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Abstract: Tidal stream turbines are subject to complex flow conditions, particularly when installed1

in staggered array configurations where the downstream turbines are affected by the wake and/or2

bypass flow of upstream turbines. This work presents, for the first time, methods for and results3

from the physical testing of three 1/15 scale instrumented turbines configured in a closely-spaced4

staggered array, and demonstrates experimentally that increased power extraction can be achieved5

through reduced array separation. A comprehensive set of flow measurements was taken during6

several weeks testing in the FloWave Ocean Energy Research Facility, with different configurations of7

turbines installed in the tank in a current of 0.8 m/s, to understand the effect that the front turbines8

have on flow through the array and on the inflow to the centrally placed rearmost turbine. Loads on9

the turbine structure, rotor, and blade roots were measured along with the rotational speed of the10

rotor to assess concurrently in real time the effects of flow and array geometry on structural loading11

and performance. Operating in this closely-spaced array was found to improve the power delivered12

by the rear turbine by 5.7%–10.4% with a corresponding increase in the thrust loading on the rotor of13

4.8%–7.3% around the peak power operating point. The experimental methods developed and results14

arising from this work will also be useful for further scale-testing elsewhere, validating numerical15

models, and for understanding the performance and loading of full-scale tidal stream turbines in16

arrays.17

Keywords: Tank testing; Tidal stream turbine; Array effects; Turbine wake measurements18

1. Introduction19

Full-scale tidal current turbines have now been installed in small arrays, generating and exporting20

electricity to the local network for several years, both with individual unit capacity up to 1.5 MW [1],21

and smaller 100 kW units operated in an array in Shetland since 2016 [2]. These are demonstrating22

full scale devices at pre-commercial status, corresponding to a technology readiness level of 6–7. The23

UK Crown Estate has granted seabed leases for 30 tidal current developments which, for commercial24

scale, will be deployed in arrays. Forx efficient use of the seabed the arrays may be closely spaced.25

For commercial operation this will require arrays of multiple devices. It is therefore important to26

understand the hydrodynamic (and potential electro-dynamic) interaction between these turbines,27

including the potential to increase the overall power generated by a carefully optimised layout of the28

array. Tank testing of instrumented scaled models provides the opportunity to explore these physical29

effects in a relatively low-cost, repeatable, controlled laboratory environment, which can be used to30

compliment and validate computer numerical modelling of potential array concepts.31
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This paper presents the methods employed and results from a significant experimental campaign32

that shows how the flow conditions in the FloWave current and wave test tank (EP/I02932X/1) are33

modified by the presence of and energy extracted by an array of three 1.2 m rotor diameter 1/15 scale34

model tidal turbines. These turbines were made and tested at the University of Edinburgh, as part of35

work of the EPSRC-sponsored SuperGen UK Centre for Marine Energy Research (EP/I027912/1), each36

identical with a 3-bladed horizontal axis turbine and four-quadrant controlled power take-off. The37

diameter-based Reynolds Number, Eq. (1), for all tests was 1.08×106, where ρ is the density and µ the38

kinematic viscosity of water.39

ReD =
ρUD

µ
(1)

The flow measurements were made at over 150 spatial locations for four array installation40

configurations: with one, two, or three turbines installed, plus baseline empty tank measurements.41

This paper also reports the results of the investigation of how power developed and loading on the42

rear turbine were influenced both by the presence and defined operation of the front row turbines.43

The results presented in this work arise from some of the largest laboratory-scale array tests of44

tidal current turbines undertaken or published to date. Testing at this large scale is necessary to reduce45

scale effects and to provide more representative understanding of full-scale turbine performance and46

loading in the sea.47

The remainder of the paper is laid out as follows: Sections 1.1 and 1.2 summarise other relevant48

work on testing arrays of turbines, Section 2 describes the experimental set-up, methods, and analysis49

methods. The results obtained are covered in Sections 3 and 4, considering first the influence of the50

turbine array on flow velocities, and then how this affects loading and power. Section 5 discusses51

the relevance and implications of these findings, followed by the conclusions that may be drawn in52

