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Abstract

The work presented in this thesis is focused around the security of the Learning with Errors
(LWE) problem, as well as applications of homomorphic encryption schemes.

In Chapter 1, we provide an overview of the topics discussed in this thesis: lattice-based
cryptography, secure computation, cryptanalysis, and standardisation.

In Chapter 2, we introduce necessary background concepts. Specifically, we outline some
notions related to lattice-based cryptography and cryptanalysis.

In Chapter 3, we consider trade-offs in “Batch Bounded Distance Decoding”. We consider
guess-and-verify decoding (g-v decoding), a porting of the decoding attack on LWE into
the case of small and/or sparse secret vectors. This results in a combinatorial trade-off,
where components of the secret vector are guessed before batches of BDD instances are
solved in a smaller dimension. This attack technique has similarities with the hybrid lattice-
reduction and meet-in-the-middle (hybrid-decoding) attack, and we compare and contrast
these two techniques throughout. We conclude that, under certain assumptions, our g-v
decoding technique outperforms a variant of the hybrid-decoding attack.

In Chapter 4, we analyse submissions to the NIST standardisation process for post-quantum
cryptographic algorithms. Specifically, we consider all parameter sets submitted to the first
round, for every lattice-based scheme, as well as the cost models used for lattice reduction.
We estimate the security of every parameter set, under every cost model, considering both
the uSVP and dual attacks (where appropriate). This allows for individual schemes to be
compared more easily. As a result of this analysis, we observe that cost models for the BKZ
algorithm are not order preserving. That is, if scheme A is “more secure” than scheme B
under cost model 1, the same is not necessarily true under cost model 2. Finally we outline
the current state of the NIST standardisation process, and provide some estimates for the
schemes which have reached the third round.

In Chapter 5, we consider homomorphic encryption-style parameter sets, and explore hybrid
attacks. Hybrid attacks are competitive in regimes where the LWE secret is small and/or
sparse, so need to be considered for parameter sets used in homomorphic encryption schemes.
We consider the effect of secret sparsity on security estimates, and consider the trade-off
between bootstrapping complexity and security.

Finally, in Chapter 6, we consider an application of homomorphic encryption: “Private
Outsourced Kriging Interpolation”. Kriging is a spatial interpolation algorithm which has
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applications in geoscience. We consider the outsourcing of this algorithm using homomorphic
encryption, and outline techniques which can be used to protect the sensitive parameters in
order to provide an efficient solution.
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Chapter 1

Introduction

Contents

1.1 Lattice-based Cryptography . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Secure Computation and Applications . . . . . . . . . . . . . . . . 18

1.3 Cryptanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Standardisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Organisation and Contributions . . . . . . . . . . . . . . . . . . . . 20

1.6 Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.1 Lattice-based Cryptography

Cryptography underpins society as we know it. From secure messaging applications to online

payments, cryptography allows us to perform many daily tasks over the internet in a secure

manner – often without the knowledge that we are even using it. Currently used cryptographic

primitives whose security relies on RSA [RSA78] or discrete logarithm problems [DH76] can

be broken by sufficiently large quantum computers using Shor’s algorithm [Sho97]. Thus

begins the search for quantum-secure cryptography, known more commonly as post-quantum

cryptography. The US National Institute of Standards and Technology (NIST) started a

standardisation procedure in 2016 [Nat16], with the goal being to design, analyse, and

standardise a portfolio of public-key encryption schemes and digital signature algorithms.

A variety of candidate post-quantum secure algorithms have been proposed, including code-

based submissions, lattice-based submissions, isogeny-based submissions, and multivariate-

based submissions.

Of the candidate post-quantum secure algorithms submitted to this process, lattice-based

cryptographic algorithms represent a strong candidate for standardisation and have been

tested in practice [Bra16]. There are three major roadblocks to the wide-scale deployment of

lattice-based cryptosystems: usability, confidence in the underlying security assumptions, and
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1.2 Secure Computation and Applications

standardisation. Indeed, cryptosystems must be usable, and secure, for wide-scale deployment

to be considered and, moreover, standardisation is essential for many forms of industrial or

governmental usage. In this thesis, we consider each of these aspects individually.

The hardness of lattice-based cryptographic primitives typically relies on the Learning with

Errors (LWE) problem. LWE (and its variants) has given rise to many advanced encryption

techniques such as homomorphic encryption, which has lead to a variety of additional interesting

areas of research.

1.2 Secure Computation and Applications

Whilst typical encryption techniques allow us to secure data-at-rest and data-in-transit, once

data has been encrypted we are no longer able to perform operations on this data. Fully

homomorphic encryption [Gen09] allows for computation to occur on data which remains

encrypted, giving rise to an abundance of privacy-preserving applications. One of the major

bottlenecks with fully homomorphic encryption is the efficiency of the bootstrapping step used

to refresh a noisy ciphertext. Solutions used in practice tend to avoid this expensive procedure

in favour of somewhat homomorphic encryption, which allows for a limited computation, such

as polynomial functions up to some maximal degree d, to be evaluated in a secure manner.

There are a variety of other secure computation technologies available for use in the wild

today. Garbled circuits [Yao86] allow for the private evaluation of boolean circuits, oblivious

RAM [Gol87] allows for access patterns to be protected, and secure multiparty computation

allows several parties to jointly compute a function over their private inputs. These techniques

can be combined with homomorphic encryption to yield efficient privacy-preserving solutions

to interesting problems, e.g. [CCD+19]. We are now in an era where secure computation is

being used in commercial products [Env20, Unb20, Dua20, Zam20], which gives an indication

of the practicality of these techniques.

In this thesis, we are interested in both the application, and security, of homomorphic

encryption encryption schemes. In order to provide increased efficiency, the parameter sets

used typically do not come under the umbrella of the various security reductions outlined in

the literature. These adaptations come with a concrete security loss1, and it is important

1Here we are referring to both the tightness of reductions, for example the reduction from LWR to LWE,
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1.3 Cryptanalysis

to quantify this loss of security so that homomorphic encryption-style parameter sets can be

used with confidence.

1.3 Cryptanalysis

The security of LWE-based cryptographic constructions is measured in terms of the running

times of the best-known attacks. The LWE Estimator of Albrecht et al. [APS15, Est20] is a

common tool used for estimating the running time of a subset of these attacks on a given set of

LWE parameters (n, α, q). For other variants of the LWE, such as those used in homomorphic

encryption schemes where the secret vector is small and/or sparse, hybrid attacks are also

competitive.

All of the attacks considered in this thesis involve the usage of lattice-reduction algorithms,

which, generically, find short vectors in projected sublattices of size β, referred to as the

blocksize, in order to find a short basis of a given input lattice. To begin, we reduce the

LWE problem to a lattice problem such as the unique Shortest Vector problem (uSVP), the

Bounded Distance Decoding problem (BDD) or the Short Integer Solutions problem (SIS)

before solving the lattice problem at hand via lattice-reduction techniques.

Learning with Errors

Short Integer Solutions

(SIS)

unique Shortest Vector problem

(uSVP)

Bounded Distance Decoding

(BDD)

dual attack

hybrid-dual attack
uSVP attack

decoding attack

hybrid-decoding attack

g-v decoding attack

Figure 1.1: An outline of the various attack techniques used to solve the Learning with Errors
problem.

Of particular interest in this thesis are hybrid attacks, which exploit any smallness and/or

sparsity in the LWE secret. Often, it is advantageous to guess components of the LWE secret

and the chosen secret distribution.
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(or error) vector before performing lattice reduction in a smaller dimension. This creates a

trade-off between guessing correctly and the reduced cost of performing lattice reduction in a

smaller dimension. Hybrid attacks involve a myriad of trade-offs, and are notoriously difficult

to optimise. To this end, we explore a variety of these trade-offs as well as the assumptions

which are made in analyses of hybrid attacks. As part of our work, we have released open-

source code which allows for the complexity of hybrid attacks to be estimated under a variety

of assumptions2. We have also contributed to the LWE estimator, to help keep the output

estimates in line with state-of-the-art attacks.

1.4 Standardisation

There are two ongoing standardisation procedures of interest in this thesis. The first, as

discussed in Section 1.1, is the NIST standardisation process for post-quantum algorithms,

and we consider the security of all of the schemes submitted to first and third rounds of this

process.

The second standardisation procedure is the ongoing effort to standardise aspects of homomorphic

encryption, and the homomorphicencryption.org consortium are leading this effort. The

Homomorphic Encryption Security Standard (HE Standard) [ACC+18] recommends secure

parameters for use in homomorphic encryption schemes, and we discuss and analyse some of

these parameter selections in this thesis. We also consider potential future extensions to the

HE Standard, and outline several points for consideration in future work.

1.5 Organisation and Contributions

In Chapter 2 we outline all necessary background content required. This includes preliminary

notions from lattice-based cryptography and cryptanalysis. We then introduce our four

contributions in Chapters 3, 4, 5, and 6.

1. In Chapter 3, we discuss the Batch Bounded Distance Decoding problem and its application

to solving the Small-secret Learning with Errors problem. We compare this technique

2This code can be found at github.com/bencrts/hybrid_attacks.
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to Howgrave-Graham’s hybrid lattice-reduction and meet-in-the-middle attack (hybrid-

decoding attack), and discuss how important assumptions are in these analyses. We

show that, under certain assumptions, our attack technique outperforms a variant of the

hybrid-decoding attack and, under other sets of assumptions, the converse is true. This

chapter corresponds to the publication Exploring trade-offs in batch bounded distance

decoding detailed in the List of Publications section of this thesis.

2. In Chapter 4 we discuss the concrete security of the submissions to the NIST post-

quantum standardisation process. We highlight the importance of lattice reduction

cost models and estimate the security of each parameter set for every scheme under all

cost models considered as part of a first round submission. This technique allows for

the security of two given schemes to be compared in a fair manner. As part of this

work, we observe that lattice-reduction cost models are not order preserving, meaning

that if scheme A is harder to break than scheme B under cost model 1, the same is

not necessarily true under cost model 2. Moreover, we provide an update regarding the

current state of the standardisation process. This chapter corresponds to the publication

Estimate all the {LWE, NTRU} schemes! detailed in the List of Publications section

of this thesis.

3. In Chapter 5 we discuss homomorphic encryption standardisation, and focus on the

security of Sparse-secret LWE parameter sets. We outline the current state of the

HE standard, and consider potential extensions to this standard, including sparse

secret distributions. We outline parameter sets which balance security and efficiency,

with a focus on the cost of the expensive bootstrapping procedure required in fully

homomorphic encryption schemes. This chapter corresponds to the publication On

the feasibility and impact of standardising sparse-secret LWE detailed in the List of

Publications section of this thesis.

4. In Chapter 6 we discuss an application of homomorphic encryption: the private outsourcing

of Kriging interpolation. Kriging is a spatial interpolation algorithm which provides

the best linear unbiased prediction (BLUP) of an observed phenomenon, by taking a

weighted average of samples within a specified neighbourhood. Kriging is widely used

in areas such as geo-statistics where, as an example, it may be used to predict the

quality of mineral deposits at an unobserved location based on previous measurements.

In our work, we tweak the underlying algorithms to allow this process to be securely

outsourced in an efficient manner. In particular, we build a construction which allows

for the Kriging process to carried out when the measurement values are encrypted via a
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homomorphic encryption scheme. This chapter corresponds to the publication Private

outsourced kriging interpolation detailed in the List of Publications section of this thesis.

1.6 Source Code

Where possible, source code used as part of this thesis has been made publicly available.

1. The code used in Chapter 2 is available here: github.com/bencrts/thesis/code/

background

2. The code used in Chapter 3 is available here: github.com/bencrts/thesis/code/

batchbdd

3. The code used in Chapter 4 is available here: github.com/estimate-all-the-lwe-

ntru-schemes/estimate-all-the-lwe-ntru-schemes.github.io and here: github.

com/bencrts/thesis/code/nist

4. The code used in Chapter 5 is available here: github.com/bencrts/thesis/code/

hestandard

5. The code used in Chapter 6 is available here: github.com/bencrts/thesis/code/

kriging

In the event that any of the above links become broken, please contact the author for a copy

of the desired source code.

22

github.com/bencrts/thesis/code/background
github.com/bencrts/thesis/code/background
github.com/bencrts/thesis/code/batchbdd
github.com/bencrts/thesis/code/batchbdd
github.com/estimate-all-the-lwe-ntru-schemes/estimate-all-the-lwe-ntru-schemes.github.io
github.com/estimate-all-the-lwe-ntru-schemes/estimate-all-the-lwe-ntru-schemes.github.io
github.com/bencrts/thesis/code/nist
github.com/bencrts/thesis/code/nist
github.com/bencrts/thesis/code/hestandard
github.com/bencrts/thesis/code/hestandard
github.com/bencrts/thesis/code/kriging
github.com/bencrts/thesis/code/kriging


Chapter 2

Background and Notation

Contents

2.1 Mathematical Objects . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Gram-Schmidt Orthogonalisation . . . . . . . . . . . . . . . . . . . 34

2.4 Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Hard Problems in Lattices . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.1 Related Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5.2 Small Secrets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6 SVP Solvers, CVP Solvers, and Lattice Reduction Algorithms . 45

2.6.1 LLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6.2 BKZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.7 Babai’s Nearest Plane Algorithm . . . . . . . . . . . . . . . . . . . 53

2.8 Cryptanalytic Heuristics . . . . . . . . . . . . . . . . . . . . . . . . 53

2.9 Solving the Learning with Errors Problem . . . . . . . . . . . . . 56

2.9.1 The Dual Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.9.2 The uSVP Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.9.3 The Decoding Attack . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.9.4 Alternative Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.10 The Learning with Errors Estimator . . . . . . . . . . . . . . . . . 59

2.10.1 Input and Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.10.2 Implemented Features . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.11 Public-key Encryption from LWE . . . . . . . . . . . . . . . . . . . 65

2.12 Homomorphic Encryption . . . . . . . . . . . . . . . . . . . . . . . 67

In this chapter, we introduce all relevant background mathematics required in this thesis. We

introduce the notion of a lattice and consider various properties of lattices, as well as heuristics

considered in lattice-based cryptography and cryptanalysis.
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2.1 Mathematical Objects

2.1 Mathematical Objects

Euclidean space of dimension n is denoted Rn. All logarithms are to the base two, unless

otherwise stated. Column vectors are denoted by lower case bold letters, e.g b, and matrices

by upper case bold letters, e.g. B. The transpose of the matrix B is denoted by BT. The

ith component of a vector b is denoted by bi, and the (i, j)th entry of a matrix B is denoted

by Bi,j , where all indices start from one. We write Bi for the ith column of B. The inner

product of two vectors b1 and b2 is written as 〈b1,b2〉. We write (b1,b2) for the vector

formed by concatenating the entries of the two vectors b1 and b2. The same notation is used

for the concatenation of the vector b1 and the scalar c as (b1, c). Similarly, we denote the

concatenation of k column vectors, each of length d, into a (d×k) matrix as [b1 | b2 | · · · | bk].
We write B(τ) to represent the d×(k−τ) sub-matrix of B constructed via dropping the first τ

columns of B, i.e. B(τ) = [bτ+1 | bτ+2 | · · · | bk]. Similarly we use b(τ) to denote dropping the

first τ components of the vector b, i.e. b(τ) = (bτ+1, bτ+2, . . . , bk). We identify polynomials

f =
∑n

i=1 fix
i−1 with their coefficient vectors f = (f1, f2, . . . , fn). The Euclidean norm of a

vector v is defined to be ‖v‖ =
√∑n

i=1 v
2
i .

Definition 2.1 (Discrete Gaussian Distribution) A discrete Gaussian distribution centred

at µ and with width parameter r samples elements with probability:

exp

(
−π (x− µ)2

r2

)
.

Throughout this thesis, we typically consider discrete Gaussian distributions over the integers

to be centred at zero (i.e. µ = 0). The standard deviation of such a distribution is σ = r√
2π

,

and we denote this distribution by Dσ.

Throughout this thesis the term ring is reserved for a commutative ring R with a multiplicative

identity element 1R (we denote the additive identity element of R by 0R).

Example 2.1 For an integer q, we consider values in the set Z∩(−q/2, q/2] to be representatives

of Zq. For example, if x ∈ Z2, x can take values in the set:

Z2 = {0, 1}

and, if x ∈ Z3, x can take values in the set:

Z3 = {−1, 0, 1}.
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2.1 Mathematical Objects

Definition 2.2 (Ideal) The set I 6= ∅ is an ideal of the ring R if:

1. I is a subgroup of the additive group of R, and

2. for each r ∈ R and x ∈ I we have that xr ∈ I.

Definition 2.3 (Field) A field K is a ring which also has the property that it is closed under

multiplicative inverses, i.e. the non-zero elements of K form a multiplicative group.

Example 2.2 For a ring R, an ideal generated by a single ring element f ∈ R is denoted by

(f), and this ideal is made up of elements in the set:

(f) = {fr | r ∈ R}.

Definition 2.4 (Maximal Ideal) A proper ideal I ( R of a ring R is maximal if for any

ideal J satisfying I ⊆ J , we have either J = I or J = R.

Definition 2.5 (Quotient Ring) Given a ring R and an ideal I of R, we can define the

quotient ring R/I which is formed of cosets r + I, for r ∈ R, of the additive group of I in R.

We define the addition and multiplication operations in the quotient ring R/I in the following

way:

(I + r1) + (I + r2) = I + (r1 + r2)

(I + r1)(I + r2) = (I + r1r2),

for all r1, r2 ∈ R.

We can think of a quotient ring as a set of equivalence classes under the equivalence relation:

[x] ∼ [y] if and only if x− y ∈ I.

That is, two elements x, y ∈ R/I are equivalent if and only if their difference x−y is contained

within the ideal I. We note that an ideal I in the ring R is maximal if and only if the quotient

ring R/I is a field. A ring homomorphism φ is a structure-preserving map between two rings

R1 and R2.
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Definition 2.6 (Ring Homomorphism) The map φ : R → S is a ring homomorphism

from the ring R to the ring S if it satisfies the three conditions:

1. φ(1R) = 1S,

2. φ(r + s) = φ(r) + φ(s), and

3. φ(rs) = φ(r)φ(s),

for all r ∈ R and s ∈ S, where 1R and 1S are the multiplicative identity elements of the rings

R and S respectively.

Throughout this thesis we are particularly interested in polynomial rings of the form Zq[X]/(f)

for some polynomial f ∈ Zq[X]. In this case, two elements g, h ∈ Zq[X]/(f) are in the same

equivalence class if and only if g−h ∈ (f), i.e. g−h = fk for some k ∈ Z[X]. Multiplication in

polynomial quotient rings works as in typical polynomial multiplication, with the additional

condition that we work modulo the quotient polynomial f . For a given ring R, we denote the

ring R/qR as Rq.

When we consider elements a ∈ Rq, we can represent a as a vector a of n coefficients in Zq.
Therefore, for two ring elements a, b ∈ Rq, we can compute the polynomial sum a + b by

considering an element-wise addition of the vectors a and b. That is:

a + b = (a1 + b1, a2 + b2, . . . , an + bn),

and a + b is the coefficient vector of a + b. For multiplication, the situation is a little

more complicated: multiplication of two ring elements, i.e. ab corresponds to matrix/vector

multiplication. That is, there exists a matrix Pa such that, for any ring element b ∈ Rq we

can compute the product c = ab via:

c = Pab.

More specifically, the matrix Pa is of the form:

Pa =


a1 a2 . . . an

(xa)1 (xa)2 . . . (xa)n
...

...
. . .

...

(xn−1a)1 (xn−1a)2 . . . (xn−1a)n

 ,

where (xia)j is the jth component of the coefficient vector of the polynomial xia.
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2.1 Mathematical Objects

Example 2.3 Let Rq = Z3[X]/(x5−1). This ring can be identified with the set of polynomials

with coefficients in Z3 up to degree 4, i.e. the set:

{a1 + a2x+ a3x
2 + a4x

3 + a5x
4 | ai ∈ Z3, 1 ≤ i ≤ 5}.

Consider the polynomial g = a1 + a2x+ a3x
2 + a4x

3 + a5x
4. We note that:

xg = x(a1 + a2x+ a3x
2 + a4x

3 + a5x
4)

= a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5

= a5 + a1x+ a2x
2 + a3x

3 + a4x
4,

since x5 ≡ 1 mod (x5 − 1). In this case, the matrix Pg is given by:

Pg =



a1 a2 a3 a4 a5

a5 a1 a2 a3 a4

a4 a5 a1 a2 a3

a3 a4 a5 a1 a2

a2 a3 a4 a5 a1


.

Definition 2.7 (Irreducible Polynomial) Given a field K, a non-constant polynomial f ∈
K[X] is irreducible over K if it cannot be factored into two non-constant polynomials g, h ∈
K[X].

In typical examples considered in this thesis, the (non-constant) polynomial f is irreducible

in Zq[X], and we consider rings of the form Zq[X]/(f).

Example 2.4 The polynomial f = X2 + 1 is irreducible over Q since we cannot write:

X2 + 1 = (X + a)(X + b),

with a, b ∈ Q. We note that f is not irreducible over C since we can write f as:

X2 + 1 = (X + i)(X − i).

Example 2.4 motivates the discussion of an extension field.
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2.1 Mathematical Objects

Definition 2.8 (Extension Field) If F,K are two fields such that F is a subfield of K,

then we refer to K as an extension field of F .

Example 2.5 Consider the field Q. Clearly ±
√

2 /∈ Q, and so the polynomial p = x2 − 2 ∈
Q[X] is irreducible over Q. Since p is irreducible over Q, the ideal (p) in Q[X] is maximal

and therefore the quotient ring R = Q[X]/(x2 − 2) is a field. Since Q is a subfield of R, we

have that R is an extension field of Q.

We also consider the notion of a module M over a ring R.

Definition 2.9 (Module) Given a ring R, an abelian group M is called an R-Module if

there exists an operation � : R×M →M such that, for all m,n ∈M and r, s ∈ R, we have:

1. r � (m+ n) = r �m+ r � n,

2. (r + s)�m = r �m+ s�m,

3. (r · s)�m = r � (s�m), and

4. 1R �m = m,

where ·,+ denote the regular ring operations.

We will consider various cryptographic constructions built over rings and modules. In a

similar manner to the notion of a vector space Kd built considering d-tuples of field elements

from K, we can build a module by forming tuples of elements from a ring R.

Example 2.6 Consider the ring Rq = Zq[X]/(Xn + 1). We define:

M := {(x1, x2, . . . , xk) | x1, x2, . . . , xk ∈ Rq}.

The set M is an Rq-module since for s ∈ Rq and (x1, x2, . . . , xk) ∈ M we can define a

multiplication operation � : Rq ×M →M such that:

s� (x1, x2, . . . , xk) = (sx1, sx2, . . . , sxk),

leading to the four conditions in Definition 2.9 being satisfied. In this example, k is referred

to as the module rank. Setting k = 1, we can see that Rq itself is an Rq-module.
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2.2 Lattices

2.2 Lattices

Definition 2.10 (Lattice) A lattice L in Rd is the set:

L =

{
n∑
i=1

vibi

∣∣∣∣∣vi ∈ Z

}
,

of all integer combinations of a set of n linearly independent vectors {b1,b2, . . . ,bn} in Rd,
where d ≥ n.

The integer n is known as the rank of the lattice, and the integer d is the dimension of the

lattice. If n = d then the lattice is known as full rank. The set of linearly independent

column vectors {b1,b2, . . . ,bn} is known as a basis of the lattice, and is typically represented

in matrix form B = [b1 | b2 | · · · | bn] ∈ Rd×n. We write L(B) to denote the lattice generated

by the columns of the matrix B. In particular, this lattice is made up of the set:

L(B) = {Bv | v ∈ Zn}.

In Figure 2.1 we present an example of two different bases of the same lattice.

O

b1

b2b3

b4

Figure 2.1: The vectors {b1,b2} form a basis of the lattice consisting of the blue points, as
do the vectors {b3,b4}.
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Definition 2.11 (Span) The span of a set of vectors S over a field K is defined to be:

span(S) =

{∑̀
i=1

cisi

∣∣∣∣∣` ∈ N, ci ∈ K, si ∈ S

}
.

That is, the span of the set S is the set of finite linear combinations of elements of S, with

coefficients drawn from the underlying field K. Given a full-rank lattice L, the Dual lattice

L∗ is the set of vectors in the span of L which have integer inner product with all lattice

points in L.

Definition 2.12 (Dual Lattice) Let L be a full rank lattice of dimension d. The dual

lattice of L is defined to be:

L∗ = {v ∈ span(L) | ∀w ∈ L, 〈v,w〉 ∈ Z}.

It can be shown that the dual lattice is a lattice.

Proposition 2.1 Let L be a lattice with basis B. The dual lattice of L(B), denoted by L(B)∗,

is a lattice with basis B(B>B)−1.

To prove this result, we show that L(B(B>B)−1) ⊆ L(B)∗ and L(B)∗ ⊆ L(B(B>B)−1). We

will need to use the fact that:

(B(B>B)−1)>B = ((B>B)−1)>B>B

= ((B>B)−1)B>B

= I

Proof. Set C = B(B>B)−1. Note that:

Cx = B(B>B)−1x

= B((B>B)−1x)

and therefore we have that Cx ∈ span(L(B)). Moreover, for y = Cx ∈ span(L(B)) and
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w = Bv ∈ L(B), we have:

〈y,w〉 = 〈Cx,w〉

= 〈x,C>w〉

= 〈x,C>Bv〉

= 〈x, (B(B>B)−1)>Bv〉

= 〈x,v〉 ∈ Z

and, therefore, we have that Cx ∈ L(B)∗ by Definition 2.12. This gives us L(C) ⊆ L∗(B).

To prove that L(B)∗ ⊆ L(C), we consider z ∈ L(B)∗ and aim to show that z ∈ L(C). Since

z ∈ L(B)∗, we have that z ∈ span(L(B)) and, for all r ∈ L(B), we have 〈z, r〉 ∈ Z by

Definition 2.12. Further, we have that z = Bs for some vector s ∈ Rd, and, therefore:

z = Bs

= B(B>B)−1(B>B)s

= C(Bz)

and, since each component of Bz is an integer, we have L(B)∗ ⊆ L(C). Therefore, we have

L(B)∗ ⊆ L(C), as required. �

We will also encounter q-ary lattices when considering cryptanalytic attacks on lattice-based

cryptosystems.

Definition 2.13 (q-ary Lattice) A q-ary lattice is a lattice L which satisfies:

qZd ⊆ L ⊆ Zd,

for some integers q, d.

