrogen and 

phosphorus nutrient levels, and concentrations of toxic chemicals (such as heavy metals, persistent 

organic pollutants (POPs), endocrine disrupting chemicals (EDCs), etc.). However, few studies have 

been reported on the measurement of emerging contaminants with unknown negative effects on 

environmental and human health (Pal et al., 2014).Given that there is no existing national or international 

standard method for SAC determination in water samples, a summary of current knowledge on sensitive, 

accurate methods for SAC determination follows. 

To date, analytical techniques for SAC determination in water samples mainly comprise capillary 

electrophoresis (CE), electroanalysis, flow injection analysis (FIA), gas chromatography (GC),high-

performance liquid chromatography(HPLC), reversed-phase HPLC (RP-HPLC), ultra-fast liquid 
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chromatography (UFLC), ion chromatography (IC), and spectroscopy with thin-layer chromatography 

(TLC). Different combinations of these analytical techniques have led to more sensitive, accurate 

methods for determining SAC in water samples or liquids extracted from solid samples. Table 2 lists the 

different techniques along with their limits of detection (LODs), and limits of quantitation (LOQs). 

Determination methods for other ASs or compounds with similar structure to SAC have also been 

reported and may be considered as alternative SAC determination methods. Examples are LC-ESI-

MS/MS (Richter et al., 2007) and ultra HPLC-Q-TOF-MS (UHPLC-Q-TOF-MS)(Russo et al., 2020). 

Among all the aforementioned techniques, LC-MS/MS has been most widely employed for determining 

SAC not only in water samples but also in samples prepared by solid phase extraction(SPE) (Arbeláez 

et al., 2015b; Gan et al., 2013b; Lakade et al., 2018; Ordóñez et al., 2012) or dispersive solid-phase 

extraction (d-SPE), which are commonly used for extracting target substances from solid phases at 

concentrations of order mg/L and placing into aqueous samples(Chen et al., 2012; Lakade et al., 2018; 

Zhao et al., 2013). 

[Table 2] 

For LC-MS/MS, the LODs and LOQs, which indicate instrument sensitivity and accuracy, depend on the 

performance of the applied liquid chromatography LC and mass spectrometer (MS), the characteristics 

of the aqueous samples, and operational and environmental factors (Table 2).Using SPE-LC-MS/MS, 

LODs reported for SAC have been in the range of 0.001–0.04 g/L for river water and 0.01–0.5 g/L for 

influent and effluent wastewater (Arbeláez et al., 2015b).For LC-MS/MS coupled with an electrospray 

ionization (ESI) source, both the LODs and LOQs were reported to be in the range < 0.015 to23 ng/Lin 

analyzing wastewater, surface water, and groundwater samples from Vietnam, The Philippines, and 

Myanmar(Watanabe et al., 2016), and LOD of 0.2 ng/L and LOQ of 0.5 ng/L for surface water and 

groundwater samples in a separate study(Edwards et al., 2019). For LC-MS/MS using polymeric 

reversed-phase and mixed-mode with either weak or strong anionic-exchange sorbents, the LOQs for 

SAC determination obtained for wastewater and surface water samples were in the range 0.01-0.5g/L 

(Ordóñez et al., 2012). dSPE-UFLC-MS/MS analysis confirmed the presence of nine food additives in 

red wine, with the results showing that the LOQs for SAC were 0.10-50.0 g/L (Chen et al., 2012). Using 

HPLC-MS/MS, sensitive detection of SAC in groundwater and surface water was achieved to about 10 

ng/L (Berset and Ochsenbein, 2012).However, the LOD of SAC using HPLC-MS/MS after on-line SPE 

applied to groundwater samples from a landfill site was 0.0003 g/L (Stefania et al., 2019).Gan et 

al.(2013b) used IP-LC-TQMS to determine artificial sweeteners including SAC, and found that the 

method quantitation limits varied between 0.4 and 7.5 ng/L for different water samples. Another 

analytical method for the determination of six artificial sweeteners in sewage sludge, based on 

pressurised liquid extraction (PLE) with water, followed by SPE and subsequent LC-MS/MS, indicated 



5 / 38 

 

that LOQ was 16 ng SAC/g dry weight of sludge (Ordoñez et al., 2013).Kokotou and Thomaidis (2013) 

used hydrophilic interaction LC-MS/MS to detect and quantify eight artificial sweeteners in wastewater, 

and reported an instrument LOD of SAC of 0.24 mg/L. Using an isotope-dilution mass spectrometry 

(IDMS) LC-MS/MS method for quantifying four artificial sweeteners, including SAC, in Finnish surface 

waters, Perkola and Sainio (2014) recorded LOD of 4.0 ng/L and LOQ of 25.0 ng/L. In an application of 

LC-MS/MS coupled with hypercross linked particles for extraction of SAC using dSPE from 

environmental samples, the instrument LODs ranged from 0.05–0.5 μg /L, and the lowest points of the 

calibration curve were taken as the instrument limits of quantification (ILOQs) (Lakade et al., 2018). 

Other efficient pre-treatment procedures that have been developed, such as direct-injection (DI) HPLC–

MS/MS (Berset et al., 2010; Berset and Ochsenbein, 2012; Ochsenbein et al., 2008), are potential 

candidates as SAC determination techniques. 

3.2. Occurrence and distribution of SAC in aqueous environment 

To date, research studies have not only focused on method accuracy and sensitivity but also its 

applicability to the analysis of actual aqueous matrices containing SAC, such as municipal wastewater, 

waste activated sludge, surface water, groundwater, and potable water. 

Table 3 summarizes the overall occurrence and distribution of SAC based on current determination 

methods. 

[Table 3] 

From the information listed in Table 3and given in the open literature, it can be seen that WWTPs area 

major source of SAC discharged into environmental waters (Subedi et al., 2014). SAC concentrations in 

the influent of WWTPs vary according to geographical region; for instance, SAC concentrations have 

been measured as 9.3-389.0g/L in Asia, 1.9-25.1 g/Lin North America, and 7.1-18.0g/L in Europe 

(Tran et al., 2018). WWTPs therefore play a vital role in preventing and controlling the ecological 

environmental risk induced by SAC. Biological treatment processes, especially the conventional 

activated sludge process and membrane reactor systems, are still the most commonly applied in existing 

WWTPs. However, although SAC is readily biodegraded, it is still detected in treated effluent from 

WWTPs and in sewage sludge (waste activated sludge) (Scheurer et al., 2010; Tran et al., 2014b). 

Consequently, SAC is consistently detected in surface waters receiving effluent from WWTPs, ground 

water at locations where sewage sludge has been applied as soil fertilizer, and karst aquifers suffering 

infiltration by wastewater-polluted surface water (Buerge et al., 2011; Edwards et al., 2019). Therefore, 

there is an urgent need for better technologies to eliminate SACs from the aquatic ecosystem.  
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3.3. Treatment technologies for SAC elimination 

To reduce the potential adverse effects and ecotoxicity of SAC on aqueous organisms, efficient 

approaches are imperative in eliminating SAC from water and wastewater. Table 4briefly reviews the 

present state-of-the-art of SAC treatment technologies, and associated degradation mechanisms, 

classified in terms of the physical, chemical and biological processes involved. A more detailed 

description follows. 

