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Abstract

We propose a novel approach based on the Marshall-Olkin (MO) copula
to estimate the impact of systematic and idiosyncratic components on cross-
border systemic risk. To use the data on non-failed banks in the suggested
method, we consider the time to bank failure as a censored variable. Therefore,
we propose a pseudo-maximum likelihood estimation procedure for the MO
copula for a Type I censored sample. We derive the log-likelihood function, the
copula parameter estimator and the bootstrap confidence intervals. Empirical
data on the banking system of three European countries (Germany, Italy and
the UK) shows that the proposed censored model can accurately estimate the
systematic component of cross-border systemic risk.
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censored sampling; systemic risk.
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1 Introduction

The 2007-2008 financial crisis has shown how a shock that originates in one country
or asset class can quickly propagate to other markets and across borders. A key
aspect of financial contagion is given by the linkages among banks. In the Euro area,
the cross-border exposures arose as a prominent issue with the European sovereign
debt crisis in 2011 and 2012, where large exposure of many EU banks to stressed
sovereigns were revealed by the European Banking Authority [22]. In a broader
perspective, correlated exposures have recently been shown to be a major source of
systemic risk.

Given the importance of this research field, this paper is focused on systemic risk
in the European banking sector. By definition, systemic risk involves a collection
of interconnected institutions that have mutually beneficial business relationships
through which insolvency can quickly propagate during periods of financial distress
[7]. Systemic risk is mainly due to idiosyncratic and systematic shocks (see [18] and
[26]). The former affects only the health of a single financial institution, while the
latter affects the whole economy, e.g. all financial institutions together at the same
time. The component of systemic risk due to idiosyncratic shocks is also known as
contagion risk in the literature [18].

One of the the main aims of this paper is to propose a new methodological ap-
proach for the analysis of systemic risk to jointly model idiosyncratic and systematic
shocks. We propose to apply the copula approach to measure systemic risk between
the banking sectors of two countries. To our knowledge, the only papers that previ-
ously applied copulae to assess banking system stability are [3], [4], [61] and [64]. In
other words, the approach is quite novel to the area of banking and systemic risk.

The contributions of this paper are twofold. The first of these is to apply the
Marshall and Olkin (MO) copula for modelling systemic risk between two countries.
The second innovative aspect is how time to failure is considered for non-failed banks
as right-censored. As the MO copula is an extreme value copula, it is suitable to
study the dependence between extreme events such as bank failures. Moreover, since
the MO copula shows an upper tail dependence, in order to apply it to systemic
risk, we suggest to consider the distribution function (df) of time to failure for each
country as the marginal df of the MO copula. Coherently with expectations, the
dependence is stronger for high values of probabilities of bank failure.

Another important advantage of the MO copula is that it has both an absolute
continuous and a singular part. Thanks to the singular component, we can assign
a non-null probability to the event that two banks in two countries show similar
failure probabilities at the same time if the copula parameter is not null. Therefore,
the singular part represents the systematic component of systemic risk. In other
terms, it is given by the joint probabilities of failure due to simultaneous shocks on
banks located in two different countries with similar marginal failure probabilities.
In this paper, we consider the joint failure probability of two banks operating in two
different countries as a linear combination of idiosyncratic and systematic shocks.
The weights of these two kinds of shocks is a function of the parameter of the
MO copula. To the best of our knowledge, this is the first paper that proposes an
approach to estimate the contributions of idiosyncratic and systematic shocks to
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cross-border systemic risk. [3] also use the MO copula to propose an index that
represents the average impact of systematic and idiosyncratic risk, but they are
focused on the financial system in a given country, not on cross-border systemic
risk.

Regarding the second innovation of this paper, we apply a Type I censored
sampling, i.e. the testing stops at a predetermined time, at which point any non-
failed banks are right-censored. In this way all the information of non-failed banks
can be used to estimate the parameter of the dependence structure. Finally, we
suggest a pseudo- maximum likelihood method to estimate the parameter of the MO
copula for the Type I censored sampling1. We derive the log-likelihood function, the
copula parameter estimator and the bootstrap confidence intervals. The pseudo-
maximum likelihood method handles the complexity given by the presence of both
a continuous and a singular component of the MO copula. As far as we know, this
is the first paper that applies the MO copula to censored data on systemic risk.

In this work, we apply the suggested model to balance sheet data on three of
the most important banking systems in Europe: Germany, Italy and the UK. These
countries present different characteristics. Germany and Italy are characterised by a
large number of small banks, while the UK banking system is a concentrated banking
system with a few large banks. We pair up banks in two European countries in terms
of their probabilities of bank failure estimated by using the BGEVA model ([9] and
[13]). In order to estimate the marginal cumulative distribution function (cds) of
the MO copula, we use the empirical cdf of time to failure for each country.

We apply the proposals of this paper to data over the period 1995-2012. The
European sovereign debt crisis of 2009 is included in the empirical analysis. At first,
we estimate the probability of failure for banks in each country using the BGEVA
model (see [10] and [11]) on a set of bank specific factors addressed by the CAMELS
framework (e.g. [2]). To capture the economic cycle, we include macroeconomic
variables in the BGEVA model. The estimates so obtained are used to pair up banks
in two countries. In the country with the higher number of banks, we consider only
the banks with higher risk failure.

We compare the MO copula with the copula models used in the literature [64],
such as the Gaussian copula, the Gumbel copula and a mixture of the Frank, Clayton
and Gumbel copula. An important result of this empirical analysis is that the
estimate of the upper tail dependence in the MO copula is higher due to the singular
component. Moreover, according to a goodness-of-fit measure, the MO copula is the
model that best fits the data. Finally, when we apply censored techniques to the
data, coherently with our expectations, we find that the impact of the systematic
component on systemic risk increases.

We organise the paper as follows. The next section describes the literature
review. Section 3 explains the methodological proposal. Section 4 describes the
dataset and reports the main results on cross-border systemic risk. Finally, the last
section contains some concluding remarks. In the appendix, we report the score
functions to obtain the pseudo-maximum likelihood estimator of the parameter of
the MO copula for Type I censored sampling and a simulation study.