Section 6.53

1.1. Previous studies of tidal stream turbine arrays54

The commercial deployment of tidal energy farms that is underway requires the deployment of55

arrays of multiple tidal current turbines in close proximity to one another, mandating an improved56

understanding of the interaction between individual turbines. A review of issues encountered when57

designing large arrays of tidal turbines was conducted by Vennell et al. [3], including a summary of58

key numerical modelling studies.59

Due to the complex nature of turbulent flow around the machines in an array of rotating turbines,60

scale model testing is important to explore the physical processes, understand the modifications to the61

flow field, measure and characterise turbine performance and loading – with the resulting data and62

knowledge essential to validate numerical models.63

Some previous tank tests of tidal turbine arrays have used static porous actuator disks to represent64

the energy extraction by the turbines [4–6]. In other tests, arrays of relatively small turbines (typically65

less than 0.4 m in diameter) have been used [7–10], with [9,10] considering cross-flow turbines and66

where the water depth was not scaled. A configuration with two 0.7 m diameter turbines, one directly67

in the wake of the other, has been tested in a flume [11,12]. Subsequently, Gaurier et al. [13] tested three68

of these turbines in a staggered array similar to the one presented in this work, but with 2D separation69

between the front turbines and the rear located 4D downstream. It is noted that in [7,8,11–13] the70

turbines were tested suspended from above the free surface, rather than bed-mounted, and only71

the thrust on the whole turbine and support structure was measured. Recently, two 1.2 m diameter72

turbines were tested at FloWave in a side-by-side configuration to assess the potential for constructive73

interference effects between them, which showed an increase in both power and thrust [14].74

Apart from the above, the authors are not aware of other published studies of arrays of multiple75

large-scale turbines (&1 m diameter), highlighting the novelty of this work. Indeed the lack of data76

showing multi-turbine wake interactions was stated in [7]. As mentioned, the only other large77
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three-turbine array tests were presented in [13], where the downstream separation was 4D and the78

blockage induced by the two upstream turbines was 9.6%. They show detailed velocity measurements79

and turbine performance for two turbulence intensities and different lateral offsets of the rear turbine.80

In this current work, we explore a single array configuration with a downstream separation of just 1D;81

exploring the implications of a highly compact array configuration. The blockage introduced by the82

upstream turbines is 4.5%, noting that blockage corrections are considered necessary above 5% [15].83

1.2. Other studies using the Supergen UKCMER Tidal Turbines84

The method and results of the experimental study presented here are from measurements made85

on a fully instrumented turbine installed as part of an array and subjected to realistic flow conditions86

in the FloWave combined current and wave test tank. Previous studies have demonstrated the design87

and results obtained from this turbine operating singly, not as part of an array [16–18]. Other results88

from this experimental campaign, exploring and reporting the influence of wave loading on a single89

turbine, are presented in [19–21].90

2. Experimental set-up and methods91

2.1. The FloWave Ocean Energy Research Facility92

All the experimental work discussed in this paper was carried out at the FloWave Ocean Energy93

Research facility at the University of Edinburgh [22]. FloWave comprises a 25 m diameter circular tank,94

with an operating water depth of 2 m. In the centre is a 15 m diameter buoyant floor, that can be raised95

out of the water for model installation. A movable gantry spans across the tank, used to provide access96

to the floor and for mounting instrumentation.97

As shown in Fig. 1, currents are generated by 28 impeller units mounted in the plenum chamber98

below the test floor. The flow is directed across the test volume of the tank by turning vanes mounted99

around the outside of the floor, below and in front of the wavemakers. Full details of the flow100

generation are given in Robinson et al.[23,24].101

Due to the method of generating flow in a circular tank, there is some spatial variation of the102

mean flow across the test area. Characterisation by Noble et al. [25] shows there is a ∼50 m2 region of103

relatively straight uniform flow (±10%) in the tank centre. Baseline turbulence characterisation of the104

tank’s test area was conducted by Sutherland et al. [26]. Turbulence intensity IU at 0.8 m/s is 5–10%105

and integral lengthscale `U is typically in the range 0.1 m to 0.5 m. At the primary turbine location106

these values are approximately 8% and 0.3 m.107

The flow in the tank was set at the design flow speed of the turbine model [17], nominally 0.8 m/s108

inflow at a hub-height location without the turbine installed in the tank, which is consistent with109

previous tests with a single turbine [18]. This corresponds to a full-scale flow speed of 3.1 m/s.110

