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ABSTRACT 13 

A zircon Hf isotopes dataset of Archean and Paleoproterozoic magmatic and 14 

metasedimentary rocks of southern São Francisco Craton is interpreted as evidence of 15 

accretionary and collisional plate tectonics at least since the Archean-Proterozoic 16 

boundary. During the Phanerozoic, accretionary and collisional orogenies are considered 17 

the end members of different plate tectonic settings, both involving pre-existing stable 18 

continental lithosphere and consumption of oceanic crust.  However, mechanisms for the 19 

formation of continental crust during the Archean and Paleoproterozoic are still debated 20 

with the addition of magmatic rocks to the crust being explained by different geodynamic 21 

models. Hf isotopes can be used to quantify the proportion of magmatic addition into the 22 

crust: positive ɛHf values are usually interpreted as indications of magmatic input from 23 

the mantle, whereas crust-derived rocks show more negative ɛHf. We show that the crust 24 

of the amalgamated Paleoproterozoic tectonostratigraphic terranes that make up the 25 

southern São Francisco craton were generated from different proportions of mantle and 26 

crustal isotopic reservoirs. Plate tectonic processes are implied by a consistent sequence 27 

of events involving the generation of juvenile subduction-related magmatic arc rocks, 28 



followed by collisional orogenesis and re-melting of older crust, and post-collisional 29 

bimodal magmatism. 30 

INTRODUCTION 31 

 Whether plate tectonic processes initiated around the Archean-Paleoproterozoic 32 

boundary or at a different point in Earth’s evolution is intensely debated (e.g., Dhuime et 33 

al., 2012; Windley et al., 2020; Palin and Santosh, 2020). Hf isotopes provide an 34 

important tool for understanding tectonic processes through time because magmatic 35 

sources can be identified by the contrasting isotopic behaviour of Hf between the mantle 36 

and the crust (Griffin et al. 2000). Secular changes in orogenic processes can be traced by 37 

Hf isotope variations, as the isotopic signature of magmatic zircon crystals is usually 38 

related to their petrogenesis, thereby indicating degrees of mantle contributions and 39 

crustal sources and thus constraining the predominant magmatic and tectonic style (e.g., 40 

Goodge and Vervoort, 2006; Belousova et al., 2010; Dhuime et al., 2012; Spencer et al., 41 

2019, 2020). 42 

Different ɛHf/Ma trajectories and 176Lu/177Hf ratios are key in determining 43 

changes in tectonic environment (Kemp et al., 2007; Laurent and Zeh, 2015; Spencer et 44 

al., 2019). Two end members of orogenic cycles can be distinguished by their contrasting 45 

Hf evolution patterns: 1) collisional orogens arising from the collision of two or more 46 

continental blocks and resulting in reworking of crustal material, and 2) accretionary 47 

orogens containing a high component of juvenile material related to the amalgamation of 48 

island arcs (eg. Belousova et al., 2010; Collins et al., 2011; Spencer et al., 2019, 2020).  49 

We use Hf isotopes in zircon grains to determine the proportion of juvenile and 50 

reworked material in the studied samples and to interpret the tectonic framework of a 51 

Paleoproterozoic orogenic system in southeastern Brazil (the Minas Segment of the 52 



Minas-Bahia Orogenic System). The variations in the dataset show an intense reworking 53 

of older continental fragments as well as major input of mantle-derived magmas 54 

comparable with the isotopic evolutionary trend of Neoproterozoic and Phanerozoic 55 

orogenic systems. The resemblance with modern-style plate tectonic processes indicate 56 

that similar mixing mechanisms have operated throughout the last 2.4 billion years of 57 

Earth’s history. 58 

TECTONIC FRAMEWORK OF A PALEOPROTEROZOIC OROGENIC 59 

SYSTEM 60 

The Precambrian basement of Brazil comprises Archean-Paleoproterozoic cratons 61 

that were amalgamated during the ca. 0.6-0.5 Ga Brasiliano-Pan African orogeny and 62 

later covered by Phanerozoic intracontinental basins (Figure 1a) (e.g., Heilbron et al., 63 