1[53] suggested an estimation technique for the Type II censored sampling, i.e. the testing stops
after a given number of observations fails.
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2 Literature review

The European Central Bank [26] has identified three main approaches to analyse
systemic risk. First, early warning signal models use information on current data to
estimate the likelihood that intermediaries show financial deterioration (for example
[12] ). Second, contagion and spillover models can be used to analyse the transmis-
sion of financial shocks across banks (see e.g. [7]). Third, stress testing models
can assess the effects of macroeconomic shocks on the banking system (e.g. [22]).
The first two strands are mainly focused on idiosyncratic shocks, while the last one
primarily analyses the systematic component of systemic risk. A way of analysing
systematic shocks in the first two groups of models is to include macroeconomic
variables, analogous to [12].

Another possible classification of the literature on systemic risk can be divided
into two different strands: the first area of research uses financial market data, see
e.g. [14], [25],[31], [34], [46]. The second approach is based on banks’ balance sheet
data to assess systemic risk, see e.g. [20], [50], [63] and [60].

Different methodologies have been applied to analyse contagion risk. Some stud-
ies assume that the presence of contagion risk can be detected by observing negative
abnormal returns (see e.g. [1], [32], [40]). Few authors have used extreme value the-
ory to analyse the idiosyncratic shocks (see e.g.[32] and [31]), others have used a
copula-based approach (see [19], [61] and [64]). [64] captures the changes in the
dependence structure of abnormal bank returns by analysing the changes in the
parametric form and the parameters of various copulae. Specifically, the author
analyses changes in the dependence structure of banks around bailout announce-
ments. To cover a maximal variety of tail dependence structures, [64] considers
a convex combination over time of the Student’s t, Frank, Clayton and Gumbel
copula. The author uses the Akaike’s Information Criterion (AIC) to choose the
copula with the highest goodness of fit. He obtains that the Clayton-Frank-Gumbel
mixture shows the best fit to the logarithmic stock returns of German banks. [19]
suggests the Gumbel copula with Pareto marginal dfs as a joint distribution of the
returns on syndicated loans to obtain heavy tailed marginal dfs, positive correlation
and asymptotic independence.

We highlight that all the previous copulae are absolutely continuous, this means
that the impact of the systematic component on systemic risk could be underesti-
mated. We overcome this drawback by applying the MO copula. There is a limited
literature on the use of the MO copula for modelling systemic risk. [3] propose a new
financial stability index (named Cuadras and Augé index) to measure the fragility of
the banking sector in a given country. Time to failure for a bank is assumed to follow
an exponential distribution. Each bank shows the same intensity parameter of the
exponential distribution, so the multivariate intensity based model is homogeneous.
To model the dependence structure between banks the authors use a symmetric MO
copula. [4] extend this approach to marginal distributions with non-constant inten-
sity parameters and to non-symmetric MO copula. Using a hierarchical approach,
the authors model the systemic risk within the banking system at the lower level and
the probability of a joint default of the banking system and the public sector at the
higher level. In both papers the model parameters are estimated by non-parametric
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measures of association such as Spearman’s rank correlation.
The main methodological differences between this paper and the previous works

[3] and [4] are that we do not assume parametric distributions for the marginal
default probabilities. We mainly focus our attention on the dependence structure
and the impact of the systematic component on cross-border systemic risk. [3] and
[4] use a non-parametric approach to estimate the copula parameter, instead we
use a semiparametric technique based on the pseudo-maximum likelihood method.
Furthermore, we use a censored sampling to include the observation of non-failed
banks for the estimation of the copula parameter.

From an empirical point of view, most of the copula-based approaches cited in
this section use financial market data. On the contrary, we use banks’ balance
sheet data in this paper as we analyse European countries such as Germany and
Italy characterised by a high number of small banks, for which market data are not
available.

3 A new copula model for estimating systemic

risk

In this work we propose to model the dependence structure of cross-border bank
failures using a copula approach. The concept of copula represents a flexible method
since it does not require parametric assumptions on the marginal components ([51],
and [27]). In this way, a general class of distributions can be expressed through a
simple model specification.

There are several advantages in applying the copula approach to systemic risk.
Firstly, the copula function is a suitable model to represent the dependence structure
between rare events. As the percentage of bank failures is usually very low (lower
than 5%), bank failure can be classified as a rare event. We propose in this work
to use a model that better classifies rare events, such as the BGEVA model [12], to
estimate the empirical marginal cdfs in a copula framework.

Secondly, the copula model accounts for non-linear dependence and upper tail
dependence. Few empirical studies, for example [64], have shown that linear models,
such as linear regression analysis, are usually unable to capture contagion effects.
Therefore, to accurately assess systemic risk, we consider a copula that allows for
tail dependence, analogously to [3] and [4] for CDS quotes and [19] and [61] for bank
stock returns.

Thirdly, the parametric specification of the marginal distributions is not required
in the copula approach, only the characteristics of the dependence structure are
defined. From the available copula families, we consider an extreme value copula
with non-trivial tail dependence given by the Marshall-Olkin copula in order to
represent the dependence structure between bank failures.

3.1 Copulae and tail dependence

Every bivariate and multivariate cdf F can be treated as the result of two com-
ponents: the marginal distributions and the dependence structure. The copula
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describes the way that the two marginal distributions are put together into the
bivariate cdf.

In mathematical terms, a bivariate copula is a function C : I2 → I, with I2 =
[0, 1]× [0, 1] and I = [0, 1], which satisfies all the properties of a cdf. In particular,
it is the bivariate cdf of a random vector (U, V ) with uniform marginal random
variables (rvs) in [0,1]

C(u, v) = P (U ≤ u, V ≤ v), 0 ≤ u ≤ 1 0 ≤ v ≤ 1.

To better understand the copula model we consider the Sklar’s theorem [59].

Theorem 3.1 (Sklar). Let (X, Y ) be a bivariate random variable with joint cdf
FX,Y (x, y) and marginal cdfs FX(x) and FY (y). It exists a copula function C : I2 →
I such that ∀x, y ∈ R

FX,Y (x, y) = C(FX(x), FY (y)) (3.1)

If FX(x) and FY (y) are continuous functions then the copula C(·) is unique. Oth-
erwise, C(·) is uniquely determined on RanFX × RanFY . Conversely, if C(·) is a
copula function and FX(x) and FY (y) are marginal cdfs, then the FX,Y (x, y) in (3.1)
is a bivariate cdf.