2.0m depth

15m Ø floor 25m Ø tank 

A

B C
D

BC

Figure 1. Sectional schematic of FloWave basin showing: (A) Wavemaker paddles around
circumference; (B) Turning vanes and flow conditioning filters; (C) Current drive impeller units;
(D) Buoyant raisable floor (15 m�) below test area. [25]
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Table 1. Key turbine dimension (from [17])

Rotor diameter (mm) 1200 (1D)
Nacelle length (mm) 1030
Nacelle diameter (mm) hub to tower 120

beyond tower 160
Hub height (mm) 1000 (0.83D)
Tower diameter (mm) 102
Distance from rotor plane to tower axis (mm) 486 (0.4D)

Figure 2. Turbine array installed in FloWave, as the floor descends after installation. Fully instrumented
primary turbine (red fairing) in the centre between front turbines (yellow & blue). Array layout and
configurations tested shown in Fig. 3. Grid on tank floor relative to tank centre, with 0.5 m spacing.

2.2. Turbines and instrumentation111

An array of three similar turbines was used in these tests, one fully instrumented primary turbine112

with two additional turbines upstream to alter the inflow conditions as would happen in an array.113

The turbines are a generic bed-mounted horizontal-axis three-bladed design, representative of114

many turbines proposed, modelled, or installed to date [e.g. 1,27]. The turbine models are nominally115

1:15 scale, corresponding to an 18 m diameter prototype. The design and manufacture of one of116

the model turbines used for these tests, including on-board instrumentation, is fully described in117

Payne et al. [17]. The blades have been designed to provide a rotor thrust coefficient similar to a118

full-scale generic turbine across a range of turbine rotational speeds. A summary of key turbine119

dimensions is provided in Table 1. To simulate the power take-off, a brushless servo motor is connected120

in a direct-drive set-up, i.e. without gearbox. The servo motor was operated in speed control and121

was controlled using an ABB MotiFlex e180 servo drive [28]. Torque and thrust on the whole rotor is122

measured via a transducer connected to the hub, with absolute angular position of the blades measured123

through an encoder on the motor shaft. For the primary turbine only, streamwise root bending moment124

(RBM) sensors are also fitted to each blade. The Turbine instrumentation was logged at 256 Hz. Note125

that all the measurements reported in this paper were made upstream of the servo drive.126
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AC0 AC1

AC2 AC3

D=1.2m

Inflow

1D

1.5D

1.5D

Primary
turbine

0-1 1
X/D [-]

Y/
D

 [-
]

0

1

2

-1

-2

Figure 3. (left) three turbine array layout, and (right) four configurations tested: AC0 empty tank,
AC1 primary turbine only, AC2 upstream turbines only, and AC3 full array.

The fully instrumented primary turbine (red fairing in Fig. 2) was mounted on a six degree127

of freedom load-cell to measure forces and moments on the foundation (although not used in this128

analysis). This load-cell is flush mounted within the tank floor, which dictates the location of this129

turbine, with the tower offset ∼1.6 m downstream and ∼0.5 m to the side of the tank centre.130

2.3. Array configurations131

To investigate array effects on the primary turbine, two additional identical turbines were placed132

upstream to alter the inflow, as shown in Fig. 3. The hubs of the front turbines were positioned one133

rotor diameter (1D) upstream and 1.5D either side of the primary turbine hub, giving a transverse134

separation of 3D.135

The flow measurements and loading tests were conducted for three array configurations (AC) as136

shown in Fig. 3: AC1 with only the primary turbine installed; AC2 with the front two turbines but not137

the primary turbine; and AC3 with the full three turbine array. The location of each specific turbine138

was kept constant in all cases. For baseline comparison, flow was measured in the tank without any139

turbines installed, shown as configuration AC0 in Fig. 3.140

The blockage ratio, defined as the turbine blade swept area relative to the tank cross-sectional area,141

is approximately 2.3% for each turbine, giving 4.6% upstream blockage to the primary turbine, and142

6.8% total blockage for the combined three turbine array. The horizontal dimension of the tank is large143

enough that the edges of the tank have a limited impact on the the bypass flow around turbines. The144

vertical scale of the rotor diameter to water depth was designed to be similar to that for real turbine145

installations [e.g. 29,30], which is important to accurately model the interaction between tidal stream146

turbines, as in this study.147

The local co-ordinate system used for these tests has the origin at the primary turbine hub, with148

X positive in the streamwise direction. Distances are normalised by the turbine diameter D of 1.2 m.149
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Table 2. Description of installed instrumentation and variables measured

Instrumentation Variables measured Sample Rate [Hz]

Vectrino Profiler ADV Velocity components, U, V, W. 100
Bespoke TST Instrumentation Torque, T, 256

Thrust, Q,
Streamwise root bending moment, RBM,
Rotational position, θ.