Example 2.7 For a matrix A ∈ Zn×mq , where q,m, n ∈ N, the lattice:

Lq(A) = {v ∈ Zm | vA = 0 mod q},

is q-ary: clearly L ⊆ Zn, and if y ∈ qZm then yA ≡ 0 mod q meaning that qZn ⊆ L.

Therefore, we have qZn ⊆ L ⊆ Zn as required.
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Definition 2.14 (Unimodular Matrix) Let U ∈ Zd×d be a matrix with all integer entries.

The matrix U is referred to as unimodular if the determinant of U is in the set {1,−1}.

Proposition 2.2 Let B1 and B2 be the matrix representations of two lattice bases. Then:

L(B1) = L(B2),

if and only if B1 = UB2 for some unimodular matrix U.

There are infinitely many unimodular matrices of dimension d ≥ 2. For dimension two we

note that:

det

 a b

c d

 = ad− bc,

and there are infinitely many solutions to the integer equation ad− bc = ±1. The same holds

true for all larger dimensions (by induction). For dimension d ≥ 2, a lattice has infinitely

many bases and there are a variety of proofs for this result. Informally, for full rank lattices,

this can be seen as a combination of the facts that:

1. there are infinitely many unimodular matrices of dimension d ≥ 2,

2. full rank lattices admit an invertible basis matrix (thus U1B = U2B ⇐⇒ U1 = U2),

and

3. Proposition 2.2.

Definition 2.15 (Fundamental Parallelepiped) Given a lattice basis B, we define the

set:

P(B) = {Bx | x ∈ Rn such that ∀i, 0 ≤ xi < 1}.

as the fundamental parallelepiped of the lattice basis B.

Note that the shape of this parallelepiped depends on the lattice basis B under consideration.

Two such parallelepipeds can be seen in Figure 2.2.

We are also interested in the shifted fundamental parallelepiped.
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O

P1

P2

Figure 2.2: Two fundamental parallelepipeds, P1 and P2, of the bases B1 and B2.

Definition 2.16 (Shifted Fundamental Parallelepiped) Given a lattice basis B, we

define the set:

P(B) =

{
Bx

∣∣∣∣x ∈ Rn such that ∀i, −1

2
≤ xi <

1

2

}
.

as the shifted fundamental parallelepiped of the lattice basis B.

Definition 2.17 (Volume of a Lattice) The volume of a lattice L(B) is defined to be:

Vol(L(B)) =
√

det(BTB).

Note that if B1 = UB for some unimodular matrix U ∈ Z(d×d), then:

Vol(L(B1)) =
√

det(BT
1 B1)

=
√

det(BTUTUB)

=
√

det(BTB)

= Vol(L(B)),

since by definition UTU = I. This is as expected, since B1 and B are bases of the same

lattice, and volume is a lattice invariant.
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O

λ2(L)
λ1(L)

Figure 2.3: An example of λ1(L) and λ2(L) in the lattice represented by the blue dots.

Definition 2.18 (Successive Minima) We denote by λi(L) the ith successive minima of

the lattice L, i.e. the radius of the smallest ball, centred at the origin, containing at least i

linearly independent lattice vectors.

An example of λ1(L) and λ2(L) for a lattice L is given in Figure 2.3.

2.3 Gram-Schmidt Orthogonalisation

For a lattice basis B = [b1 | b2 | · · · | bd], we can define the corresponding Gram-Schmidt

orthogonalised (GSO) vectors B∗ = {b∗1,b∗2, . . . ,b∗d} as:

b∗1 = b1

b∗i = bi −
i−1∑
j=1

µi,jb
∗
j ,

where the Gram-Schmidt coefficients µi,j are given by:

µi,j =
〈bi,b∗j 〉
〈b∗j ,b∗j 〉

.
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The vector b∗i is the vector bi with contributions in the directions of {b∗1,b∗2, . . . ,b∗i−1}
removed, i.e. b∗i is the component of the vector bi which is orthogonal to the hyperplane

defined by the set of vectors {b∗1,b∗2, . . . ,b∗i−1}. This means that the vectors b∗i and b∗j , for

i 6= j, are pairwise orthogonal, i.e. 〈b∗i ,b∗j 〉 = 0.

The volume of the lattice L(B) can be computed as the product of the lengths of the GSO

vectors:

Vol(L(B)) =
d∏
i=1

‖b∗i ‖,

and, as outlined earlier, can also be computed as the determinant of the Gram matrix BTB,

comprising of the coefficients µi,j , i.e. (BTB)i,j = µi,j . We note that the vectors B∗ =

[b∗1 | b∗2 | · · · | b∗d] in general do not form a basis of the lattice L(B), however these two bases

do span the same space i.e. span(B) = span(B∗).

When considering cryptanalytic attacks against lattice-based cryptosystems, the lengths of

the GSO vectors for a given lattice basis B are an important quantity, we which refer to as

the GSO profile.

Definition 2.19 (GSO Profile) For a lattice L of rank n, we define the GSO Profile of the

lattice basis B to be the set of GSO lengths, that is:

{‖b∗i ‖ | 1 ≤ i ≤ d}.1

2.4 Projections

Definition 2.20 (Projection) Given a vector v and a non-zero vector u, we define the

projection of v onto the direction of u to be:

πu(v) =
〈u,v〉
〈u,u〉

u.

We are particularly interested in projections onto, and orthogonal to, basis vectors of a lattice

L.

1Note that the GSO profile is sometimes defined in terms of the squared GSO lengths.
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Definition 2.21 (Parallel Projection) Given a lattice with basis B we write π
‖
i,B(x), 1 ≤

i ≤ d, to denote the parallel projection of x onto the space spanned by the set of vectors

{b1,b2, . . . ,bi−1}, that is:

π
‖
i,B(x) =

i−1∑
j=1

πb∗j (x) =
i−1∑
j=1

〈b∗j ,x〉
〈b∗j ,b∗j 〉

· x.

Definition 2.22 (Orthogonal Projection) Given a lattice with basis B, we write π⊥i,B(x),

1 ≤ i ≤ d, to denote the orthogonal projection of x onto the space spanned by the vectors

{b1,b2, . . . ,bi−1}, that is:

π⊥i,B(x) = x− π‖i,B(x)

= x−
i−1∑
j=1

〈b∗j ,x〉
〈b∗j ,b∗j 〉

· x.

Note that π⊥1,B(x) is the identity function, i.e. π⊥1,B(x) = x, and π
‖
1,B(x) = 0. Moreover, since

the lattice basis is clear from context, we usually drop the basis B and write π⊥i or π
‖
i . Since

the orthogonal projection is usually the projection of interest, we sometimes write π⊥i := πi.

Example 2.8 Mapping x = (x1, x2, . . . , xn)T ∈ Rn to the point y = (x1, x2, . . . , xn−1, 0)T

is a parallel projection onto the space spanned by the set of unit vectors {u1,u2, . . . ,un−1}.
Such a projection can be represented by the matrix:

P =

In−1 0

0 0

 ∈ Rn×n,

so that y = Px. The corresponding orthogonal protection onto the space spanned by the

set of unit vectors {u1,u2, . . . ,un−1}, which takes x = (x1, x2, . . . , xn)T ∈ Rn to the point

y = (0, 0, . . . , 0, xn)T can be represented by the matrix:

Q =

0 0

0 I1

 ∈ Rn×n,

so that y = Qx.

We are particularly interested in projecting orthogonally to a subset of basis vectors for some

lattice L(B), which generates a projected sublattice:

Λi(B) = {π⊥i (x) | x ∈ L(B)},
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we note that Λi(B) is indeed a sublattice of L(B), with a basis given by:

{π⊥i (bi), π
⊥
i (bi+1), . . . , π⊥i (bd)}.

Note that π⊥1 (B) = L(B) as is expected. By considering the projection function outlined in

Definition 2.22, we note that we can write the Gram-Schmidt vectors as:

b∗i = bi −
i−1∑
j=1

µi,jb
∗
j

= bi −
i−1∑
j=1

πb∗j (bj)

= π⊥i (bi).

2.5 Hard Problems in Lattices

We are interested in several of the hard problems in lattices which underpin lattice-based

cryptography. We first consider the Shortest Vector Problem which challenges us to find the

shortest vector in a lattice.

Definition 2.23 (Shortest Vector Problem (SVP)) Given a lattice basis B, find a shortest

non-zero lattice vector in L(B), i.e. a vector x ∈ L(B) of length ‖x‖ = λ1(L(B)).

We can also define a selection of problems closely related to the shortest vector problem. The

γ-Approximate Shortest Vector Problem gives us a bound γ and asks us to find a vector whose

length is upper-bounded by γλ1(L(B)).

Definition 2.24 (γ-Approximate Shortest Vector Problem (Approx-SVP)) Given a

lattice basis B and an approximation factor γ, find a non-zero lattice vector in x ∈ L(B) of

length ‖x‖ ≤ γλ1(L(B)).

The γ-unique Shortest Vector Problem (uSVP) provides a guarantee that a shortest vector

exists, is unique (up to sign), and is significantly shorter (in particular, by a factor of γ) than

the second shortest vector λ2(L) in the lattice L.
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Definition 2.25 (γ-unique Shortest Vector Problem (uSVP)) Given a lattice basis B

guaranteed to contain a non-zero shortest vector satisfying λ2(L(B))/λ1(L(B)) = γ, find this

shortest vector.

The Bounded Distance Decoding Problem (BDD) provides us with a public lattice basis L(B),

as well as a target point t, and a parameter γ. Our goal is to find the closest lattice vector to

the given target point, under the guarantee that the target point is very close to the lattice.

Definition 2.26 (Distance Between a Point and a Lattice) We define dist(t, L(B)) to

be the distance between the target point t and the closest point to t contained within the lattice

L(B), that is:

dist(t, L(B)) = min{‖x− t‖ | x ∈ L(B)}.

Definition 2.27 (γ-Bounded Distance Decoding Problem (BDDγ)) Given the basis

of a lattice L(B), a vector t /∈ L(B), and a parameter 0 < γ such that dist(t, L(B)) < γλ1(B),

find the lattice vector v ∈ L(B) which is closest to t.

The Short Integer Solutions Problem (SIS) asks us to find a vector below a certain length,

which is in the left kernel of a given, public, matrix.

Definition 2.28 (γ-Shortest Integer Solutions Problem (SIS)) Let A ∈ Z(m×n)
q be a

uniformly random matrix. Find a non-zero vector x ∈ Zmq satisfying ‖x‖ ≤ γ and xA ≡
0 mod q.

We are interested in lattice-based cryptography which is built on the hardness of two families

of problems: the NTRU problem and the Learning with Errors Problem.

Definition 2.29 (NTRU [HPS96]) Let n, q be positive integers, φ ∈ Z[x] be a monic

polynomial of degree n, and Rq = Zq[x]/(φ). Let f, g ∈ Rq, with f invertible, be small

polynomials (i.e. having small coefficients) and h = g · f−1 ∈ Rq.
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� Search-NTRU is the problem of recovering f or g given h.

� Decision-NTRU is the problem of deciding if h = g · f−1 or uniform.

Typically, the quotient polynomial is chosen as φ = Xn + 1. However, other instantiations of

the NTRU problem (such as NTRUPrime [BCLv19]) consider alternative quotient polynomials,

such as φ = Xn−X − 1. An important object is the matrix Ph as defined in Section 2.1, for

a choice of φ = Xn − 1 this matrix takes the form:

Ph =


h1 h2 . . . hn

hn h1 . . . hn−1

...
...

. . .
...

h2 h3 . . . h1

 ,

where h1, . . . , hn are the coefficients of the degree (n − 1) polynomial h ∈ Rq. In NTRU-

based cryptographic constructions, the ring element h (and therefore the matrix Ph) is

typically made public. Representing this matrix requires storage of only n integers modulo

q, i.e. n log2(q) bits. Note that, for other choices of φ, this matrix can take a different form,

related to the structure of multiplication by xi.

We next define variants of the Learning with Errors problem. We begin by outlining the

Module Learning with Errors Problem (Module-LWE), before defining the Ring Learning

with Errors Problem (Ring-LWE) and the Learning with Errors Problem (LWE), which can

both be viewed as special cases of Module-LWE.

Definition 2.30 (Module Learning with Errors (Module-LWE) [LS15]) Let n, q, k

be positive integers such that d = n/k ∈ Z. Define the rings R = Z[X]/(Xd + 1) and

Rq = R/qR. Let χ be a probability distribution on R and s be a secret module element in Rkq .

� We define the Module-LWE Distribution MLs,χ,q as the distribution on Rkq ×Rq given by

choosing ai ∈ Rkq uniformly at random, choosing ei ∈ R according to χ and considering

it as an element of Rq, and outputting (ai, 〈ai, s〉+ ei) ∈ Rkq ×Rq.

� Search-Module-LWE is the problem of recovering the ring element s from a collection

{(ai, 〈ai, s〉+ ei)}mi=1 of samples drawn according to MLs,χ,q.

39



2.5 Hard Problems in Lattices

� Decision-Module-LWE is the problem of distinguishing whether samples {(ai, 〈ai, s〉+ ei)}mi=1

are drawn from the Module-LWE distribution MLs,χ,q or uniformly from Rkq ×Rq.

The distribution χ is typically a discrete Gaussian distribution over Z, as defined in Definition 2.1,

centred at zero and with width parameter αq. Here, the value α is referred to as the LWE

error rate, and we recall that a discrete Gaussian distribution with width parameter αq has

standard deviation σ = αq√
2π
.

Note that a module element v ∈ Rq corresponds to a vector of k polynomials of degree d.

Therefore, by considering the co-efficient vectors of the module elements, and recalling that

Pa is the matrix representation of multiplication by the ring element a, we can represent

a single Module-LWE sample, consisting of the k ring elements a1, a2, · · · , ak ∈ Rq, by the

system of equations:

b = [Pa1 | Pa2 | · · · | Pak ]s + e.

More explicitly, for our choice of f = Xd + 1, we have that each Paj is of the form:

Paj =



a1 a2 a3 · · · ad−2 ad−1 ad

−an a1 a2 · · · ad−3 ad−2 ad−1

−an−1 −an a1 · · · ad−4 ad−3 ad−2

...
...

...
. . .

...
...

...

−a3 −a4 −a5 · · · −ad a1 a2

−a2 −a3 −a4 · · · −ad−1 −ad a1


,

and, therefore, we have:

b =


a1,1 a1,2 . . . a1,d . . . ak,1 ak,2 . . . ak,d

−a1,d a1,1 . . . a1,d−1 . . . −ak,d ak,1 . . . ak,d−1

...
...

. . .
...

. . .
...

...
. . .

...

−a1,2 −a1,3 . . . a1,1 . . . −ak,2 −ak,3 . . . ak,1




s1

s2

...

sn

+


e1

e2

...

en

 .

Representing the matrix A = [Pa1 | Pa2 | · · · | Pak ] requires storage of n = dk integers

modulo q, i.e. n log2(q) bits. Setting the module rank k = 1 gives rise to the Ring Learning

with Errors Problem.
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Definition 2.31 (Ring Learning with Errors (Ring-LWE) [LPR10]) Define the rings

R = Z[X]/(Xn + 1) and Rq = R/qR. Let n, q be positive integers, χ be a probability

distribution on R and s be a secret ring element in Rq.

� We define the Ring-LWE Distribution RLs,χ,q as the distribution on Rq × Rq given by

choosing ai ∈ Rq uniformly at random, choosing ei ∈ R according to χ and considering

it as an element of Rq, and outputting (ai, ais+ ei) ∈ Rq ×Rq.

� Search-Ring-LWE is the problem of recovering the ring element s from a collection

{(ai, ais+ ei)}mi=1 of samples drawn according to RLs,χ,q.

� Decision-Ring-LWE is the problem of distinguishing whether samples {(ai, ais+ ei)}mi=1

are drawn from the Ring-LWE distribution RLs,χ,q or uniformly from Rdq ×Rq.

In our definition of Ring-LWE we have considered the quotient ring Rq = Zq[X]/(Xn + 1) as

a basis for the problem. In fact, we can define Ring-LWE with a variety of rings, although

this can lead to security issues [Pei16]. A single Ring-LWE sample consists of ais+ ei where

ai, s, ei ∈ Rq are all ring elements. As in Module-LWE, we can represent Ring-LWE samples

in matrix/vector form:

b = Pas + e.

More explicitly, for our choice of f = Xn + 1, we have:

b =


a1 a2 · · · an

−an a1 · · · an−1

...
...

. . .
...

−a2 −a3 · · · a1




s1

s2

...

sn

+


e1

e2

...

en

 .

Representing the matrix Pa requires storage of n integers modulo q, i.e. n log2(q) bits. Finally,

if we consider the ring elements in Rq as vectors in Znq , and ignore the algebraic structure

induced by the ring Rq, we arrive at the Learning with Errors problem.

Definition 2.32 (Learning with Errors (LWE) [Reg05]) Let n, q be positive integers,

χ be a probability distribution on Z and s be a secret vector in Znq .
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� We denote the LWE Distribution Ls,χ,q as the distribution on Znq ×Zq given by choosing

ai ∈ Znq uniformly at random, choosing ei ∈ Z according to χ and considering it as an

element of Zq, and outputting (ai, 〈ai, s〉+ ei) ∈ Znq × Zq.

� Search-LWE is the problem of recovering the vector s from a collection {(ai, 〈ai, s〉+ ei)}mi=1

of samples drawn according to Ls,χ,q.

� Decision-LWE is the problem of distinguishing whether samples {(ai, 〈ai, s〉+ ei)}mi=1 are

drawn from the LWE distribution Ls,χ,q or uniformly from Znq × Zq.

If the components of the LWE secret follow the error distribution, then this is known as

normal-form LWE. A single LWE sample consists of 〈ai, s〉 + ei, where the n coefficients of

the vector ai are drawn uniformly at random from Zq, and the scalar ei is drawn from the error

distribution χ. We can represent m LWE samples by the system of equations b = As + e,

where: 

b1

b2
...
...

bm


=



a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
... · · ·

...
...

...
. . .

...

am,1 am,2 · · · am,n




s1

s2

...

sn

+



e1

e2

...

...

em


.

In LWE-based cryptographic constructions the matrix A and the vector b are typically made

public, whereas the secret s and the error e remain private. To represent the matrix A

requires storage of n×m integers modulo q, i.e. nm log2(q) bits.

To summarise, Module-LWE considers vectors of k polynomials over the ring Z[X]/(Xn/k+1).

Setting the module rank k = 1, and considering elements of the ring Z[X]/(Xn + 1), gives

rise to the Ring-LWE problem and, moreover, ignoring any structure induced by this ring,

we can retrieve the Learning with Errors problem over Znq . Therefore, one can represent:

� a single Module-LWE sample by k Ring-LWE samples of the appropriate dimension,

� a single Ring-LWE sample by n LWE samples, and

� a single Module-LWE sample as nk LWE samples.

Throughout this thesis, we will always view Ring-LWE and Module-LWE samples simply as

LWE samples of the appropriate dimension. Based on current knowledge, this approach is
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reasonable since there are no known approaches to solve Ring-LWE and Module-LWE which

exploits the additional algebraic structure in the ring.

2.5.1 Related Problems

There are a variety of problems closely related to the Learning with Errors problem. One

variant of interest is the Learning with Rounding Problem [BPR12], which replaces the

addition of a random error term ei with a deterministic rounding process. Informally, this

deterministic rounding process splits the space Zq into p sections, each of size approximately
q
p . Specifically, the operation:

bxep =

⌊
p

q
x

⌉
,

is used.

Definition 2.33 (Learning with Rounding (LWR) [BPR12]) Let n, q, p < q be positive

integers and s be a secret vector in Znq .

� We define the LWR Distribution Ls,q,p as the distribution on Znq × Zq given by choosing

ai ∈ Znq uniformly at random and outputting (ai, b〈ai, s〉ep) ∈ Znq × Zp.

� Search-LWR is the problem of recovering the vector s from a collection {(ai, b〈ai, s〉ep)}mi=1

of samples drawn according to Ls,q,p.

� Decision-LWR is the problem of distinguishing whether samples {(ai, b〈ai, s〉ep)}mi=1 are

drawn from the LWR distribution Ls,q,p or uniformly from Znq × Zp.

We note that we can similarly define the Ring-Learning with Rounding Problem (Ring-LWR),

and the Module-Learning with Rounding Problem (Module-LWR) in a similar manner to LWR

and LWE. We can also view Learning with Rounding samples as LWE samples, where the

error term is generated according to the parameters used in the rounding process as outlined

above:

b〈ai, s〉ep = 〈ai, s〉+ ei,

for an appropriately chosen error term ei. In Table 2.1, we provide a comparison of the LWE,

Ring-LWE, Module-LWE, LWR, and NTRU problems.

43



2.5 Hard Problems in Lattices

Assumption Secret Error Public Coefficients Sample

NTRU f ∈ Rq, invertible g ∈ Rq h ∈ Rq (h, g · f−1) ∈ Rq ×Rq

LWE s ∈ Znq ei ∈ Z ai ∈ Znq (ai, 〈ai, s〉+ ei) ∈ Znq × Zq

Ring-LWE s ∈ Rq ei ∈ R ai ∈ Rq (ai, ais+ ei) ∈ Rq ×Rq

Module-LWE s ∈ Rkq ei ∈ R ai ∈ Rkq (ai, 〈ai, s〉+ ei) ∈ (Rq)
k ×Rq

LWR s ∈ Znq n/a ai ∈ Znq (ai, b〈ai, s〉cp) ∈ Znq × Zp

Ring-LWR s ∈ Rq n/a ai ∈ Rq (ai, baiscp) ∈ Rq ×Rp

Module-LWR s ∈ Rkq n/a ai ∈ Rkq (ai, b〈ai, s〉cp) ∈ Rkq ×Rp

Table 2.1: A comparison of variants of the Learning with Errors, Learning with Rounding,
and NTRU problems.

2.5.2 Small Secrets

In many cases, for efficiency purposes, it can be useful to restrict the secret distribution of s

from uniformly random over Znq to some other distribution with a smaller support e.g. {0, 1}n.

Several typical examples can be found in Definition 2.34, following the notation of [Alb17].

Definition 2.34 (Small Secret Distributions) Let n, q be positive integers.

� B is any probability distribution on Znq where each component is ≤ 1 in absolute value.

� B+ is the probability distribution on Znq where each component is independently sampled

uniformly at random from {0, 1}.

� B− is the probability distribution on Znq where each component is independently sampled

uniformly at random from {−1, 0, 1}.

� B+
h is the probability distribution on Znq where components are sampled uniformly at

random from {0, 1} with the additional guarantee that at most h components are non-

zero.

� B−h is the probability distribution on Znq where components are sampled uniformly at

random from {−1, 0, 1} with the additional guarantee that exactly h components are

non-zero.
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� B−(h1,h2) is the probability distribution on Znq where components are sampled uniformly

at random from {−1, 0, 1} with the additional guarantee that exactly h1 components are

equal to −1 and exactly h2 components are equal to 1.

We define the Small-secret Learning with Errors problem to be the same as in Definition 2.32

except the secret is drawn from one of the distributions defined in Definition 2.34. The

hardness of Small-secret LWE has been studied in [BLP+13] and more recently in [Mic18].

The concrete loss of security which arises from the use of small secrets has been studied

in [BGPW16, Alb17, ACD+18, Wun19, CP19]. Note that we can consider small-secrets in

the context of any of the Module-LWE/R, Ring-LWE/R, or LWE/R problems.

2.6 SVP Solvers, CVP Solvers, and Lattice Reduction Algorithms

The security of Learning with Errors-based cryptosystems depends on the hardness of finding

short vectors within q-ary lattices. There are two main families of algorithms used to find

short vectors. The first are sieving algorithms [AKS01, LMvdP15, BDGL16], which use

large lists of short vectors and iteratively generate new vectors by checking for shorter linear

combinations within this list, requiring the use of exponential memory. The second are

enumeration algorithms [Kan83, FP85, MW15], which perform a lattice-point search around

a given target point and only require the usage of polynomial memory. There are a variety

of estimates in the literature considering the running time of these SVP solvers, which are

surveyed in Chapter 4.

Informally, a lattice reduction algorithm takes as input a public, ‘bad’, basis B of some lattice

L and attempts to find a shorter and more orthogonal basis B′ of the same lattice. As an

example, the BKZ algorithm [SE94] does this by calling an SVP solver on projected sublattices

of dimension β at a cost of:

TBKZ(β, d) = c · TSVP(β).

Where TSVP(β) is the cost of an SVP solver in dimension β, and c denotes the number of

required calls to this SVP solver. The FPYLLL library [FPL20] contains implementations of

the lattice reduction algorithms outlined in this section, and we will use this library throughout

to provide examples.
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2.6.1 LLL

The Lenstra, Lenstra and Lovász (LLL) algorithm [LLL82] was originally designed as an

algorithm to perform polynomial factorisation. This algorithm has since been used to perform

lattice reduction and, indeed, is the first polynomial time lattice reduction algorithm. In a

lattice of dimension d, LLL finds an (approximate) shortest vector v whose length is at most

γλ1(L) where γ = 2O(d). Let L(B) be the lattice with basis matrix [b1 | b2 | · · · | bd], GSO

vectors B∗ = {b∗1,b∗2, · · · ,b∗d}, and Gram-Schmidt coefficients µi,j .

Definition 2.35 (LLL-reduced Basis) We say that the basis B is LLL-reduced if the

following two conditions are satisfied:

1. for 1 ≤ j < i ≤ d, we have that |µi,j | ≤ 1
2 , and

2. for t = 1, 2, . . . , d−1, and some κ ∈ (1
4 , 1], each pair of vectors indexed (t, t+1) satisfies:

κ‖b∗t ‖2 ≤ ‖b∗t+1‖2 + µ2
t+1,t‖bt‖2.

The first condition (size reduction) ensures that the lengths of the GSO vectors are in

descending order i.e. ‖bt‖ ≥ ‖b∗t+1‖. The second (Lovász) condition can be re-arranged

to:

(κ− µ2
t+1,t)‖b∗t ‖2 ≤ ‖b∗t+1‖2,

and by the first condition we have that |µt,t+1| ≤ 1
2 , which gives us µ2

t,t+1 ≤ 1
4 , and, since

κ ∈ (1
4 , 1], this leads us to (κ − µ2

t+1,t) ∈ (0, 3
4 ]. This provides a bound on the difference in

length between successive Gram-Schmidt vectors, i.e. b∗t and b∗t+1, for 1 ≤ t ≤ d − 1. Note

that we can write:

‖b∗t ‖2 ≤
1

(κ− µ2
t+1,t)

‖b∗t−1‖2 ≤
1

(κ− 1
4)
‖b∗t−1‖2,

and, choosing e.g. κ = 1
2 , we can note the relation:

‖b∗t ‖2 ≤ 4‖b∗t−1‖2.