[Table 4] 

3.3.1 Physical methods 

Of the physical treatment methods (Table 4), adsorption is the most commonly applied process for SAC 

removal. Adsorption performance relies primarily on adsorbent type(s) and operational conditions, such 

as pH, and temperature. 

3.3.1.1 Activated carbon (AC) 

Activated carbon (AC) is an adsorbent that is effective (due to its non-polar nature) at separating many 

types of chemicals (especially organics) from the water environment, and has been widely utilized in 

water and wastewater treatment processes(Bernardo et al., 2006).Applications of AC with or without 

enhancement to SAC elimination have also been investigated(Bernardo et al., 2006; Li et al., 2018b; 

Mailler et al., 2015; Scheurer et al., 2010).Bernardo et al. (2016)observed that the SAC removal rate by 

AC adsorption for 16 h increased from 40%to 75%after enhancement by ultrasonication pretreatment at 

500 kHz frequency in argon and O2/N2 (20/80 vol%), owing to decomposition of SAC into other 

compounds that could easily be absorbed by AC when subjected to ultrasound. Li et al. (2018b)achieved 

a higher removal efficiency of SAC by granular AC (GAC)than for other ASs, such as aspartame (ASP), 

sucralose (SUC), acesulfame (ACE), cyclamate (CYC), with the removal rate fitting well with SAC’s 

octanol-water partition coefficients-log Kow (Table 1).Using a filter with powdered AC (PAC), Mailler 

et al. (2015) achieved SAC removal rates between 33-54%, and observed that efficient removal 

performance strongly depended on the PAC filter preload, and the combined effects of adsorption by 

GAC/PAC and biodegradation by microorganisms on GAC/PAC (Scheurer et al., 2010). 

3.3.1.2Bank filtration 

Bank filtration is a natural attenuation process that removes or retains SAC in bank soil, based on soil 

adsorption capacity and simultaneous biodegradation by indigenous microorganisms in the soil. Scheurer 

et al. (2010) studied the performance of this process in conventional multi-barrier drinking water 

treatment plants (DWTPs) for ASs removal and found that SAC was eliminated efficiently (nearly 100%) 

in all waterworks that employed biologically active bank filtration. However, SAC is hydrophilic, and so 
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biodegradation might contribute more than soil adsorption to the bank filtration process (Buerge et al., 

2011). A study of sand (mainly quartz sand and anthracite) filtration in China has also revealed less 

efficient SAC removal (14.5%) by adsorption of the main filtration media because of the hydrophilic 

properties of SAC (Gan et al., 2012). 

3.3.1.3Resins 

Resins are cost-efficient absorbing materials with porous structures that perform well in ultrapure water 

preparation and the advanced treatment of micro-contaminants, POPs, EDCs, and heavy metals(Wang et 

al., 2010). Recently, resins have also been evaluated for SAC removal; Li et al. (2018b) reported that the 

amount of SAC adsorbed by an applied magnetic anion-exchange resin was 3.33-18.51 times that of 

GAC under the same experimental conditions. Li et al. also treated three other ASs (ACE, CYC and 

SUC), and found that resin adsorption was more efficient at ACE removal, illustrating the importance of 

resin type in the removal of different kinds of ASs. 

3.3.1.4Reverse Osmosis (RO) 

Reverse osmosis (RO) is a membrane separation process aimed at the removal of ions and organic matter, 

and can produce high quality water for reuse (Dialynas et al., 2008; Li et al., 2020). Nevertheless, when 

RO was tested for SAC removal in an advanced water recycling plant, the observed removal efficiency 

was unsatisfactory because of the high water solubility of SAC and the proximity of its molecular weight 

(183 Da) to that of the cut-off molecular weight of the RO membrane (Busetti et al., 2015).Interestingly, 

RO achieved an excellent removal rate (>97%) for another sweetener, SUC (Lee et al., 2012). This 

suggests that RO performance for ASs elimination depends on both the molecular weight and the 

solubility of the ASs. Furthermore, high energy consumption and membrane fouling rates make RO less 

cost-effective for large-scale water and wastewater treatment applications. 

3.3.1.5Other physical approaches 

Novel absorbents, such as highly porous metal-organic framework (MOF) (Seo et al., 2016) and metal 

azolate framework-6derived porous carbons(MDCs) (Song et al., 2018)have been used to remove 

SAC.MOFs modified by urea and melamine and MDCs have achieved high SAC adsorption 

performances in water treatment processes, in both cases due to H-bonding on the surface of functional 

groups. Biochar (BC), an absorbent used in decontamination of water and wastewater(Wang and Wang, 

2019), was also tested for SAC removal, and relatively higher sorption of SAC was obtained (Liu et al., 

2019). It was shown by Inyang and Dickenson that theπ–π stacking interaction between the SAC aromatic 

ring and the aromatic structure of graphenein BC made a significant contribution to SAC adsorption. 

Also, the π–π electron donor-acceptor (π–π EDA)interaction occurring between electron-withdrawing 

sulfonamide and carbonyl functional groups (π electron acceptors) in SAC and the π-electron-rich BC 
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(π-electron donors) is also believed to play a part in efficient SAC adsorption by BC (Inyang and 

Dickenson, 2015). Whereas these results were obtained from bench tests, further studies are needed at 

pilot-scale and, importantly, full-scale operating conditions. Finally, although other new absorbents (i.e., 

lignite, xylit) and coagulants (i.e., Al3+) for ASs removal have recently been proposed, their adsorption 

and/or coagulation capacities for SAC removal have proved relatively low or remain unknown (McKie 

et al., 2016; Rostvall et al., 2018). This suggests that further selection and application of new absorbents 

for SAC physical removal should be carried out. 

3.3.2 Chemical treatments 

To date, chemical treatment processes have proved to be the most efficient way to remove organic trace 

pollutants and thus eliminate their metabolite ecotoxicity. Table 4lists the chemical processes used to 

treat SAC, which are described in more detail below. 

3.3.2.1 Chlorination 

Chlorination is a widely used disinfection technology applied mainly to inactivate pathogenic 

microorganisms in DWTPs, water reclamation plants, and WWTPs. (Jia et al., 2015; Li et al., 2017). 