2.4. Flow measurements150

Flow measurements were obtained through acoustic Doppler velocimetry using a Nortek Vectrino151

Profiler ADV [31] at 100 Hz sample rate. The short-range profiling capability of the instrument was152

not used for these tests, with only a single measurement point used. The tank was periodically seeded153

with neutrally-buoyant glass micro-spheres to produce and maintain mean correlation between beams154

>95%. The velocity range was set to 1.8 m/s to prevent wrapping due to high velocity spikes.155

For this study, point measurements of flow were taken at various locations to characterise the156

inflow, wake, and region between the turbines. All flow measurements were taken at hub height,157

1 m (0.83D) above the tank floor. Flow in the tank was allowed to reach steady state before any158

measurements were made. A 256 s measurement of U, V, W velocity components was used to159

characterise the flow at each point of interest, based on previous experience at FloWave [26].160

The flow measurement data were processed to remove outlier spikes using the MATLAB161

‘despiking toolbox’ implemented in Mori et al. [32] based on the method of Goring and Nikora [33].162

The mean value of each 25600 sample flow measurement was taken for the streamwise, transverse,163

and vertical velocity components U, V, W, with the standard deviation σU , and turbulence intensity IU164

(Eq. (2)) calculated for the streamwise component.165

IU =
σU

U
(2)

Due to time constraints and other investigation priorities, the number and position of flow166

measurement points varies slightly between array configurations. It was not possible to measure flow167

within 0.3 m of the turbine rotor. Table 2 summarises the specifications of the instrumentation used in168

the test programme.169

3. Influence of turbine arrays on flow conditions170

The first part of the results investigates the influence of the different turbine array configurations171

on the flow conditions in the tank, with a focus on the inflow conditions for the primary turbine. All172

flow measurements are taken at hub height, and the turbines were operated at their design speed of173

90 rpm for these tests. Flow through the turbine array is influenced by the turbines, therefore rotational174

speeds of the turbines are quoted in rpm, rather than tip-speed ratio (TSR), in all the results discussed175

in this paper. A nominal TSR can be calculated for reference based on the nominal inflow velocity of176

0.8 m/s.177

3.1. Spatial analysis of flow variation178

The influence of the turbine arrays on both inflow and wake along the centreline of the array in179

the streamwise direction is shown in Fig. 4, for the four configurations described in Fig. 3. For all cases180

with turbines in the tank, there is an inflow deficit to the array of 0.05–0.1 m/s (5%–12%) upstream181

of X/D = −1. This is most pronounced for the three turbine array with a higher overall blockage.182

With just the two front turbines in the tank (configuration AC2) the flow velocity at the location of183

the rear turbine rotor X/D = 0 is similar to the empty tank baseline (AC0). This demonstrates the184

flow acceleration between the two front turbines. For the single and triple turbine arrays (AC1 and185
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Figure 4. Transect along centreline of array (Y/D = 0) at hub height. Sub-panels show mean velocity U,
mean velocity relative to empty tank ∆U, standard-deviation σU , and turbulence intensity IU .

AC3) there is a significant wake deficit. For the three turbine array this deficit is reduced, showing the186

influence of the increase in flow velocity persisting through to the primary turbine.187

There is limited impact of the turbines on inflow fluctuations, characterised by σU and IU , which188

are similar to the empty tank conditions (AC0). Downstream of the array, the increased turbulence189

in the wake is clearly visible in Fig. 4, with IU > 20% compared to the empty tank baseline of ≈ 6%.190

Interestingly IU appears similar or greater for the single turbine compared to the triple turbine array,191

despite increased σU for the latter. This can be attributed to the way IU is defined as a function of flow192

velocity (Eq. (2)), and the reduced wake deficit for the triple turbine array.193

Due to the re-circulation of currents at FloWave [22,23], consideration was given to blockage in194

the tank and how this affects the flow re-circulation. Figure 5 shows the wake of a single turbine as a195

function of rpm, with more blockage and higher wake deficit at higher rpm, as would be expected.196

The inflow does not show a significant variation with rpm however, suggesting that the wake deficit197

has fully recovered in the return path through the impellers. A similar situation is shown in Fig. 4,198

where the wake for a single turbine is slower than for the three turbine array but the inflow is of similar199

magnitude.200
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-3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

0.8

AC0 (Empty tank)

AC1, 70 rpm

AC1, 90 rpm

Figure 5. Transect along primary turbine centreline (Y/D = 0), showing inflow and wake at varying
rotational speed for configuration AC1, with AC0 for comparison.