Intuitively, LLL works in the following way: we perform size reduction, i.e. iteratively compute:

bt ← bt −
t−1∑
j=1

bµt,jebj ,
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and then we check that the Lovász condition is satisfied. If this condition is not satisfied at

e.g. index `, we swap the position of the vector b` with the previous vector b`−1 and restart

the process. We outline the LLL algorithm in Algorithm 1.

Input: A basis for the lattice L(B) and κ ∈ (1
4 , 1]

Result: A κ-LLL-reduced basis for the lattice L(B)
Compute the GSO vectors b∗1,b

∗
2, . . . ,b

∗
d

for i = 2 to d do
for j = i-1 to 1 do

bi ← bi − bµi,jebj
end

end
if there exists a t such that (κ− µ2

t+1,t)‖b∗t ‖2 ≤ ‖b∗t+1‖2 then
Swap bt and bt+1 and restart

end

Algorithm 1: The LLL Algorithm.

We discuss heuristics related to the LLL algorithm, such as the expected shape of the output

basis, in Section 2.8.

2.6.1.1 Performing LLL in FPYLLL

We can use the FPYLLL library [FPL20] to perform LLL reduction in practice. Let us

consider a q-ary lattice of dimension d = 220, with q = 215. This lattice has basis matrix

given by:

B =

I110 0

A 215 · I110

 ,

where the components of A are chosen uniformly at random from Zq. We perform LLL-

reduction on such a lattice basis using the SageMath code in Figure 2.4, which generates an

output GSO Profile as in Figure 2.5. Clearly, by considering Algorithm 1, we expect that

the lengths of the GSO vectors will decrease as the index i increases, i.e. ‖b∗i ‖ ≥ ‖b∗i+1‖ for

1 ≤ i < d.
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from fpylll import *

A = IntegerMatrix.random(220,"qary", k=110, q=2**15)[::=1]

A = LLL.reduction(A)

M = GSO.Mat(A)

M.update gso()

N = []

for i in range(len(M.r())):

N.append((i, log(M.r()[i],2**15).n()))

for i in N:

print(i)

Figure 2.4: Code used to generate a random q-ary lattice of dimension 220 with modulus
q = 215 and determinant q110, and perform LLL-reduction.
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Figure 2.5: GSO lengths of a random q-ary lattice of dimension 220 with modulus q = 215

and determinant q110 which has been LLL-reduced using FPYLLL [FPL20].
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2.6.2 BKZ

For the majority of this thesis the lattice reduction algorithm under consideration will be the

Block Korkine Zolotarev algorithm (BKZ) [CN11]. The high level idea of BKZ is to produce

a shorter lattice basis by finding the short vectors in projected sublattices of dimension β,

referred to as the blocksize, as a subroutine. Let L(B) be the lattice with basis matrix

B = [b1 | b2 | · · · | bn], and corresponding GSO vectors B∗ = {b∗1,b∗2, · · · ,b∗n}.

Definition 2.36 (HKZ-reduced Basis) We say that the basis B is HKZ-reduced if the

following two conditions are satisfied:

1. The lattice basis is size reduced, and

2. for i ∈ {1, . . . , d} we have that bi = λ1(πi(L(B))).

Recall that the function π1(·) is the identity function, meaning that for i = 1 the second

condition states that b1 = λ1(L(B)). We write B[i,j] to denote the projected sublattice with

basis matrix:

[πi(bi) | πi(bi+1) | · · · | πi(bj)] .

Definition 2.37 (BKZ-β-reduced Basis) The lattice basis B is BKZ-β-reduced, for some

β ≥ 2, if the following two conditions are satisfied:

1. The lattice basis is size reduced, and

2. For i ∈ {1, . . . , d} we have that bi = λ1(L(B[i,min(i+β−1,d)])).

The BKZ algorithm is complex, and can be difficult to present concisely. We provide an

intuition as to how BKZ works, and point to the literature [CN11] for full details. In this

thesis use BKZ as a black-box: an algorithm which, given as input a lattice basis, provides

us with another lattice basis which satisfies certain properties. These properties can then

be used to produce running times for cryptanalytic attacks. Informally, the BKZ algorithm

executes the following set of steps:
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1. The process begins by considering the first “block” of β vectors bi,bi+1, . . . ,bi+β−1 for

i = 1. We find a new, shorter, vector bψ, which is a linear combination of the vectors

under consideration, by solving SVP in this “block”.

2. We then insert this vector bψ into the lattice basis for L(B) (in position i), and, since

we now have a set of d + 1 vectors in d-dimensional space, we use LLL to remove the

resulting linear dependency, that is, we remove the resulting “zero” vector to retrieve a

new basis B′′ for the full lattice L.

3. We increase the index i, iterating through the set i ∈ {1, 2, . . . , d− β + 1}.

4. We repeat this process c times, halting when either (a) an upper bound on c is achieved,

or (b) the output basis satisfies a set of pre-defined conditions (which may include, for

example, halting when the quality of the basis is no longer improving at a predetermined

rate).

Each cycle through the index set i ∈ {1, 2, . . . , d − β + 1} is referred to as a tour. We note

that the number of tours considered inside BKZ affects both the running time and the output

quality.

2.6.2.1 Performing BKZ in FPYLLL

We can use the FPYLLL library [FPL20] to perform BKZ reduction for a variety of blocksizes

β. Using the code outlined in Figure 2.6, we can generate GSO profiles for a random q-ary

matrix as in Section 2.6.1.1: i.e. with d = 220, q = 215, and m = n = 110. This code generates

basis profiles using blocksizes β ∈ {10, 30, 50, 70}, and the output can be seen in Figure 2.7.

In a similar manner to Figure 2.5, we expect the lengths of the GSO vectors to be decreasing,

i.e. ‖b∗i ‖ ≥ ‖b∗i+1‖ for 1 ≤ i < d.
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from fpylll import *

from fpylll.algorithms.bkz2 import BKZReduction as BKZ2

FPLLL.set precision(128)

A = IntegerMatrix.random(220,"qary", k=110, q=2**15)[::=1]

M = GSO.Mat(A, float type = "mpfr")

M.update gso()

params = BKZ.EasyParam(block size = 50, flags=BKZ.VERBOSE)

bkz = BKZ2(M)

bkz(params)

N = []

for i in range(len(M.r())):

N.append((i, log(M.r()[i],2**15).n()))

for i in N:

print(i)

Figure 2.6: Code used to generate the BKZ-50 reduced lattice basis considered in Figure 2.7.
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Figure 2.7: Output GSO lengths of a random q-ary lattice of dimension 220 with modulus
q = 215 and determinant q110 which has been BKZ-β reduced for β ∈ {10, 30, 50, 70} using
FPYLLL [FPL20]. For comparison, we also include the LLL basis profile used in Figure 2.5.
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2.7 Babai’s Nearest Plane Algorithm

Babai’s Nearest Plane algorithm [Bab86] is a polynomial time algorithm which (approximately)

solves the CVP problem. That is, given a lattice L(B) with B ∈ Rd×n and target point t ∈ Rd,
Babai’s Nearest Plane algorithm outputs a vector v ∈ L(B) which satisfies:

‖v − t‖ ≤ 2
n
2 dist(t, L(B)).

We describe Babai’s Nearest Plane algorithm in Algorithm 2.

Input: A basis for the lattice L(B) and a target point t ∈ Rm
Result: A vector v which satifies‖v − t‖ ≤ 2

n
2 dist(t, L(B))

Run LLL on B with δ = 3/4. Set b = t
for i = n to 1 do

b = b−
⌈
〈b,b∗i 〉
〈b∗i ,b∗i 〉

⌋
bi

end
Output t− b

Algorithm 2: Babai’s Nearest Plane algorithm.

If we consider the lattice L(B) tiled by the shifted fundamental parallelepiped defined in

Definition 2.16, then, for a given target vector t, Babai’s Nearest Plane algorithm returns the

lattice point which is contained in the same fundamental region of the target vector t (here,

we assume that the parallelepiped is centred on the vector t). Although Babai’s Nearest Plane

algorithm is deterministic, in the case of decoding attacks on NTRU and LWE, we can define

a success probability with respect to the target point t [LN13], and we outline approaches for

computing this probability in Chapter 3.

2.8 Cryptanalytic Heuristics

In order to provide concrete security estimates for lattice-based cryptosystems, we use the

running times of the best attacks. To retrieve these running times, we require usage of many

heuristics. Throughout this section we outline the cryptanalytic heuristics used in this thesis.

We begin with the root-Hermite factor, a quantity which captures the quality of a lattice basis

after lattice reduction has been performed.

Definition 2.38 (Root-Hermite Factor) For a basis B of a lattice L of dimension d, the
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root-Hermite factor is defined to be:

δ =

(
‖b1‖

Vol(L)1/d

)1/d

.

For bases produced by the BKZ algorithm with β ≥ 40, this value is well approximated by

δ2(β−1) = β
2πe(βπ)1/β [Che13]. As the value of β increases, the value δ decreases towards one.

Example 2.9 Consider the BKZ-reduced lattice bases in Figure 2.7. In Table 2.2, for each

value of the blocksize β, we compute the root-Hermite Factor δ and also calculate the corresponding

approximation β
2πe(βπ)1/β.

β ‖b1‖ δ β
2πe(βπ)1/β

10 5616.891 1.01574 0.98947

30 3486.508 1.01353 1.01240

50 2501.535 1.01201 1.01206

70 1944.753 1.01085 1.01084

Table 2.2: The root-Hermite factor for a random q-ary lattice of dimension 220 with modulus
q = 215 and determinant q110 which has been BKZ-β reduced for β ∈ {10, 30, 50, 70}.

The Geometric Series Assumption gives a prediction for the output shape of the Gram-

Schmidt basis vectors.

Definition 2.39 (Geometric Series Assumption [Sch03]) Let {b1,b2, . . . ,bd} be a basis,

of quality δ, of a lattice L, output by some lattice reduction algorithm. The Geometric Series

Assumption states that the lengths ‖b∗i ‖ for (1 ≤ i ≤ d) of the Gram-Schmidt vectors of this

basis are approximated by:

‖b∗i ‖ ≈ ψi−1‖b1‖,

for some 0 < ψ < 1.

We consider the formula for the volume of a lattice, as defined in Definition 2.17, in order to
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2.8 Cryptanalytic Heuristics

determine the value of ψ:

Vol(L)1/d =

d∏
i=1

‖b∗i ‖

=

(
d∏
i=1

ψi‖b1‖

)1/d

=
(
ψ

1
2
d(d−1)‖b1‖d

)1/d

= ψ
1
2

(d−1)‖b1‖

=
√
ψd−1‖b1‖.

Making use of ‖b1‖ = δdVol(L)1/d, we can conclude that δ−d =
√
ψd−1. This leads to

ψ = δ−2d/(d+1). Typically, this value is approximated as ψ ≈ δ−2 and therefore we have:

‖b∗i ‖ = ψi−1‖b1‖

≈ (δ−2)i−1‖b1‖

= δ−2i+2δdVol(L)1/d

= δ−2i+2+dVol(L)1/d.

We note that, for certain blocksizes β (e.g. β ≥ 40 [APS15]), the GSA appears to predict

the output shape of lattice reduction well. Wunderer [Wun19] suggests a ‘q-ary’ GSA, which

takes into consideration the case where the length of the first GSO vector is shorter than

predicted by the GSA (in this case, since the vector is already shorter than predicted by the

GSA, and lattice reduction will not increase the length of the input vectors, the GSA does

not fit well). There are also a variety of BKZ simulators [CN11, BSW18, FPL20], which

attempt to capture the concavity (i.e. non-linearity) of the final block of GSO vectors [YD17].

This non-linearity can be observed in Figure 2.7. We discuss both the ‘q-ary’ GSA and BKZ

simulators in more detail in Chapter 3.

The Gaussian Heuristic gives us a simple method of predicting how many lattice points are

within a “regular” region of a given volume. We can then use this heuristic to predict the

length of the shortest vector within a lattice.

Definition 2.40 (Gaussian Heuristic) Let L be a d-dimensional lattice. The Gaussian

Heuristic states that if K is a measurable set satisfying K ⊆ Span(L), then the number of

lattice points in K ∩ L satisfies:

|K ∩ L| ≈ Vol(K)

Vol(L)
.
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We can use the Gaussian Heuristic to predict the length of the shortest vector, λ1(L), in a

random lattice L. To do this we suppose that K is an n dimensional ball, centred at the

origin, with radius R = λ1(L). Clearly, this means that the set K ∩ L contains only the

shortest vector in the lattice, i.e. we have |K ∩ L| = 1, yielding Vol(K) = Vol(L). Using the

well-known formula for the volume of a n-sphere of radius R, this leads us to:

πd/2

Γ(d2 + 1)
λ1(L)d ≈ Vol(L).

Re-arranging leads to the equation for an approximation of the length of the shortest vector

in L:

λ1(L) ≈ Vol(L)1/dΓ(d2 + 1)1/d

√
π

. (2.1)

Assuming that Equation 2.1 is in fact an equality, and setting Vd(1) = πd/2

Γ( d
2

+1)
, we can take

logarithms on both sides to produce:

log(λ1(L)) = log

(
Vol(L)1/d

Vd(1)

)
=

1

d
log(Vol(L))− log(Vd(1))

=
1

d
log

(
d∏
i=1

‖b∗i ‖

)
− log

(
πd/2

Γ(d2 + 1)

)

=
1

d
log

(
d∏
i=1

‖b∗i ‖

)
− d

2
log(π)− log

(
Γ

(
d

2
+ 1

))

=
1

d

d∑
i=1

log(‖b∗i ‖)−
d

2
log(π)− log

(
Γ

(
d

2
+ 1

))
. (2.2)

In Chapter 3 we will use Equation 2.2 to predict the length of the shortest vector in a variety

of different lattices, in order to guarantee success for a specific attack technique.

2.9 Solving the Learning with Errors Problem

Throughout this thesis, we are interested in considering techniques used to solve variants of the

Learning with Errors problem. In particular, in this section, we outline the dual, uSVP, and

decoding attacks. All three of these attacks require the usage of a lattice reduction algorithm,

typically BKZ, parametrised by a blocksize β. Variants of these attacks specialised to the

presence of a small secret are discussed in Chapter 4.
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2.9.1 The Dual Attack

The Dual (or Distinguishing) attack [MR09, Alb17] is a method of solving Decision-LWE.

Specifically, this problem distinguishes between LWE samples of the form b = As + e, as

defined in Definition 2.32, and uniformly random input. This method solves Decision-LWE via

finding short vectors in the q-ary lattice considered in the SIS problem outlined in Section 2.5:

L∗ = {x ∈ Zm | xA ≡ 0 mod q}.

Upon retrieving a short vector v ∈ L∗, we then consider the inner product 〈v,b〉. We have:

〈v,b〉 = 〈v,As + e〉 = 〈vA, s〉+ 〈v, e〉 = 〈v, e〉 mod q,

since vA ≡ 0 mod q. If b is formed of LWE samples, then the inner product 〈v, e〉 is

small [ACF+15]. If b is uniformly random modulo q, then we would expect the inner product

〈v, e〉 to also be uniformly random. This observation can be used to distinguish LWE from

random and thus solve Decision-LWE. We note that the success probability of this attack

depends on the length of the vector v, and thus the BKZ blocksize β. This can be seen by

considering the output distribution of the inner products 〈v,b〉: as the length of v grows,

this distribution becomes closer to uniformly random. In particular, the result from [LP11]

gives the distinguishing advantage as close to:

exp(−π(‖v‖α)2),

where α is the LWE error rate, as defined in Definition 2.30, i.e. α = σ
√

2π
q .

2.9.2 The uSVP Attack

The uSVP attack [Kan87, ADPS16, AGVW17] is a method of solving Search-LWE via the

γ-unique shortest vector problem (uSVP). This approach consists of embedding the LWE

error vector e into a lattice L with a uSVP structure. It is known that the recovery of this

vector via lattice reduction can be guaranteed under certain conditions [ADPS16]. In more

detail, to solve LWE via uSVP we construct the q-ary lattice:

LuSVP = {y ∈ Zm | y ≡ Ax mod q for some x ∈ Zn},

which has basis matrix:

B =

A b

0 t

 .
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2.9 Solving the Learning with Errors Problem

Here t is the embedding factor which denotes the distance between b and the lattice L(A),

and this value is typically set to be e.g. t = 1 or t = ‖e‖.2 We can see that:A b

0 t

−s

1

 =

−As + b

t

 =

e

t

 mod q,

and, setting t = 1, we see that the lattice L(B) contains the short vector (e, 1). To

recover this short vector, we choose the BKZ blocksize β which satisfies the success condition

from [ADPS16] (and this success condition was experimentally verified in [AGVW17]). Specifically,

we choose β to satisfy the [ADPS16] success condition:√
β

d
· λ1(L) ≤ δ2β−d · Vol(L)1/d,

where d is the dimension of the lattice L(B). The overall cost of this approach, constrained

by the [ADPS16] success condition, is:

TuSVP = min
β,d
{TBKZ(β, d)} .

2.9.3 The Decoding Attack

The decoding attack [LP11, LN13, BG14] is a method of solving Search-LWE via the bounded

distance decoding problem (BDD). This approach consists of constructing a lattice in which

the LWE error vector e is the offset between this lattice and a known target point. Specifically,

we construct a lattice with basis matrix:

B =
(
A qIm

)
,

and we note that: (
A qIm

)s

∗

 = As + q∗ = As mod q.

This tells us that the vector As is contained in the lattice L(B). Moreover, since As = b−e,

we have that the publicly known point b is of distance ‖e‖ from the lattice point As mod q.

Since the vector e is short, we can use a BDD solver to recover the lattice vector As mod q

and, therefore, the LWE error vector e (since b is publicly known). Overall, the cost of this

approach is:

TDec = min
β,d

{
TBKZ(β, d) + TBDD(β, d)

pBDD

}
,

2Although a choice of t = ‖e‖ makes this problem more balanced, in practice, we typically choose t = 1 for
efficiency, see [AFG13].
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where TBDD(β, d) is the cost of running the chosen BDD solver on a BKZ-β reduced lattice

of dimension d, and pBDD is the associated success probability of the BDD solver.

2.9.4 Alternative Techniques

There are many other methods to solve LWE, such as Coded-BKW [GJS15], Meet-in-the-

middle [APS15, CHHS19], and Arora-Ge [AG11, ACFP14]. A summary of these techniques

can be found in [APS15, Pla19]. For the parameter sets we are interested in, these techniques

are not competitive with the uSVP, dual, and decoding attacks, as noted in [ACD+18], and

we therefore do not consider them in this thesis.

2.10 The Learning with Errors Estimator

The Learning with Errors Estimator (LWE Estimator [APS15]) outputs concrete security

estimates for a given set of LWE parameters (n, α, q). By default, the running times of

the uSVP, decoding, and dual approaches are given as output. Estimates for several other

techniques are also available, although we will not consider them in this thesis. In this section

we outline the LWE Estimator.

2.10.1 Input and Output

There are many input and output options in the LWE Estimator. In Table 2.3 we outline

the input variables to the top level function estimate lwe, which is used to retrieve security

estimates.
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Quantity Meaning

n The LWE dimension

α The LWE error rate

q The LWE modulus

m The number of LWE samples available

secret distribution The LWE secret distribution

reduction cost model The cost model considered for BKZ

skip List of attacks not considered in the output

Table 2.3: Input parameters to the LWE Estimator, used to retrieve security estimates for
LWE parameter sets.

The two most interesting inputs are secret distribution and reduction cost model. These

enable the user to specify a specific LWE secret distribution (such as {0, 1}n or Dσ), as well

as a custom cost model for lattice reduction.

2.10.1.1 The LWE Secret Distribution: secret distribution

By default, the secret distribution used in the estimator is Dσ, where σ is the width of the

error distribution, i.e. the LWE Estimator assumes normal form LWE by default. Available

inputs are:

True : each component is chosen uniformly at random from Dσ (default)

False : each component is chosen uniformly at random from Zq

(a, b) : each component is chosen from the uniform distribution between a and b

((a, b), h) : vectors with a fixed Hamming weight h, where the non-zero components are

chosen from the uniform distribution between a and b

It should be noted that, whilst there are small-secret variants of the uSVP, dual, and decoding

attacks (outlined in Chapter 4), the LWE estimator does not trigger these variants for all

small-secret distributions. It is therefore important to consult the source code [Est20] to

determine the attack strategies being used.
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2.10.1.2 The Lattice Reduction Cost Model: reduction cost model

There are four in-built cost models for the BKZ algorithm in the LWE Estimator: sieve,

qsieve, enum, and lp. Each of those cost models corresponds to a result in the literature.

The lp model corresponds to the runtime estimation of Linder and Peikert [LP11], which is

known to be outdated, as discussed in [Alb17]. The enum model corresponds to the recent

result of [ABF+20], which represents state-of-the-art enumeration-based lattice reduction.

The sieve model corresponds to results in [BDGL16], which applies improvements in nearest-

neighbour algorithms to sieving for short vectors to retrieve a complexity of 20.292n in dimension

n, and the model used here assumes 8d calls to such an SVP oracle for a dimension d lattice.

The qsieve result corresponds to the results in [LMv14], which considers the application of

quantum search techniques to sieving, resulting in a complexity of 20.265n in dimension n, and

the estimator again assumes 8d calls for lattices of dimension d. These cost models correspond

to the following formulae:

sieve : 8d · 20.292β+16.4,

qsieve : 8d · 20.265β+16.4,

enum :

{
20.1839β log(β)−0.995β+16.25+log(100,2) if 3

2β ≥ d or β ≤ 92

20.125β log(β)−0.547β+10.4+log(100,2) otherwise
3, and

lp : 2
1.8

log(δ0)
−110+log(2.3·109)

.

Note that the model enum is considered as the default option in the current variant of the

Estimator [Est20]. When retrieving security estimates, it may be desirable to use a custom

cost model. We consider how to define the cost models:

example-model-1 : TBKZ(β, d) = 20.292β, and

example-model-2 : TBKZ(β, d) = 4d · 20.265β+16.4,

in Figure 2.8.

example=model=1 = lambda beta, d, B: ZZ(2)**RR(0.292*beta)

example=model=2 = lambda beta, d, B: ZZ(2)**RR(0.265*beta + 16.4 + log(4*d, 2))

Figure 2.8: An example of two custom cost models to be used in the LWE Estimator.

To retrieve an estimate with the cost model TBKZ(β, d) = 20.292β, we call the top-level

function estimate lwe with the input reduction cost model = example-model-1. Such

3As of commit 8daf3f7, this model replaces 20.270β log(β)−1.019β+16.103+log(100).
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load("https://bitbucket.org/malb/lwe=estimator/raw/HEAD/estimator.py")

n = 256

alpha = 0.002

q = 17500

= estimate lwe(n, alpha, q)

Figure 2.9: Example call to the LWE Estimator with our example parameter set n = 256, α =
0.002, and q = 17500.

a functionality allows for a custom cost models to be considered when computing security

estimates. In Chapter 4, we consider further lattice reduction cost models used in the

literature.

2.10.1.3 Outputs

When the LWE Estimator outputs security estimates, it also provides optimal attack parameters.

To help illustrate the output of the LWE Estimator, we consider an example.

Example 2.10 We call the top-level function estimate lwe for the parameters n = 256, α =

0.002 and q = 17500 in Figure 2.9.

This code will return complexity estimates and optimal attack parameters for the uSVP,

decoding, and dual attacks. For the uSVP attack, the output is:

rop: ≈ 2159.5, red: ≈ 2159.5, δ0 : 1.005093, β : 278, d : 677, m:420,

for the decoding attack, the output is:

rop: ≈ 2171.2, m:438, red: ≈ 2171.2, δ0 : 1.005181, β : 271, d : 694, babai: ≈ 2157.0

babai op:2172.1, repeat:216.2, ε :≈ 2−14.0

and for the dual attack, the output is:

rop: ≈ 2180.8, m:471, red: ≈ 2180.8, δ0 : 1.004745, β : 310, repeat:2141.0, d : 727, c : 1

In Table 2.4, we explain each of the output values for the usvp, dual, and decoding attacks.
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The attack parameters k and postprocess only appear in the case that certain small-secret

distributions are used, and these attack parameters will be discussed in full detail in Chapter 4.

2.10.2 Implemented Features

There are a variety of attack techniques considered in the LWE Estimator and, as new attack

techniques surface, these techniques may or may be supported. Moreover, there may be

attack techniques which can leverage (for example) small secret distributions, which may be

implemented in the case of sparse ternary secrets, but not in the case of uniform ternary

secrets. Although the code is open source, it may not be immediately obvious when a new

attack technique has been implemented. To help with this issue, we present in Figure 2.10 a

diagram of attack techniques considered, and identify which attack techniques are considered

for which secret distributions. We comment on each of the attacks listed in Figure 2.10.

� classic uSVP refers to the uSVP attack outlined in Section 2.9.2,

� guess + uSVP refers to the small-secret variant of the uSVP attack outlined in Chapter 4,

� LP11 decoding corresponds to the decoding attack outlined in section 2.9.3, implemented

using Linder and Peikert’s Nearest Planes algorithm as the BDD solver [LP11],

� guess + LP11 decoding corresponds to the small-secret variant of the decoding attack

outlined in Chapter 3 (implemented using Linder and Peikert’s Nearest Planes algorithm

as the BDD solver [LP11]),

� LN13 decoding refers to both the decoding attack outlined in section 2.9.3 (implemented

using pruned enumeration as the BDD solver [LN13]),

� guess + LN13 decoding corresponds to the small-secret variant of this attack as outlined

in Chapter 3 (implemented using pruned enumeration as the BDD solver [LN13]),

� g-v decoding refers to the guess-and-verify decoding technique outlined in Chapter 3,

� hybrid-decoding refers to the hybrid lattice reduction and meet-in-the-middle attack [How07],

discussed in Chapters 3 and 4,

� classic dual corresponds to the dual attack as outlined in Section 2.9.1,

� SILKE refers to the techniques outlined in [Alb17], as discussed in Chapter 4, and
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2.11 Public-key Encryption from LWE

� hybrid-dual corresponds to the hybrid dual and meet-in-the-middle attack [CHHS19].

2.11 Public-key Encryption from LWE

Public-key encryption [DH76, RSA78] provides a way for two parties to communicate over

an insecure channel, without the need to have agreed on a pre-shared secret. We begin this

section by informally defining the notion of a public-key encryption scheme.