2017).  The São Francisco Craton (SFC) mainly composed of Archean blocks and 64 

Paleoproterozoic arc-related rocks, and its reworked inliers within the Neoproterozoic 65 

belts, formed during one of the most important periods of juvenile crust addition and 66 

reworking, expressed by Siderian to Rhyacian accretional to collisional episodes. On the 67 

eastern side of the SFC, the Paleoproterozoic orogenic belt known as the Minas-Bahia 68 

Orogenic System (MBOS) is subdivided into two segments: the northern (Bahia) 69 

segment, which outcrops in the interior of the cratonic area, and the southern (Minas) 70 

segment, exposed on the southern tip of the SFC as well as in reworked basement inliers 71 

occurring in the Neoproterozoic orogenic systems (e.g., Alkmim and Teixeira, 2017; 72 

Teixeira et al., 2017) (Figure 1b). 73 

The Minas segment of the MBOS (ca. 2.47-2.05 Ga) represents a myriad of 74 

microcontinents and magmatic arcs, including mainly intra-oceanic, largely juvenile 75 

accretionary arcs that were diachronously amalgamated between ca. 2.1 and 2.05 Ga (e.g., 76 

Heilbron et al., 2010; Ávila et al., 2014; Alkmim and Teixeira, 2017; Araújo, 2020; Bruno 77 



et al., 2020, 2021; Cutts, et al., 2020). From west to east they are regarded as (Figure 1c): 78 

1) Archean complexes encompassing Paleo- to Neoarchean tonalite-trondhjemite-79 

granodiorite (TTG), migmatites, high-K meta-granitoids, greenstone belt sequences (e.g., 80 

Rio das Velhas Supergroup) of ca. 2.9 to 2.65 Ma and Archean-Paleoproterozoic 81 

supracrustal units of the passive to active margin type of the Minas Supergroup; 2) the 82 

Mineiro magmatic arc comprising Siderian to Rhyacian juvenile to crust-contaminated 83 

magmatic arc granitoid rocks including high Ba-Sr, TTGs, sanukitoids and hybrid 84 

granitoids and related supracrustal units; 3) the Archean Piedade microcontinent, with 85 

Neoarchean TTG and sanukitoids intruded by ca. 2.5 Ga intraplate alkaline basic rocks; 86 

4) ca. 2.05 Ga post-collisional granitoids and associated tholeiitic metabasics; and 5) the 87 

Mantiqueira, ca. 2.2 Ga to ca. 2.0 Ga, and Juiz de Fora magmatic arcs, ca. 2.4 to 2.07 Ga, 88 

which are represented by juvenile to crustal contaminated TTGs, sanukitoids, post-89 

collisional alkaline, within-plate tholeiitic basic rocks and peraluminous granitoid rocks 90 

(e.g. Heilbron et al., 2010; Ávila et al., 2014; Alkmim and Teixeira, 2017; Teixeira et al., 91 

2017; Degler et al., 2018; Moreira et al., 2018; Bruno et al., 2020, b; Cutts et al., 2020; 92 

Araújo, 2020).  93 

LU-HF SIGNATURES OF THE MINAS SEGMENT OF THE MBO 94 

Analytical methods, sample descriptions/locations, U-Pb and new Lu-Hf isotope 95 

data are presented in Supplementary Materials A and B. Fifteen samples that represent 96 

the chemical diversity of the Paleoproterozoic magmatic arcs and Archean 97 

microcontinent were chosen for Hf isotopic analysis (Figure 2). The Lu-Hf analyses were 98 

performed on concordant to sub-concordant zircon grains directly on U-Pb spots (when 99 

possible). Analyses were performed using an ASI Resolution SE 193 excimer laser 100 

connected to a Nu Plasma I MC-ICP-MS. For old and complex terranes, such as the São 101 



Francisco Craton, model ages values (TDM) have been used in a rather qualitative way 102 

to support geological interpretation (eg. Vervoort and Kemp, 2016; Spencer et al., 2020).  103 

Lu-Hf analyses of Neoarchean rocks of the Piedade microcontinent (Samples 50, 104 