To investigate the flow regime in the region between the turbines, a grid of flow measurements201

were made with spacing X/D = 1/4 and Y/D = 1/2. This is shown in Fig. 6 as both XY vectors and202

U, V, W components. The flow is relatively straight and uniform for most of the measurement locations203

and array configurations, however a number of interesting effects are present.204

Considering first streamwise velocity U. Comparing AC1 to AC0, the upstream blockage205

(induction region) from the single turbine is clearly visible with a reduction in flow > 5% at all206

measurement points, even at X/D = −1, Y/D = ±1. For AC3, the presence of the primary turbine leads207

to a faster flow at Y/D = ±1 compared to AC2 due to local bypass flow.208

The flow of water around the turbines is visible in the transverse component V. The outwards flow209

around the primary turbine can be seen in AC1 and AC3, while recovery of the inward constriction210

between the front two turbines is apparent in AC2 and AC3. With no obstructions from the rear turbine211

in AC2 the flow is relatively straight > 1D downstream of the blade tips.212

The three-dimensional rotating wake vortex of the front two turbines is apparent in the vertical213

flow component W at Y/D = ±1 for cases with them installed (AC2 and AC3) compared to those214

without (AC0 and AC1). As all three turbines rotate in the same direction, anti-clockwise when looking215

at the rotors from upstream, the wake vortices shed from either side are opposing. At Y/D = 1 this216

results in the wake being forced down, resulting in W becoming more negative for AC2 and AC3.217

Conversely, at Y/D = −1, W is more positive, co-incidentally cancelling out the slight downward trend218

seen at this location in the empty tank (AC0).219

The slight asymmetry in magnitude of these effects may result from a number of factors: the220

off-centre array location, an artefact of the rotating turbines, and/or it may be a slight misalignment221

(∼10 mm) of the velocity measurement points with respect to the blade tips.222

3.2. Frequency domain analysis of spatial flow variation223

Frequency domain analysis enables a more detailed assessment of the nature of the flow224

disturbance induced by the turbines. As detailed in Section 3.1, the introduction of the front two225

turbines results in significant changes to the magnitude, direction, and variability of the flow. The226

presence of the turbines are also expected to introduce flow disturbances corresponding to multiples227

of the rotational speed, which may subsequently influence the loading on the primary turbine. The228

frequency domain analysis presented in this section assesses this, and is carried out using a Fast229

Fourier Transform (FFT) applied to the U, V and W velocity components at various spatial locations.230

Examples of the frequency domain flow outputs are presented in Fig. 7. This figure shows the231

U velocity components for AC3 (see Fig. 3), at three streamwise positions and at three transverse232

positions (where data exists). It is evident that the upstream velocity does not contain any frequency233

content corresponding to the rotational speed of the turbine, 1p, whereas immediately downstream234
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Figure 6. Variation of flow between turbine locations. Subplots show (left) XY velocity vectors relative
to turbine/blade positions, and (right) U V W at points on five streamwise transects. For details of
array layout and configurations tested see Fig. 3.

of the front two turbines (X/D = −3/4) there is significant energy content at 1p, 2p, 3p and 6p. These235

appear to dissipate quickly downstream, and at X/D = −1/4 these components are no longer significant236

or visually discernible. Immediately in front of the primary turbine (X/D = −1/4) a peak at 1p is237

present, which due to the rapid decay of rotation-induced fluctuations downstream of the front two238

turbines, appears to be flow variation resulting from the primary turbine itself.239

Also apparent in Fig. 7 is a small, broad, peak centred at around 4.7 Hz for some of the240

measurements. This peak, which is rather unfortunately close to 3p, appears to be intermittent241

vibration of the ADV mounting. Care must therefore be taken not to confuse this vibration with 3p242

velocity content. The narrow banded and large peaks associated with 3p content facilitate this.243