Definition 2.41 (Public-key Encryption Scheme) A public-key encryption scheme is made

up of three algorithms (KGen,Enc,Dec) satisfying:

1. (sk, pk) ← KGen(1n). The key generation algorithm KGen takes as input the security

parameter, and outputs a pair of keys (pk, sk), where pk is the public key and sk is the

private key.

2. c ← Enc(pk,m). The encryption algorithm Enc takes as input the public key pk and

message m, and returns a ciphertext c.

3. m← Dec(sk, c) The decryption algorithm Dec takes as input the secret key sk a ciphertext

c, and returns a message m.

We also require correctness, which ensures that a ciphertext decrypts to the correct underlying

message.

Definition 2.42 (Correctness of Public-key Encryption) A public-key encryption scheme

is referred to as correct if for any m ∈M, we have:

Pr [Dec(sk, c) = m | (sk, pk)← KGen(1n), c← Enc(pk,m)] = 1.

Example 2.11 We present the Ring-LWE-based public-key encryption scheme outlined by

Regev [Reg05], and show how it can be used to encrypt a bit b ∈ {0, 1}. Note that the

cryptosystem parameters need to be correctly tuned in order to guarantee security. Let n,m, q
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2.12 Homomorphic Encryption

be integers and let χ be a probability distribution4 on Zq. The secret key sk is a uniform

random vector s ∈ Znq , i.e sk = s. The public key is selected as follows: we draw several

samples (ai, 〈ai, s〉 + ei)
m
i=1 from the LWE distribution Ls,χ,q. To encrypt a bit b ∈ {0, 1},

we choose a random set S from the set of all 2m bit strings of length m and the encryption

function outputs:

Encpk(b) =

{
(
∑

i∈S ai,
∑

i∈S b) if b = 0

(
∑

i∈S ai, b q2c+
∑

i∈S b) if b = 1
.

The decryption algorithm takes as input some vector of the form (a, b), and returns 0 if

b− 〈a, s〉 is closer to 0 than to b q2c, and 1 otherwise.

2.12 Homomorphic Encryption

The search for Fully Homomorphic Encryption (FHE) dates back to 1978 [RAD78] and was

an open question until 2009, when the problem was solved by Gentry [Gen09]. A variety

of intermediary steps were taken [Pai99, BGN05] prior to Gentry’s discovery, but none of

the schemes prior to Gentry’s work were fully homomorphic. Since then, there have been

a variety of schemes [FV12, BGV14, CGGI16] and several libraries [HEl20, Mic20, Pal20,

HEA20, TFH20, Con20], and there are numerous interesting applications [ACC+17], including

privacy-preserving machine learning [GBDL+16, BCL+18, JKLS18, CCD+19, CKR+20]. The

iDash competition [Ida19] runs each year, challenging participants to produce a privacy-

preserving solution using homomorphic encryption. As an example, Track 2 in the 2019

iDash competition was entitled Secure Genotype Imputation using Homomorphic Encryption.

Currently, a standardisation effort [BDH+17, ACC+17, ACC+18] is taking place, and companies

are beginning to commercialise homomorphic encryption techniques.

We begin this section with some definitions, following the notation of [Vai11].

Definition 2.43 (Homomorphic Encryption Scheme) A homomorphic encryption scheme

is made up of four algorithms (KGen,Enc,Dec,Eval) satisfying:

1. (pk, ek, sk)← KGen(1n). The key generation algorithm KGen takes as input the security

parameter, and outputs a tuple of keys (pk, ek, sk), where pk is the public encryption

key, ek is a public evaluation key, and sk is the private key.

4We note that Regev considers a Gaussian distribution in order to ensure security.
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2.12 Homomorphic Encryption

2. c ← Enc(pk,m). The encryption algorithm Enc takes as input the public key pk and

message m, and returns a ciphertext c.

3. m ← Dec(sk, c). The decryption algorithm Dec takes as input the secret key sk a

ciphertext c, and returns a message m.

4. cf ← Eval(ek, f, c1, c2, . . . , ck). The evaluation algorithm Eval takes as input the public

evaluation key ek, a function f , typically represented as an algebraic circuit, and k

ciphertexts c1, c2, . . . , ck, with each ci = Enc(pk,mi), and outputs a ciphertext cf .

Definition 2.44 (C-homomorphism) Denote by C a class of functions. A homomorphic

encryption scheme (KGen,Enc,Dec,Eval) is C-homomorphic if for any function f ∈ C, we

have:

Pr[Dec (sk, (Eval(ek, f, c1, c2, . . . ck))) 6= f(m1,m2 . . . ,mk)] = negl(λ)

where (pk, ek, sk)← KGen(1λ), and ci ← Enc(pk,mi), for 1 ≤ i ≤ k.

Definition 2.12 essentially outlines correctness for homomorphic encryption schemes, in terms

of a set of functions C. That is, a C-homomorphic encryption scheme is correct for all functions

f ∈ C.

Definition 2.45 (Compactness) A homomorphic encryption scheme (KGen,Enc,Dec,Eval)

is compact if there exists a polynomial s = s(λ) such that the output length of Eval(·) is at

most s-bits long.

The definition of compactness tells us two things. Firstly, that the length of a ciphertext

output by the evaluate algorithm is “not too long” (i.e. bounded by some polynomial s(λ))

and, secondly, that the length of this output is independent of both the input function f and

the number of ciphertexts c1, c2, . . . , ck.

Definition 2.46 (Fully Homomorphic Encryption Scheme) A homomorphic encryption

scheme is fully homomorphic if it is both compact and homomorphic for the class of all

arithmetic circuits over GF(q).
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2.12 Homomorphic Encryption

That is, a fully homomorphic encryption scheme can evaluate any arithmetic circuit. As a

basic example of a homomorphic encryption scheme, we consider the RSA algorithm.

Example 2.12 The ‘Textbook RSA’ algorithm is multiplicatively homomorphic. Let p, q be

two k-bit primes, n = pq, and choose e such that gcd(e, φ(n)) = 1 (here φ is Euler’s Totient

function [OLBC10]). We choose d such that ed ≡ 1 mod φ(n), and set pk = e, sk = d.

Encryption is performed on a message m via computing the function:

Enc(e,m) = me mod n,

and decryption is performed on c via the computing the function:

Dec(d, c) = cd mod n.

We now highlight the multiplicatively homomorphic nature of this scheme. Let c1 = me
1 mod n

and c2 = me
2 mod n, we have:

c1c2 = (me
1 mod φ(n)) (me

2 mod φ(n))

= (m1m2)e mod φ(n)

= Enc(e,m1m2).

That is, by performing multiplication on two ciphertexts, we retrieve an encryption of the

multiplication of the underlying plaintexts, i.e we have multiplicatively homomorphic encryption.

In this thesis we cryptanalyse LWE-based homomorphic encryption-style parameter sets in

Chapters 3 and 5. Also in Chapter 5, we outline in detail three lattice-based homomorphic

encryption schemes: BGV [BGV12], BFV [FV12], and CKKS [CKKS17]. In Chapter 6, we

make use of the Paillier homomorphic encryption scheme [Pai99].
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This chapter is based on the following publication: Martin R. Albrecht, Benjamin R. Curtis

and Thomas Wunderer. Exploring Trade-offs in Batch Bounded Distance Decoding. Selected

Areas of Cryptography 2019 (pp. 467-491). Springer, volume 11959 of Lecture Notes in

Computer science, 2019. Additional details have been added in this thesis.

In this chapter, we explore trade-offs in Howgrave-Graham’s hybrid lattice-reduction and meet-

in-the-middle attack (hybrid-decoding attack) on NTRU and LWE. Specifically, we consider
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the effect of using a BDD solver with a higher probability of success on the landscape of

trade-offs.

The author of this thesis contributed towards (a) the writing of the paper, (b) the design of

the g-v decoding algorithm, (c) the implementation of the attack scripts, and (d) the running

of all experiments.

3.1 Introduction and Contribution

As defined in Chapter 2, the Bounded Distance Decoding problem (BDD) with parameter

α > 0 asks a challenger to find the closest vector in a lattice L ⊂ Rd to some given target

vector t ∈ Rd, under the guarantee that the distance between the target vector t and the

lattice Λ is at most αλ1(L). We can use algorithms which solve BDD to solve variants of the

Learning with Errors problem and, therefore, we can estimate the security of lattice-based

cryptographic primitives based on the running times of these algorithms. In this chapter,

we are particularly interested in solving the small-secret variant of the Learning with Errors

problem, as defined in Section 2.5.2, where the components si of the secret vector are drawn

from some distribution over the set {−1, 0, 1}.

Due to the shortness and/or sparsity of the secret vector s, batches of BDD instances emerge

from a combinatorial approach where several components of the target vector are guessed

before decoding. In this chapter, we explore trade-offs in solving batches of (candidate) BDD

instances, which we refer to as “Batch BDD” throughout, and apply our techniques to the

NTRU Prime [BCLv19] and Round5 [GZB+19] schemes submitted to the NIST standardisation

process [Nat16], as well as a sparse-secret parameter set previously used for the homomorphic

encryption library HElib [HEl20].

We compare our techniques to a variant of Howgrave-Graham’s hybrid meet-in-the-middle

and lattice reduction attack (hybrid-decoding attack) [How07] under a variety of different

assumptions. Specifically, we consider Howgrave-Graham’s attack when a “classical” guessing

approach is used, and also when a meet-in-the-middle guessing approach is used (under

conservative assumptions).
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3.1 Introduction and Contribution

3.1.1 An Overview of Decoding Attacks

In this section, we outline the relationships between four techniques to solve LWE via BDD:

1. the decoding attack,

2. the drop-and-solve decoding attack, which combines the decoding attack with zero-

forcing techniques,

3. the hybrid-decoding attack, which solves batches of candidate BDD instances using

Babai’s Nearest Plane algorithm, and

4. the g-v decoding attack, outlined in this chapter, which solves batches of candidate

BDD instances using pruned enumeration.

The purpose of this section is to explain the relationship between these four techniques via

high level descriptions. The technical details of each of these four techniques can be found

later in this chapter.

3.1.1.1 The Decoding Attack

To solve Small-secret LWE via BDD we use a variation of the decoding attack outlined in

Section 2.9.3. For a collection of LWE samples {(ai, 〈ai, s〉+ ei)}mi=1 of dimension n, we begin

by finding a basis of sufficient quality for the dimension (n+m) lattice:

{(x,Ax mod q) | x ∈ Zn},

followed by usage of a BDD solver to solve the resulting BDD instance, of which a typical

choice would be pruned enumeration [LP11, LN13].

The decoding attack can be summarised in two phases:

1. a lattice reduction phase producing a lattice basis of a sufficient quality, and

2. a decoding phase where a BDD solver is run against the reduced lattice from step 1,

using a known target vector as input.
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3.1 Introduction and Contribution

3.1.1.2 The Drop-and-solve Decoding Attack

We can combine the decoding attack with dimension reduction techniques by guessing (typically

as zero, and referred to as “zero-forcing” [MS01]) e.g. the first κ components of the secret

vector s. This approach begins by finding a basis of sufficient quality for the dimension

(n+m− κ) lattice:

{(y,A(κ)y mod q) | y ∈ Zn−κ},

followed, again, by usage of a BDD solver to solve the resulting dimension-reduced BDD

instance. The LWE secret can be recovered (with some probability, associated to the BDD

solver) via solving the BDD instance in the case that the guessed κ components of the

secret are all zero. This technique is referred to as the drop-and-solve decoding attack in the

literature, and follows the mantra of dimension reduction outlined in [MS01, Alb17, ACD+18].

The drop-and-solve decoding attack can be summarised in three phases:

1. a zero-forcing phase which selects a zero-forcing dimension κ ≤ n, and generates the

resulting (n+m− κ) dimension lattice basis to be reduced,

2. a lattice reduction phase producing a lattice basis of a sufficient quality, and

3. a decoding phase where a BDD solver is run against the reduced lattice from step 1,

using a known target vector as input.

3.1.1.3 The Hybrid-decoding Attack

The hybrid-decoding attack [How07, BGPW16, GvW17, Wun19] admits batches of BDD

instances which emerge from guessing some components of the target vector (s, e), as above,

combined with an algebraic observation which allows several points to be decoded against the

same lattice. This approach begins by finding a basis of sufficient quality for the dimension

(n+m− τ) lattice:

{(y,A(τ)y mod q) | y ∈ Zn−τ},

followed by multiple calls to a decoding algorithm (Babai’s Nearest Plane algorithm), the cost

of which is polynomial in the lattice dimension. This makes Babai’s algorithm an appropriate

choice of BDD solver to be employed in the hybrid-decoding attack, since the adversary has

to call the BDD solver many times: once for each guess.
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The hybrid-decoding attack can be summarised in three phases:

1. a dimension reduction phase which selects a guessing dimension τ ≤ n, and generates

the resulting (n+m− τ) dimension lattice basis to be reduced,

2. a lattice reduction phase producing a lattice basis of a sufficient quality, and

3. a guess-and-verify phase where guesses are verified by running Babai’s Nearest Plane

against the reduced lattice basis from step 1, and a target vector derived from the

particular guess under consideration.

Therefore, unlike the decoding and drop-and-solve decoding techniques, the hybrid-decoding

attack permits multiple decodings per lattice reduction step. That is, in phase three we are

solving batches of (candidate) BDD instances: one for each guess. This guess-and-verify step

is usually considered to be realised using a meet-in-the-middle (mitm) approach.

3.1.1.4 The Guess-and-verify Decoding Attack

The uSVP approach outlined in Section 2.9.2 and the hybrid-decoding approach can be

considered as the endpoints of a continuum of strategies for solving Batch-BDD. The final

enumeration is either (essentially) as expensive as the initial lattice reduction algorithm (as in

uSVP) or optimised to be as cheap as possible, in order to decode a large number of points (as

in the hybrid-decoding attack). In this chapter, we will explore this continuum of strategies

for solving Small-secret LWE instances.

Specifically, we present a guess-and-verify decoding approach (g-v decoding) which, like the

hybrid-decoding attack, makes use of a guessing approach to reduce the dimension of the

associated BDD problem. However, in our g-v decoding attack, we employ a more expensive

BDD solver than Babai’s Nearest Plane. Here, as in the hybrid-decoding attack, this approach

begins by finding a basis of sufficient quality for the dimension (n+m− τ) lattice:

{(y,A(τ)y mod q) | y ∈ Zn−τ},

followed by multiple calls to a decoding algorithm. However, the decoding algorithm considered

here is pruned enumeration. To establish the dimension of the projected sublattice in which

we perform enumeration (i.e. the enumeration dimension, denoted η), we deploy (a slight
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variant of) the success condition for uSVP from [ADPS16], outlined in Section 2.9.2 and, in

Section 3.2, we explain and compare these success conditions with a concrete example.

The g-v decoding attack can be summarised in three phases:

1. a dimension reduction phase which selects a guessing dimension τ ≤ n, and generates

the resulting (n+m− τ) dimension lattice basis to be reduced,

2. a lattice reduction phase producing a lattice basis of a sufficient quality, and

3. a guess-and-verify phase where guesses are verified by running pruned enumeration in

dimension η against the reduced lattice basis from step 1, and a target vector derived

from the particular guess under consideration.

Therefore, as opposed to applying a low probability BDD solver on a large number of

(candidate) BDD instances (e.g. Babai’s Nearest Plane algorithm, as in the hybrid-decoding

attack), our g-v decoding technique applies a heavier enumeration process, with a higher

probability of success, to a (typically) smaller1 number of (candidate) BDD instances. In

doing so, we hope to achieve a positive trade-off in the overall running time of the attack

when considered in comparison to the hybrid-decoding attack.

3.1.1.5 Summary

These four attacks (decoding, drop-and-solve decoding, hybrid-decoding, and guess-and-verify

decoding) all share the same genealogy. However, it is not the case that one of these techniques

always outperforms the others. Indeed, the ordering of these attack techniques depends on

the assumptions being used, and the parameter set under consideration.

1This is because the cost of performing pruned enumeration in some dimension η is typically more expensive
than Babai’s Nearest Plane algorithm. Therefore, for the same “enumeration budget”, we can perform less
BDD calls when using pruned enumeration compared to the Babai’s Nearest Plane algorithm.
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3.2 A Comparison of Success Conditions

Attack Guessing? Multiple Guesses? Enumeration algorithm

Decoding No No Pruned enumeration

Drop-and-solve decoding Yes No Pruned enumeration

Hybrid-decoding Yes Yes Babai’s Nearest Plane

Guess-and-verify decoding Yes Yes Pruned Enumeration

Table 3.1: A summary of attacks found in the literature: decoding, drop-and-solve-decoding,
and hybrid-decoding, as well as our guess-and-verify decoding technique.

3.2 A Comparison of Success Conditions

The success condition from [ADPS16] for uSVP considers the length of the GSO vectors in

the context of the uSVP attack. As outlined in Section 2.9.2, for a given uSVP lattice L

of dimension d, the unusually short vector in which the LWE secret is embedded can be

recovered by BKZ using blocksize β, if the condition:√
β

d
· λ1(Λ) ≈

√
β · σ ≤ δ2β−d · det(L)1/d, (3.1)

is satisfied. The variant of this condition used in this work considers the Gaussian Heuristic

directly, and the code used to compute the dimension η, in which we perform enumeration,

can be seen in Figure 3.1. This condition is exactly that the length of the projection of the

shortest vector (in the lattice πi(L), as predicted by the Gaussian Heuristic) is less than the

expected length of the target, offset, vector, i.e. σ
√
d− i. Specifically, the condition states:

λ1(πi(L)) ≈ Vol(πi(L))1/(d−i) ·
Γ(d−i2 + 1)1/(d−i)

√
π

≤ σ
√
d− i. (3.2)

For the first index j for which this condition is satisfied, we set the enumeration dimension

η as η = d − (j − 1) and, if this condition is never satisfied, the code reverts to considering

an enumeration dimension of η = 2. The choice of η = 2 corresponds to performing lattice

reduction such that Babai’s Nearest Plane algorithm succeeds with probability close to 1

(which is typically not optimal).

Since the ADPS16 success condition is defined such that η = β, i.e. requires the final block of

the lattice basis to be HKZ reduced, we consider this case in an example. We consider a q-ary

lattice of dimension d = 1522, with q = 4591 and determinant qd/2. For blocksize β = 561
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3.2 A Comparison of Success Conditions

def ball log vol(n):

Return volume of ‘n‘=dimensional unit ball

:param n: dimension

return (n/2.) * log(pi) = lgamma(n/2. + 1)

def gaussian heuristic(r):

Return squared norm of shortest vector as predicted by the Gaussian heuristic.

:param r: vector of squared Gram=Schmidt norms

n = len(list(r))

log vol = sum([log(x) for x in r])

log gh = 1./n * (log vol = 2 * ball log vol(n))

return exp(log gh)

def enum dim(r, alpha, q):

Return eta for a given lattice shape and LWE noise.

:param r: squared GSO norms

:param alpha: LWE noise rate

:param q: LWE modulus

stddev = est.stddevf(alpha*q)

d = len(r)

for i, ri in enumerate(r):

if gaussian heuristic(r[i:]) < stddev**2 * (d=i):

return ZZ(d=(i=1))

return ZZ(2)

Figure 3.1: Code used to generate the required enumeration dimension which guarantees
success in the g-v decoding approach. Note that this code considers the squared
norms of the vectors ‖b∗i ‖, and thus varies slightly from Equation 2.2. The functions
gaussian heuristic() and ball log vol() are taken from the FPLLL library [FPL20].
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3.3 The Hybrid-decoding Attack

satisfying Equation 3.1 we have ηADPS = β = 561. Using Equation 3.2, we can determine

that ηgh = 562. The success condition considered in our work, i.e. Equation 3.2, explicitly

constructs a BDDα instance with α = 1. Note that we are not recovering the short vector

directly via lattice reduction, but instead via the usage of an enumeration algorithm with

an associated probability of success. The success condition we consider essentially states the

following:

When lattice reduction is conducted with blocksize β, the short vector can be recovered

via solving BDDα=1 in dimension η, where η satisfies Equation 3.2.

whereas the [ADPS16] success condition essentially states:

When lattice reduction is conducted with blocksize β satisfying the [ADPS16] success

condition, i.e. Equation 3.1, the short vector is recovered directly, and is contained

within the output basis provided by BKZ.

We note that, however, the condition used in our work allows the parameters β and η to be

uncoupled. That is, we no longer require the condition that η = β as in Equation 3.1.

3.3 The Hybrid-decoding Attack

The hybrid meet-in-the-middle and lattice reduction (hybrid-decoding) attack was introduced

by Howgrave-Graham [How07], and has been considered in the context of LWE with binary

error [BGPW16], with a quantum search [GvW17], and is typically used to set parameters for

encryption schemes based on the NTRU problem [HPS+15]. This attack combines the ideas of

May and Silverman’s dimension reduction techniques [MS01] against the NTRU cryptosystem,

with an algebraic observation which allows multiple (candidate) BDD instances to be solved

per lattice reduction step. As opposed to solving BDD in the dimension d = m + n lattice

with basis:

B =

qIm A

0 In

 ,
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Figure 3.2: A comparison of success conditions. Here, the GSO norms are computed using
the Geometric Series Assumption. The dashed blue line represents the expected length of the
projected target vector in the projected sublattice π⊥i (L). The dashed black line represents
the length of the shortest vector in the same projected sublattice π>i (L) as predicted by the
Gaussian Heuristic. Note that we have used the GSA here to produce the GSO norms. This
analysis can also be carried out using a BKZ Simulator to generate the GSO norns, and we
consider both of these techniques (GSA and BKZ Simulator) throughout this chapter.

the hybrid-decoding attack sets a guessing dimension τ , carries out lattice reduction in

dimension (d − τ) and solves BDD on a dimension (d − τ) lattice by decoding on various

points associated to guesses in the τ -dimensional guessing space. In more detail: the first

phase of the hybrid-decoding attack involves choosing a guessing dimension τ and generating

the lattice basis determined by the matrix:

B =

qIm A(τ)

0 In−τ

 ,

recall that A(τ) denotes the matrix A where (without loss of generality) the first τ columns

have been dropped. The second phase involves performing lattice reduction on this basis to

retrieve BKZβ(B), and the third phase involves solving a batch of candidate (BDD) instances
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using Babai’s Nearest Plane algorithm [Bab86] on target points related to vectors in the

τ -dimensional guessing space. We have:qIm A(τ)

0 In−τ

 ∗
s(τ)

 =

q∗+ A(τ)s(τ)

s(τ)

 .

If the first τ components of s are all zero, then it is the case that A(τ)s(τ) = As, which

allows recovery of the LWE secret (with some probability, determined by the BDD solver)

by decoding on the point (b,0). If the first τ components of the LWE secret s are not all

equal to zero, then we are required to start searching for the first τ components of the secret

(e.g over the space {−1, 0, 1}τ ). When s ← B−, the coefficients si of the secret vector are

contained within the set {−1, 0, 1}, and we observe that:

As =
∑
{i|si=1}

Ai −
∑

{j|sj=−1}

Aj . (3.3)

Recalling that the unit vectors are represented by uk, we can make a guess:

vg =
τ∑
k=1

ckuk,

for some values ck ∈ {−1, 0, 1}. For this new guess, we can decode on the point (b −∑τ
k=1 ckAk, 0). This can be seen to be the correct point to attempt decoding on since, for

the correct guess v =
∑τ

k=1 skuk, we have:

b−
τ∑
k=1

skAk = As−
τ∑
k=1

skAk + e

= A(τ)s(τ) + e mod q.

Therefore, we have that (b−
∑τ

i=1 skAk, 0) is separated from the lattice point (A(τ)s(τ) mod

q, s(τ)) by the vector (−e, s(τ)), as is required. This means that we can consider a batch of

BDD instances, by decoding on several target points of the form (b−
∑τ

k=1 ckAk, 0).

Typically, this guessing is realised via the usage of a time-memory trade-off approach outlined

in [Wun19]. That is, we can consider Odlyzko’s meet-in-the-middle technique described

in [HGSW03] for the guessing phase of the attack. Specifically, the guessed part of the

secret vg is split into two sub-guesses v′g and v′′g satisfying vg = v′g + v′′g , and we in turn have

two applications of Babai’s Nearest Plane: one for each “half” of the original guess:

v′l = NPB(b−
τ∑
k=1

(v′g)(k)Ak, 0), and
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v′′l = NPB(−
τ∑
k=1

(v′′g)(k)Ak, 0).

We hope that the BDD solver is additively homomorphic, i.e. we hope that if vg = v′g + v′′g

then we have vl = v′l + v′′l . We store each decoded vector in a hash table using a locality

sensitive hash function [Wun19] which permits collision finding. A collision involves detecting

pairs (v′g,v
′′
g) which satisfy vg = v′g+v′′g and vl = v′l+v′′l . Wunderer [Wun19] gives a concrete

example of hash tables which guarantee that collisions can be detected. The probability that

the BDD solver is additively homomorphic has been analysed in the case that the BDD

solver is Babai’s Nearest Plane in [Wun19]. However, this refined model is not employed

e.g. in submissions to the NIST PQC process [BCLv17, SHRS17, ZCHW17a]. To summarise,

there are two probabilities at play when considering a meet-in-the-middle approach:

1. the probability that the BDD solver is homomorphic, and

2. the probability that collisions (as outlined above) are detected; which we can set to 1

by assuming the hash tables of Wunderer [Wun19].

3.3.1 Common Assumptions in Analyses of the Hybrid-decoding Attack

Throughout any analysis of the hybrid-decoding attack, there are several stages in which

assumptions are required in order to generate concrete security estimates. In this section, we

outline locations within an analysis in which assumptions are required, and we also outline

common choices which are made in the literature.

1. The lattice reduction cost model.

The cost of lattice reduction is an important assumption in an analysis of the hybrid-decoding

attack. Here we are referring explicitly to the cost of the BKZ algorithm, that is:

TBKZ(β, d),

where an example cost is TBKZ(β, d) = 8d · 20.292β+16.4.

2. The shape of the basis output by lattice reduction.
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As discussed in Section 3.3.2, typical choices are to consider the Geometric Series Assumption [Sch03],

the adapted q-ary Geometric Series Assumption [Wun19], or a BKZ simulator e.g. [CN11].

The output shape has an effect on the success probability of Babai’s Nearest Plane algorithm

(note the inclusion of the GSO lengths in the pbabai terms in 3.), and thus the overall running

time of the attack.

3. The success probability of Babai’s Nearest Plane, pbabai.

Typical choices are either to (conservatively) set this probability to be 1, or to use the formula

from Wunderer [Wun19] which approximates the probability as:

pbabai ≈
∏

1≤i≤d

(
1− 2

B(d−1
2 , 1

2)

∫ 1

min(ri,1)
(1− t2)(d−3)/2 dt

)
.