Studies that introduced chlorination in SAC treatment have found that SAC and other ASs (i.e. ACE, 

CYC, SUC)were persistent and not transformed by the chlorination process, possibly caused by a lack 

of electron-rich sites for oxidation (Scheurer et al., 2010; Soh et al., 2011; Torres et al., 2011). However, 

it was found that ACE degradation during chlorination followed pseudo-first-order kinetics and was pH-

dependent, and that chlorinated ACE could be the precursor of several regulated disinfection by-products 

and inhibit Vibrio fischeri luminescence(Li et al., 2017). The study also concluded that, although the 

chlorination process is cost-effective and widely applied, chlorine-related ecotoxic risks should be 

carefully considered and evaluated. Therefore, more efficient, less eco-risky advanced oxidation 

processes (AOPs)have been tested for SAC removal; AOPs, including ozonation, UV and Fenton 

treatment, are based on the in situ generation of strong oxidants, mainly hydroxyl-radicals(·OH), for the 

oxidation of organic compounds(Miklos et al., 2018). 

3.3.2.2 Ozonation 

Ozonationis one ofthemost robust advanced oxidation processes(AOPs) for eliminating organic 

contaminants in wastewater(Xiao et al., 2015). The primary oxidation mechanisms for ozonation are pH-

dependent: in acidic conditions, ozone acts as the main oxidant and can react directly with organics, 

whereas in neutral and alkaline conditions, radicals (mainly ·OH) are formed, initiating oxidation 

reactions(Pak et al., 2016). Ozone can oxidize a wide range of organics, including those containing 

aromatic and/or amine-groups (Comninellis et al., 2008; Hollender et al., 2009; Stefan, 2017), and so it 

has been adopted to remove ASs. A study of multi-barrier DWTPs reported low performance for SAC 
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removal when reacting directly with ozone instead of its radicals, whereas ozonation was found to 

degrade ACE well, with moderate removal of SUC, depending on the operating conditions, including 

ozone concentration and co-existing competing contaminants (Scheurer et al., 2010; Shao et al., 2019). 

Similar test results indicated that SUC could be degraded significantly through ozonation by radical-

mediated oxidation with a relatively high ozone dose (Hu et al., 2017; Lee et al., 2012; Torres et al., 

2011). The higher removal efficiencies of ACE and SUC than of SAC might be attributed to the higher 

oxidation capacity of ·OH (~2.80 V) compared with ozone (~2.07 V). 

3.3.2.3 Ultraviolet (UV) irradiation 

Ultraviolet (UV) irradiation has been applied to the disinfection and photolysis of organics, exploiting 

the fact that radiation energy in the ultraviolet (UV) region of the electromagnetic spectrum can alter the 

chemical bonds of organics (Sastry et al., 2000). Although UV irradiation has recently been tested for 

SAC removal, it was found invalid because of the low molar extinction coefficient of SAC (Busetti et 

al., 2015; Li et al., 2018b; Perkola et al., 2016).  Even so, photocatalytic oxidation, (i.e. UV irradiation 

combined with other oxidants and/or catalysts)has proved efficient for SAC elimination because 

additional ·OH ions are generated which in turn oxidize organics in water. Li et al. (2018b) compared 

ASs oxidation processes involving UV/H2O2 and UV/sodium peroxydisulfate (PDS) in five full-scale 

WWTPs for removal offour ASs, including SAC; the influent SAC concentrations ranged from 430 to 

27,340 ng/L, and the degradation efficiency was similar for all ASs. However, it has been reported that 

UV/PDS performed better than UV/H2O2 with the same oxidant dosage because SO4
·- generated from 

UV/PDS has stronger redox potential (up to 3.10 V at neutral pH, and ·OH of 2.80 V from UV/H2O2) 

and higher selectivity to organic compounds(Xu et al., 2016).Davididou et al. (2017) investigated 

photocatalytic treatment of SAC under UV irradiation in the presence of TiO2nanocomposites tuned by 

Sn (IV)(which absorbs UV light to produce electrons near the conduction band and holes near the valence 

band(El-Mekkawi et al., 2020)), and found that photocatalytic performance correlated positively with 

catalyst loading (up to 400mg/L) for SAC removal, following a pseudo-first order kinetic rate. Davididou 

et al. (2018)also assessed the performances of UV-light-emitting diode (LED) and conventional UV-

black light (BL) technologies for SAC removal in the presence of TiO2, exploiting the generation of 

highly reactive species (mainly ·OH)when photocatalysis is initiated by UV illumination on TiO2.Data 

analysis showed that UV-LED was 16 times more energy efficient than UV-BL(Davididou et al., 2018); 

the enhanced performance of UV-LED was most likely due to the addition of hydroxyl radicals in the 

aromatic ring, leading to hydroxylated products during photocatalytic transformation (Toth et al., 

2012).A contemporaneous study (Zelinski et al., 2018)observed that more than 99% of SAC could be 

degraded and up to 49% mineralized by TiO2/UV-A, and, importantly, demonstrated the low toxicity of 

the photocatalyzed solution of SAC using the Artemiasalina test. Zelinski et al. also found that UV-LED 
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in the presence of TiO2also achieved very high degradation efficiency (up to 90%) of ACE compared 

with other photocatalytic processes using UV-LED with ZnO, H2O2, peroxomonosulfate (PMS) and PDS, 

respectively. Furthermore, the ACE degradation rate in UV-LED photolysis process could be enhanced 

by addition of catalysts and/or oxidants (Wang et al., 2019).Further pilot tests are clearly needed 

concerning the cost-effectiveness of UV-LED and water ecotoxicity during the oxidation process.  

3.3.2.4 Fenton treatment 

The Fenton reaction, a widely applied AOP for removal of organics and inorganics from the aqueous 

environment, was discovered by H.J.H. Fenton in 1894 and consists of reactions of peroxides (mainly 

H2O2) with ferrous ions (Fe2+) to generate active species (usually ·OH) as strong oxidants for the 

oxidation degradation of pollutants(Fenton, 1894). To date, many attempts have been made to treat 

wastewater using the Fenton (or Fenton-like) reaction, whereby ferric ions (Fe3+) react with H2O2 to 

produce Fe2+, thus promoting oxidation(Goldstein et al., 1993; Kahoush et al., 2018; Wang, 

2008).Recently, the Fenton(or Fenton-like) reaction has been applied to SAC degradation. Chen et al. 

(2014) utilized photo-Fenton oxidation to degrade saccharin sodium, and reported that TOC decreased 

by 93% under optimal conditions (500W mercury lamp, 0.04 g TiO2, pH=7, and photo-Fenton ratio of 

SAC:H2O2:Fe2+=5:60:1). Davididou et al. (2019)investigated SAC removal in a solar compound 

parabolic collector pilot plant using conventional photo-Fenton at pH 2.8 and olive mill wastewater 

(OMW)-assisted photo-Fenton. Although higher SAC degradation was achieved by conventional photo-

Fenton, encouraging results were obtained using the more sustainable photo-Fenton process with OMW 

as an iron chelating agent. Moreover, Lin et al. (2016) employed an electro-Fenton process to remove 

SAC from the aqueous environment, and observed that the SAC degradation rate driven by 

electrochemically generated ·OH ions followed pseudo-first order kinetics in the presence of Pt and a 

boron-doped diamond anode. Importantly, the toxicity of treated solution with oxalic, formic, and maleic 

acid as aliphatic byproducts of SAC was also eliminated after 60-min electro-Fenton reaction(Lin et al., 

2016).Excellent ASP degradation performance can be achieved using electro-Fenton reaction, depending 

on Fe2+ concentration and applied current (Richards et al., 2017). Nowadays, growing attention is being 

paid to sustainable Fenton processes, such as Bio-Fenton, Bio-Electro-Fenton, and Electrochemical/α-

FeOOH/PDS approaches; however, further investigations are required in order to better evaluate their 

SAC degradation efficiencies (Kahoush et al., 2018; Li et al., 2019).  