If the marginal cdfs are continuous and strictly increasing functions, from (3.1)
the copula function is

C(u, v) = FX,Y (F−1
X (u), F−1

Y (v)) (3.2)

where u = FX(x) and v = FY (y) are the cdfs FX(·) and FY (·), respectively.
However, if the marginal cdfs are not strictly increasing functions, then the

inverse of the cdf does not exist. In this case, we can consider the quasi-inverse of a
cdf defined as F (−1)(t) = inf{x|F (x) ≥ t} = sup{x|F (x) ≤ t} for all t ∈ I (see [51]
for details).

Thus, a copula captures the dependence structure between the marginal proba-
bilities Fx(x) and FY (y) and, consequently, between the marginal rvs X and Y .

A pivotal characteristic for systemic risk analysis is the upper tail dependence.
An upper tail dependence parameter χu is defined as

χu = lim
u→1−

P [X > F−1
X (u)|Y > F−1

Y (u))] = lim
u→1−

P [Y > F−1
Y (u)|X > F−1

X (u))]

(3.3)
when the limit exists. Higher is the value of χu ∈ (0, 1], higher is the level of
upper tail dependence. Analogously, the lower tail dependence parameter χl can
be defined. See [51] for the expressions of the lower and upper tail dependence
parameters for the main copula families.

3.2 The Marshall-Olkin copula

Let X and Y be the time to failure of two banks located in two countries and let
FX(t) = P (X ≤ t) and FY (t) = P (Y ≤ t) be their probabilities of failure over
a given time period. We consider a copula function to analyse the dependence
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structure between the time to failure of banks situated in two different countries.
Particularly, we suggest to use the Marshall and Olkin (MO) copula.

The MO bivariate exponential distribution was proposed by Marshall and Olkin
in 1967 [47]. It is used in reliability analysis to model jointly failure time of two com-
ponents in a system when the failure is due to both idiosyncratic shocks, given by
the characteristics of the components, and shocks common to both the components.
The MO copula models the dependence structure of the namesake probability dis-
tribution. The main advantage of our suggestion is that the dependence structure
of time to bank failure could be due to both idiosyncratic and systematic shocks.
As explained in Section 2, the literature shows that both these components are
important to model systemic risk.

In the case of two exchangeable marginal rvs X and Y , the MO copula or
Cuadras-Augé copula (see [51] and [47]) is defined as

C(u, v) = P (U ≤ v, V ≤ v) = uvmin(u−θ, v−θ) (3.4)

where θ ∈ [0, 1] represents the intensity of the (positive) relationship between the
marginals. If θ = 0 then the rvs X and Y are stochastically independent and the
MO copula becomes C(u, v) = uv. If θ = 1 then there is a perfect positive associ-
ation between the rvs X and Y and the MO copula becomes C(u, v) = min(u, v).
Furthermore, the MO copula is an extreme value copula with an upper right tail
dependence where θ is the upper tail dependence parameter χu defined in equation
(3.3).

An important characteristic of the MO copula (3.4) is that it has an absolute
continuous part and a singularity for u = v with positive probability (see [51] and
[53]). Thanks to the singular part, we can assign a non-null probability to the
event U = V . This means that the failure of two banks (characterised by the same
marginal cdf) located in two different countries at the same time has a non null
probability. Hence, the MO copula can be considered as a linear combination of the
absolute continuous part Ca and the singular part Cs

C(u, v) =
2− 2θ

2− θ
Ca(u, v) +

θ

2− θ
Cs(u, v) (3.5)

where Cs(u, v) = [min(uθ, vθ)]
2−θ
θ for u = v and Ca(u, v) for u 6= v is

Ca(u, v) =
2− θ
2− 2θ

[uvmin(u−θ, v−θ)]− θ

2− 2θ
Cs(u, v).

As explained in Section 2, the systemic risk is due to both the idiosyncratic
and the systematic shocks. The former is mainly characterised by banks’ charac-
teristics, the latter represents characteristics common to both the countries, such as
macroeconomic conditions.

In equation (3.5) the idiosyncratic component is represented by the absolute
continuous part Ca and the systematic component is given by the singular part
Cs. The weights of these two components are a function of the copula parameter
θ ∈ [0, 1]. If θ = 0, the systemic risk is given only by idiosyncratic shocks. This
means that the copula function in equation (3.5) is given only by the absolutely
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continuous component C(u, v) = Ca(u, v) = uv. In this case, the marginal failure
probabilities are independent, so the joint failure probability is given by the product
of the marginal probabilities in the two countries. Instead, if the parameter θ is high
(θ > 2/3), then systematic shocks are more important than idiosyncratic shocks to
explain systemic risk. For values of θ very close to 1, the idiosyncratic component
is very small [4].

As the copula defined in equation (3.4) is exchangeable [3], this means that the
dependence structure is symmetric C(u, v) = C(v, u). In other terms, the order of
the two analysed countries does not affect the cross-border measure. We obtain the
same result for the pair given by the country A and B and for the pair given by the
country B and A.

The cdf defined in (3.1) can be estimated by parametric or semiparametric ap-
proaches. The widely used parametric approaches are the maximum likelihood (ML)
method and the two-stage inference function for margins (IFM) method proposed
by [37]. Important discussions about the properties of the two methods could be
found in [38], [42] and [44].

[5] and [6] use ML method to estimate a MO bivariate exponential distribu-
tion. When the marginal distributions are unknown, a semiparametric method is
preferred. This is represented by the Pseudo Maximum Likelihood (PML) or the
canonical maximum likelihood (see [16] and [28]). In contrast to parametric methods
such as ML and IFM, the PML method does not require that the user specifies the
functional forms for the marginal distributions. In particular, the PML method is
a two-step semiparametric estimation approach: in the first step the marginal cdfs
are estimated by the empirical cdf, in the second step the copula parameters are
estimated by the maximum likelihood method. For more details on the properties
of the method and on the comparison between the parametric and semiparametric
methods see for example [44, 42, 28, 29, 45, 21, 48, 47]. Other popular procedures
for estimating the MO copula parameter are the method of moments [35] and an
approach based on the inversion of Spearman’s rho and Kendall’s tau [42].