66A and 66B) show a range of εHf (crystallization age) from approximately chondritic (-105 

0.65) to crustal (-8.70) values, suggesting an even older Archean substratum into which 106 

these rocks were intruded or derivation from a source of that age within the crust (Figure 107 

2). Paleoproterozoic metamorphic rims were also analyzed and yield εHf (at metamorphic 108 

age) of -12.23 and -22.10 further suggesting crustal reworking (Figure 2). The 176Hf/177Hf 109 

ratios versus the crystallization age of the zircon grains display values ranging ranging 110 

from 0.28089 ± 0.00003 to 0.28114 ± 0.00003 for the magmatic cores and for the 111 

metamorphic rims, which are coincident within uncertainty and thus likely represent 112 

simple recrystallisation under metamorphic conditions or new zircon with more negative 113 

εHf reflecting the increase of 176Hf/177Hf in CHUR (Figure 2). TDM values vary from 114 

Paleo- to Mesoarchean ages ca. 3.55 to 3.01 Ga.  115 

The Rhyacian (ca. 2.152 to 2.114 Ga) arc-related granitoids of the Mineiro 116 

magmatic arc (Samples 42, 51B and 52B) show 176Hf/177Hf values of 0.28128 ± 0.00002 117 

and 0.28159 ± 0.00002 with juvenile and crustal εHf (crystallization age) values of +5.84 118 

and – 5.52 and TDM of ca. 2.81 and 2.16 Ga, that together with the presence of Archean 119 

zircon inheritance in Sample 51B, indicate a mixed mantle-crust evolution of this 120 

Paleoproterozoic magmatic arc.  121 

Sample 67, from the Mantiqueira magmatic arc, yields chondritic to juvenile εHf 122 

(crystallization age) of +1.68 to +0.57 whereas samples 8 and 64 B yield more evolved, 123 

and therefore crust-contaminated values of εHf (crystallization age) between -3.40 and -124 

8.68 (Figure 2). The 176Hf/177Hf values of the samples vary between 0.28117 ± 0.00003 125 



and 0.28149 ± 0.00003, with TDM varying from 3.25 to 2.32 Ga, also indicating a 126 

complex evolutionary history (Figure 2).  127 

The Paleoproterozoic samples of the Piedade microcontinent (Samples 58A, 58B, 128 

65, 68A and 70B), related to the post-collisional setting of the Minas segment of the 129 

MBOS yield negative values of εHf values (at crystallization age) between -7.21 and -130 

20.92, implying reworking of older continental crust. Inherited zircon grains were also 131 

analyzed showing an evolutionary trend of the isotopic reservoir of the Piedade 132 

microcontinent from the Archean towards the Paleoproterozoic (Figure 2). The model 133 

ages show Archean signatures varying from ca. 3.52 to 2.82 Ga and 176Hf/177Hf ratios 134 

from 0.28083 ± 0.00003 to 0.28128 ± 0.00002. Sample 70A, a tholeiitic metabasic rock, 135 

of ca. 2.05 Ga displays variable εHf (crystallization age) of -17.63 to +2.63 implying a 136 

juvenile addition with crustal reworking related to an extensional setting, indicating the 137 

mixed crustal-mantle sources for the post-collisional bimodal magmatism (Figure 2). 138 

A PROTRACTED MIXED ACCRETIONARY TO COLLISIONAL OROGENIC 139 

CYCLE 140 

Linear εHf–time arrays can be indicative of long-term evolution trends from a 141 

singular isotopic source (e.g., Rudnick and Gao, 2003; Laurent and Zeh, 2015; Spencer 142 

et al., 2019). With reference to the time intervals of ca. 2.5 - 2.4 Ga, 2.4 -2.3 Ga, 2.2 - 2.1 143 