All in all, although AOPs appear attractive as effective technologies for SAC elimination, their 

performance should be assessed not only in terms of SAC removal, but also in terms of ecotoxicity 

variation during reaction processes.  

3.3.3.Biological degradation and uptake  

Biodegradation and uptake, comprising degradation, assimilation, and utilization during biological 
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metabolisms or activities, are cost-effective, eco-friendly processes that are widely applied for 

contaminants removal from environmental media(Gaur et al., 2018). Several studies, listed in Table 4, 

have investigated the SAC biodegradable potential of pure strains, mixed microbial communities, and 

environmental media with rich biodiversity (Richards et al., 2017; Scheurer et al., 2014; Slavič et al., 

2018).  

3.3.3.1 Bacteria and plants  

As reported in 2003, anaerobic bacterium strain, Sphingomonasxenophaga SKN, was isolated from 

domestic sewage and proved to degrade SAC well, with catechol providing the sole source of carbon and 

energy for growth (Schleheck and Cook, 2003). Later, it was discovered that efficient degradation of 

SAC involved the participation of both heterotrophic and autotrophic nitrifying microorganisms along 

with various non-specific oxidative enzymes, and that there was an observable linear relationship 

between nitrification rate and co-metabolic biodegradation rate (Tran et al., 2014b). Coliform bacteria 

and spoilage bacteria have been identified as being responsible for SAC degradation in drinks(Kabir et 

al., 2018). Besides, there is a growing body of research suggesting that a substantial proportion of SAC 

could be degraded by soil microorganisms (Biel-Maeso et al., 2019; Richards et al., 2017; Van 

Stempvoort et al., 2011a). Recent genomic resolution of bacterial populations in SAC degradation 

processes has revealed that the dominant saccharin-degrading consortia comprised β-proteobacterial 

genome from the Rhodocyclaceae family (Deng et al., 2019). Larger-scale plants have also proved 

effective at SAC removal from contaminated soil (Baalbaki et al., 2017). The foregoing indicates an 

opportunity whereby microorganisms and plants could be isolated and/or enriched in water and applied 

in wastewater treatment processes to efficient degradation of SAC pollutants. 

3.3.3.2 Activated sludge/consortia 

The behavior of SAC in water and wastewater treatment processes, especially biological processes 

encountered in activated sludge systems and membrane bioreactors, has been studied extensively. Buerge 

et al. (2009) provided evidence for the high aerobic biodegradation of SAC (mean elimination efficiency 

of 90%, confirmed by Subedi and Kannan (2014) and Tran et al. (2015)) in WWTP activated sludge 

incubation experiments, with no elimination observed in sterile conditions. Buerge et al. also found that 

ACE and SUC exhibited persistence with no degradation within 7h, whereas SAC was degraded by 78% 

in 3h under the same operating conditions. Another systematic, bench-scale study (Scheurer et al., 2010) 

found SAC to be more readily biodegradable in a fixed-bed bioreactor, with complete elimination within 

20 d, but hardly any degradation of ACE and SUC even after 92 d. Research on SAC removal in artificial 

wetlands has also provided evidence that SAC removal is positively correlated (p< 0.05) to dissolved 

oxygen concentration (Vymazal and Dvořáková Březinová, 2016). Complete SAC removal has also been 

observed in sequencing batch reactors (SBRs), where the presence of SAC had no impact on the removals 
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of COD, ammonia nitrogen, and total nitrogen (Li et al., 2018a).In a study of primary sludge anaerobic 

digestion, Phan et al. (2018)observed that SAC was mainly removed in the aqueous phase during 

anaerobic digestion. In a similar study, Buerge et al. (2011) measured more than 95% SAC removal 

during the fermentation process, but no SAC removal from the digested sewage sludge. Differences 

between the microbial communities in the two foregoing studies might be the main reason for the 

dissimilar SAC removal efficiencies. Future research is needed assessing factors influencing SAC 

biodegradation performance (e.g. temperature, pH, and hydrodynamics) in treatment units for saccharin 

sodium and other ASs (Baalbaki et al., 2017; Qu et al., 2019; Shreve and Brennan, 2019).  

Overall, biodegradation plays an important part in aqueous SAC treatment, and more advanced molecular 

biotechnologies could be used to improve efficiency of biological SAC removal. However, given that 

SAC can accumulate in sludge (Subedi et al., 2014),more attention should be paid to sludge treatment 

per se, which is another important environmental issue worldwide. 

3.4.Integrated processes 

As described above, treatment approaches based on physical, chemical, and biological principles have 

particular merits and drawbacks for SAC removal. Hybrid processes, also known as multi-technology 

processes, are being applied to eliminate SAC ecotoxicity in DWTPs and WWTPs. A popular 

combination of processes comprises flocculation, sand filtration, AC, or biological treatment (e.g. 

biosorption, biodegradation), and disinfection by chlorination, ozonation, or UV irradiation in DWTPs 

(Gan et al., 2012; McKie et al., 2016; Scheurer et al., 2010). Primary (flocculation, sedimentation, etc.), 

secondary (mainly biological degradation under aerobic, anoxic, or anaerobic conditions), and tertiary 

(disinfection using chlorine, ozone and UV) treatments are the three serial processes that constitute many 

WWTPs (Buerge et al., 2009; Li et al., 2018b; Subedi and Kannan, 2014; Tran et al., 2015). 

For DWTPs, although SAC removal through adsorption is not efficient, the biodegradation of SAC 

performs well during filtration with active microorganisms located in and on the surface of porousfilters 

(Buerge et al., 2011; Gan et al., 2012; Scheurer et al., 2010). The foregoing studies reported that 

disinfection by chlorination, ozonation, and UV irradiation exhibited poor/moderate SAC removal, but 

achieved better degradation performance of ACE.  

For WWTPs, more than 90% of SAC could be removed in primary and secondary processes, with 

biodegradation a key mechanism; however SAC in tertiary treatment would undergo less transformation 

than other ASs, such as ACE and SUC (Buerge et al., 2009; Li et al., 2018b; Subedi and Kannan, 2014; 

Tran et al., 2015). This suggests that improving SAC biodegradation efficiency is of great importance in 

water and wastewater treatment practice.  