In this section we suggest to apply a PML to estimate the MO copula. In the
first step, we consider the empirical cdf as a non-parametric estimator of the cdf
of the time to bank failure for each country ûi = F̂X(xi) and v̂i = F̂Y (yi). In the
second step, we obtain the estimator of the parameter θ ∈ (0, 1) of the MO copula
by maximising the conditional likelihood function as follows

θ̂ = argmaxL(θ|û, v̂)

where

L(θ|û, v̂) =
n∏
i=1

cθ(ûi, v̂i) (3.6)

To compute the probability density function cθ(·) in equation (3.6) we apply
the procedure described in [54] for the MO exponential distribution. As shows in
equation (3.5), the MO copula is not absolutely continuous respect to the two-
dimensional Lebesgue measure (µ2) and contains singularities. Consequently, the
joint density function does not exist with respect to µ2. Nevertheless, the copula
is absolutely continuous with respect to a σ-finite measure µ(B) defined on the
two-dimensional space as follows (see [54, 53, 5]):
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µ(B) = µ2(B) + µ1

(
B ∩

{
x : (x, x) ∈ R+

2

})
(3.7)

for each B ∈ B+
2 where µ2 is a two-dimensional Lebesgue measure, B+

2 is the Borel
σ−algebra in R+

2 and µ1 is the Lebesgue measure on the real line.
It follows that we can define a probability density function cθ(·, ·) with respect

to the measure µ(·) defined in equation (3.7).

Theorem 3.2. The MO copula density function cθ(u, v) is defined as follows:

cθ(u, v) =



c1(u, v) = (1− θ) 1

uv
Cθ(u, v) = (1− θ)u−θ if {u > v}

c2(u, v) = (1− θ) 1

uv
Cθ(u, v) = (1− θ)v−θ if {u < v}

cs(w) = θ
1

w
Cθ(w,w) = θw1−θ if u = v = w

(3.8)

with 0 ≤ v ≤ 1, 0 ≤ u ≤ 1 and 0 < θ < 1.

Proof. We obtain c1(·, ·) and c2(·, ·) by computing the derivatives ∂2Cθ(u,v)
∂u∂v

for u > v
and v > u, respectively. As we cannot obtain cs(·) in a similar way, we follow the
approach suggested by [57], [43] and [36] and we consider the following equation:∫ 1

0

∫ u

0

c1(u, v)dvdu+

∫ 1

0

∫ v

0

c2(u, v)dudv +

∫ 1

0

cs(w,w)dw = 1.

It follows that

I1 =

∫ 1

0

∫ u

0

c1(u, v)dvdu =

∫ 1

0

∫ u

0

(1− θ)u−θdvdu = (1− θ)
∫ 1

0

u1−θdu =

= (1− θ)
∫ 1

0

w1−θdw

I2 =

∫ 1

0

∫ v

0

c1(u, v)dudv =

∫ 1

0

∫ v

0

(1− θ)v−θdudv = (1− θ)
∫ 1

0

v1−θdv =

= (1− θ)
∫ 1

0

w1−θdw

Since ∫ 1

0

cs(w,w) = 1− (I1 + I2) = θ

∫ 1

0

w1−θdw =
θ

(2− θ)
,

we have
cs(w,w) = θw1−θ

The function cθ(·, ·) can be considered a probability density function if it is
understood that the two terms c1(·, ·) and c2(·, ·) are probability density functions
with respect to the two-dimensional Lebesgue measure and the third term cs(·, ·) is a

9



probability density function with respect to the one-dimensional Lebesgue measure
(see [57], [5], [43] and [54]). Therefore, even if the MO copula is not absolutely
continuous with respect to the two-dimensional Lebesgue measure, we can specify
the density function and derive the likelihood function L(θ|û, v̂) as follows

L(θ|û, v̂) ∝ (1− θ)n1+n2θn3

n∏
i=1

Cθ(ûi, v̂i). (3.9)

The terms n1, n2 and n3 are the number of observations such that n1 = ]{ûi <
v̂i}, n2 = ]{ûi > v̂i} and n3 = ]{ûi = v̂i}. Hence, the maximum likelihood estimator
of θ is

θ̂ = (1 + exp(−ψ̂))−1

with

ψ̂ = − ln

[
n− 2n3 − Smin +

√
n2 + S2

min − Smin(2n− 4n3)

2n3

]

with n3 > 0 and Smin =
n∑
i=1

min(− ln(ûi),− ln(v̂i)) (see [53] for details). [55] ob-

tained a similar result.

3.3 Censored time of failure

The method described in the former section to estimate the MO copula allows to use
only the information provided by failed banks that represents a very low percentage
of the sample. To use also the characteristics of most of the banks that do not fail,
we suggest to apply the Type I censored sampling on the right to the time to bank
failure.

In the literature there are two main types of censored sampling: Type I and
Type II censored sampling [17]. The Type I censoring occurs when an experiment
ends after a given time t∗. Hence, the number of censored observations is random.
On the contrary, the Type II censored sampling occurs when an experiment ends
after a specific number of observations has occurred. Therefore, the censoring time
is random. Two different sample statistics are given by the estimation procedure for
these sampling methods, as explained by [17] for the univariate context. While [53]
proposed an estimator for the MO copula with bivariate Type II censored sampling,
in this section we suggest an estimation procedure for bivariate Type I censored
data.

At the beginning, to pair up banks located in two different countries, we order
banks in each country based on their failure probability. In the order created for
each country, we consider the i-th bank. Let xi be the observed time to failure
for the i-th bank located in a given country and yi the time to failure for the i-
th bank located in a different country. We define m = ]{xi ≤ t∗ ∩ yi ≤ t∗} the
number of pairs with both failed banks in the two countries. Furthermore, we define
r = ]{xi ≤ t∗ ∩ yi > t∗} the number of failed banks in the first country and of
non-failed banks in the second country and s = ]{xi > t∗ ∩ yi ≤ t∗} the number of
non-failed banks in the first country and of failed banks in the second country. This
means that n−m = ]{xi > t∗∩yi > t∗}+r+s is the number of pairs where at least
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Figure 1: Sample censored data

one bank of the two countries is not failed. To apply a Type I censored sampling,
we assign t∗ to the time to failure for non-failed banks, as shown in the Figure 1.