To assess the spatial variability of rotation-specific frequency components, a metric has been244

defined. This enables a single number to describe the relative frequency content at multiples N of the245

rotational frequency p for each velocity component. This metric k is defined as follows:246

k~U,Np =

∫ Np+δ f
Np−δ f S~U( f )d f∫ ∞

0 S~U( f )d f
(3)

where S~U is the energy spectrum of velocity vector ~U, and δ f is half the width of the bin used for247

integration. This δ f has been chosen to allow for slight rotational speed variations, whilst ensuring248

the energy resulting from the aforementioned ADV vibrational peak at 4.7 Hz is omitted. A value of249

0.03 Hz was utilised.250
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Figure 7. Example spectral density plots for streamwise velocity component U at seven positions for
configuration AC3 with all three turbines operating at 90 rpm.

The metric defined in Eq. (3) has been applied to all data corresponding to points presented in251

Fig. 6, with all turbines operating at 90 rpm. The resulting spatial variation of k~U,3p is shown for U, V252

and W components in Fig. 8 for array configurations AC0, AC1, AC2 and AC3. Assessing Fig. 7 along253

with the U component of Fig. 8, it is evident that the metric defined in Eq. (3) is describing the relative254

magnitude of peaks at multiples of the rotational speed well.255

As noted in Fig. 7, it is observed that there is an increase in 1p, 2p, 3p and 6p velocity content in256

U behind the front turbines: Y/D = ±1. This decreases rapidly with increasing X indicating that the257

dissipation rate is high. This is also evident in Fig. 8 and occurs for U, V, and W components hinting258

at the three-dimensional nature of the tip vortex structures. The magnitude of the 3p content is shown259

to be comparable behind both of the front two turbines. Assessing Y/D = ±0.5 and Y/D = 0, it is clear260

that this disturbance does not propagate significantly in the transverse direction and hence does not261

affect the downstream turbine.262

As mentioned, in Figs. 7 and 8 there is the appearance of significant 3p peak in U immediately in263

front of the primary turbine (X/D = −1/4) when all three turbines are present (AC3). Assessing the two264

turbine equivalent (AC2) in Fig. 8, it is confirmed that this is a result of the primary turbine itself, and265

is an upstream velocity disturbance associated with the passing of each blade. It is evident that this 3p266

velocity fluctuation is a result of the varying pressure field induced by each blade pass, yet it remains267

unknown why this effect is observed directly in front of the nacelle for AC3 and not AC1. The authors268

speculate that this may be a result of this effect being highly spatially variable, coupled with minor269

sensor position discrepancies, O(10 mm), between AC1 and AC3 measurement programmes.270

4. Influence of turbine array on loading and power271

The second part of the results considers the effect of the turbine array on the loads experienced272

and power extracted by the primary turbine. This is achieved by comparing the single turbine to the273

triple turbine array (configurations AC1 and AC3). For these tests the front two turbines were operated274

at 58 rpm, 70 rpm, and 90 rpm (nominal TSR of 4.5, 5.5, and 7 respectively). For each of these cases, the275
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Figure 8. Relative energy content (defined by Eq. (3)) at three times the rotational speed in U, V and W
velocity components for various spatial locations. Shown for all array configurations defined in Fig. 3.

primary turbine was operated at a range of rotational speeds ranging from 58 rpm to 104 rpm (8 points276

in total).277

4.1. Time-domain turbine response278

Figure 9 shows the mean thrust, power and root bending moment of one of the blades of the279

primary turbine as a function of rotational speed of the primary turbine. Curves from the single280

turbine case have also been plotted for comparison. It was not possible to use normalised quantities281

(like Cp, Ct and TSR) due to difficulty in selecting a nominal flow velocity for the array owing to the282

modification of inflow velocities by the array.283

It is evident from Figure 9 that the presence of the front row of turbines increases the flow velocity284

experienced by the primary turbine (as discussed in Section 3.1). This subsequently causes an increase285

in the loads experienced. Operating the front row turbines at higher rotational speeds increases the286

blockage, further increasing the velocity along with the measured power, thrust and RBM. Hence,287

when the front row turbines are operated at 90 rpm the largest values are recorded. Around the288

optimum power operating point (70–84 rpm) the thrust experienced by the primary turbine and the289

RBM of the turbine blade were 4.8%–7.3% and 4.0%–6.7% higher respectively when operating in290

the array with the front row turbines operating at 90 rpm. For both thrust and RBM increasing the291

rotational speed of the primary turbine serves to increases the mean load along with the standard292

deviation. The increase in the mean loads clearly indicates increased inflow velocities experienced293

by the primary turbine when operating in the array (AC3) when compared to the single turbine case294
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Thrust [N] Power [W] Blade 2 RBM [Nm]

Figure 9. Average and standard deviation of thrust and power of the turbine plus root bending moment
of a blade all as a function of rotational speed. Each plot shows these forces/moments for the primary
turbine with the front two turbines operating at three different rotational speeds (AC3) and also shows
the comparable single turbine case (AC1).