3.5 Future research 

Following this extended literature review on SAC detection, occurrence, and treatment in water, 
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recommendations for future studies can be drawn, as described below. Given that WWTPs are a major 

source of SAC discharged into environmental waters (Subedi et al., 2014),emphasis should be placed on 

developing an efficient technology to eliminate trace amounts of SAC. Advanced oxidation and 

biological degradation processes seem presently to be a better option than physical processes because of 

the high hydrophilicity of SACs. During advanced oxidation it is important to evaluate the eco-toxicity 

of intermediate metabolites from SAC degradation along with its removal efficiency, noting that toxicity 

is linked with the presence of degradation products (Davididou et al., 2019). Also, further studies are 

needed to investigate the interaction relationship between SAC and co-existing pollutants, given that 

SAC co-exists in practice with other pollutants, such as nutrients, ACE, SUC, and other emerging 

pollutants, some of which exhibit strong reactivity (Scheurer et al., 2010; Shao et al., 2019; Tran et al., 

2014b).Inspired by the synchronous biodegradation of various pollutants in soil and activated sludge, 

biological processes offer a great opportunity in practice as cost-effective SAC removal methods; further 

research is recommended to isolate certain functional strains to enrich dominant biological communities 

that are key to water and wastewater treatment processes (Baalbaki et al., 2017; Biel-Maeso et al., 2019). 

4. Conclusion 

This state-of-the-art review has examined the current understanding of SAC degradation processes and 

the occurrence and distribution of SAC, determined primarily by LC-MS/MS and other novel or modified 

technologies. As an emerging contaminant, SAC appears not as safe as believed previously, owing to its 

worldwide long-term, large volume consumption, its ubiquitous detection in environmental media, and 

its potential chronic eco-toxicity. It was observed that although there is no existing national or 

international standard method for SAC determination in water samples, accurate methods for SAC 

determination have been recently developed. Based on these analytical techniques, several studies 

confirmed the occurrence of SAC at WWTP discharges worldwide at the μg/L order, indicating that 

treatment plants play a vital role in preventing and controlling the ecological environmental risk induced 

by SAC. Extensive research on physical, chemical, and biological technologies for SAC has been carried 

out. Among these techniques, advanced oxidation and biological processes appear to be efficient ways 

to eliminate SAC. Regarding future research, the focus should be placed on the ecotoxicity of SAC 

degradation products as well as its interaction with other co-existing water pollutants. Moreover, the 

isolation and application of functional strains to enrich dominant biological communities may be key to 

development of successful biological processes for wastewater treatment. In all cases, a cost-benefit 

analysis of SAC treatment would be recommended before scaling up the process. 
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Table  

Table 1 Physicochemical properties of saccharin 

Name Structure Properties 
Acceptable daily 

intake  

Saccharin 

(1,1-dioxo-1,2-

benzothiazol-3-one; 

Benzoic sulfimide) 

NH

S

O
O

O  

CAS No.: 81-07-2; 

Chemical formula: C7H5NO3S;  

Molecular weight: 183.18 g/mol; 

pKa : 2.2;  log Kow: 0.91; 

Water solubility: 4 g/L 

5 mg/kg body weight 

(sodium salt); 

3.8 mg/kg body 

weight (free acid) 
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Table 2.Analytical techniques with limits of detection (LODs) and limits of quantitation (LOQs)for SAC detection in different aqueous samples. 

Analytical technique Water matrixa LODs (g/L) LOQs (g/L) Reference 

High-pressure LC Animal feed 

Human urine 

Wastewater 

N/Ab (low to 10 ppm) 

N/A (low to 10 ppm) 

N/A (low to 0.1 ppm) 

N/A 

N/A 

N/A 

(Holder and Bowman, 1980) 

LC-tandem mass spectrometry (MS/MS) 

(LC-MS/MS) 

Surface water 

Wastewater 

N/A 

N/A 

0.25 

0.50 

(Ordóñez et al., 2012) 

Tap water/Wastewater 0.24 (instrument) 0.80(instrument) (Kokotou and Thomaidis, 2013) 

River water 

Wastewater 

0.001-0.04 

0.01-0.5 

N/A 

N/A 

(Arbeláez et al., 2015b) 

Groundwater 0.3 N/A (Stefania et al., 2019) 

LC withelectrospray ionization source 

equipped MS (LC-ESI-MS) 

River/Wastewater 1.5×10-5-0.023 

(instrument) 

1.5×10-5-0.023 

(instrument) 

(Watanabe et al., 2016) 

LC time-of-flight MS (LC-TOF-MS) Soft drink and liquid (no extraction) 

Ground/surface/waste water 

100 (instrument) 

0.5 (instrument) 

1000 (instrument) 

5 (instrument) 

(Ferrer and Thurman, 2010) 

LC-quadrupole(Q)-TOF-MS Surface/waste water N/A N/A (Hernández et al., 2015) 

Artificial wastewater(filtration) N/A N/A (Davididou et al., 2019) 

HPLC-MS/MS Ground/river/tap/waste water N/A 0.01 (Berset and Ochsenbein, 2012) 

UFLC-Q-MS/MS Red wine 1.5 5 (Chen et al., 2012) 

Ion-pair HPLC triple quadrupole-MS (IP-

HPLC-TQ-MS) 

River water 

Tap water 

Sea water 

0.0003 

0.0003 

0.0005 

0.0008 

0.0011 

0.0018 

(Gan et al., 2013b) 

LC-isotope-dilution MS (LC-IDMS)  Surface water 0.004 0.025 (Perkola and Sainio, 2014) 

LC-high resolution MS(LC-HR-MS)  Artificial wastewater(filtration) 0.005 0.1 (Davididou et al., 2018) 

RP-HPLC-Q-TOF-MS Wastewater N/A N/A (Kempińska and Kot-Wasik, 
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Analytical technique Water matrixa LODs (g/L) LOQs (g/L) Reference 

2018) 

FIA coupled a monolithic column Artificial wastewater N/A N/A (Fatibello-Filho et al., 1994) 

Artificial wastewater 1.5×10-5mol/L N/A (Fatibello-Filho and Aniceto, 

1999) 

Liquid sweetener products N/A 2.4×106 (Mendes et al., 2010) 

CE with capacitively coupled contactless 

conductivity detection (C4D) 

Soft drink (filtration) N/A 10 (Frazier et al., 2000) 

Soft drink (dilution) 1500 4900 (Bergamo et al., 2011) 

IC with suppressed conductivity detector Carbonated cola drink(ultrasonic+dilution) 45 N/A (Zhu et al., 2005) 

Fruit juice drink (dilution) 

Preserved fruit (ultrasonic+dilution) 

TLC  Toddy 0.1μg/spot (9 μg/cm2) N/A (Mali et al., 2005) 

a. samples in this column all are extracted except those indicated otherwise; b. N/A: not applicable. 
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Table 3Research information on saccharin occurrence in the aqueous environment including wastewater and sludge in WWTPs and wetlands, surface water, groundwater, 

runoff, tap water (drinking water), and sea water. 