We modify the CLM procedure described in the previous section as follows.
In the first step we estimate the marginal cdf using the Kaplan-Maier estimator2:
ûi = F̂X(xi), v̂i = F̂Y (yi). Then, in the second step, we maximise the conditional
likelihood function of the copula. We consider (∆X ,∆Y ) = (I{X≤t∗})(x), I{Y≤t∗}(y)),

∆
X

= 1−∆X and ∆
Y

= 1−∆Y , where IA(·) is the indicator function of the set A.
Following [52], we compute the conditional likelihood function for the copula

l(θ|F̂X , F̂Y ) =
n∑
i=1

ln[cθ(F̂X(xi), F̂Y (yi))]
∆X
i ∆Y

i +
n∑
i=1

ln[C1
θ (F̂X(xi), F̂Y (yi))]

∆
X
i ∆Y

i +

+
n∑
i=1

ln[C2
θ (F̂X(xi), F̂Y (yi))]

∆
Y
i ∆X

i +
n∑
i=1

ln[Cθ(F̂X(xi), F̂Y (yi))]
∆
X
i ∆

Y
i(3.10)

where cθ(u, v) is the copula density defined in (3.8), C1
θ (u, v) = ∂Cθ(u,v)

∂v
and C2

θ (u, v) =
∂Cθ(u,v)

∂u
.

As described in Theorem 3.2 of the previous section, we can define the density
function cθ(·, ·) in equation (3.8) with respect to µ(B) and derive the likelihood
function in (3.10).

The maximum likelihood estimator of θ for Type I censored data is

θ̂c = (1 + exp(−ψ̂c))−1 (3.11)

with

2The Kaplan-Maier estimator is usually used to estimate the cdf for a censored sample (see
[41]).
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ψ̂c = − ln

[
m+ r + s− 2m3 − Smin +

√
(m+ r + Smin − 2m3)2 + 4m3(m+ r + s−m3)

2m3

]
(3.12)

where m1 = m− ]{ûi ≥ v̂i}, m2 = m− ]{ûi ≤ v̂i}, m3 = m−m1 −m2 and

Smin =
m∑
i=1

min(− ln(ûi),− ln(v̂i)) +
r∑
i=1

[− ln(ûi)] +
s∑
i=1

[− ln(v̂i)] + (n−m− r− s)t∗.

The maximum likelihood estimator (3.11) is the unique and acceptable solution
of this optimisation problem (see Appendix 6.1 for details).

4 Empirical results

4.1 Dataset

The empirical analysis is based on annual data for the period 1995-2012 for the
German (DE), the Italian (IT) and the UK banks. The data are from Bankscope, a
comprehensive database of balance sheet and income statement data for individual
banks across the world provided by the private company Bureau Van Dijk. The time
horizon and the geographic area are important for the European sovereign debt crisis
of 2009. We choose to analyse the cross-border bank interdependence between Italy,
Germany and the UK since their banking systems are quite different. For example,
most of the Italian and the German banks are quite small and they are cooperative
or savings banks (around 90% in Germany). In the UK the average bank size is very
large, there are not traditionally regional or state banks and only one cooperative
bank.

All the three banking systems came under pressure during the financial and the
sovereign debt crisis. The UK banks were significant exposed to toxic assets which
originated in the US, the Italian and the German banks less. The impact of the
sovereign debt crisis was stronger on the Italian and the German banking systems,
even if the stability of the German system has been achieved in the short run in
large part through substantial government support measures.

To analyse these banking systems, we choose a definition of bank failure in
accord with [2] and [12]. A bank failure occurs when the bank is in at least one of
the following statuses: bankruptcy, in liquidation, dissolved or under receivership.
As mergers and acquisition could have been carried out for strategic reasons rather
than insolvency aims [2], banks that are merged or acquired by another bank are
not considered failed. All data are available for 1,802 German banks, 602 Italian
banks and 265 UK banks. These sample sizes are coherent with the characteristics
of the banking systems of these countries. The number of failed banks are 72 for
UK, 30 for IT and 86 for DE.

To pair up banks located in two countries, we order the banks in each country
based on their failure risk. In particular, we apply the BGEVA model (see [10] and
[11]) to estimate the probability of failure for each bank in a given country. The
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BGEVA model is a semiparametric regression approach suitable to correctly classify
binary rare events. As explanatory variables in the BGEVA model, we follow the
literature on bank failure: we consider two sets of variables, one is bank specific, i.e.
the financial ratios associated with the CAMELS rating system [2], the latter is given
by macroeconomic factors that affect the all banking system [12]. To measure the
severity of multicollinearity we have computed the Variance Inflation Factor (VIF)
for each explanatory variable. We consider 22 independent variables, we remove
those with a VIF higher than 5 and we obtain the following 18 covariates: Total
Assets, Loan Loss Reserve over Gross Loans, Equity over Total Assets, Return on
Average Assets (ROAA), Return on Average Equity (ROAE), Net Loans over Total
Assets, Liquid Assets over Cust& ST Funding, Interbank Assets over Interbank
Liabilities, Liquid Assets over Tot Dep & Bor, Tier 1 Ratio, Total Capital Ratio,
Equity over Liabilities, Equity over Net Loans, Net Interest Margin, Growth Rate
of GDP, Inflation Rate, Unemployment Rate and Interest Rate.

4.2 Estimation results

After ordering the banks in each country based on their failure probability, to apply
a bivariate copula we consider the same number of banks with higher failure risk
in the two analysed countries. Then, we use the empirical cdfs of time to failure
for each country as marginal cdfs of the MO copula. Therefore, we estimate the
parameter θ of the MO copula both in the case of complete and censored sample
following the procedures suggested in Section 3.2. and 3.3. The sample size of
the complete data is given by the lowest number (30) of failed banks in the three
countries UK, Italy and Germany. For the censored sample, the sample size is given
by 265 failed and non-failed banks.