Here B(·) denotes the Beta function [OLBC10], and ri =
‖b∗i ‖

2‖(s(τ),e)‖ . Previous works [LP11]

have also assumed that Babai’s Nearest Plane algorithm succeeds with probability:

pbabai ≈
∏

1≤i≤d
erf

(
‖b∗i ‖

√
π

2αq

)
.

under the assumption of a continuous LWE error distribution. In our work, we use Wunderer’s

formula, as is standard with state-of-the-art analyses of the hybrid-decoding attack.

4. The running time of Babai’s Nearest Plane algorithm, Tbabai.

Typical choices are either to (conservatively) set this running time to be a single operation,

i.e. 1, or to consider a cost which is either linear in the lattice dimension, such as d/21.06, or

quadratic in the lattice dimension, such as d2/21.06. In our work, we consider the quadratic

cost, i.e. d2/21.06.

5. The search strategy under consideration.

Typical choices are to consider a meet-in-the-middle approach, a quantum search, or a

classical guessing (exhaustive search) approach. As an example, all three techniques are

considered in the NTRU Prime submission to the second round of the NIST standardisation

procedure [BCLv19].
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6. The meet-in-the-middle probability, pmitm.

Typical choices are to (conservatively) set this probability to be 1, or to consider the formula

from [BGPW16, Wun19]:

pmitm =
d∏
i=1

(
1− 1

riB
(
d−1

2 , 1
2

) ∫ −ri
−ri−1

∫ z+ri

max(−1,z−ri)

(
1− t2

) d−3
2 dtdz

)
,

where the values ri and function B(·) are as in 3. This probability can be evaluated in

Sage [S+20] using Wunderer’s scripts [Wun20]. An alternative formulae was recently provided

in [SC19]:

ps =

d∏
i=1

erf

(
Ri
√
π

αq

)
+
αq

Ri

e
−
(
Ri
√
π

αq

)2

− 1

π

 ,

under the assumption of a continuous LWE error distribution, as in [LP11].

7. Whether or not to consider the cost of memory.

Most analyses of the hybrid-decoding attack only consider the time cost. That is, they do

not consider memory costs of (a) lattice reduction (especially in the sieving regime, where

the memory cost is exponential in the blocksize β), and (b) the meet-in-the-middle step. The

second round NTRU Prime submission to the NIST standardisation procedure [BCLv19],

considers different memory scenarios. That is, they consider an analysis which includes

memory costs (referred to as “real” memory) and also consider an analysis which ignores

memory costs (referred to as “free” memory).

8. The length of the target, offset, vector.

There is also a decision to be made about the length of the target vector. Suppose we set our

guessing dimension to τ , then our target vector is:

(s(τ), e) = (sτ+1, . . . , sn, e).

Suppose further that s is a ternary vector of Hamming weight h, so that ‖s‖ = h and

‖e‖ = mσ2, then we can assume that:

‖(sτ+1, . . . , sn, e)‖ =

√
h
n− τ
n

+mσ2.
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That is, we consider the expected length of the target offset. We note that for any given

instance of the attack, the target vector may be longer, or shorter, than this assumed length,

and this has an impact on the overall running time of the attack.

In Section 3.6 we consider these assumptions for both the hybrid-decoding attack as well

as our g-v decoding approach. We begin by making an initial set of assumptions, which

match the assumptions made in the NTRU Prime submission to the NIST standardisation

procedure, and swap out one assumption at a time until we reach the assumptions considered

in our work. At each intermediate stage we consider the complexities of both attacks under

the given assumptions, and we present the results in Tables 3.12 and 3.13. This highlights

the differences in attack complexity that certain assumptions can make, and shows that it is

vital to clearly state assumptions when analysing the hybrid-decoding attack.

3.3.2 Modelling Lattice Reduction for q-ary Bases

For lattice reduction we consider the BKZ algorithm [SE94] parametrised by a block size β

which determines the running time (at least exponential in β) and output quality. In this

chapter, when BKZ is instantiated with an enumeration algorithm [FP85, Kan83], we consider

the cost of lattice reduction using blocksize β on a lattice of dimension d to be:

TBKZ(β, d) = 8 d · 20.18728·β·log(β)−1.019β+16.1 enum. nodes,

which is taken from [APS15] based on experiments from [CN11]. To translate from the number

of nodes visited during enumeration to CPU cycles, the literature typically assumes one node

≈ 100 CPU cycles [FPL20]. This means that in terms of ring-operations the cost of lattice

reduction using blocksize β on a lattice of dimension d is:

TBKZ(β, d) = 8 d · 20.18728β log(β)−1.019β+16.1+log(100).

When BKZ is instantiated with a sieving algorithm [AKS01, BDGL16], we consider the cost

of lattice reduction using blocksize β on a lattice of dimension d to be:

TBKZ(β, d) = 8 d · 20.292β+16.4,

where the constant term is arbitrarily picked as in [APS15].

There are several models in the literature for the behaviour of the BKZ algorithm on q-ary

lattices. In most of the literature on solving LWE via BDD, we use the public LWE matrix
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A ∈ Z(m×n)
q to construct a lattice basis of the form: In 0

A qIm

 , (3.4)

for which it is commonly assumed that the Geometric Series Assumption, defined in Definition 2.39,

is relatively accurate after running BKZ-β with β � m+ n. The literature on analysing the

hybrid-decoding attack considers lattice bases of the form: qIm A

0 In

 , (3.5)

where the qs are in the top left hand corner of the basis matrix, and the 1s are located in the

bottom right of the basis matrix. In Figure 3.3, we plot the initial GSO vector lengths from

the basis as in Equation 3.5.
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1

i
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g
q
(‖

b
∗ i‖

)

Initial GSO lengths

Figure 3.3: Example of the initial GSO lengths for a q-ary lattice of dimension d = 180 with
q = 17 constructed as in Equation 3.5.

Wunderer [Wun19] notes that writing the basis matrix in the form of Equation 3.5 suggests

that the GSA does not hold. Indeed, when the GSA predicts that ‖b∗1‖ > q we notice that

this is longer than the first vector already contained within the GSO basis. Since lattice

reduction does not make the GSO vectors longer, we therefore will obtain ‖b∗1‖ = q. As a

consequence, lattice reduction is expected to produce a “Z-shaped” basis [How07], comprised

of leading qs, trailing ones and a middle part approximated by the GSA. In Figure 3.4 we give

an illustrative example of this phenomena of the output of lattice reduction as implemented

in FPLLL [FPL20] which clearly illustrates the Z-shape.

The structure of this Z-shape has been modelled by Wunderer [Wun19], via insisting on the
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condition ‖b∗i ‖ ≤ q for all 1 ≤ i ≤ d. Let k be the number of lattice vectors which follow a

GSA-style behaviour, meaning that the remaining (d − k) vectors have length q. Explicitly,

we have:

‖b∗i ‖ =

{
q if i ≤ d− k
δ−2(i−(d−k)−1)+k · q

k−n
k otherwise

.

If we make the additional assumption that the first vector in the “GSA-block”, i.e. b(d−k+1),

satisfies ‖b∗(d−k+1)‖ ≈ q [Wun19], we can compute a value for k, i.e. k = min

(⌊√
n

logq(δ)

⌋
, d

)
.

Wunderer refers to this shape as the “q-ary GSA”, and we follow this notation throughout. In

Figure 3.4 we observe that, for this example, the number of leading q’s predicted by Wunderer

closely resembles that produced by fpylll and the BKZ simulator. However, [Wun19] makes

no attempt to model the number of trailing ones. Some works fix the number of trailing

ones by choosing a sublattice to reduce [HPS+15], although there is currently no work in the

literature that offers a way to predict the number of trailing ones which occur when BKZ is

run on the full lattice.
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Wunderer19

We define γi = αi−1 δd det(Λ)1/d and so the GSA corresponds to the line at y = 0.

Figure 3.4: Example of BKZ-60 reduction on a q-ary lattice of dimension d = 180 with q = 17
and volume 1780 for bases constructed as in Equation (3.5), along with the output of BKZ
simulation and the heuristic from [Wun19].

For the remainder of this chapter, we do not consider the q-ary GSA. That is, we make

the assumption that the q-ary structure of the lattice bases on which we perform lattice

reduction does not impact the output basis shape. Explicitly, we do not assume that leading

qs or training ones occur. This assumption can be made to hold by re-randomising the input

basis for lattice reduction. Instead of reducing a lattice basis B directly, we reduce the lattice

basis given by Ui B for some unimodular matrix Ui. Considering the techniques in this work

in a regime exploiting the q-ary structure is an interesting area for future work. In Figure 3.5,
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we consider the GSA against such a randomised basis:

B′ = Ui B,

to determine how closely this example follows the GSA and/or a BKZ simulator. In Figure 3.5,

we plot the output GSO lengths against the GSA and the BKZ simulator. Here, we can

see that both the GSA and the BKZ simulator provide a good approximation to the GSO

lengths, although the BKZ simulator captures the HKZ-reduced behaviour in the last block

more accurately.
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We define γi = αi−1 · δd · det(Λ)1/d and so the GSA corresponds to the line at y = 0.

Figure 3.5: Example of BKZ-60 reduction on a q-ary lattice of dimension d = 180 with q = 17
and volume 1780 for a basis constructed as in Equation 3.5, which has been re-randomised
via the application of a unimodular matrix. We also plot the output of the BKZ simulator
on a basis for the same lattice.

3.4 A Spectrum of Decoding Approaches for Solving Small-secret
LWE

In this section we outline the expected costs of:

1. the classical “decoding” approach in the LWE literature,

2. the “drop-and-solve decoding” approach, which is a combination of zero-guessing and

solving a single BDD instance in a reduced dimension, and

3. our guess-and-verify decoding approach, where multiple BDD instances are solved per

lattice reduction step.
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In our guess-and-verify decoding approach, the attack parameters are chosen such that pbdd ≈
1 and pbabai ≈ 12, although for clarity we include these probabilities in the running times

presented in this chapter. Note that the probability pbdd ≈ 1 ensures that the BDD algorithm

succeeds when called on the correct target point. Exploring trade-offs which arise by varying

these probabilities is interesting future work.

In order to produce these estimates, we make use of both enumeration-based, and sieving-

based, BDD solvers. When using enumeration to solve BDD in dimension η, we assume a

cost of:

Tbdd(η) = 20.18728η log(η)−1.019η+16.1 enum. nodes,

where again we assume that one node ≈ 100 CPU cycles [FPL20]. Such an enumeration is

assumed to succeed with probability close to one, i.e. pbdd ≈ 1. When using sieving to solve

BDD in dimension η, we assume a cost of:

Tbdd(η) = 20.292η+16.4,

based on the results of [Laa16], which suggest that sieving for short vectors has the same

asymptotic cost as sieving for close vectors. We assume that this sieving process succeeds

with probability close to one, i.e. pbdd ≈ 1. We note that it is always clear from context

whether an enumeration-based, or a sieving-based, BDD solver is being deployed.

To highlight the differences in the three decoding approaches discussed, we make use of

a running example to illustrate the behaviour of the approaches under consideration. We

consider the small-secret LWE parameter set:

n = 653, q = 4621, σ ≈
√

2/3, χs = B−100,

and use this parameter set as a reference throughout. Assuming the GSA, a combinatorial

dual attack costs 2214.4 ring-operaions (β = 198), and a combinatorial uSVP attack costs 2209.6

ring-operations (β = 223), according to the LWE Estimator [APS15]3, under the enumeration-

based BKZ cost model mentioned in Section 3.3.2.

2For g-v decoding, the probability pbabai is the probability that the solution found by the BDD algorithm is
lifted to the full lattice successfully.

3Using the LWE Estimator as of commit 428d6ea.

88



3.4 A Spectrum of Decoding Approaches for Solving Small-secret LWE

3.4.1 Small-secret Decoding

As discussed in Section 3.1, the decoding approach for small-secret LWE [BG14] b = As + e

constructs a lattice for which the vector (b, 0) is separated by the short vector (−e, s) to the

lattice point (As mod q, s). The basis of this lattice is given by the columns of the matrix B,

where:

B =

qIm A

0 In

 .

In more detail, we have that:qIm A

0 In

∗
s

 =

q∗+ As

s

 =

b

0

+

−e

s

 mod q.

After lattice reduction on the lattice L(B), we perform enumeration around the target point

(b, 0) which, with some probability, will return the lattice point separated by (−e, s), allowing

for recovery of the LWE secret.

Typically, the cost of lattice reduction and decoding are balanced, and the output BDD

probability determines the number of times the algorithm is repeated. The total expected

running time is:

TDec =
TBKZ(βDec, d) + Tbdd(ηDec)

pbabai · pbdd
.

Lattice reduction is carried out on the full lattice with block size βDec, and a BDD solver is used

on a projected sublattice of dimension ηDec, where ηDec can be determined using Equation 3.2.

Here pbabai is the probability of lifting the candidate solution from πd−ηDec+1(L(B)) to the full

lattice. Since ηDec is determined using our variant of the condition from [ADPS16] we have

pbabai ≈ 1 [AGVW17]. For our running example parameter set, assuming the GSA, this

approach has a cost of 2293.0 ring-operations with an optimal blocksize βDec = 419, where

ηDec = 429.

3.4.2 Drop-and-solve Decoding

The drop-and-solve decoding approach for small-secret LWE combines the decoding approach

with dimension reduction techniques [MS01]. The attack begins by constructing a lattice for

which the vector (b, 0) is hopefully separated by the short vector (−e, s(τ)) to the lattice
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point (A(τ)s(τ) mod q, s(τ)). The basis of this lattice is given by the columns of the matrix

B, where:

B =

qIm A(τ)

0 In−τ

 .

Assuming that we have correctly guessed τ zero components, we have that:qIm A(τ)

0 Iτ

 ∗
s(τ)

 =

q∗+ A(τ)s(τ)

s(τ)

 =

b

0

+

 −e

s(τ)

 mod q.

In this approach, we guess τ zero components of s and then run the decoding attack in

dimension (d − τ) [MS01, Alb17, ACD+18]. If we are unsuccessful, we restart with a fresh

guess for the positions of zeros.

The core idea is that the lower running time of the dimension-reduced problem will trade-off

positively against the probability of guessing zeros. If we correctly guess, for example, that

the first τ components of s are all zeros, then (sτ+1, . . . , sn, e) can be found via solving BDD

in the dimension-reduced lattice. The total expected running time of this strategy is:

TdsDec =
TBKZ(βdsDec, d− τ) + Tbdd(ηdsDec)

pbabai · pbdd · p0
,

where p0 is the probability of correctly guessing τ zero components in the LWE secret s.

Lattice reduction is carried out on a lattice of dimension (d − τ) with block size βdsDec, and

enumeration is carried out in the projected sublattice in dimension ηdsDec, as outlined in

Section 3.2. For our running example parameter set, assuming the GSA, this attack returns

a complexity of 2208.2 ring-operations with optimal values of βdsDec = 170 and τ = 315.

3.4.3 Guess-and-verify Decoding

As in the drop-and-solve decoding approach, our guess-and-verify approach begins by performing

lattice reduction on a lattice basis of the form:

B =

qIm A(τ)

0 In−τ

 ,

and combines this technique with the following algebraic observation: if our initial zero guess

is incorrect, we can account for this by decoding on multiple points against the same lattice
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basis. For example, after decoding on the point (b, 0) with unsuccessful verification, we can

begin checking all Hamming weight one guesses by decoding on the 2 ·
(
τ
1

)
points of the form:

(b±Ai, 0) for all 1 ≤ i ≤ τ,

and then all Hamming weight two guesses by decoding on the 22 ·
(
τ
2

)
points of the form:

(b±Ai ±Aj , 0) for all 1 ≤ i, j ≤ τ, i 6= j,

and repeating this process up to Hamming weight ψ for some optimal value ψ ≤ min(h, τ).

This allows us to make multiple guesses per lattice reduction step, exactly as in the hybrid-

decoding attack. There is no obvious reason to restrict the BDD solver in any guess-and-

verify decoding attack to Babai’s Nearest Plane algorithm (as in the hybrid-decoding attack).

Instead we may employ a stronger BDD solver, which in turn permits a reduction in the cost

of preprocessing or the usage of a lower guessing dimension.

In this g-v decoding attack, we consider a BDD dimension as defined by a variant of the

success condition from [ADPS16], as outlined in Section 3.2. The overall expected cost of this

approach is:

TgvDec =
TBKZ(βgvDec, d− τ) + ‖StgvDec

‖ · TBDD(ηgvDec)

pbabai · pBDD · (
∑tgvDec

i=0 pi)
,

where pi is the probability that the guessed sub-vector of the secret s has Hamming weight i,

and ‖StgvDec
‖ is the size of the guessing set, i.e. the number of target points decoded against.

For our running example parameter set, assuming the GSA, this attack returns a complexity

of 2186.1 ring-operations with βgvDec = 225 and τ = 335, with optimal choices of ηgvDec = 49

tgvDec = 16 so that ‖StgvDec
‖ =

∑16
i=0

(
335
i

)
· 2i ≈ 2105.5.

We note that “guess-and-verify” decoding encompasses the usual decoding strategy (τ =

0, ‖StgvDec
‖ = 1,

∑
pi = 1) and the “drop-and-solve” strategy (τ > 0, ‖StgvDec

‖ = 1, tgvDec = 0).

On the other hand, as specified here, it does not encompass the hybrid-decoding attack, (even

without time-memory trade-offs) since we insist on picking (β, η) such that pbabai ≈ 1, which

is typically not the case for optimal hybrid-decoding attack parameters.

To summarise, we present a table of results outlining the complexity and optimal parameters

for the attack techniques considered in this section.
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Technique β τ Ring operations

uSVP 198 297 2214.4

dual 223 315 2209.6

decoding 419 n/a 2293.0

drop-and-solve decoding 170 315 2208.2

guess-and-verify decoding 225 335 2186.1

Table 3.2: Complexity estimates for uSVP, dual, and various decoding techniques on our

example parameter set with n = 653, q = 4621, σ ≈
√

2
3 , and χs = B−100.

3.5 Target Parameter Sets and Estimates

In this section we apply our techniques to parameter sets for the NTRU Prime [BCLv17]

and Round5 [BGL+18] submissions to the NIST PQC standardisation process, and, in order

to compare with previous works, we also target a sparse-secret parameter set, we consider

an old parameter set previously used in the homomorphic encryption library HElib [HEl20],

which was studied in [Alb17].4 We compare our results against the LWE Estimator under

the same assumptions, i.e. considering the cost models in Section 3.3.2 and the Geometric

Series Assumption. We also present our results considering usage of the BKZ simulator. Full

results can be seen in Tables 3.7, 3.8, 3.9 and 3.10. In each section, we present a subset of

the results for a classical guessing approach (i.e. exhaustive search).

3.5.1 NTRU Prime

We consider the NTRU LPrime parameter set from [BCLv19]. The construction is based on

LWE with a fixed Hamming weight ternary secret and a random ternary error. Specifically,

the parameter set considered is:

n = 761, q = 4591, σ ≈
√

2/3, χs = B−250.

In the enumeration regime, when the output basis shape is determined by the BKZ simulator,

g-v decoding outperforms the non-mitm hybrid-decoding attack by approximately 23-bits, as

4For up-to-date information on parameter selection in the homomorphic encryption library HElib, we refer
the reader to [HS20].
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can be seen in Table 3.3. In the sieving regime, solving Batch-BDD is less efficient than

solving BDD (i.e. combinatorics do not improve the running time). Our techniques are thus

not interesting in this regime, for this parameter set.

Attack GSO Profile Enumeration Sieving

(non-mitm) hybrid-decoding GSA 325.7 220.8

g-v decoding GSA 337.6 181.0†

(non-mitm) hybrid-decoding Simulator 385.3 303.3

g-v decoding Simulator 362.1 185.3†

Table 3.3: Summary of results for NTRU Prime for a classical guessing (i.e. exhaustive search)
approach. Estimates marked with † correspond to standard BDD decoding. Full results can
be found in Tables 3.7, 3.8, 3.9, and 3.10.

3.5.2 Round5

For Round5, we consider the NIST level 3 parameter set from [GZB+19]. Round 5 is based on

the Learning with Rounding problem (LWR) with a ternary, fixed hamming weight, secret.

In the case of LWR, we have another parameter p which is an additional modulus considered

in the deterministic rounding process. In this case, we can set σ ≈
√

(q/p)2−1
12 as in [ACD+18].

We therefore model this parameter set as LWE with:

n = 756, σ ≈ 4.61, q = 212, p = 28, χs = B−242.

We also consider the IoT specific use-case parameter set from [GZB+19]. We can model this

parameter set as LWE with:

n = 372, σ ≈ 4.61, q = 211, p = 27, χs = B−178.

In the enumeration regime, when the output basis shape is determined by the BKZ Simulator,

g-v decoding outperforms the non-mitm hybrid-decoding attack for the NIST level 3 parameter

set by approximately 16-bits, and the IoT parameter set by approximately 19-bits, as can be

seen in Tables 3.4 and 3.5. In the sieving regime, for both parameter sets, solving Batch-BDD

is less efficient than solving BDD (i.e. combinatorics do not improve the running time). Our

techniques are thus not interesting in this regime, for this parameter set.
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Attack GSO Profile Enumeration Sieving

(non-mitm) hybrid-decoding GSA 392.5 275.2

g-v decoding GSA 416.9 218.9†

(non-mitm) hybrid-decoding Simulator 466.6 394.9

g-v decoding Simulator 449.6 224.1†

Table 3.4: Summary of results for Round 5 for a classical guessing (i.e. exhaustive search)
approach. Estimates marked with † correspond to standard BDD decoding. Full results can
be found in Tables 3.7, 3.8, 3.9, and 3.10.

Attack GSO Profile Enumeration Sieving

(non-mitm) hybrid-decoding GSA 205.5 156.9

g-v decoding GSA 214.3 122.4†

(non-mitm) hybrid-decoding Simulator 240.6 205.6

g-v decoding Simulator 221.4 124.3†

Table 3.5: Summary of results for Round 5 IoT for a classical guessing (i.e. exhaustive search)
approach. Estimates marked with † correspond to standard BDD decoding. Full results can
be found in Tables 3.7, 3.8, 3.9, and 3.10.

3.5.3 HElib

We also consider our approach in the context of a sparse LWE parameter set, in order to

gauge the performance of g-v decoding for sparse secrets. To compare with previous works,

we consider the sparse-secret parameter set outlined in [Alb17]. Specifically, the parameter

set we consider is:

n = 1024, q = 247, σ ≈ 3.19, χs = B−64.

Since the optimal blocksize β satisfies β � m + n, the output of the BKZ simulator is very

close to the GSA and thus the results in each case are similar, as can be seen in Table 3.6. We

can see in Tables 3.7 and 3.9 that the results for g-v decoding and non-mitm hybrid-decoding

are essentially the same.
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Attack GSO Profile Enumeration Sieving

(non-mitm) hybrid-decoding GSA 69.9 69.8

g-v decoding GSA 69.1 69.8

Table 3.6: Summary of results for HElib for a classical guessing (i.e. exhaustive search)
approach. Full results can be found in Tables 3.7, 3.8, 3.9, and 3.10.

3.5.4 Results and Notation

In the Tables 3.7, 3.8, 3.9, and 3.10, τ is the (fixed) optimal guessing dimension, β is optimal

the blocksize used in lattice reduction, η is the enumeration dimension considered, BDD cost is

the total cost of solving the candidate BDD instances in the dimension η projected sublattice,

|S| is the size of the search space considered, i.e. the number of points on which we decode, d is

the dimension of the lattice considered, #pp denotes the maximal Hamming weight considered

in the search space, and rop is the cost of running the algorithm in ring-operations. Note that

“g-v decoding” is the technique described in this work. Where meaningful, we highlight the

“best in class” values in bold. Finally, we note that the “λ” values outline the security claims

of each scheme, considering similar (pre-quantum) cost models and (pre-quantum) attacks;

we note that such values of λ can be generated using vastly different assumptions.

3.5.5 Results in the Enumeration Regime

Tables 3.7 and 3.8 represent results in the enumeration regime, for a classical guessing strategy

and a (square-root) meet-in-the-middle guessing strategy, respectively. Here, if the GSA is

assumed, then the hybrid-decoding attack (typically) outperforms g-v decoding. Considering

NTRU LPrime in Table 3.7, we see a complexity of 325.7-bits for the non-mitm hybrid

attack and a complexity of 337.6-bits for the g-v decoding attack. If the BKZ simulator is

assumed, then g-v decoding (typically) outperforms the hybrid-decoding attack in the case

of a “classical” guessing approach, but not in the case of a square-root meet-in-the-middle

approach. Considering NTRU LPrime in Table 3.7, we see a complexity of 385.3-bits for the

non-mitm hybrid attack, and a complexity of 362.1-bits for the g-v decoding attack.