Water Matrix Location Year Range/Concentration (ng/L) Determination Method Reference 

Wastewater  Karlsruhe, German (WWTPs) N/Aa 34,000-50,000 (inb);  

400 (outc) 

HPLC-ESI-TQ-MS (Scheurer et al., 2009) 

Zurich, Switzerland (WWTPs) Jun, Oct 2008 3900-18,000 (in); 

<LOD-3200 (out) 

LC-MS/MS (Buerge et al., 2009) 

US (WWTPs) N/A <LOD-5000 (out) LC-TOF-MS (Ferrer and Thurman, 

2010) 

Zurich, Switzerland (WWTPs) N/A 4000-18,000 (in); 

<100-3000 (out) 

LC-MS/MS (Buerge et al., 2011) 

Switzerland (WWTPs) May 9-10, 2011 86-16,201 (out) HPLC-MS/MS (Berset and Ochsenbein, 

2012) 

NW Spain (WWTPs) Sep 2011 18,400-22,300 (in); 

7100-9100 (out) 

LC-ESI-TQ-MS (Ordóñez et al., 2012) 

Athens, Greece (WWTPs) N/A 15,000-46,000 (in); 

<LOD-270 (out) 

LC-ESI-MS/MS (Kokotou and Thomaidis, 

2013) 

Tianjin, China (WWTPs) N/A ~10,300 (in);  

~242 (out) 

IPLC-ESI-TQ-MS/MS (Gan et al., 2013b) 

Tianjin, China (WWTPs+Wetlands) Jun 28, 2011; 

Nov 6, 2011 

WWTPs: 

7200-9100 (in);  

270-280 (out) 

Wetlands: 140-560 

LC-TQ-MS/MS (Gan et al., 2013a) 

Singapore (WWTPs) N/A 101 -106 (in) HPLC-ID-MS/MS (Tran et al., 2014a) 
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Water Matrix Location Year Range/Concentration (ng/L) Determination Method Reference 

Wastewater Tianjin, China (WWTPs) Dec 13-26, 2012;  

Sep 11-24, 2013  

210 ±160 (AVG ±SD)d LC-MS/MS (Gan et al., 2014) 

 Albany, USA (WWTPs) Jul 12-18, 2013 1860-25,100 (in); 

130-15,200 (out) 

HPLC-MS/MS (Subedi and Kannan, 

2014) 

 Tarragona, Spain (WWTPs) N/A <LOQ-155,000 (in); 

<LOQ-500 (out) 

HPLC-ESI-MS/MS (Arbeláez et al., 2015b) 

 India (WWTPs) Jul-Aug 2012 303,000 (in, highest Me); 

12,120 (out, removal rate 96%) 

HPLC-ESI-MS/MS (Subedi et al., 2015) 

 Singapore (Water reclamation plant) Feb-Jul 2013 9310-18,797 (in);  

<LOD (out) 

HPLC-MS/MS (Tran et al., 2015) 

 Hanoi, Vietnam (WWTPs) Oct, Dec 2013 7600-13,000 (in); 

23-36 (out) 

LC-ESI-MS (Watanabe et al., 2016) 

 Czech Republic  

(Constructed wetland) 

Oct 2013-Nov 2015 6,200-87,000 (in); 

2600-37,000 (out, AVG removal 

rate 42.4% ) 

UHPLC-ESI-TQ-MS/MS (Vymazal and Dvořáková 

Březinová, 2016) 

 South German (WWTPs) 2012-2014 14,000 (in, highest M) HPLC-ESI-MS/MS (Seitz and Winzenbacher, 

2017) 

 Ontario (Septic tanks) N/A 6100-72,000 (single dwelling); 

2200-63,000 (multiple dwelling) 

IC-ESI-MS/MS (Snider et al., 2017) 

 Pearl River Delta region, South 

China (WWTPs) 

May-Oct 2015 8230 (in, M); 

<823 (out, removal rate > 90%) 

UHPLC-ESI-MS-MS (Yang et al., 2017) 

 Tianjin, China (Farm WWTPs) Aug 2015-May 2016 781,000 ±9000 (in); 

11,100 ±100 (primary out); 

5640 ±370 (out) 

LC-TQ-MS/MS (Baalbaki et al., 2017) 
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Water Matrix Location Year Range/Concentration (ng/L) Determination Method Reference 

Wastewater Nanjing/Wuxi, China (WWTPs) Oct 15, 2015; 

Jan 15, Apr 15, Jul 15, 

2016 

430-27,340 (in);  

20-240 (out) 

UPLC-ESI-TQ-S MS/MS (Li et al., 2018b) 

Tarragona & Reus, Spain (WWTPs) N/A 4700-17,900 (out) HPLC-MS/MS (Lakade et al., 2018) 

N/A (WWTPs) N/A 4408-52,962 (in);  

<LOQ-5663 (out) 

HPLC-MS/MS (Tran et al., 2019) 

Sludge Zurich, Switzerland (Farm WWTPs) N/A liquid manure: 3×105-1.2 ×107; 

manure fermentation: 300-5×105; 

sludge:1×104-1.6×104 

LC-MS/MS (Buerge et al., 2011) 

NW Spain (WWTPs) N/A 141-255 ng/g dwSf (primary); 

<LOD-124 ng/g dwS (secondary) 

LC-ESI-MS/MS (Ordoñez et al., 2013) 

South Korea (WWTPs, Mixed: 

Industrial + Domestic) 

Jul-Oct 2011 11.4-55.4 ng/g dwS (Industrial); 

7.08-3240 ng/g dwS (Domestic); 

11.6-54.0 ng/g dwS (Mixed); 

HPLC-ESI-TQ-MS/MS (Subedi et al., 2014) 

Albany, USA (WWTPs) Jul 12-18, 2013 <LOD-388,000 HPLC-MS/MS (Subedi and Kannan, 

2014) 

Catalonia, Spain (WWTPs) consecutive 3 months 105-591 ng/g dwS HPLC-ESI-TQ-MS/MS (Arbeláez et al., 2015a) 

India (WWTPs) Jul-Aug 2012 18,700 ng/g dwS HPLC-ESI-MS/MS (Subedi et al., 2015) 

Surface water Swiss Midland region Feb-Mar 2008 <LOD-2800 LC-MS/MS (Buerge et al., 2009) 

 Swizerland May3,16-19, 2011 <LOQ-310 HPLC-MS/MS (Berset and Ochsenbein, 

2012) 

 NW Spain Sep 2011 <LOD-19,700 LC-ESI-TQ-MS (Ordóñez et al., 2012) 

 Tianjin, China N/A 193-746 IPLC-ESI-TQ-MS/MS (Gan et al., 2013b) 

 Tianjin, China Jul 9-15, 2011, 210-1100 LC-TQ-MS/MS (Gan et al., 2013a) 
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Water Matrix Location Year Range/Concentration (ng/L) Determination Method Reference 

Surface water Ontario, Canada Jun 14, Sep 5, 2007;  