The singular component of the MO copula is obtained by the pairs of banks
in two different countries that fail in the same year with similar risk of failure
estimated using the empirical cdfs of time to failure 3. If we consider the countries
UK and Italy, the singular component is respectively given by 9 and 113 banks for
the non-censored and censored sample. When we analyse the UK and Germany,
the singularity is represented by 11 and 158 banks for non-censored and censored
sample. Finally, Italy and Germany show 13 (in the non-censored sample) and 187
(in the censored sample) banks that fail in the same year with similar risk of failure.

We compare the MO copula with the copula models used in the literature (see
[56] and [64]), such as the Gaussian copula, the Gumbel copula and a finite mixture
of the Frank CF , Clayton CC and Gumbel CG copulae (F + C +G)

C(u, v) = πFCF (u, v;α) + πCCC(u, v; γ) + (1− πF − πC)CG(u, v; r)

with weights 0 ≤ πi ≤ 1 for i = F,C,G. The MO, Gumbel and the mixture
of copulae display asymptotic tail dependence and asymmetry, while the Gaussian
copula is symmetric without tail dependence. The parameter −1 < ρ < 1 of the
Gaussian copula represents the linear correlation coefficient. The parameter r > 1 of
the Gumbel copula is a measure of positive association and represents the intensity

3The number of bank pairs for the singular component is given by #{|vi − ui| < 0.001}.
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Table 1: Copula parameter estimates and bootstrap confidence intervals

Copula IT-UK IT-DE UK-DE
Gaussian ρ̂ = 0.25 ρ̂ = 0.30 ρ̂ = 0.27

(0.03; 0.32) (0.13; 0.37) (0.08; 0.34)
Gumbel r̂ = 1.30 r̂ = 1.40 r̂ = 1.37

(1.02; 1.49) (1.05; 1.59) (1.05; 1.57)

F + C +G

π̂F = 0.31 π̂F = 0.21 π̂F = 0.25
(0.12; 0.50) (0.13; 0.35) (0.14; 0.33)
π̂C = 0.15 π̂C = 0.14 π̂C = 0.13

(0.009; 0.22) (0.01; 0.23) (0.01; 0.22)
α̂ = 0.01 α̂ = 0.04 α̂ = 0.03

(0.00; 0.18) (0.03; 0.19) (0.03; 0.18)
γ̂ = 0.23 γ̂ = 0.26 γ̂ = 0.25

(0.13; 0.45) (0.12; 0.47) (0.10; 0.47)
r̂ = 1.33 r̂ = 1.45 r̂ = 1.45

(1.03; 1.69) (1.10; 0.53) (1.08; 0.54)

MO θ̂ = 0.37 θ̂ = 0.55 θ̂ = 0.45
(0.29; 0.52) (0.33; 0.59) (0.28; 0.54)

of the upper tail dependence (χu = 2 − 21/r). The Frank copula is a symmetric
copula and it shows positive dependence for α ∈ (0,+∞), negative dependence
for α ∈ (−∞, 0) and independence for α = 0. The tail dependence in the Frank
copula is null. The Clayton copula shows also a positive dependence. Its parameter
γ represents the intensity of the lower tail dependence (χu = 2−1/γ). Hence, the
mixture of the Frank, Clayton and Gumbel copulae can display lower tail dependence
for the Clayton copula, and upper tail dependence for the Gumbel copula.

For each copula we compute the PML estimate of the copula parameters and
the bootstrap confidence intervals (see [24]) on 1, 000 bootstrap samples randomly
drawn. The results are reported in Table 1. The linear correlation coefficient ρ̂ of
the Gaussian copula is close to zero for all the pairs of countries. This result could
be due to the fact that the Gaussian copula displays only a linear dependence and
not a tail dependence. The latter is what we expect in the data. To verify this
expectation we apply a Gumbel copula that shows upper tail dependence and a
mixture of copulae that displays both upper and lower tail dependence. Since the
parameter r̂ is higher than 1 for all the three pairs of countries, this means that
there is upper tail dependence. The intensity of this dependence is quite low since
all the values of r are close to 1.

In agreement with the expectations, the Gumbel copula shows the highest weight
in the mixture model for all the pairs of countries (π̂G=0.54 for IT-UK, π̂G=0.65 for
IT-DE and π̂G=0.62 for UK-DE). We use equation (3.3) to compute the upper tail
dependence parameter. We obtain χu=0.316 for IT-UK, χu=0.365 for UK-DE and
χu=0.387 for IT-DE. This means that the intensity of the upper tail dependence
in the mixture model is still low. We highlight that the orderings of the upper
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tail dependence parameter estimates in both the mixture and the Gumbel copulae
are the same. Furthermore, these orderings correspond to the one of the linear
correlation coefficients in the Gaussian copula. From this ordering we deduce that
the systemic risk for IT-DE is higher than that for DE-UK that is finally higher than
the one for IT-UK. This result is in line with expectations and with the outcomes
obtained in [31]. In [31] the authors estimate the contagion directions of banks that
experience a large shock on the same day. They obtain a strong bilateral relationship
between Italy and Germany and a weak bilateral contagion between the UK and
Germany.

Finally, we apply the MO copula. Its parameter θ represents the upper tail
dependence parameter. From Table 1 obtain that the MO model shows an higher
tail dependence than those of the previous copula models. The tail dependence
between the failed banks in Italy and Germany is medium-high (χu=0.55), the one
between the UK and Germany is medium-low (χu=0.45).

The higher value of the upper tail dependence parameter in the MO copula could
be due to include a singular part in the model to assign a non-null probability to
the event that banks in two countries fail at the same time. In this way, we can
accurately estimate the systematic component of systemic risk. On the contrary, in
the Gumbel and in the mixture model this component could be underestimated, as
the data show.