Ga and 2.1-2.0 Ga, the values of ɛHf/Ma trajectories and 176Lu/177Hf are regarded as 144 

reflecting the main periods of juvenile input and reworking, marked by collisional 145 

episodes, as shown by the probability regressive line of juvenile and crust-contaminated 146 

samples (Figure 3a).  147 

The interval of ca. 2.5 – 2.4 Ga, represents the initial stages of magmatic arc 148 

granitoid rocks generation in the MBOS with mainly crust-contaminated isotopic 149 



signatures (ɛHf/Ma = 0.00793). The ca. 2.4 – 2.3 Ga interval (ɛHf/Ma = -0.05784), 150 

reflects the onset of juvenile magmatism in the Mineiro and in the Juiz de Fora magmatic 151 

arcs. The interval of ca. 2.2 - 2.1 Ga (ɛHf/Ma = 0.00752) reflects the main period 152 

magmatic arc granitoid rocks generation in the MBOS whereas ca. 2.1-2.0 Ga (ɛHf/Ma = 153 

0.13384) reflects the collisional episodes of MBOS with mostly crustal recycling (Figure 154 

3 a). For the whole Paleoproterozoic continental crust evolution of the MBOS, analyses 155 

of igneous magmatic zircon grains of the Mineiro, Mantiqueira and Juiz de Fora 156 

magmatic arcs, including the results from this study, show a trajectory of ɛHf/Ma = 157 

0.0232 and 176Lu/177Hf = -0.0014 (Figure 3a). Values of the least trimmed squares robust 158 

regression as calculated can be found in Supplementary Material A. 159 

In comparison with other Proterozoic orogenies such as the collisional Grenville 160 

(ɛHf/Ma = 0.0378 and 176Lu/177Hf = -0.22), and accretionary Sveconorwegian (ɛHf/Ma = 161 

0.0146 and 176Lu/177Hf = 0.012) and Valhalla (ɛHf/Ma = ∼0.0182 and 176Lu/177Hf 162 

=0.007), the Minas segment evolution arrays reflects a mixed collisional and accretionary 163 

process in a collisional setting (e.g., Spencer et al., 2019).  164 

SIMILAR PHANEROZOIC HF MODEL RECORDED IN A 165 

PALEOPROTEROZOIC OROGEN 166 

Two thousand four hundred and sixty-eight (n=2468) Hf analyses for the São 167 

Francisco Craton, including the results from this work, were compiled in order to better 168 

constrain the evolutionary trend of the Hf isotopic array of the Minas segment of the 169 

Minas-Bahia Orogenic System.  170 

Regarding the Archean complexes and associated passive margin Minas 171 

Supergroup, in addition to the Piedade microcontinent, there are zircon grains in 172 

magmatic rocks as old as ca. 3.2 Ga with positive to negative ɛHf values, and up to ca. 173 



3.9 Ga detrital zircons with mainly negative ɛHf values suggesting the presence of an 174 

even older crust segment in this area. The Siderian to Rhyacian Mineiro and Juiz de Fora 175 

and the Rhyacian Mantiqueira magmatic arcs display the isotopic trend array of a mixed 176 

crustal-mantle signature, suggesting some degree of magmatic addition from the mantle 177 

to the crust in the time span between ca. 2.4 Ga and 2.0 Ga with ɛHf/Ma between 3.0 and 178 

2.0 Ga of ∼0.00255 (Figure 4a).  179 

Accretionary episodes are characterized mostly by juvenile additions, whereas 180 

collisional episodes of internal orogens lead to high reworking rates and large variation 181 

in the negative ɛHf values (Roberts and Spencer, 2015). Together, they are markers of 182 

modern tectonic settings and depict how efficient mixing processes govern crustal 183 

balance on Earth. Nonetheless, the variation with higher proportions of juvenile 184 

signatures in the dataset present here, alongside a regional ɛHf-time reworking array of 185 

the regional Archaean rocks suggests that there was a change in between these periods 186 

that is comparable to modern-tectonics, as shown by the ɛHf/Ma trajectory of Archean 187 

and Paleoproterozoic rocks (Figure 4a).  188 

The assembly of the Minas segment of the MBO resembles the Hf isotopic array 189 

of the Phanerozoic internal orogenic systems of North China, South China and the 190 

Himalayas with an ɛHf/Ma trajectory of 0.00767 (collisional - Figure 4b) in contrast to 191 

external orogenic systems of East Australia, Gondwana, Japan, New Zealand, South 192 