Apr 24, 2009 

<LOD-7200 IC-ESI-MS/MS (Spoelstra et al., 2013) 

 Singapore N/A <LOD-3210  HPLC-ID-MS/MS (Tran et al., 2014a) 

 Finland Jun, Oct 2011; 

May, Jun 2012 

<25-490 UPLC-ESI-ID-MS/MS (Perkola and Sainio, 

2014) 

 Hong Kong, China Jul 22, 2011;  

Jan 17, 2012 

250 UHPLC-ESI-TQ-MS/MS (Sang et al., 2014) 

 Tianjin, China Dec 13-26, 2012;  

Sep 11-24, 2013  

120-62,700 LC-MS/MS (Gan et al., 2014) 

 Chennai, India Jul - Aug 2012 419,000 HPLC-ESI-MS/MS (Subedi et al., 2015) 

 Hanoi/Haiphong Vietnam Oct, Dec 2013 0.092-17,000 LC-ESI-MS (Watanabe et al., 2016) 

 Manila, The Philippines Jun 2014 290-9600 LC-ESI-MS (Watanabe et al., 2016) 

 Pathein/Yangon, Myanmar Dec 2014 <LOD-71 LC-ESI-MS (Watanabe et al., 2016) 

 Barbados, West Indies Feb, Jun 2013 <LOQ-488±46 LC-ESI-MS/MS (Edwards et al., 2017) 

 River Ebro N/A 100-200 HPLC-MS/MS (Lakade et al., 2018) 

 Northern Italy Mar 2017 <LOQ-530 HPLC-MS/MS (Stefania et al., 2019) 

 N/A Apr 2015-Dec 2016 <LOQ-5663 HPLC-MS/MS (Tran et al., 2019) 

Groundwater Mediterranean country, German N/A <LOD-<400 HPLC-ESI-TQ-MS (Scheurer et al., 2009) 

 Zurich, Swizerland Aug, Nov 2008 <LOD LC-MS/MS (Buerge et al., 2009) 

 Canada (Lagoon) N/A <LOD-10,300 IC-ESI-TQ-MS/MS 

(isotope-labled) 

(Van Stempvoort et al., 

2011b) 

 Ontario, Canada Sep 2008; 

Jun, Oct 2009; 

Mar-Apr 2010 

21-40,000 IC-ESI-TQ-MS/MS (Van Stempvoort et al., 

2011a) 
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Water Matrix Location Year Range/Concentration (ng/L) Determination Method Reference 

 Switzerland May 23 -24 2011 <LOQ-15 HPLC-MS/MS (Berset and Ochsenbein, 

2012) 

 Tianjin, China N/A 11.3-80.0 IPLC-ESI-TQ-MS/MS (Gan et al., 2013b) 

Groundwater Barrie/Jasper, Canada Sep-Nov 2010 <LOD-35 LC-MS/MS (Van Stempvoort et al., 

2013) 

 Tianjin, China Jul 2011 52-63 LC-TQ-MS/MS (Gan et al., 2013a) 

 Singapore N/A <LOD-780 HPLC-ID-MS/MS  (Tran et al., 2014a) 

 Canada (Landfill monitoring well) N/A <LOQ-250,000 IC-ESI-TQ-MS/MS (Roy et al., 2014) 

 Halong, Vietnam Oct, Dec 2013 <LOD-13 LC-ESI-MS (Watanabe et al., 2016) 

 Barbados, West Indies Feb, Jun 2013 2.7±0.2 - 9.6±2.1 LC-ESI-MS/MS (Edwards et al., 2019) 

 Northern Italy Mar 2017 <LOQ -680 HPLC-MS/MS (Stefania et al., 2019) 

Runoff Gryteland stream, Norway Nov 2014;  

Feb, Jun, Sep, Dec 

2015;  

Mar 2016 

<LOQ-80 (in); 

<LOQ-74 (out) 

UHPLC-TQ-MS/MS (Paruch et al., 2017) 

N/A Apr 2015-Dec 2016 45-9125 (urban) 

17-1028 (Agricultural) 

HPLC-MS/MS (Tran et al., 2019) 

Tap water Tianjin, China N/A 47.5-65.1 IPLC-ESI-TQ-MS/MS (Gan et al., 2013b) 

Tianjin, China Jul 2011 Up to 110 LC-TQ-MS/MS (Gan et al., 2013a) 

Canada N/A <LOD-350 IC-ESI-MS/MS (Spoelstra et al., 2013) 

Sea water Tianjin, China N/A 99.7-249 IPLC-ESI-TQ-MS/MS (Gan et al., 2013b) 

Hong Kong, China Jul 22, 2011;  

Jan 17, 2012 

<LOD-300 UHPLC-ESI-TQ-MS/MS (Sang et al., 2014) 

Western basin, the Mediterranean 

Sea 

Autumn 2014 0.49-5.23 UPLC-MS/MS; 

HPLC-MS/MS 

(Brumovský et al., 2017) 
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a. N/A: not applicable; b. in: inflow/influent/inlet/raw/untreated water in related references; c. out: outflow/effluent/outlet/treated water in related references; d. AVG±SD: 

average concentration ± standard deviation; e: M: median concentration;f. ng/g dwS: ng/g dry weight sludge. 
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Table 4.Physical, chemical, and biological processes/techniques for SAC treatment 

Treatment technique Main mechanism SAC optimal removal performance Reference 

Physical Activated carbon 

(AC) 

Adsorption 1. AC (lab-scale) 

40% (only AC adsorption 16 h); 

75% (ultrasonication180 min + AC adsorption, 16 h) 

(Bernardo et al., 2006) 

Adsorption + Biodegradation (main) 2. Granular AC (GAC)(lab-scale) 

0.4 mg SAC/g GAC 

(Li et al., 2018b) 

Adsorption 3. Powdered AC (PAC)(pilot-scale) 

33-54% (fluidized bed) 

(Mailler et al., 2015) 

Biochar(BC)  Adsorption (π–π stacking) Partial removal (lab-scale) (Liu et al., 2019) 

Filtration  Adsorption + Biodegradation (main) 1. Bank filtration (sampling study) 

Nearly 100% (by soil) 

(Buerge et al., 2011) 

2. Sand filtration (sampling study) 

14.5% (by mainly quartz sand and anthracites) 

(Gan et al., 2012) 

Metal-organic 

framework (MOF) 

Adsorption (H-bonding) 1. Maximum adsorption capacity of MIL (name for a 

specially prepared MOF) (lab-scale) 

53.4 mg SAC / g MIL-101 

70.1 mg SAC / g melamine-MIL-101 

86.4 mg SAC / g urea-MIL-101 

18.7 mg SAC / g O2N-MIL-101 

(Seo et al., 2016) 

2. Maximum adsorption capacity of metal azolate 

framework-6 derived porous carbons (MDCs)(lab-scale) 

93.3 mg SAC/ g MDC-4h; 

99.2 mg SAC/ g MDC-6 h; 