We explained in Section 3.2 the role of the copula parameter θ. The weights of
idiosyncratic and systematic shocks are a function of θ as given by equation (3.5). If
θ is very high (i.e. θ > 2/3), the systematic component is more important than the
idiosyncratic one to explain systemic risk. On the contrary if θ is equal to zero, the
systemic risk is explained only by the idiosyncratic shocks. As Italian and German
banks are under the same monetary policy of the European Central Bank, it is
coherent that the systematic component for this pair of countries is more relevant
than that for two banking systems with different monetary policies. Figure 2 shows
the estimated MO copula function and its contour levels for the couples IT-UK,
UK-DE and IT-DE.

To identify the copula that best fits the data, we need to choose a criterion.
As the models are non-nested, we use a modified version of the Akaike Information
Criterion (AIC) associated with the PML [15, 49], given by

AIC∗ = 2k − 2l(θ̂) +
2k(k + 1)

n− k − 1
(4.1)

where l(θ̂) is the maximum of the log pseudo likelihood function, k is the number
of estimated parameters, and n is the sample size. The last term in equation (4.1)
is a correction for small sample bias [8]. According to this criterion, the model with
best fit is the one that minimises the AIC.

[30] investigated the limitations of the AIC for copula model selection in semi-
parametric PML methods and they proposed the cross validation Copula Infor-
mation Criteria (CIC) to overcome these drawbacks. However, [39] compared the
performance of the AIC and the CIC in a simulation study, obtaining minor dif-
ferences between these two criteria and emphasising that the CIC is computational
intensive. Given these results, we prefer to use the AIC instead of the CIC. Based on

15



Table 2: Fit measures

AIC
Copula IT-UK IT-DE UK-DE

Gaussian -4.32 -10.3 -9.18
Gumbel -19.20 -22.33 -18.45
F+C+G -24.87 -25.98 -18.45

MO copula -34.44 -37.89 -21.67

Table 3: Copula parameter estimates and bootstrap confidence intervals for complete
and censored sample

IT-UK IT-DE UK-DE
sample parameter estimate parameter estimate parameter estimate

complete sample θ = 0.37 θ = 0.55 θ = 0.45
(0.29; 0.52) (0.33; 0.59) (0.28; 0.54)

censored sample θ = 0.50 θ = 0.83 θ = 0.76
(0.48; 0.51) (0.82; 0.84) (0.75; 0.77)

our knowledge, there is a lack of theoretical justification in the literature to use the
AIC for comparing absolutely continuous and non-absolutely continuous copulae.
As [23], [33] and [58] used the AIC for a copula function with a singular component,
we calculate this criterion for the MO copula using the pseudo likelihood function
(3.6) in equation (4.1). We choose the MO copula based on the results in
Table 2 and its characteristics described in Section 3.2.

The results for a censored sampling are shown in Table 3. We obtain that the
estimates of the copula parameter θ increase for all the three pairs of countries.
This means that the systematic component becomes more important for all the
pairs of countries when we consider the characteristics of all the sample. As θ is
the upper tail dependence parameter, the most important result of this empirical
analysis is that the intensity of the upper tail dependence increases if we consider
a censored sampling. In other words, the contagion risk could be underestimated if
we do not consider the characteristics of non-failed banks. Moreover, as the length
of the bootstrap confident intervals in Table 3 decreases for the censored sample,
the estimates of the copula parameter θ are more accurate.

5 Conclusions

In this paper we propose a novel copula-based approach for modelling cross-border
systemic risk. In particular, the MO copula is used to estimate the dependence be-
tween times to bank failures located in two different countries. The main advantage
of this model is that the impact of the idiosyncratic and systematic components on
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Figure 2: The MO copula and the contour lines estimate for IT-UK (top), UK-DE
(middle), and IT-DE (bottom)
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the systemic risk can be measured. We highlight that the idiosyncratic component
is represented by the continuous part of the copula, the systematic by the singular
part. To include the information on non-failed banks in the estimation procedure, we
consider a censoring mechanism. We propose a pseudo-maximum likelihood method
to estimate the MO copula parameter for Type I censored samples.

Such a proposal is applied to data on three of the main banking systems in
Europe (Germany, Italy and the UK). The first important result of this empirical
analysis is that the MO copula is the copula that best fits the data according to the
AIC measure. The second important result is that the impact of the systematic risk
is higher if we consider a censored sample compared to that obtained for a complete
sample (without a censoring technique). We hope that this work proposes a novel
method that central banks can use to provide more accurate estimates of systemic
risk.

This paper is focused on the analysis of cross-border systemic risk between two
countries. From an empirical point of view, further work will extend the approach
here proposed to analyse the systemic risk between more than two countries using
a higher dimensional copula. Another further research from a methodological point
of view is to provide the theoretical justification of using the AIC or its modification
to compare absolutely continuous and non-absolutely continuous copula models.

6 APPENDIX

6.1 The estimator in Type I censored sampling

We suggest the maximum likelihood estimator (3.11) in the case of Type I censored
sampling. We consider the observations as shown in Figure 1, we apply the logit
transformation θ = (1+exp(−ψ))−1 to the conditional log-likelihood function (3.10),
so we obtain

l(ψ|û, v̂) = k + (m1 +m2 + r + s) ln[1− (1 + exp(−ψ))−1] +m3 ln[(1 + exp(−ψ))−1] +

− (1− (1 + exp(−ψ))−1)(S1(t∗) + S2(t∗))− (1 + exp(−ψ))−1Smax(t∗)

where k is a constant and

S1(t∗) =
m+r∑
i=1

[− ln(ûi)] + (n−m− r)t∗,

S2(t∗) =
m+s∑
i=1

[− ln(v̂i)] + (n−m− s)t∗

and Smax(t∗) =
∑m

i=1 max[− ln(ûi),− ln(v̂i)] + rt∗ + st∗ + (n−m− r − s)t∗.
The previous equation can be simplified and it becomes

l(ψ|û, v̂) = k + (m1 +m2 + r + s)(−ψ)− (m+ r + s) ln[(1 + exp(−ψ))] +

− exp(−ψ)

(1 + exp(−ψ))
(S1(t∗) + S2(t∗))− (1 + exp(−ψ))−1Smax(t∗)
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By differentiating the log-likelihood function with respect to ψ, we obtain

∂l(ψ|û, v̂)

∂ψ
= −(m1 +m2 + r + s) + (m+ r + s)

exp(−ψ)