(AC1). This is not directly seen in Figure 4, where the inflow velocity measured at hub height in the295

AC1 and AC3 cases are similar. This figure only shows single point flow velocity measurements made,296

which do not give full information of the inflow velocities seen by the whole rotor.297

The power curves follow the standard power versus speed curve of the turbine (see [19]). Owing298

to the higher flow velocities (and slightly higher Cp values), the power extracted by the main turbine299

is significantly higher when in the array. The power extracted by the primary turbine increased by300

5.7%–10.4% when in the array with the front row turbines operating at 90 rpm. The measured power301

curve of the main turbine is higher with the front row turbines operate at 90 rpm than at 58 rpm or302

70 rpm. The difference in the power extracted is not significant between the two lower rotational303

speeds.304

The measured thrust, power and blade RBM are tabulated in Table 3 for selected cases. Values are305

given both for the model-scale measurements and at full-scale equivalent, based on the nominal 1:15306

scale factor of the turbine.307

4.2. Frequency-domain turbine response308

In this section, the loads experienced by the rotor and the blades of the single turbine and the309

array cases (AC1 and AC3), are compared in the frequency domain through spectral density plots of310

the measurements made.311

Figure 10 shows the spectral density plots of the thrust and the blade RBM with all turbines312

operating at 90 rpm for AC3 and AC1. There are peaks in the plots that correspond to physical313

events during turbine rotation. In the spectral density plot of the blade RBM, the main peak is at 1p314

(occurring once per revolution) and corresponds to tower shadow effect and velocity shear. This 1p315

peak amplitude is higher than the low frequency turbulence induced load. Further peaks at 2p and 3p316
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Table 3. Thrust and power of the turbine plus root bending moment of a blade for selected rotational
speeds. Values given for model scale and full scale equivalent.

Measured model scale (0.8 m/s) Full scale equivalent (3.1 m/s)
Array

Config.
Front

turbines
rpm

Primary
turbine

rpm

Thrust
[N]

Power
[W]

Blade
RBM
[Nm]

Thrust
[kN]

Power
[MW]

Blade
RBM

[MNm]

AC1 — 58 225.5 125.0 25.72 761.1 1.635 1.302
AC1 — 70 244.9 127.7 27.98 826.6 1.670 1.417
AC1 — 90 263.8 124.4 30.25 890.3 1.626 1.531
AC1 — 104 267.5 114.0 30.86 902.9 1.490 1.562
AC3 58 90 274.9 129.4 31.27 927.9 1.691 1.583
AC3 70 90 271.4 130.6 31.47 916.1 1.707 1.593
AC3 90 58 234.0 129.3 26.32 789.9 1.690 1.333
AC3 90 70 258.6 136.2 29.27 872.7 1.780 1.482
AC3 90 90 279.9 134.6 31.96 944.7 1.759 1.618
AC3 90 104 290.2 129.1 33.35 979.5 1.688 1.688

are seen, which are harmonics of the 1p peak, which can be explained by the azimuthal variation of the317

RBM of the blades discussed and shown in Payne et al. [16]. In the spectral density plot of thrust, the 3p318

peak has the highest amplitude and corresponds to the 1p peak observed in the RBM. The amplitudes319

of the peaks at 6p and 9p decrease with increasing frequency and, therefore, indicate that they are320

harmonics of the 3p peak. The 12p peak is due to motor cogging effects, introduced by the 12-pole321

motor used in the turbine, while the 24p peak is its second harmonic. A small peak at 1p is seen, which322

was also seen with the turbine tested in the dry, which is most likely due to some mechanical artefact323

(for example some misalignment in the drive train). For clarity on Fig. 10 only the case with the font324

turbines operating at 90 rpm is shown. The plots for AC3 at all front turbine rotational speeds tested325