94.5 mg SAC/ g MDC-12 h 

(Song et al., 2018) 



35 / 38 

 

Treatment technique Main mechanism SAC optimal removal performance Reference 

Physical Resins Adsorption 8.1% (magnetic anion exchange resin) (lab-scale) (Li et al., 2018b) 

Reverse Osmosis 

(RO) 

Adsorption and/or rejection by RO 

membrane 

Very poor (full-scale) (Busetti et al., 2015) 

Chemical Chlorination Chlorine-based selective oxidation Poor removal efficiency (field study + lab-scale) (Scheurer et al., 2010) 

Ozonation Ozone acts as main oxidant and 

reacts directly with organics in 

acidic pH; ·OH, generated from O3-

based reactions, acts as main oxidant 

with organics in neutral and alkaline 

conditions 

Poor performance (field study + lab-scale), with no obvious 

SAC removal with O3 at 0.5 mg/L, 20% of SAC removed only 

with O3 at 5 mg/L 

(Scheurer et al., 2010) 

Ultraviolet (UV) Photodegradation induced  by 

radiation energy from UV lights 

acting on chemical bonds 

1. N/A (full-scale) (Busetti et al., 2015) 

2. Poorly photodegraded (lab-scale) (Perkola et al., 2016) 

3. N/A(lab-scale) (Li et al., 2018b) 

UV-induced 

advanced 

oxidation 

processes (AOPs) 

Oxidation processes between 

organics and radical (mainly ·OH) 

induced by reactions among UV, 

oxidants and/or catalysts 

1. UV/H2O2 (sampling study) 

3.59 ×10-4/s (degradation rate constant k1, degradation followed 

pseudo-first-order kinetics) 

2. UV/Sodium peroxydisulfate(PDS) (sampling study) 

7.23 ×10-4/s (degradation rate constant k1, degradation followed 

pseudo-first-order kinetics) 

(Li et al., 2018b) 

3. UV/photocatalysts tuned by Sn (IV) (lab-scale) 

98% with catalyst Aeroxide TiO2P25; 

67% with catalyst CristalACTiV PC105; 

43% with catalyst KRONOClean7050; 

21-27% with catalysts pure anatase, 15% rutile and 30% rutile 

respectively 

(Davididou et al., 2017) 
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Treatment technique Main mechanism SAC optimal removal performance Reference 

Chemical   4. UV/TiO2(lab-scale) 

UV-light-emitting diode(LED)/TiO2 has higher SAC removal 

efficiency and is 16 times more energy efficient than UV-

blacklight (BL)/TiO2 

(Davididou et al., 2018) 

5. UV-A/TiO2(lab-scale) 

>90 % degraded and 49% mineralized 

(Zelinski et al., 2018) 

Fenton Treatment Organics oxidized and degraded by 

strong oxidants (usually ·OH) 

generated by reaction of peroxides 

(mainly H2O2) with ferrous ions 

(Fe2+) 

1. Photo/TiO2-Fenton (lab-scale) 

93 % of TOC removal 

(Chen et al., 2014) 

2. Photo-Fenton (lab-scale) 

0.05-0.1 L/kJ (reaction rate constant k,conventional) 

2.21-7.88 L/kJ (reaction rate constant k,assisted by 

Ethylenediamine-N, N-disuccinic acid) 

0.13 L/kJ (reaction rate constant k,assisted by olive mill 

wastewater) 

(Davididou et al., 2019) 

3. Electro-Fenton (lab-scale) 

Apparent rate constant kapp for SAC degradation: 

0.18/min (with dimensionally stableanodes (DSA));  

0.19/min (with platinum (Pt) anode); 

0.21/min (with boron-doped diamond (BDD) anode) 

Mineralization for SAC: 

55.8 % (with DSA anode); 

76.1 % (with Pt anode); 

96.2 % (with BDD anode) 

(Lin et al., 2016) 
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Treatment technique Main mechanism SAC optimal removal performance Reference 

Biological Bacteria SAC as sole carbon and energy 

sources for bacterial aerobic growth 

1. Pure strain(lab-scale) 

Specific growth rate (μ) of 0.14/h of bacterium 

SphinogomonasxenophageSKN under aerobic conditions, and 

the substrate utilization concomitant withgrowth. 

(Schleheck and Cook, 2003) 

SAC as source for bacterial growth 2. Mixed bacteria(sampling study +lab-scale) 

Sobo drink containing  

0.25g SACwith 50% degradationrate on 12th day; 

0.5g SAC with 64.5% degradationrate on 3rd day; 

1.0g SACwith 19.3% degradationrate on 12th day; 

1.5g SACwith 8.1%degradationrate on 12th day; 

2.0g SACwith3.1% degradationrate on 12th day 

Bacteria accounting for SAC degradation are common spoilage 

bacteria and coliform bacteria including Bacillus subtilis, 

Bacillus pumilis, Bacillus azotomonas, Micrococcus varians, 

Aeromonashydrophila, Enterobacteraeromonas, Lactobacillus 

acidophilus. 

(Kabir et al., 2018) 

SAC degraded by nitrifying bacteria 

together with their induced non-

specific oxidative enzymes 

3. Nitrifying consortia (lab-scale) 

60-80% SAC degraded by nitrifying community  

(Tran et al., 2014b) 

SAC assole carbon 

sourcewithmicrobial enzymes 

initiating SAC degradation   

4. Consortia from activated sludge in WWTPs (lab-scale) 

Complete removal followed zero-order kinetics by consortia 

dominated by a β-proteobacterial genomefrom the family 

Rhodocyclaceae. 

(Deng et al., 2019) 
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Treatment technique Main mechanism SAC optimal removal performance Reference 

Biological Plant Highwater solubility and 

hydrophilic nature of SAC 

Uptake by plants (vegetables, i.e. radish, celery, young celery, 

spinach and cabbagemustard) significantwhen SAC occurred at 

high levels in the surrounding environment (sampling study) 

(Baalbaki et al., 2017) 

Activated sludge SAC as carbon and energy sources 

of microorganism with different 

functions and metabolic ways under 

aerobic conditions. SAC removal 

performance depends on diversity of 

microbial community. 

1. Aerobic activated sludge in WWTPs (full-scale and/or lab-

scale) 

90% - nearly 100% of SAC degraded under aerobic conditions 

in bioreactor  

(Buerge et al., 2009) 

(Scheurer et al., 2010) 

(Subedi and Kannan, 2014) 

(Tran et al., 2015) 

(Li et al., 2018a) 

2. Anaerobic sludge in WWTPs 

a. >95% of SAC removal in the fermentation processes but no 

SAC removal in digested sludge (sampling study) 

 

(Buerge et al., 2011) 

b. No SAC degradation under anaerobic digestion (pilot-scale) (Phan et al., 2018) 

3. Sludge in constructed wetlands (sampling study) 

27.1-53.3% by aerobic consortia in constructed wetlands  

(Vymazal and Dvořáková 

Březinová, 2016) 

 

 

 