(1 + exp(−ψ))
+

+
exp(−ψ)

(1 + exp(−ψ))2
[S1(t∗) + S2(t∗)− Smax(t∗)]

Setting ∂l(ψ|û,v̂)
∂ψ

= 0 we obtain

m3 exp(−2ψ)− (m+ r + s− 2m3 + Smin(t∗)) exp(−ψ)− (m+ r + s−m3) = 0,

where Smin(t∗) = S1(t∗) + S2(t∗)− Smax(t∗).
By solving the previous equation with respect to exp(−ψ), we obtain two solu-

tions

z1,2 =
m+ r + s− 2m3 − Smin(t∗)±

√
(m+ r + s− 2m3 − Smin(t∗))2 + 4m3(m+ r + s−m3)

2m3

Since only the solution z1 =
m+r+s−2m3−Smin(t∗)+

√
(m+r+s−2m3−Smin(t∗))2+4m3(m+r+s−m3)

2m3

has positive values, it is the unique accepted solution for exp(−ψ). Hence, the unique
solution of the optimisation problem is

ψ̂c = − ln

[
m+ r + s− 2m3 − Smin(t∗) +

√
(m+ r + Smin(t∗)− 2m3)2 + 4m3(m+ r + s−m3)

2m3

]
.

(6.1)
We obtain that the previous solution is a maximum from the sign of the second

derivative. In (6.1) t∗ is fixed and the number of failed banks in one or both countries
(m, r and s) are random variables.

6.2 Simulation study

In this section we perform a Monte Carlo simulation study to analyse the properties
of the estimation procedures described in Section 3.2 and 3.3 for finite samples. We
generate 2,000 samples with different sample size n = 20, 50, 100, 500 from a bivariate
distribution with MO copula and two marginal exponential variables with parameter
λ = 2. We consider only one marginal distribution function in the simulation
studies as the copula parameter estimator is ranked-based, so it does not dependent
on the marginal distribution. We choose different values of the copula parameter
θ = 0.1, 0.7, 0.9, corresponding to low, medium and high positive dependence. We
analyse the bias (Bias) and the mean square error (MSE) of the parameter θ for the
procedures proposed in Section 3.2 and 3.3.

Table 4 reports the results for the complete sample using the PML estimation
procedure explained in Section 3.2. The outcomes show that this technique is ac-
curate in estimating the copula parameter as the bias and the MSE are usually
lower than one tenth of the real value of the parameter even for a small sample size
(n = 20). Moreover, the estimates are consistent as the bias and the MSE decrease
when the sample size increases, for a given θ. The last column in Table 4 shows the
time to end of study (Time).
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Table 4: Bias and MSE of the copula parameter θ estimated using the pseudo
maximum likelihood method for a complete sample.

θ n Bias MSE Time
0.9 20 0.0213 0.0360 2.467

50 0.0102 0.0026 3.267
100 0.0012 0.0006 3.761
500 0.0003 0.0001 4.599

0.7 20 0.0114 0.0417 2.879
50 0.0093 0.0037 3.403
100 0.0024 0.0010 3.879
500 0.0010 0.0006 4.991

0.1 20 0.0099 0.0095 2.956
50 0.0056 0.0015 3.548
100 0.0016 0.0009 3.954
500 0.0001 0.0003 4.938

Figure 3 shows the boxplot of the estimator distribution of the copula parameter
θ for different values of n and θ.

We also apply the estimation procedure for a censored sample described in Sec-
tion 3.3. The results of the bias and the MSE for the copula parameter θ for I
type censored sampling are reported in Table 5, where we choose t∗ = 2 as time for
censoring. Particularly, n is the size of the censored sample, with m observed units
and n−m not observed ones. Table 5 shows that both the bias and the MSE of the
censored sample are higher than the corresponding ones for a complete sample, for
given θ and n, as the observation time t∗ = 2 is lower than the time for the complete
sample. Analogously to the results for a complete sample, the bias and the MSE
decrease as the sample size n increase in Table 5.

Figure 4 shows the boxplot of the estimator distribution for different values of n
and different values of the true parameter θ.

Figures 3 and 4 show that the estimation procedure slightly overesti-
mates the parameter value for small sample size.

Finally, we generate 2,000 random samples from a bivariate random variable
with marginal exponential distributions of parameter λ = 2 and an exchangeable
MO copula of parameter θ = 0.9 and θ = 0.7. Afterwards, we apply the estimation
procedure described in Section 3.2 to a complete sample with m observations and
the approach described in Section 3.3 to a censored sample with m observed units
and n−m not observed units.

We report the MSE of these two methods in Table 6. The MSE in the censored
sample is lower than that in the complete one. Therefore, if we consider also the
characteristics of non-observed units in the sample, the estimate of the dependence
becomes more accuracy.
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Figure 3: Boxplot of the estimator distribution of the copula parameter θ for the
complete sample with different values of n and θ.
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Figure 4: Boxplot of the estimator distribution of the copula parameter θ for the
censored sample with different values of n and θ.
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Table 5: Bias and MSE of the copula parameter θ estimated using the pseudo
maximum likelihood method for a censored sampling.

θ n Bias MSE m
0.9 20 0.0221 0.0377 18

50 0.0111 0.0029 42
100 0.0009 0.0007 86
500 0.0008 0.0003 400

0.7 20 0.0270 0.0515 18
50 0.0099 0.0039 40
100 0.0029 0.0019 78
500 0.0008 0.0008 400

0.1 20 0.0168 0.0099 16
50 0.0088 0.0019 39
100 0.0025 0.0011 78
500 0.0007 0.0008 380

Table 6: Complete sample vs censored sample

MSE

θ m n−m complete sample censored sample
0.9 30 20 0.0261 0.0057

70 0.0261 0.0026
470 0.0261 0.0008

50 50 0.0026 0.0016
450 0.0026 0.0006

0.7 30 20 0.0233 0.0055
70 0.0233 0.0034
470 0.0233 0.0009

50 50 0.0037 0.0028
450 0.0037 0.0008

0.1 30 20 0.0054 0.0024
70 0.0054 0.0019
470 0.0054 0.0009

50 50 0.0015 0.0012
450 0.0015 0.0008
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