America and Europe with ɛHf/Ma trajectory of -0.0027 (accretionary – Figure 4c) 193 

(Collins et al., 2011). Successive collisional orogenies of the Minas segment are 194 

progressively younger towards the east (Figure 3), with subduction related magmatism 195 

restricted to periods of ocean closure. The onset of accretionary and collisional episodes 196 

throughout Earth history, from the Archean-Proterozoic boundary, suggests the opening 197 

and closure of oceans and provides important information regarding the formation of 198 



supercontinent cycles (eg. Belousova et al., 2010; Collins et al., 2011; Hawkesworth et 199 

al., 2016).  200 

The increasing reworking rates and juvenile magmatic contributions at the 201 

boundary between the Archaean and Paleoproterozoic marks a turning point in Earth 202 

geodynamics. In the Archean, the lower contribution of juvenile magmatism, testified by 203 

the less proportions of overall ɛHf values, forms a dominant crustal reworking array. In 204 

the Paleoproterozoic, the proportion of juvenile magmas is enhanced in comparison to 205 

the magmas derived from crustal reworking, which is analogous to the geodynamics of 206 

modern plate tectonics. 207 
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FIGURE CAPTIONS 214 

Figure 1: A) Tectonic Framework of Brazil (Modified after Heilbron et al., 2017); B) 215 

Basement (Archean blocks and Paleoproterozoic magmatic arcs) of the São Francisco 216 

Craton. (Modified from Alkmin and Teixeira, 2017; Barbosa and Barbosa, 2017; Degler 217 

et al., 2018; Bruno et al., 2020); C) Geological map and location of studied samples 218 

(Modified from Alkmin and Teixeira 2017; Bruno et al., 2021). 219 

Figure 2: ɛHf vs. 207Pb/206Pb ages of analyzed magmatic zircon grain and metamorphic 220 

rims; b)176Hf/177Hft versus vs. 207Pb/206Pb ages of analyzed magmatic zircon grains and 221 

metamorphic rims. Depleted Mantle area (DM) after Albert et al., (2016). All these 222 



samples were previously dated via (LA-ICP-MS) U-Pb in zircon by Bruno et al. (2020) 223 

and Bruno et al. (2021). CHUR constants of Bouvier et al. (2008) 176Hf/177Hf = 0.282785 224 

and 176Lu/177Hf = 0.0336). Classifying fields of juvenile, moderately juvenile and evolved 225 

from Bahlburg et. al., (2011). 226 

Figure 3: Integrated tectonic evolution model for the Minas segment of the MBOS as 227 

envisaged for the period between a) ca. 2.4 to 2.1 Ga and b) ca. 2.1 to 2.0 Ga (Modified 228 

after Bruno et al., 2021) c) Zircon Hf data from the Paleoproterozoic rocks and trajectory 229 

of ɛHf/Ma (Data from this study, Barbosa et al., 2015, 2019; Teixeira et al., 2015; Degler 230 

et al., 2018; Moreira et al., 2018; Kuribara et al., 2019; Araújo, 2020). Depleted Mantle 231 

area (DM) after Albert et al., (2016). 232 

Figure 4: A) Hafnium isotopic signature of the Minas segment. (Data from this study, 233 

Barbosa et al., 2015,2019; Teixeira et al., 2015; Albert et al., 2016; Moreira et al., 2016; 234 

Martinez-Dopico et al., 2017; Degler et al., 2018; Moreira et al., 2018; Kuribara et al., 235 

2019; Cutts et al., 2020; Araújo, 2020). Samples from the Acaiaca, Pedra Dourada and 236 

Minas Supergroup metasedimentary sequences are not considered for calculations of 237 

trajectory of ɛHf/Ma; B) Hafnium isotopic signature of Phanerozoic internal orogenic 238 

systems (Collins et al., 2011 and references therein); C) Hafnium isotopic signature of 239 

Phanerozoic external orogenic systems (Collins et al., 2011 and references therein. 240 

Depleted Mantle area (DM) after Albert et al., (2016). 241 
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