This tells us that, under certain assumptions, g-v decoding outperforms a variant of the
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attack τ β η BDD cost |S| repeats d #pp log2(rop)

NTRU LPrime: n = 761, q = 4591, σ =
√

2/3, h = 250 λ = 222

uSVP (GSA) 92 458 458 n/a 1 257.2 1220 n/a 384.6

Dual (GSA) 69 495 n/a n/a n/a 2320.9 1281 11 374.0

g-v decoding (GSA) 285 430 102 2336.1 2252.8 234.1 1026 55 337.6

non-mitm hybrid (GSA) 275 400 n/a 2324.1 2255.6 249.6 1036 57 325.7

g-v decoding 225 435 272 2360.9 2146.4 253.9 1086 28 362.1

non-mitm hybrid 305 395 n/a 2384.3 2252.3 2113.1 1006 53 385.3

Round5: n = 756, q = 212, σ ≈ 4.61, h = 242 λ = 270

uSVP (GSA) 230 449 449 n/a 1 2160.1 936 n/a 478.9

Dual (GSA) 63 626 n/a n/a n/a 2413.5 1227 19 489.2

g-v decoding (GSA) 365 490 117 2415.2 2297.9 260.2 814 62 416.9

non-mitm hybrid (GSA) 335 445 n/a 2391.0 2295.7 276.8 844 64 392.5

g-v decoding 290 490 320 2448.2 2157.2 292.6 889 28 449.6

non-mitm hybrid 365 420 n/a 2465.5 2274.2 2172.9 814 55 466.6

Round5 (IoT): n = 372, q = 211, σ ≈ 4.61, h = 178 λ = 129

uSVP (GSA) 0 335 335 n/a n/a 1 682 n/a 220.0

Dual (GSA) 32 334 n/a n/a n/a 2174.7 661 14 221.7

g-v decoding (GSA) 65 315 224 2213.1 279.2 29.0 616 22 214.3

non-mitm hybrid (GSA) 115 270 n/a 2203.6 2149.5 236.9 566 43 205.5

g-v decoding 50 320 266 2220.4 251.6 212.8 631 13 221.4

non-mitm hybrid 120 270 n/a 2239.6 2150.8 271.5 561 42 240.6

HElib-1024: n = 1024, q = 247, σ ≈ 3.19, h = 64

uSVP (GSA) 140 105 105 n/a 1 214.0 1670 n/a 75.5

Dual (GSA) 189 107 n/a n/a n/a 222.3 1680 7 68.4

g-v decoding (GSA) 185 100 48 266.7 229.5 29.9 1624 4 69.1

non-mitm hybrid (GSA) 210 100 n/a 267.5 236.6 210.7 1599 5 69.9

Table 3.7: Estimates in the enumeration regime, where BKZ and the BDD solver are
instantiated with enumeration algorithms.
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attack τ β η BDD cost |S| repeats d #pp log2(rop)

NTRU LPrime: n = 761, q = 4591, σ =
√

2/3, h = 250 λ = 222

sqrt g-v decoding (GSA) 370 350 43 2243.5 2412.2 211.5 941 102 245.0

sqrt hybrid (GSA) 360 335 n/a 2240.1 2402.8 220.0 951 100 241.3

sqrt g-v decoding 370 380 119 2273.6 2400.0 215.5 941 97 274.7

sqrt hybrid 395 350 n/a 2274.9 2428.3 242.1 916 104 275.9

Round5: n = 756, q = 212, σ ≈ 4.61, h = 242 λ = 270

sqrt g-v decoding (GSA) 445 395 37 2283.9 2490.0 214.1 734 120 285.5

sqrt hybrid (GSA) 425 365 n/a 2277.0 2453.9 232.0 754 109 278.0

sqrt g-v decoding 450 430 131 2324.8 2474.6 222.7 729 113 325.9

sqrt hybrid 460 390 n/a 2320.5 2496.6 254.3 719 120 321.6

Round5 (IoT): n = 372, q = 211, σ ≈ 4.61, h = 178 λ = 129

sqrt g-v decoding (GSA) 175 250 48 2156.7 2250.8 24.0 506 80 157.8

sqrt hybrid (GSA) 165 225 n/a 2151.6 2234.5 217.4 516 74 152.9

g-v decoding 170 270 101 2174.3 2237.2 26.5 511 73 175.4

sqrt hybrid 180 240 n/a 2172.2 2256.4 227.1 501 81 173.4

HElib-1024: n = 1024, q = 247, σ ≈ 3.19, h = 64

sqrt g-v decoding (GSA) 210 95 36 259.9 259.7 25.2 1599 9 62.0

sqrt hybrid (GSA) 270 85 n/a 260.8 263.1 29.1 1539 9 61.8

Table 3.8: Estimates in the enumeration regime considering a “meet-in-the-middle” approach
which does not consider probabilities of failure in the meet-in-the-middle phase. Such an
approach considers a square-root speed-up in the guessing phase.

97



3.5 Target Parameter Sets and Estimates

attack τ β η BDD cost |S| repeats d #pp log2(rop)

NTRU LPrime: n = 761, q = 4591, σ =
√

2/3, h = 250 λ = 155

uSVP (GSA) 0 532 532 n/a n/a 1 1352 n/a 185.1

Dual (GSA) 45 586 n/a n/a n/a 2148.0 1383 14 203.1

g-v decoding (GSA) 0 515 549 2179.7 1 1 1351 n/a 181.0†

non-mitm hybrid (GSA) 170 580 n/a 2218.9 2178.1 221.4 1181 43 220.8

g-v decoding 0 530 562 2183.5 1 1 1351 n/a 185.3†

non-mitm hybrid 230 615 n/a 2302.1 2189.6 293.3 1121 40 303.3

Round5: n = 756, q = 212, σ ≈ 4.61, h = 242 λ = 193

uSVP (GSA) 0 664 664 n/a n/a 1 1266 n/a 223.6

Dual (GSA) 46 748 n/a n/a n/a 2198.6 1325 13 251.0

g-v decoding (GSA) 0 645 679 2217.7 1 1 1265 n/a 218.9†

non-mitm hybrid (GSA) 225 705 n/a 2273.7 2215.4 239.3 1040 49 275.2

g-v decoding 0 660 699 2223.5 1 1 1265 n/a 224.1†

non-mitm hybrid 290 700 n/a 2393.9 2214.8 2160.3 975 43 394.9

Round5 (IoT): n = 372, q = 211, σ ≈ 4.61, h = 178 λ = 96

uSVP (GSA) 0 335 335 n/a n/a 1 682 n/a 126.6

Dual (GSA) 22 396 n/a n/a n/a 2104.2 710 1 145.0

g-v decoding (GSA) 0 315 349 2121.6 1 1 681 n/a 122.4†

non-mitm hybrid (GSA) 85 375 n/a 2155.2 2119.5 218.3 596 38 156.9

sqrt g-v decoding 0 320 358 2123.9 1 1 681 n/a 124.3†

non-mitm hybrid 95 380 n/a 2204.5 2122.1 265.1 586 35 205.6

HElib-1024: n = 1024, q = 247, σ ≈ 3.19, h = 64

uSVP (GSA) 0 137 137 n/a n/a 1 1939 n/a 70.3

Dual (GSA) 80 115 n/a n/a n/a 219.6 1741 7 67.1

g-v decoding (GSA) 85 125 50 266.6 230.0 22.6 1853 5 69.8

non-mitm hybrid (GSA) 155 115 n/a 266.2 240.1 25.6 1783 6 69.8

Table 3.9: Estimates in the sieving regime, where BKZ and the BDD solver are instantiated
with sieving algorithms. Estimates marked with † correspond to standard BDD decoding.
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attack τ β η BDD cost |S| repeats d #pp log2(rop)

NTRUL Prime: n = 761, q = 4591, σ =
√

2/3, h = 250 λ = 155

sqrt g-v decoding (GSA) 0 515 549 2179.7 1 1 1351 0 181.0†

sqrt hybrid (GSA) 260 475 n/a 2181.3 2296.5 213.9 1091 75 182.7

sqrt g-v decoding 0 530 562 2183.5 1 1 1351 0 185.3†

sqrt hybrid 315 550 n/a 2230.4 2341.1 240.9 1036 83 231.7

Round5: n = 756, q = 212, σ ≈ 4.61, h = 242 λ = 193

sqrt g-v decoding (GSA) 0 645 679 2217.7 1 1 1265 0 218.9†

sqrt hybrid (GSA) 320 565 n/a 2216.4 2350.7 222.3 945 86 217.5

sqrt g-v decoding 0 660 699 2223.5 1 1 1265 0 224.1†

sqrt hybrid 390 660 n/a 2288.4 2405.8 267.0 875 96 289.6

Round5 (IoT): n = 372, q = 211, σ ≈ 4.61, h = 178 λ = 96

sqrt g-v decoding (GSA) 0 315 349 2121.6 1 1 681 0 122.4†

sqrt hybrid (GSA) 135 300 n/a 2126.9 2196.9 211.4 546 65 128.2

sqrt g-v decoding 0 320 358 2123.9 1 1 681 0 124.3†

sqrt hybrid 155 335 n/a 2155.2 2218.1 229.2 526 68 156.3

HElib-1024: n = 1024, q = 247, σ ≈ 3.19, h = 64

sqrt g-v decoding (GSA) 195 100 31 263.1 253.4 25.3 1743 8 65.1

sqrt hybrid (GSA) 235 95 n/a 261.7 272.1 25.2 1703 11 63.6

Table 3.10: Estimates in sieving regime for a “meet-in-the-middle” approach which does not
consider probabilities of failure in the meet-in-the-middle phase. Such an approach considers
a square-root speed-up in the guessing phase.
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hybrid-decoding attack. In order to compare directly to the (full) hybrid-decoding attack,

a proper analysis is required of the meet-in-the-middle probability for the g-v decoding

approach, and this is left to future work.

3.5.6 Results in the Sieving Regime

Tables 3.9 and 3.10 represent results in the sieving regime, for a classical guessing strategy and

a (square-root) meet-in-the-middle guessing strategy, respectively. Here, the results are less

interesting since combinatorics do not result in a complexity improvement for g-v decoding

and, therefore, the g-v decoding results correspond to the standard decoding attack.

Finally, we note that some of the complexities for the uSVP and decoding attacks considered

in these tables outperform the dual attack. Intuitively, since the dual attack solves decision-

LWE and the uSVP and decoding attacks solve search-LWE, we might expect that the dual

attack should have a lower complexity. This could highlight the fact that there may be

potential improvements for the dual attack which have yet-to-be discovered, or, it could

outline the fact that some of the assumptions used in our analysis of the hybrid attack, and

the variant of the dual attack considered in the LWE Estimator, are mis-aligned. Moreover,

we note that this behaviour can also be observed in a variety of other estimates in the

literature. For example, there are several examples of this behaviour in the estimates at

https://estimate-all-the-lwe-ntru-schemes.github.io, which are discussed in detail

in Chapter 4.

3.6 Assumptions Case Study: NTRU Prime

As discussed in Section 3.3.1, there are several points during a hybrid-decoding attack-based

security analysis where assumptions are required. This can make comparing two analyses

of the complexity of the hybrid-decoding attack cumbersome. In order to cross-check our

hybrid-decoding attack estimates, we align our code with the assumptions made in the NTRU

Prime security script. That is, we consider the set of assumptions A0 outlined in Table 3.11.

Explicitly, assumption set A0 consists of the following assumptions:

1. core-style BKZ models (“pre-quantum sieving” (i.e. 20.292β) and “pre-quantum enumeration”
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Technique Assumption A0 A1 A2 A3 A4 Our work

BKZ SVP calls
1 X X X

8d X X X

pbabai
∏

1≤i≤d

(
1− 2

B( d−1
2
, 1
2

)

∫ 1
min(ri,1)(1− t

2)(d−3)/2

)
X X X X X X

Tbabai
1 X X

d2

21.06
X X X X

BKZ output shape
q-ary GSA X

BKZ Simulator X X X X X

Guessing strategy
MiTM (sqrt) X X X X

Classic X X

Target norm
√
mσ2 + h n−τ

n X X X X X X

Lattice scaling s 7→ ηs : ‖s‖ ≈ ‖e‖ X

Mitm probability 1 X X X X X X

Memory considered? yes

Table 3.11: Sets of assumptions considered in this case study.

(i.e. 20.18728β log(β)−1.019β+16.1), both with “free memory”, in the language of [BCLv19]),

2. the formula for the success probability of Babai’s Nearest Plane algorithm from [Wun19],

with an associated cost of one operation,

3. the q-ary GSA as the output basis shape of the BKZ algorithm,

4. a meet-in-the-middle guessing phase, with associated collision probability of one,

5. the target norm of the vector recovered via the BDD algorithm is
√
mσ2 + h n−τ

n ,

6. free memory, and

7. no lattice scaling is considered.

We note that [BCLv19] contains estimates which consider the cost of memory. We do not

compare against these estimates as we do not consider memory costs in our analysis. After
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considering the assumption set A0, we move through assumptions until we reach those used

in our work. In particular, we consider several sets of assumptions: Ai for 0 ≤ i ≤ 4.

1. Assumption set A1 corresponds to A0 with the q-ary GSA swapped for the BKZ

simulator, since this is a more accurate measure of the GSO basis output shape given

by BKZ.

2. Assumption set A2 corresponds to A1 with the cost of Babai’s Nearest Plane algorithm

altered from one operation to be polynomial in the dimension of the lattice, i.e. d2

21.06

operations.

3. Assumption set A3 corresponds to A2 with the core- style cost models changed to

cost models which consider eight tours. As an example, this means swapping from

e.g. TBKZ(β, d) = 20.292β+16.4 to TBKZ(β, d) = 8d · 20.292β+16.4.

4. Assumption set A4 corresponds to A3 with the guessing strategy changed from a

meet-in-the-middle approach to a classical guessing strategy, allowing us to drop the

inaccurate assumption that collisions occur with probability one.

5. The only difference between assumption set A4 and the assumptions considered in our

work is that we consider lattice scaling.

These assumption sets are summarised in Table 3.11. We now compare the outputs of the

NTRU Prime script5, our script for the hybrid-decoding attack (labelled our script (hybrid)),

and our script for the g-v decoding attack (labelled our script (g-v decoding)) under these

various assumption sets, to see how the complexities of the techniques compare in each case.

Table 3.12 outlines the complexities in the enumeration regime, and Table 3.13 outlines the

complexities in the sieving regime. Note that we consider the same search spaces as the

NTRU LPrime script in each case, i.e. β ∈ {40, 80, 120, . . . } and τ ∈ {0, 40, 80, . . . }. We note

the closeness of the results under assumptions A0 between the NTRU Prime script and our

script (hybrid) given in Tables 3.12 and 3.13, and comment that this lends confidence to the

estimates given by our scripts. Moreover, our code is open source and can be found at the

url listed in Section 1.6.

5The code used in the NTRU Prime submission can be found here https://ntruprime.cr.yp.to/

estimate-20190329.sage
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3.6 Assumptions Case Study: NTRU Prime

ass alg τ β η BDD cost |S| repeats d #pp log2(rop)

NTRU LPrime: n = 761, q = 4591, σ =
√

2/3, h = 250

A0

NTRU Prime script 360 320 n/a 2220.9 – 232.5 881 – 222.1

our script (hybrid) 360 320 n/a 2221.3 2375.4 233.6 951 89 222.9

our script (g-v decoding) 360 360 83 2239.0 2380.5 218.1 951 91 240.5

A1

our script (hybrid) 400 360 n/a 2257.6 2442.8 236.2 911 109 258.7

our script (g-v decoding) 360 400 139 2270.1 2390.6 214.4 951 95 271.2

A2

our script (hybrid) 400 360 n/a 2273.0 2404.5 252.2 911 94 274.5

our script (g-v decoding) 360 400 139 2270.1 2390.6 214.4 951 95 271.2

A3

our script (hybrid) 400 360 n/a 2276.2 2442.8 236.2 911 109 277.9

our script (g-v decoding) 360 400 139 2283.6 2409.8 28.7 951 103 284.9

A4

our script (hybrid) 320 400 n/a 2386.9 2256.3 2111.8 991 53 388.1

our script (g-v decoding) 240 440 280 2376.0 2141.3 268.1 1071 26 380.0

Table 3.12: Enumeration-based estimates, where each section corresponds to a set of
assumptions outlined in Table 3.11. “– ” denotes a value which is not compatible with
our notation (for example, our script considers a simple sqrt speed-up in the search space, the
NTRU Prime script considers splitting the search space as in a meet-in-the-middle approach).
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ass alg τ β η BDD cost |S| repeats d #pp log2(rop)

NTRU LPrime: n = 761, q = 4591, σ =
√

2/3, h = 250

A0

NTRU Prime script 240 480 n/a 2156.0 – 218.8 1081 – 159.4

our script (hybrid) 240 480 n/a 2158.1 2279.7 218.3 1111 72 159.4

our script (g-v decoding) 0 560 562 2164.1 1 1 1351 0 165.0†

A1

our script (hybrid) 320 600 n/a 2209.9 2348.2 235.8 1031 85 211.5

our script (g-v decoding) 0 560 593 2173.2 1 1 1351 0 173.2†

A2

our script (hybrid) 360 320 n/a 2221.3 2375.4 233.6 951 89 222.9

our script (g-v decoding) 0 560 593 2173.2 1 1 1351 0 173.2†

A3

our script (hybrid) 320 600 0 2227.2 2338.2 239.1 1031 81 228.3

our script (g-v decoding) 0 560 593 2176.2 1 1 1351 0 177.8†

A4

our script (hybrid) 200 640 0 2297.6 2180.7 297.6 1151 40 298.6

our script (g-v decoding) 0 560 593 2176.2 1 1 1351 0 177.8†

Table 3.13: Sieving-based estimates, where each section corresponds to a set of assumptions
outlined in Table 3.11. “– ” denotes a value which is not compatible with our notation (for
example, our script considers a simple sqrt speed-up in the search space, the NTRU Prime
script considers splitting the search space as in a meet-in-the-middle approach). Estimates
marked with a † correspond to a uSVP estimate with η, β uncoupled.
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3.7 Conclusion

There are two main observations from Tables 3.12 and 3.13. The first observation is that we

believe assumption set A4 represents assumptions which are more realistic than those used in

the preceding assumption sets and, as we can see in the enumeration regime (Table 3.12), the

g-v decoding attack outperforms (a variant of) the hybrid attack, under these assumptions,

for this parameter set. In the sieving regime, this is not the case, and here g-v decoding

corresponds to the standard BDD decoding approach.

The second observation is to highlight the differences that varying assumptions can make on

attacks of this type. If we consider assumption sets A0 and A3 in the enumeration regime

(Table 3.12), we note that the difference in complexity of the g-v decoding estimates is

≈ 285 − 241 = 44-bits, and the difference in complexity of the hybrid attack estimates is

≈ 278− 223 = 55-bits. This shows the importance of outlining the assumptions used in any

security analysis which considers decoding attacks.

3.7 Conclusion

In this chapter, we introduced a guess-and-verify decoding technique to solve the Small-

secret Learning with Errors problem. Throughout, we have compared this technique with

the hybrid-decoding attack. These two attack techniques consider a myriad of trade-offs and

are trick to optimise, due to the large number of degrees of freedom in the attack parameters

(e.g. (τ, β,m, |S|)). Conservative assumptions can be made (such as those discussed throughout

this chapter) in order to generate an underestimate of security fairly efficiently. This is a

reasonable approach, provided that the process is transparent. However, it is also important

to estimate the complexity of these attacks as accurately as possible. Throughout this chapter,

we have considered a variety of sets of assumptions and have shown that, under certain

assumptions our g-v decoding technique outperforms a (non-mitm) variant of the hybrid-

decoding attack and, under other sets of assumptions, the converse is true.
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Security in Communications Networks (SCN) (pp. 351-367). Springer, volume 11035 of

Lecture Notes in Computer Science, 2018. Additional details have been added in this thesis.

In this chapter, we survey the submissions to the first round of the NIST standardisation

process for post-quantum cryptographic algorithms. In particular, we consider every cost

model for lattice reduction used as part of a submission and estimate the complexity of all

parameter sets for each submission under every cost model, which allows the security claims

of two schemes to be compared more easily. Finally, we provide a status update regarding the

third round of the NIST standardisation process.

The author of this thesis contributed towards (a) the collection of data used in the tables and

(b) the writing of the paper. Furthermore, all updates for the third round are novel.

4.1 Introduction and Contribution

In 2015, the United States’ National Institute of Standards and Technology (NIST) began a

process aimed at the standardisation of post-quantum public-key encryption schemes (PKE),

key encapsulation mechanisms (KEM), and digital signature algorithms (SIG). The initial

call for proposals was in 2016 [Nat16]. The aim of the process is to ensure that cryptographic

requirements can be met in an era where quantum computers exist. Participants were invited

to submit their designs along with an associated cryptanalysis, and parameter sets aimed

at meeting one or more target security categories out of the five defined by NIST. The five

security categories are listed as follows:

1. Any attack that breaks the relevant security definition must require computational

resources comparable to or greater than those required for key search on a block cipher

with a 128-bit key (e.g. AES128).

2. Any attack that breaks the relevant security definition must require computational

resources comparable to or greater than those required for collision search on a 256-bit

hash function (e.g. SHA256/SHA3-256).

3. Any attack that breaks the relevant security definition must require computational

resources comparable to or greater than those required for key search on a block cipher

with a 192-bit key (e.g. AES192).
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4. Any attack that breaks the relevant security definition must require computational

resources comparable to or greater than those required for collision search on a 384-bit

hash function (e.g. SHA384/SHA3-384).

5. Any attack that breaks the relevant security definition must require computational

resources comparable to or greater than those required for key search on a block cipher

with a 256-bit key (e.g. AES 256).

One way to interpret these security levels is the following: each AES-n security level corresponds

to n-bits of classical security and n/2-bits of quantum security (based on the complexity of

key search, i.e. O(2n) classically and O(2n/2) using Grover’s algorithm), and each SHA-n

security level corresponds to n/2-bits of classical security and n/3-bits of quantum security

(based on the complexity of collision search, i.e. O(2n/2) classically and O(2n/3) using Grover’s

algorithm), leading to the security levels in Table 4.1.

Security Level Classical Security (bits) Quantum Security (bits)

1 (AES-128) 128 64

2 (SHA-256) 128 ≈ 85

3 (AES-192) 192 96

4 (SHA-384) 192 128

5 (AES-256) 256 128

Table 4.1: An example interpretation of the five NIST security levels.

Different interpretations of these five different security levels, alongside the use of vastly

different assumptions considered by each submission, means that the security (and efficiency)

of any two schemes can be difficult to compare fairly. In particular, the cost model for the

BKZ algorithm, as defined in Section 2.10.1.2, varies across submissions. This means that it

is possible for two identical parameter sets to be associated to two different security levels

λ1 and λ2, of which the difference can be significant. In this chapter, we are interested in

the lattice-based submissions to the NIST standardisation process. We extract the proposed

parameter sets, and lattice reduction cost models, used in each LWE-based and NTRU-based

submission. To provide a clearer view on the effect of the chosen cost model, we cross-estimate

the security of each parameter set under every cost model for all first round submissions.
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The five security categories are defined as target security levels when considering adversaries

who have access to a quantum computer. Furthermore, NIST propose the assumption that

such a quantum computing device would support a maximum circuit depth MAXDEPTH ≤
296 [Nat16]. We note that not all schemes take this limitation into account, and instead

opt for using an asymptotic cost model that considers the best known theoretical Grover

speed-up, resulting in overestimates of the adversary’s power.

This has caused confusion within the submissions and this confusion introduces further

difficulties when making a comparison of two schemes under a (quantum) cost model. Consider

category 1, which states that attacks on schemes should be at least as hard as AES-128 key

recovery. Some schemes interpret this by generating parameter sets with λ ≥ 128 under a

quantum cost model, whereas other schemes claiming the same category of hardness interpret

this to mean λ ≥ 64, since key recovery for AES-128 can be completed in time O(2n/2) using

Grover’s algorithm. This results in schemes listing parameter sets with vastly different claimed

security being in the same category. To make this clear we list the “claimed security” levels

of all schemes in our tables of estimates.

We restrict our attention to the uSVP variant of the primal lattice attack [ADPS16, AGVW17]

and the dual lattice attack [MR09], and we recall that both of these techniques were introduced

in Chapter 2. We note that, for certain schemes where the LWE secret is small and/or sparse,

we consider the small-secret variants of the uSVP attack [BG14] and dual attack [Alb17] which

we outline in Section 4.5. We do not consider algebraic [AG11, ACFP14] or combinatorial [AFFP14,

GJS15, KF15, GJMS17] attacks, since those algorithms are not competitive for the parameter

sets considered in this work.

We do not consider the primal attack via a combination of lattice reduction and BDD

enumeration often referred to as a “lattice decoding” attack [Sch03, LP11] as considered in

Chapter 3. However, note that the primal uSVP attack can be considered as a simplified

variant of the decoding attack in the enumeration regime. For NTRU, we restrict our

attention to the primal uSVP attack (possibly combined with guessing zero-entries of the

short vector). We do not consider the hybrid lattice reduction and meet-in-the-middle

attack [How07, Wun19] or “guessing + nearest plane” after lattice reduction, as considered

in Chapter 3.
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4.1.1 Related Work

NIST categorised each scheme according to the family of underlying problem (lattice-based,

code-based, SIDH-based, MQ-based, hash-based, other) in [Moo17]. This analysis was refined

in [Fuj17]. NIST then provided a first performance comparison of all complete and proper

schemes in [Nat17]. Bernstein provided a comparison of all schemes based on the sizes of

their ciphertexts and keys in [Ber17].

4.2 First Round Submissions

In total, 82 submissions were made to the standardisation process and, of these submissions,

69 were deemed “complete and proper” by NIST. These 69 submissions, of which 23 were

based on either the LWE or NTRU family of problems, formed the first round submissions.

The 18 LWE-based submissions and five NTRU-based submissions are outlined in Table 4.2.

Assumption Schemes

Crystals-Dilithium Crystals-Kyber

Ding Key Exchange Emblem

Frodo HILA5

KCL KINDI

LWE Variants LAC Lima

LOTUS Lizard

NewHope Saber

ThreeBears Titanium

uRound2 qTesla

Falcon NTRU HRSS

NTRU Variants NTRUEncrypt NTRU Prime

pqNTRUSign

Table 4.2: Complete and proper lattice-based submissions to the NIST standardisation
process.
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4.3 Costing Lattice Reduction

4.3 Costing Lattice Reduction

There are a variety of approaches within the literature to cost the running time of the BKZ

algorithm [CN11, APS15, ADPS16]. The main divergence stems from whether cost models are

based on using enumeration-based algorithms as the SVP solver (the enumeration regime), or

sieving-based algorithms as the SVP solver (the sieving regime). A second divergence stems

from how many calls to the SVP oracle are expected to be required to recover a vector of

length ≈ δd Vol(Λ)1/d.

The cost of BKZ with blocksize β on a lattice of dimension d can be written in the form:

TBKZ(β, d) = a · 2f(β,d)

= 2f(β,d)+log(a),

where a denotes the number of calls to an SVP oracle of cost 2f(β,d). We refer to the exponent,

i.e. f(β, d) + log(a), as a BKZ cost model. In this section, we review the cost models used as

part of all first round submissions. We note that the cost models considered in this chapter do

not consider the coefficient size, that is the bit-length of the modulus q. We assume that the

output costs are in ring-operations, i.e. a number of operations in Zq, but we do not consider

the additional costs (e.g. in binary operations) brought by varying the value of q. For the

schemes considered in this work, where the moduli are reasonably close in size, this is not

particularly an issue. However, for homomorphic encryption schemes, where modulus sizes

larger than 21000 are considered, it may be important to also consider the coefficient size in

the cost of lattice reduction.

4.3.1 Enumeration-based Cost Models

Let d be the dimension of the lattice used inside BKZ with blocksize β. In the literature,

the cost of enumeration can be found to be estimated as 2c1β log β+c2β+c3 [Kan83, MW15]

or as 2c1β
2+c2β+c3 [FP85, CN11], with Grover speedups considered to half the exponent.

There are four enumeration-based cost models used as part of the first round submissions to

the NIST standardisation process. The estimates 0.187β log β − 1.019β + 16.1 [APS15] and

0.000784β2 + 0.366β − 0.9 [HPS+15] are both based on fitting the same data from [Che13].