(58 rpm, 70 rpm, and 90 rpm) are very similar.326

Comparing the array and single turbine cases (AC3 and AC1), the difference in the spectral327

density plots is extremely small. Note that due to the log scale being used, the differences between the328

plots in the high frequency range seem to be magnified, but are small relative to the net energy content329

of the signal. The spectral density plot of turbine thrust show smaller peaks at the 9p, 12p and 24p330

frequencies for the single turbine (AC1) when compared to the array (AC3).331

5. Discussion332

Using larger-scale models in a laboratory environment facilitates measurement that increases333

understanding of the complex flow conditions around the array of turbines on test, because334

environmental conditions can be repeatably controlled as required and unwanted scale effects are335

minimised. The relatively larger physical size of the turbine also permits the inclusion of more336

comprehensive measurement instrumentation.337

As noted in Section 2.3, numerical BEM-CFD modelling [34] has shown that a staggered array338

with 3D lateral spacing between the front turbines increases flow speed and thus power produced by339

the rearmost turbine. The results of the physical modelling described in this paper substantiates this340

finding. The tests also provide valuable insight into the loading experienced by the rear turbine, both341

in the closely-spaced staggered array configuration that may be compared to measurements made on342

one unit on its own.343

The increased flow speed seen by the rear turbine in this closely-packed staggered array offers344

some performance and economic benefit in terms of increased power generation. The upstream turbine345

wakes, and associated turbulence, do not appear to directly influence the loading on the downstream346

turbine. This is evidenced by the spectral analysis of the velocities and turbine loads, and supports the347

conclusions made for much larger downstream separations in [13]. The reduction in wake deficit seen348
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Figure 10. Spectral density plots of the thrust and the blade root bending moment experienced by the
primary turbine, with the front two turbines (AC3) and from the single turbine case (AC1). All turbines
operating at 90rpm.

for the primary (downstream) turbine may also lead to an increase in power for subsequent rows of349

turbines, however additional (numerical) modelling would be required to test this hypothesis.350

Constructing a closely-packed array, as simulated in this work, offers the prospect of more351

efficient use of the seabed and a slight reduction in the extent of interconnecting cabling, compared352

to an installation with more typical 10–15 diameter spacing between rows of turbines. Access for353

installation, operation, and maintenance activities may however be more complex.354

The influence of incident flow angle relative to the axis of the turbine array was not assessed,355

as most deployments are expected to be aligned with the predominant direction of flow of the tidal356

current. Over the full tidal cycle the changing direction of flow will vary the angle of incidence on the357

array. This could be an interesting case to explore, however, as even in the ‘design‘ direction there may358

be an increased influence of a front-row turbine on those behind, a factor of both the flow angle and359

array geometry. In addition, there may be asymmetrical flow acceleration between the front turbines,360

leading to more complex loading on the rear turbine. It will be prudent to simulate these situations361

numerically before performing additional tank tests for validation.362

6. Conclusions363

The results of the experimental work presented show, for the first time, results from three364

larger-scale instrumented tidal stream turbines in a closely spaced staggered array. Most significantly,365

modification of the flow field resulting from the presence of upstream turbines, and the consequent366

acceleration of inflow to those downstream influences both the loading of, and power produced by, the367

downstream turbines. This will help inform the design and optimisation of the layout of tidal turbine368

arrays.369
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Specifically, this work has shown that the addition of two upstream turbines increases both the370

power and thrust acting on the downstream turbine, irrespective of the rotational speed of the turbines.371

Increasing the rotational speed of the front row serves to further increase the power developed by the372

rear turbine due to the higher resulting effective blockage. At the peak power operating point the mean373

power of the rear turbine is observed to increase by 5.7%–10.4% with a corresponding increase in mean374

thrust of 4.8%–7.3%. Through statistical and frequency-domain analysis of the flow measurements375

and turbine loads it may be concluded that this increase in power does not come at the expense of376

increased unsteady loading from the wake induced by the upstream turbines.377

The experimental results presented in this paper represent the first large-scale experimental tests378

of a closely-spaced array of three tidal turbines, and validate findings from numerical models to379

provide new insight into the associated flow field and turbine performance and loading. Additionally,380

two corresponding datasets [35,36] from these physical model tests are available to others to provide381

valuable assistance when calibrating and validating numerical models of tidal stream turbine arrays.382
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