LOTUS [PHAM17] is the only submission not to provide a closed formula for estimating

the cost of BKZ. Given their preference for enumeration, we fit their estimated cost model
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Figure 4.1: Enumeration-based cost models used as part of a first round submission to the
NIST standardisation process for a lattice of dimension d = 1024 with 40 ≤ β ≤ 400.

to a curve of shape 2c1β log β+c2β+c3 following [MW15]. We fit a curve to the values given

by [PHAM17, (39)], the script used is available in the public repository [Lot18]. To summarise,

the four enumeration-based cost models considered in the first round submissions are:

1. 0.187β log(β)− 1.019β + 16.1,

2. 1
2(0.187β log(β)− 1.019β + 16.1),

3. 0.000784β2 + 0.366β − 0.9 + log(8d), and

4. 0.125β log(β)− 0.755β + 2.25.

To illustrate the differences in these models, we plot the costs for a lattice of dimension

d = 1024 for 40 ≤ β ≤ 400 in Figure 4.1.
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4.3.2 Sieving-based Cost Models

There are ten sieving-based cost models used as part of first round submissions to the NIST

standardisation process. Recall that sieving algorithms require the usage of exponential

memory. However, in our work, we do not consider the memory costs associated to sieving

algorithms, and simply consider the time cost. Let d be the dimension of the lattice used

inside BKZ with blocksize β. The 0.292β model comes from [BDGL16], and the 0.265β model

accounts for speed-ups associated Grover’s algorithm, and appears in [Laa15a]. There is a

min-space variant 0.368β which also appears in [BDGL16], where Grover speed-ups account

for the 0.2975β model, occurring in [Laa15a]. The constant 16.4 comes from experiments

in [Laa15b], interpolated by [APS15]. The log(β) term appears in submissions which assume

that a sieving cost model of the form 2cβ requires β2cβ CPU cycles.

With respect to the number of SVP oracle calls required by BKZ, a popular choice was to

follow the “Core-SVP” model introduced in [ADPS16], that considers a single call. Alternatively,

the number of calls has also been estimated to be 8d (for example, in [Alb17]), where d is the

dimension of the embedding lattice. To summarise, there are ten sieving-based cost models

considered in the first round submissions, all of which are the result of combinations of the

above assumptions. Of the ten cost models, the five classical models are:

1. 0.292β,

2. 0.292β + 16.4,

3. 0.368β,

4. 0.292β + log(β), and

5. 0.292β + 16.4 + log(8d).

The five quantum models are:

6. 0.265β,

7. 0.265β + 16.4,

8. 0.2975β,
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9. 0.265β + log(β), and

10. 0.265β + 16.4 + log(8d).
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Figure 4.2: Sieving-based cost models, used as part of a first round submission to the NIST
standardisation process, for a lattice of dimension d = 1024 with 40 ≤ β ≤ 400.

4.3.3 Cost Models Used in the Submissions

In this section we match the models outlined in Section 4.3 to the first round submissions.

Specifically, in Table 4.3, we outline the cost models considered by each individual submission.

We note that some submissions consider several models, and cost their scheme under each

model (for example, LIMA [SAL+17] considers both the 0.292β + 16.4 and 0.265β + 16.4

models).

The different cost models diverge on the unit of operations they are using. In the enumeration

models, the unit is “number of nodes visited during enumeration”. As discussed in Chapter 3,

114



4.4 Parameter Sets

it is typically assumed that processing one node costs about 100 CPU cycles [CN11]. For

sieving, the elementary operation is typically an operation on word-sized integers, costing

about one CPU cycle (recall, however, that the cost models including a log(β) term assume

that a sieving cost model of the form 2cβ requires β2cβ CPU cycles). For quantum algorithms

the unit is typically the number of Grover iterations required, and it is not clear how this

translates to traditional CPU cycles. Of course, for models which suppress lower order terms,

the unit of computation considered is immaterial.

4.4 Parameter Sets

In this section we outline the individual parameter sets considered inside every submission. In

this work we consider Learning with Rounding-based, Ring/Module LWE-based, and NTRU-

based parameter sets.

Learning with Rounding. Recall from Chapter 2 that the Learning with Rounding (LWR)

problem replaces the addition of a noise term (used in LWE) with a deterministic rounding

process. An instance of the LWR problem is of the form:(
a, b :=

⌊
p

q
〈a, s〉

⌉)
∈ Znq × Zp,

and we can interpret this as an LWE instance by multiplying the second component by q/p

and assuming that:

(q/p) · b = 〈a, s〉+ e,

where e is chosen uniformly from the set {−q2p + 1, . . . , q2p} [Ngu18]. We can therefore view

LWR samples as LWE samples with modulus q and error distribution uniform over the set

{−q2p + 1, . . . , q2p}.

Ring/Module Learning with Errors. We view Ring-LWE and Module-LWE instances as

LWE instances by considering the coefficients of elements in Rq as vectors in Znq and ignoring

any algebraic structure of Rq. This approach is standard when considering the complexity of

algorithms solving the Ring-LWE and Module-LWE problems due to the lack of cryptanalytic

techniques exploiting the algebraic structure.

NTRU. Let (f ,g) ∈ Z2n be the NTRU secret as introduced in Chapter 2. We treat f as the

LWE secret s, and g as the LWE error e (we note that this can also be considered vice-versa).
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Model Schemes

CRYSTALS [LDK+17, SAB+17]

SABER [DKRV17]

Falcon [PFH+17]

ThreeBears [Ham17]

HILA5 [Saa17]

0.292β Titanium [SSZ17]

0.265β KINDI [El 17]

NTRU HRSS [SHRS17]

LAC [LLJ+17]

NTRUEncrypt [ZCHW17a]

New Hope [PAA+17]

pqNTRUSign [ZCHW17b]

Round2 [GZB+17]

0.292β + 16.4
LIMA [SAL+17]

0.265β + 16.4

0.368β
NTRU HRSS [SHRS17]

0.2975β

Frodo [NAB+17]

0.292β + log(β) KCL [ZJGS17]

0.265β + log(β) Lizard [CPL+17]

Round2 [GZB+17]

0.292β + 16.4 + log(8d)
Ding Key Exchange [DTGW17]

EMBLEM [SPL+17]

0.265β + 16.4 + log(8d) qTESLA [BAA+17]

NTRU HRSS [SHRS17]

0.187β log β − 1.019β + 16.1 pqNTRUSign [ZCHW17b]

NTRUEncrypt [ZCHW17a]

1
2(0.187β log β − 1.019β + 16.1) NTRU HRSS [SHRS17]

0.000784β2 + 0.366β − 0.9 + log(8d) NTRU Prime [BCLv17]

0.125β log β − 0.755β + 2.25 LOTUS [PHAM17]

Table 4.3: All cost models proposed as part of a submission to the first round of the NIST
standardisation procedure. The name of a model is the log (to the base 2) of its cost.
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The LWE degree n is exactly the degree of the NTRU polynomial φ, the standard deviation of

the LWE error distribution is set to ‖g‖2/
√
n, and the LWE modulus q is exactly the NTRU

modulus. We account for the presence of rotations by amplifying the success probability p of

guessing entries of the secret correctly to 1− (1− p)k, where k is the number of rotations.

In Table 4.4 we present the parameters considered in the NTRU-based submissions. In

Table 4.5, these parameters have been represented as LWE samples using the techniques

discussed above. In Table 4.6, we outline the parameters considered in the LWE and LWR-

based schemes.

Name n q ‖f‖ ‖g‖ NIST Assumption φ Primitive

NTRUEncrypt 443 2048 16.94 16.94 1 NTRU xn − 1 KEM, PKE

743 2048 22.25 22.25 1, 2, 3, 4, 5 NTRU xn − 1 KEM, PKE

1024 1073750017 23168.00 23168.00 4, 5 NTRU xn − 1 KEM, PKE

Falcon 512 12289 91.71 91.71 1 NTRU xn + 1 SIG

768 18433 112.32 112.32 2, 3 NTRU xn − xn/2 + 1 SIG

1024 12289 91.71 91.71 4, 5 NTRU xn + 1 SIG

NTRU HRSS 700 8192 20.92 20.92 1 NTRU
∑n−1

i=0 x
i KEM

SNTRU Prime 761 4591 16.91 22.52 5 NTRU xn − x− 1 KEM

pqNTRUSign 1024 65537 22.38 22.38 1, 2, 3, 4, 5 NTRU xn − 1 SIG

Table 4.4: Parameter sets for NTRU-based schemes with secret dimension n, modulo q, small
polynomials f and g, and ring Zq[x]/(φ). The NIST column indicates the NIST security
category aimed at.
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Name n q σ Secret dist. NIST Assumption φ Primitive

NTRUEncrypt 443 2048 0.80 ((−1, 1), 287) 1 NTRU xn − 1 KEM, PKE

743 2048 0.82 ((−1, 1), 495) 1, 2, 3, 4, 5 NTRU xn − 1 KEM, PKE

1024 1073750017 724.00 normal 4, 5 NTRU xn − 1 KEM, PKE

Falcon 512 12289 4.05 normal 1 NTRU xn + 1 SIG

768 18433 4.05 normal 2, 3 NTRU xn − xn/2 + 1 SIG

1024 12289 2.87 normal 4, 5 NTRU xn + 1 SIG

NTRU HRSS 700 8192 0.79 ((−1, 1), 437) 1 NTRU
∑n−1

i=0 x
i KEM

SNTRU Prime 761 4591 0.82 ((−1, 1), 286) 5 NTRU xn − x− 1 KEM

pqNTRUSign 1024 65537 0.70 ((−1, 1), 501) 1, 2, 3, 4, 5 NTRU xn − 1 SIG

Table 4.5: LWE parameter sets for NTRU-based schemes, with dimension n, modulo q,
standard deviation of the error σ, and ring Zq[x]/(φ). The NIST column indicates the NIST
security category aimed at.

Name n k q σ Secret dist. NIST Assumption φ Primitive

KCL-RLWE 1024 — 12289 2.83 normal 5 Ring-LWE xn + 1 KEM

KCL-MLWE 768 3 7681 1.00 normal 4 Module-LWE xn/k + 1 KEM

768 3 7681 2.24 normal 4 Module-LWE xn/k + 1 KEM

BabyBear 624 2 1024 1.00 normal 2 ILWE qn/k − qn/(2k) − 1 KEM

624 2 1024 0.79 normal 2 ILWE qn/k − qn/(2k) − 1 KEM

MamaBear 936 3 1024 0.94 normal 5 ILWE qn/k − qn/(2k) − 1 KEM

936 3 1024 0.71 normal 4 ILWE qn/k − qn/(2k) − 1 KEM

PapaBear 1248 4 1024 0.87 normal 5 ILWE qn/k − qn/(2k) − 1 KEM

1248 4 1024 0.61 normal 5 ILWE qn/k − qn/(2k) − 1 KEM

CRYSTALS-Dilithium 768 3 8380417 3.74 (−6, 6) 1 Module-LWE xn/k + 1 SIG

1024 4 8380417 3.16 (−5, 5) 2 Module-LWE xn/k + 1 SIG

1280 5 8380417 2.00 (−3, 3) 3 Module-LWE xn/k + 1 SIG

CRYSTALS-Kyber 512 2 7681 1.58 normal 1 Module-LWE xn/k + 1 KEM, PKE

768 3 7681 1.41 normal 3 Module-LWE xn/k + 1 KEM, PKE

1024 4 7681 1.22 normal 5 Module-LWE xn/k + 1 KEM, PKE

Ding Key Exchange 512 — 120883 4.19 normal 1 Ring-LWE xn + 1 KEM

1024 — 120883 2.60 normal 3, 5 Ring-LWE xn + 1 KEM

EMBLEM 770 — 16777216 25.00 (−1, 1) 1 LWE — KEM, PKE

611 — 16777216 25.00 (−2, 2) 1 LWE — KEM, PKE

R EMBLEM 512 — 65536 25.00 (−1, 1) 1 Ring-LWE xn + 1 � KEM, PKE

512 — 16384 3.00 (−1, 1) 1 Ring-LWE xn + 1 � KEM, PKE
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Name n k q σ Secret dist. NIST Assumption φ Primitive

Frodo 640 — 32768 2.75 normal 1 LWE — KEM, PKE

976 — 65536 2.30 normal 3 LWE — KEM, PKE

NewHope 512 — 12289 2.00 normal 1 Ring-LWE xn + 1 KEM, PKE

1024 — 12289 2.00 normal 5 Ring-LWE xn + 1 KEM, PKE

HILA5 1024 — 12289 2.83 normal 5 Ring-LWE xn + 1 KE

KINDI 768 3 16384 2.29 (−4, 4) 2 Module-LWE xn/k + 1 KEM, PKE

1024 2 8192 1.12 (−2, 2) 4 Module-LWE xn/k + 1 KEM, PKE

1024 2 16384 2.29 (−4, 4) 4 Module-LWE xn/k + 1 KEM, PKE

1280 5 16384 1.12 (−2, 2) 5 Module-LWE xn/k + 1 KEM, PKE

1536 3 8192 1.12 (−2, 2) 5 Module-LWE xn/k + 1 KEM, PKE

LAC 512 — 251 0.71 normal 1, 2 PLWE xn + 1 KE, KEM, PKE

1024 — 251 0.50 normal 3, 4 PLWE xn + 1 KE, KEM, PKE

1024 — 251 0.71 normal 5 PLWE xn + 1 KE, KEM, PKE

LIMA-2p 1024 — 133121 3.16 normal 3 Ring-LWE xn + 1 KEM, PKE

2048 — 184321 3.16 normal 4 Ring-LWE xn + 1 KEM, PKE

LIMA-sp 1018 — 12521473 3.16 normal 1 Ring-LWE
∑n

i=0 x
i KEM, PKE

1306 — 48181249 3.16 normal 2 Ring-LWE
∑n

i=0 x
i KEM, PKE

1822 — 44802049 3.16 normal 3 Ring-LWE
∑n

i=0 x
i KEM, PKE

2062 — 16900097 3.16 normal 4 Ring-LWE
∑n

i=0 x
i KEM, PKE

Lizard 1024 — 2048 1.12 ((−1, 1), 140) 1 LWE, LWR — KEM, PKE

1024 — 1024 1.12 ((−1, 1), 128) 1 LWE, LWR — KEM, PKE

1024 — 2048 1.12 ((−1, 1), 200) 3 LWE, LWR — KEM, PKE

1024 — 2048 1.12 ((−1, 1), 200) 3 LWE, LWR — KEM, PKE

2048 — 4096 1.12 ((−1, 1), 200) 5 LWE, LWR — KEM, PKE

2048 — 2048 1.12 ((−1, 1), 200) 5 LWE, LWR — KEM, PKE

RLizard 1024 — 1024 1.12 ((−1, 1), 128) 1 Ring-LWE, Ring-LWR xn + 1 KEM, PKE

1024 — 2048 1.12 ((−1, 1), 264) 3 Ring-LWE, Ring-LWR xn + 1 KEM, PKE

2048 — 2048 1.12 ((−1, 1), 164) 3 Ring-LWE, Ring-LWR xn + 1 KEM, PKE

2048 — 4096 1.12 ((−1, 1), 256) 5 Ring-LWE, Ring-LWR xn + 1 KEM, PKE

LOTUS 576 — 8192 3.00 normal 1, 2 LWE — KEM, PKE

704 — 8192 3.00 normal 3, 4 LWE — KEM, PKE

832 — 8192 3.00 normal 5 LWE — KEM, PKE

uRound2.KEM 500 — 16384 2.29 ((−1, 1), 74) 1 LWR — KEM

580 — 32768 4.61 ((−1, 1), 116) 2 LWR — KEM

630 — 32768 4.61 ((−1, 1), 126) 3 LWR — KEM

786 — 32768 4.61 ((−1, 1), 156) 4 LWR — KEM

786 — 32768 4.61 ((−1, 1), 156) 5 LWR — KEM

uRound2.KEM 418 — 4096 4.61 ((−1, 1), 66) 1 Ring-LWR
∑n

i=0 x
i KEM

522 — 32768 36.95 ((−1, 1), 78) 2 Ring-LWR
∑n

i=0 x
i KEM

540 — 16384 18.47 ((−1, 1), 96) 3 Ring-LWR
∑n

i=0 x
i KEM

700 — 32768 36.95 ((−1, 1), 112) 4 Ring-LWR
∑n

i=0 x
i KEM

676 — 32768 36.95 ((−1, 1), 120) 5 Ring-LWR
∑n

i=0 x
i KEM
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Name n k q σ Secret dist. NIST Assumption φ Primitive

uRound2.PKE 500 — 32768 4.61 ((−1, 1), 74) 1 LWR — PKE

585 — 32768 4.61 ((−1, 1), 110) 2 LWR — PKE

643 — 32768 4.61 ((−1, 1), 114) 3 LWR — PKE

835 — 32768 2.29 ((−1, 1), 166) 4 LWR — PKE

835 — 32768 2.29 ((−1, 1), 166) 5 LWR — PKE

uRound2.PKE 420 — 1024 1.12 ((−1, 1), 62) 1 Ring-LWR
∑n

i=0 x
i PKE

540 — 8192 4.61 ((−1, 1), 96) 2 Ring-LWR
∑n

i=0 x
i PKE

586 — 8192 4.61 ((−1, 1), 104) 3 Ring-LWR
∑n

i=0 x
i PKE

708 — 32768 18.47 ((−1, 1), 140) 4, 5 Ring-LWR
∑n

i=0 x
i PKE

nRound2.KEM 400 — 3209 3.61 ((−1, 1), 72) 1 Ring-LWR
∑n

i=0 x
i KEM

486 — 1949 2.18 ((−1, 1), 96) 2 Ring-LWR
∑n

i=0 x
i KEM

556 — 3343 3.76 ((−1, 1), 88) 3 Ring-LWRR
∑n

i=0 x
i KEM

658 — 1319 1.46 ((−1, 1), 130) 4, 5 Ring-LWR
∑n

i=0 x
i KEM

nRound2.PKE 442 — 2659 1.47 ((−1, 1), 74) 1 Ring-LWR
∑n

i=0 x
i PKE

556 — 3343 1.86 ((−1, 1), 88) 2 Ring-LWR
∑n

i=0 x
i PKE

576 — 2309 1.27 ((−1, 1), 108) 3 Ring-LWR
∑n

i=0 x
i PKE

708 — 2837 1.57 ((−1, 1), 140) 4, 5 Ring-LWR
∑n

i=0 x
i PKE

LightSaber 512 2 8192 2.29 normal 1 Module-LWR xn/k + 1 KEM, PKE

NTRU LPrime 761 — 4591 0.82 ((−1, 1), 250) 5 Ring-LWR xn − x− 1 KEM

Saber 768 3 8192 2.29 normal 3 Module-LWR xn/k + 1 KEM, PKE

FireSaber 1024 4 8192 2.29 normal 5 Module-LWR xn/k + 1 KEM, PKE

qTESLA 1024 — 8058881 8.49 normal 1 Ring-LWE xn + 1 SIG

2048 — 12681217 8.49 normal 3 Ring-LWE xn + 1 SIG

2048 — 27627521 8.49 normal 5 Ring-LWE xn + 1 SIG

Titanium.PKE 1024 — 86017 1.41 normal 1 PLWE xn +
∑n−1

i=1 fix
i + f0 * PKE

1280 — 301057 1.41 normal 1 PLWE xn +
∑n−1

i=1 fix
i + f0 * PKE

1536 — 737281 1.41 normal 3 PLWE xn +
∑n−1

i=1 fix
i + f0 * PKE

2048 — 1198081 1.41 normal 5 PLWE xn +
∑n−1

i=1 fix
i + f0 * PKE

Titanium.KEM 1024 — 118273 1.41 normal 1 PLWE xn +
∑n−1

i=1 fix
i + f0 * KEM

1280 — 430081 1.41 normal 1 PLWE xn +
∑n−1

i=1 fix
i + f0 * KEM

1536 — 783361 1.41 normal 3 PLWE xn +
∑n−1

i=1 fix
i + f0 * KEM

2048 — 1198081 1.41 normal 5 PLWE xn +
∑n−1

i=1 fix
i + f0 * KEM

Table 4.6: Parameter sets for LWE-based schemes with secret dimension n, Module-LWE
rank k (if any), modulo q, standard deviation of the error σ. If the LWE samples come from a
Ring- or Module-LWE instance, the ring is Zq[x]/(φ). The NIST column indicates the NIST
security category aimed at. *For Titanium no ring is explicitly chosen but the scheme relies
on a family of rings where fi ∈ {−1, 0, 1} and f0 ∈ {−1, 1}. � For R EMBLEM we list the
parameters from the reference implementation since a suitable φ could not be found for those
proposed in [SPL+17, Table 2].
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4.5 Small Secret Variants of the uSVP and Dual Attacks

In Tables 4.5 and 4.6 we see that a total of 104 parameter sets were submitted to the

first round. Of these parameter sets, nine consider the NTRU assumption, 23 consider the

LWE and/or LWR assumptions, 39 consider the Ring-LWE and/or Ring-LWR assumptions,

16 consider the Module-LWE and/or Module-LWR assumptions, and a further 17 consider

alternative LWE-based assumptions1.

4.5 Small Secret Variants of the uSVP and Dual Attacks

The uSVP and dual attacks can be optimised for variants of Small-secret LWE. In a similar

manner to the decoding attack in Chapter 3, we can combine the uSVP and dual attacks

with combinatorics to retrieve a complexity improvement. In this section, we introduce the

small-secret variants of the uSVP and dual attacks.

4.5.1 uSVP

The uSVP attack on Small-secret LWE considers the Bai and Galbraith embedding [BG14].

As opposed to the uSVP variant outlined in Chapter 2, where the target vector is (e, 1), the

Bai and Galbraith embedding constructs the lattice with basis matrix B, where:

B =


In 0 0

−A qIm b

0 0 1

 .

The vector (s, e, 1) is embedded in the lattice L(B), and this can be seen since:
In 0 0

−A qIm b

0 0 1




s

∗

1

 =


s

−As + q∗+ b

1

 =


s

e

1

 mod q.

In the case of normal-form LWE, we can view this variant of the uSVP attack as identical to

the approach considered in Chapter 2. However, we note that in the small secret variant of

this attack, we can employ dimension reduction techniques [MS01, APS15, Alb17] to reduce

the overall complexity. That is, we guess τ components of the LWE secret, before solving

1These assumptions are Polynomial-LWE [SSTX09], and Integer Module-LWE [Ham17].
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4.5 Small Secret Variants of the uSVP and Dual Attacks

uSVP in the (n+m− τ) dimension lattice with basis:

B =


In−τ 0 0

−A(τ) qIm b

0 0 1

 ,

where we recall that A(τ) corresponds to the matrix A with the first τ columns removed. If

we correctly guess zeros then the vector (sτ+1, sτ+2, . . . , sn, e, 1) is embedded in the lattice

L(B) reduced by BKZ, and this allows for complete recovery of the LWE secret. If we

incorrectly guess the zero components, then we have to restart this process with a fresh guess

of τ zero components. The running time of the dimension reduced problem, constrained by

the [ADPS16] success condition outlined in Chapter 2, is:

TuSV P = min
β,τ,m

{
1

pτ
· TBKZ(β, n+m− τ)

}
,

where pτ is the probability of correctly guessing τ zero components of the LWE secret, and

TBKZ(β, n + m − τ) is the cost of running BKZ on a dimension (n + m − τ) lattice with

blocksize β. We note that setting τ = 0 corresponds to not performing any guessing.

4.5.2 Dual

Recall the dual attack from Section 2.9.1, which finds short vectors v in the lattice:

Λ∗ = {x ∈ Zmq | xA ≡ 0 mod q},

before computing inner products of the form:

〈v,b〉 = 〈v,As + e〉 = 〈vA, s〉+ 〈v, e〉 = 〈v, e〉 mod q.

Inner products of this form allow us to distinguish LWE from random. For small and/or sparse

secrets, Albrecht suggests several improvements to this attack [Alb17], which we summarise

in the following four subsections.

4.5.2.1 Combinatorics

For sparse secrets, Albrecht suggests splitting the matrix A = [A0 | A1] where A0 ∈ Zm×(n−τ)
q

and A1 ∈ Zm×τq . Splitting the LWE secret s = (s0, s1) in the same manner, we can see that:

As = A0s0 + A1s1.
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4.5 Small Secret Variants of the uSVP and Dual Attacks

In this variant of the attack, we begin by finding short vectors in the lattice:

Λ′ = {v ∈ Zm | vA0 ≡ 0 mod q},

which corresponds to guessing τ components of the LWE secret as zero, i.e. (s1 = 0) and

hoping that As = A0s0, or equivalently that A1s1 ≡ 0 mod q (in a similar manner to the

hybrid-decoding attack outlined in Chapter 3, and the small-secret uSVP attack outlined

in Section 4.5.1). Note that setting τ = 0 corresponds to not performing any guessing,

and therefore reduces to the original dual attack. Suppose, then, that we proceed with the

following steps:

1. we collect ν short vectors {vi}νi=1 each contained within the lattice Λ′, typically by

performing lattice reduction ν times, and

2. compute a collection of inner products {ẽi = 〈vi,b〉}νi=1.

We have:

ẽi = 〈vi,b〉 = 〈vi,As + e〉 = 〈viA, s〉+ 〈vi, e〉

= 〈viA0, s0〉+ 〈viA1, s1〉+ 〈vi, e〉

= 〈viA1, s1〉+ 〈vi, e〉,

since viA0 ≡ 0 mod q. If our guess of τ zeros (i.e. s1 = 0) was correct, then these computed

terms are of the form 〈vi, e〉 since 〈viA1, s1〉 = 0. In this case, the ẽi terms follow a Discrete

Gaussian distribution and we have solved Decision-LWE.

Otherwise, we know that our guess of τ zeros is incorrect, and we can therefore make

additional guesses in the τ -dimensional guessing space (which, for example, if s← B− would

be {−1, 0, 1}τ ). For each guess, we compare the corresponding distributions provided by the

inner products against the uniform distribution modulo q. Specifically, we know that the

additional term is of the form 〈viA1, s1〉 and we can therefore search over possible secrets

s1 and attempt to remove this additional term from the inner product/s. In particular, for

candidate guesses s′ we construct terms of the form:

e′′i = e′i − 〈viA1s
′〉.

For the correct candidate secret, i.e. s′ = s1, the terms e′′i are of the form 〈vi, e〉 as is required.
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4.5 Small Secret Variants of the uSVP and Dual Attacks

4.5.2.2 Amortising the Cost of Lattice Reduction

Albrecht also considers re-randomisation techniques to amortise the cost of lattice reduction.

Recall that, for a successful attack, we may require ν short vectors from the lattice L(B). To

retrieve these vectors, one could imagine re-randomising the input basis before running the

BKZ algorithm on a new, randomised, lattice basis:

B̃i ← BKZβ(UiB),

ν times, and using the shortest vectors in the lattice bases {B̃i}νi=1. Albrecht notes that this

is unnecessary and suggests performing an initial, heavy, lattice reduction step:

B̃← BKZβ(B),

and applying randomisation after this lattice reduction has taken place. That is, we can use

the shortest vectors in the lattice bases:

B′i ← BKZβ′(UiB̃),

for some blocksize β′ � β. The idea is to take the shortest vector from each of these re-

randomised lattice bases, and use the resulting set of short vectors to distinguish against

the uniform distribution modulo q. The length of the short vectors generated via this re-

randomisation process are longer than those generated using using a fresh call to BKZ-β.

Albrecht suggests that these vectors have their norms increased by a factor of two compared

to the initial vector retrieved directly from BKZ-β, and provides experimental evidence to back

up this heuristic [Alb17]. However, these longer vectors can be generated at a significantly

lower cost via this amortisation technique. The hope is that this trade-off in vector length vs

computation time provides a speed-up in the overall attack cost.

4.5.2.3 Scaled Normal Form

The final technique stems from the observation that it is sufficient to find a short vector (v,w)

in the lattice given by:

Λ′′ =

{
(v,w) ∈ Zm ×

(
1

c
· Z
)n∣∣∣∣vA ≡ cw mod q

}
,

If we find such a short vector, then we note that:

〈v,b〉 = 〈v,As + e〉 = 〈vA, s〉+ 〈v, e〉 = 〈cw, s〉+ 〈v, e〉,
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4.5 Small Secret Variants of the uSVP and Dual Attacks

and, assuming that w, s are both sufficiently short, we can still distinguish LWE from random

modulo q, albeit with a different advantage, since the additional error term 〈cw, s〉 is small.

A scaling factor c is computed to balance the contributions of the two terms (i.e. 〈cw, s〉 and

〈v, e〉), which is computed as:

c =
αq√
2πh

√
m− n,

in [Alb17].

4.5.2.4 Combining Techniques

The small-secret variant of the dual attack combines these techniques (where appropriate) to

leverage both the smallness as well as any sparsity of the LWE secret vector s. We note that

these techniques are implemented in the LWE Estimator for both binary and ternary secrets.

4.5.3 Multiple Hardness Assumptions

The Lizard (RLizard) scheme is based on two hardness assumptions, LWE (Ring-LWE) and

LWR (Ring-LWR). Secret key recovery corresponds to the underlying LWE problem, and

ephemeral key recovery corresponds to the underlying LWR problem. There exists parameter

sets for which secret key recovery is harder than ephemeral key recovery (i.e. the underlying

LWE problem is harder than the underlying LWR problem), and there also exists parameter

sets for which the converse is true, i.e. ephemeral key recovery is harder than secret key

recovery. To deal with this issue, in each cost model, for every attack, we consider both the

cost of ephemeral key recovery and the cost of secret key recovery and always choose the

lower of the two estimates.

4.5.4 Number of Samples

LWE as defined in Definition 2.32 provides the adversary with an arbitrary number of samples

denoted by m. When using the LWE Estimator we can set the value m = ∞ and allow the

adversary to have access to an infinite number of samples. In practice, however, this is not

the case. In particular, in the Ring-LWE KEM setting – which is the most common for the
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4.6 First Round Security Estimates

schemes considered in this chapter – the public key is one Ring-LWE sample:

(a, b) = (a, as+ e),

for some short s, e, and encapsulations consist of two Ring-LWE samples

va+ e′,

and:

vb+ e′′ + m̃,

where m̃ is some encoding of a random string and v, e′, e′′ are short. Thus, depending on the

target, the adversary is given either n or 2n plain LWE samples.

In a typical setting, though, the adversary does not get to enjoy the full power of having two

Ring-LWE samples at its disposal, because, firstly, the random string m̃ increases the noise

in vb+e′′+ m̃ and, secondly, because many schemes drop lower order bits from vb+e′′+ m̃ to

save bandwidth. Due to the way decryption works this bit dropping can be quite aggressive,

and thus the noise in the second sample can be quite large. In the case of Module-LWE, a

ciphertext in transit produces a smaller number of LWE samples, but n samples can still be

recovered from the public key. In this work, we consider the m = n and m = 2n scenarios

for all schemes. We note that, for many schemes, n samples are sufficient to run the most

efficient variant of either attack.

4.6 First Round Security Estimates

We provide estimates for all first round parameter sets considered as part of a submission,

under all BKZ cost models considered as part of a submission, for both the uSVP and dual

attacks (where appropriate). This corresponds to over 150 parameter sets, under 14 cost

models, yielding more than 2000 individual security estimates. Our results can be found

at https://estimate-all-the-lwe-ntru-schemes.github.io/docs/. In this chapter, we

present a small subset of the results. Specifically, in Table 4.7, we present the results for a

single parameter set considered in each of the schemes EMBLEM, CRYSTALS-Kyber, NTRU

Prime, and uRound2.KEM, under the two cost models 0.292β and 0.187β log(β)− 1.019β +

16.1. In each case we highlight the associated value of n for clarity.
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4.6.1 Observation: Cost Swaps

One of the interesting observations from our data is that cost models for lattice reduction do

not necessarily preserve the ordering of the schemes under consideration. More explicitly: if

scheme A is considered harder to break than scheme B under cost model 1, the same does not

necessarily hold for cost model 2. That is, under cost model 2, scheme B could be considered

harder to break than scheme A.

To find an example of this, we consider EMBLEM and uRound2.KEM, as highlighted in [Ber18].

As can been seen in Table 4.8, in the sieving-based cost model 0.292β, the associated security

estimate of EMBLEM is 76 bits and uRound2.KEM is 84 bits, making EMBLEM easier to

break. However, under the enumeration-based cost model 0.187β log(β) − 1.019β + 16.1 the

associated security estimate of EMBLEM is 142 bits and uRound2.KEM is 126 bits, making

uRound2.KEM easier to break.

EMBLEM uRound2.KEM

0.292β 76 84

0.187β log(β)− 1.019β + 16.1 142 126

Table 4.8: Security estimates for the first round variants of EMBLEM and uRound2.KEM.
Best in class are highlighted in bold, and we can see this is an example of a cost swap: in the
0.292β model uRound2.KEM has a higher security estimate (84-bits vs 76-bits), whereas in
the 0.187β log(β) − 1.019β + 16.1 model EMBLEM has a higher security estimate (142-bits
vs 126-bits).

Similar swaps can be observed for several other pairs of schemes and cost models. In most

cases the estimated securities of the two schemes are very close to each other (differing by,

say, 1 or 2 bits) and thus a swap of ordering does not fundamentally alter our understanding

of their relative security, as these estimates are typically derived by heuristically searching

through the space of possible parameters and computing with limited precision. In some

cases, though, such as the one highlighted in [Ber18], the differences in security estimates can

be significant. As part of our work, we identified two cases in which this can happen: the

first involves sparse secrets, and the second concerns the dual attack.
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4.6 First Round Security Estimates

4.6.1.1 Sparse secrets

The first class of cases involves instances with sparse secrets. The LWE Estimator applies

guessing strategies when costing the dual attack [Alb17] and the primal attack. The basic

idea, as discussed throughout this chapter, is that many of the entries of the secret vector are

zero, and hence can be ignored. We guess τ entries to be zero, and drop the corresponding

columns from the attack lattice. In dropping τ columns from a n-dimensional LWE instance,

we obtain a (n− τ)-dimensional LWE instance with a more dense secret distribution, where

the density depends on the choice of τ and the original value of h. On the one hand, there is

a probability of failure when guessing which columns to drop. On the other hand there may

exist a τ for which the (n− τ)-dimensional LWE instance is easier to solve, and in particular

requires a smaller BKZ blocksize β.

The trade-off between running BKZ on smaller lattices and having to run it multiple times

can correspond to an overall lower expected attack cost. This probability of failure when

guessing secret entries does not depend on the cost model, but rather on the weight and

dimension of the secret, making this kind of attack more effective for very sparse secrets.

In the case of comparing an enumeration cost model versus a sieving cost model, we have

that the cost of enumeration is fitted as 2Θ(β log β) or 2Θ(β2) whereas the cost of sieving is

2Θ(β). The steeper curve for enumeration means that as we increase τ , and hence decrease

β, savings are potentially larger, justifying a larger number τ of entries guessed. Concretely,

the computed optimal guessing dimension τ can be much larger than in the sieving regime.

This phenomenon can also be observed when comparing two different sieving models or two

different enumeration models.

In Figure 4.3, we illustrate this for the EMBLEM and uRound2.KEM example. EMBLEM

does not have a sparse secret, while uRound2.KEM does. For EMBLEM the best guessing

dimension, giving the lowest overall cost, is τ = 0 in both cost models. For uRound2.KEM,

we see that the optimal guessing dimension varies depending on the cost model. In the 0.292β

cost model, the lowest overall expected cost is achieved for τ = 1 while in the 0.187β log β −
1.019β + 16.1 model the optimal choice is τ = 197.
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Figure 4.3: Estimates of the cost of the primal attack when guessing τ secret entries for the
schemes EMBLEM (n = 611) and uRound2.KEM (n = 500).

4.6.1.2 The Dual attack

The second class of cases can be observed for the dual attack. Recall that the dual attack

runs lattice reduction to find a small vector v in the scaled dual lattice of A, and then

considers 〈v,b〉 which is short when A,b is an LWE sample. In more detail, the advantage

of distinguishing 〈v,b〉, as discussed in Chapter 2, is:

ε = exp(−δ2 dc0),

for some constant c0 depending on the instance and with d being the dimension of the lattice

under consideration [LP11]. To amplify this advantage to a constant advantage, we have

to repeat the experiment roughly 1/ε2 times. Therefore, the overall cost of the attack is

approximately:

TBKZ(β, d)/exp(−δ2 dc0)
2
.
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4.7 Second Round Submissions

In the sieving regime we have TBKZ(β, d) ≈ 2c1β, and in the enumeration regime we have:

TBKZ(β, d) ≈ βc2β (from enumeration costing 2Θ(β log β)). For large β we have δ ≈ β1/2β [Che13],

and thus we have overall log costs of roughly:

c1 β + 2 log(e)βd/β c0,

and

c2 β log(β) + 2 log(e)βd/β c0.

We wish to minimise both expressions (under the constraint that β ≥ 2) and the optimal

trade-off depends on c0, c1 and c2. In particular, the optimal β in the sieving regime is not

necessarily the optimal β in the enumeration regime.

4.7 Second Round Submissions

In January 2019, NIST announced the second round submissions. Of the 69 submissions

from the first round, 26 submissions made it through to the second round [Moo19]. The

23 lattice-based submission from the first round became 12. At this point, designers were

allowed to make more significant changes to their submissions including e.g. the merging of

multiple submissions, design changes, and new parameter sets. The second round submissions

are outlined in Table 4.9.

4.8 The Third Round

In July 2020, NIST announced the third round submissions. Of the 26 submissions from

the second round, NIST announced seven third round finalists, as well as eight candidate

algorithms. Of these eight finalists, five are lattice-based submissions, and of the seven

candidate algorithms, two are lattice-based submissions [Moo20]. The third round submissions

are outlined in Table 4.10.

4.8.1 Cost Models

Next, we consider which of the cost models from the first round, given in Table 4.3, are

considered in third round submissions, and we present these cost models in Table 4.11.
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4.8 The Third Round

Assumption Schemes Notes

Crystals-Dilithium [LDK+19]

Crystals-Kyber [SAB+19]

Frodo [NAB+19]

LAC [LLJ+19]

LWE Variants NewHope [PAA+19]

Round5 [GZB+19] Merge of HILA5 and Round2

Saber [DKRV19]

ThreeBears [Ham19]

qTesla [BAA+19]

Falcon [PFH+19]

NTRU Variants NTRU [ZCH+19] Merge of NTRUEncrypt and NTRU HRSS

NTRU Prime [BCLv19]

Table 4.9: Second round lattice-based submissions to the NIST standardisation process.

Assumption Schemes Notes

Crystals-Dilithium [LDK+20] Finalist

LWE Variants Crystals-Kyber [SAB+20] Finalist

Frodo [NAB+20] Candidate

Saber [DKR+20] Finalist

Falcon [PFH+20] Finalist

NTRU Variants NTRU [ZCH+20] Finalist

NTRU Prime [BCLv20] Candidate

Table 4.10: Third round lattice-based submissions to the NIST standardisation process.
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4.8 The Third Round

Model Schemes

SABER [DKR+20]

0.292β FALCON [PFH+20]

0.265β NTRU Prime [BCLv20]

Crystals-Kyber [SAB+20]

Crystals-Dilithium [LDK+20]

0.396β† NTRU Prime [BCLv20]

0.3496β† NTRU [ZCH+20]

0.4150β† NTRU [ZCH+20]

0.292β + log(β)

0.265β + log(β) Frodo [NAB+20]

0.2075β + log(β)†

0.187β log β − 1.019β + 16.1 NTRU Prime [BCLv20]

1
2(0.187β log β − 1.019β + 16.1) NTRU Prime [BCLv20]

Table 4.11: All cost models proposed as part of a submission to the third round of the NIST
standardisation procedure. The name of a model is the log (to the base 2) of its cost. Cost
models which were not used as part of our analysis for the first round submissions are marked
with a †. The 0.396β model considers the 0.292β model mapped to the AT metric [Ber20].
The 0.3496β and 0.4150β models are used in the NTRU submission under the assumption of
a “local” model of computation. The 0.2075β + log(β) model was mentioned in the round
one Frodo submission, but wasn’t used to produce estimates.
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4.8 The Third Round

4.8.2 Parameter Sets and Estimates

Next, we consider the seven lattice-based schemes listed in Table 4.10. We present updated

parameter selections in Tables 4.12, 4.13, and 4.14. Finally, we present Core-SVP estimates,

both in the classical regime (0.292β) and the quantum regime (0.265β) for the Round 3

parameter sets in Tables 4.15 and 4.16.

Name n q ‖f‖ ‖g‖ NIST Assumption φ Primitive

NTRU 509 2048
√

2/3
√

509
√
q/8− 2 1 NTRU xn − 1 KEM, PKE

677 2048
√

2/3
√

677
√
q/8− 2 3 NTRU xn − 1 KEM, PKE

821 4096
√

2/3
√

821
√
q/8− 2 5 NTRU xn − 1 KEM, PKE

701 8192 20.92 20.92 3 NTRU xn − 1 KEM, PKE

Falcon 512 12289 1.17
√
q/2 1.17

√
q/2 1 NTRU xn + 1 SIG

1024 12289 1.17
√
q/2 1.17

√
q/2 5 NTRU xn + 1 SIG

SNTRU Prime 653 4621
√

288
√

653
√

2/3 1 NTRU xn − x− 1 KEM

761 4591
√

286
√

761
√

2/3 2 NTRU xn − x− 1 KEM

857 5167
√

322
√

857
√

2/3 2 NTRU xn − x− 1 KEM

953 6343
√

396
√

953
√

2/3 3 NTRU xn − x− 1 KEM

1013 7177
√

448
√

1013
√

2/3 4 NTRU xn − x− 1 KEM

1277 7879
√

492
√

1277
√

2/3 5 NTRU xn − x− 1 KEM

Table 4.12: Parameter sets for third round NTRU-based schemes with secret dimension n,
modulo q, small polynomials f and g, and ring Zq[x]/(φ). The NIST column indicates the
NIST security category aimed at. Each parameter set from SNTRU Prime has been assigned
two security levels in the round 3 submission, and we always choose the lowest of the two.
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4.8 The Third Round

Name n q σ Secret dist. NIST Assumption φ Primitive

NTRU 509 2048
√

2/3 ((−1, 1), q/8− 2) 1 NTRU xn − 1 KEM, PKE

677 2048
√

2/3 ((−1, 1), q/8− 2) 3 NTRU xn − 1 KEM, PKE

821 4096
√

2/3 ((−1, 1), q/8− 2) 5 NTRU xn − 1 KEM, PKE

701 8192 0.79 ((−1, 1), 437) 4 NTRU xn − 1 KEM, PKE

Falcon 512 12289 1.17
√
q/2n normal 1 NTRU xn + 1 SIG

1024 12289 1.17
√
q/2n normal 5 NTRU xn + 1 SIG

SNTRU Prime 653 4621
√

2/3 ((−1, 1), 288) 1 NTRU xn − x− 1 KEM

761 4591
√

2/3 ((−1, 1), 286) 2 NTRU xn − x− 1 KEM

857 5167
√

2/3 ((−1, 1), 322) 2 NTRU xn − x− 1 KEM

953 6343
√

2/3 ((−1, 1), 396) 3 NTRU xn − x− 1 KEM

1013 7177
√

2/3 ((−1, 1), 448) 4 NTRU xn − x− 1 KEM

1277 7879
√

2/3 ((−1, 1), 492) 5 NTRU xn − x− 1 KEM

Table 4.13: LWE parameter sets for third round NTRU-based schemes, with dimension n,
modulo q, standard deviation of the error σ, and ring Zq[x]/(φ). The NIST column indicates
the NIST security category aimed at. Each parameter set from SNTRU Prime has been
assigned two security levels in the round 3 submission, and we always choose the lowest of
the two.
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4.8 The Third Round

Name n k q σ Secret dist. NIST Assumption φ Primitive

CRYSTALS-Dilithium 1024 4 8380417
√

24/12 (−2, 2) 2 Module-LWE xn/k + 1 SIG

1280 5 8380417
√

80/12 (−4, 4) 3 Module-LWE xn/k + 1 SIG

1792 7 8380417
√

24/12 (−2, 2) 5 Module-LWE xn/k + 1 SIG

CRYSTALS-Kyber 512 2 3329
√

3/2 normal 1 Module-LWE xn/k + 1 KEM, PKE

768 3 3329 1 normal 3 Module-LWE xn/k + 1 KEM, PKE

1024 4 3329 1 normal 5 Module-LWE xn/k + 1 KEM, PKE

Frodo 640 — 32768 2.80 normal 1 LWE — KEM, PKE

976 — 65536 2.30 normal 3 LWE — KEM, PKE

1344 — 65536 1.40 normal 5 LWE — KEM, PKE

NTRU LPrime 653 — 4621
√

2/3 ((−1, 1), 252) 1 Ring-LWR xn − x− 1 KEM

761 — 4591
√

2/3 ((−1, 1), 250) 2 Ring-LWR xn − x− 1 KEM

857 — 5167
√

2/3 ((−1, 1), 281) 2 Ring-LWR xn − x− 1 KEM

953 — 6343
√

2/3 ((−1, 1), 345) 3 Ring-LWR xn − x− 1 KEM

1013 — 7177
√

2/3 ((−1, 1), 392) 4 Ring-LWR xn − x− 1 KEM

1277 — 7879
√

2/3 ((−1, 1), 429) 5 Ring-LWR xn − x− 1 KEM

LightSaber 512 2 8192
√

63/12 (−5, 5) 1 Module-LWR xn/k + 1 KEM, PKE

Saber 768 3 8192
√

63/12 (−4, 4) 3 Module-LWR xn/k + 1 KEM, PKE

FireSaber 1024 4 8192
√

63/12 (−3, 3) 5 Module-LWR xn/k + 1 KEM, PKE

Table 4.14: Parameter sets for third round LWE-based schemes with secret dimension n,
Module-LWE rank k (if any), modulo q, standard deviation of the error σ. If the LWE samples
come from a Ring- or Module-LWE instance, the ring is Zq[x]/(φ). The NIST column indicates
the NIST security category aimed at. Note that, for the SABER submission, we consider the
binomial secret drawn from Bη to be uniform over the interval (−η

2 ,
η
2 ). Each parameter set

from NTRU LPrime has been assigned two security levels in the round 3 submission, and we
always choose the lowest of the two.
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4.8 The Third Round

Name n k q σ Secret dist. NIST Dual uSVP

CRYSTALS-Dilithium 1024 4 8380417
√

24/12 (−2, 2) 2 39 124

1280 5 8380417
√

80/12 (−4, 4) 3 202 183

1792 7 8380417
√

24/12 (−2, 2) 5 292 252

CRYSTALS-Kyber 512 2 3329
√

3/2 normal 1 148 119

768 3 3329 1 normal 3 218 182

1024 4 3329 1 normal 5 303 255

Frodo 640 — 32768 2.80 normal 1 170 142

976 — 65536 2.30 normal 3 241 207

1344 — 65536 1.40 normal 5 314 272

NTRU LPrime 653 — 4621
√

2/3 ((−1, 1), 252) 1 152 131

761 — 4591
√

2/3 ((−1, 1), 250) 2 179 156

857 — 5167
√

2/3 ((−1, 1), 281) 2 204 177

953 — 6343
√

2/3 ((−1, 1), 345) 3 227 198

1013 — 7177
√

2/3 ((−1, 1), 392) 4 241 211

1277 — 7879
√

2/3 ((−1, 1), 429) 5 309 271

LightSaber 512 2 8192
√

63/12 (−5, 5) 1 168 125

Saber 768 3 8192
√

63/12 (−4, 4) 3 244 203

FireSaber 1024 4 8192
√

63/12 (−3, 3) 5 321 278

NTRU 509 — 2048
√

2/3 ((−1, 1), q/8− 2) 1 — 108

677 — 2048
√

2/3 ((−1, 1), q/8− 2) 3 — 149

821 — 4096
√

2/3 ((−1, 1), q/8− 2) 5 — 180

701 — 8192 0.79 ((−1, 1), 437) 4 — 135

Falcon 512 — 12289 1.17
√
q/2n normal 1 — 141

1024 — 12289 1.17
√
q/2n normal 5 — 285

SNTRU Prime 653 — 4621
√

2/3 ((−1, 1), 288) 1 — 130

761 — 4591
√

2/3 ((−1, 1), 286) 2 — 155

857 — 5167
√

2/3 ((−1, 1), 322) 2 — 176

953 — 6343
√

2/3 ((−1, 1), 396) 3 — 197

1013 — 7177
√

2/3 ((−1, 1), 448) 4 — 211

1277 — 7879
√

2/3 ((−1, 1), 492) 5 — 272

Table 4.15: “Core-SVP” estimates for third round NTRU-based schemes, with dimension n,
modulo q, standard deviation of the error σ, ring Zq[x]/(φ) and with m = 2n samples. The
NIST column indicates the NIST security category aimed at.
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4.8 The Third Round

Name n k q σ Secret dist. NIST Dual uSVP

CRYSTALS-Dilithium 1024 4 8380417
√

24/12 (−2, 2) 2 127 113

1280 5 8380417
√

80/12 (−4, 4) 3 186 166

1792 7 8380417
√

24/12 (−2, 2) 5 275 229

CRYSTALS-Kyber 512 2 3329
√

3/2 normal 1 137 108

768 3 3329 1 normal 3 202 166

1024 4 3329 1 normal 5 279 232

Frodo 640 — 32768 2.80 normal 1 155 128

976 — 65536 2.30 normal 3 223 188

1344 — 65536 1.40 normal 5 285 247

NTRU LPrime 653 — 4621
√

2/3 ((−1, 1), 252) 1 142 119

761 — 4591
√

2/3 ((−1, 1), 250) 2 166 141

857 — 5167
√

2/3 ((−1, 1), 281) 2 188 161

953 — 6343
√

2/3 ((−1, 1), 345) 3 208 179

1013 — 7177
√

2/3 ((−1, 1), 392) 4 223 191

1277 — 7879
√

2/3 ((−1, 1), 429) 5 280 246

LightSaber 512 2 8192
√

63/12 (−5, 5) 1 156 113

Saber 768 3 8192
√

63/12 (−4, 4) 3 222 184

FireSaber 1024 4 8192
√

63/12 (−3, 3) 5 300 253

NTRU 509 — 2048
√

2/3 ((−1, 1), q/8− 2) 1 — 98

677 — 2048
√

2/3 ((−1, 1), q/8− 2) 3 — 136

821 — 4096
√

2/3 ((−1, 1), q/8− 2) 5 — 163

701 — 8192 0.79 ((−1, 1), 437) 4 — 123

Falcon 512 — 12289 1.17
√
q/2n normal 1 — 128

1024 — 12289 1.17
√
q/2n normal 5 — 259

SNTRU Prime 653 — 4621
√

2/3 ((−1, 1), 288) 1 — 118

761 — 4591
√

2/3 ((−1, 1), 286) 2 — 140

857 — 5167
√

2/3 ((−1, 1), 322) 2 — 160

953 — 6343
√

2/3 ((−1, 1), 396) 3 — 180

1013 — 7177
√

2/3 ((−1, 1), 448) 4 — 192

1277 — 7879
√

2/3 ((−1, 1), 492) 5 — 247

Table 4.16: Quantum “Core-SVP” estimates for third round NTRU-based schemes, with
dimension n, modulo q, standard deviation of the error σ, ring Zq[x]/(φ), and with m = 2n
samples. The NIST column indicates the NIST security category aimed ats.
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4.9 Conclusion

In Tables 4.15 and 4.16 we see the 30 parameter sets analysed using the 0.292β and 0.265β

BKZ cost models, under the uSVP attack and the dual attack (where appropriate).

4.9 Conclusion

In this chapter, we have considered the first, second, and third round submissions to the NIST

standardisation process. We extracted the parameter sets from all first round submissions,

and estimated the security of the uSVP and dual attacks (where appropriate) for each scheme,

under every cost model considered as part of a submission. This allows for the security of

any two schemes to be compared in a more easy manner. Moreover, we have also shown that

cost models for the BKZ algorithm are not order preserving, and have provided a summary

of the schemes which progressed into the second and third rounds. In the case of the third

round schemes, we have provided an updated analysis on the security of these schemes under

the Core-SVP model, i.e. 20.292β in the classic case, and 20.265β in the quantum case.
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This chapter is based on the following publication: Benjamin R. Curtis and Rachel Player. On

the Feasibility and Impact of Standardising Sparse-secret LWE Parameter Sets for Homomorphic

Encryption. In Proceedings of the 7th ACM Workshop on Encrypted Computing and Applied

Homomorphic Cryptography (pp. 1-10). Association for Computing Machinery, 2019. Additional

details have been added in this thesis.

In this chapter we investigate the security of homomorphic encryption-style LWE parameter

sets against hybrid attacks. We consider the effect of secret sparsity on both the performance

and security of these schemes.
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5.1 Introduction and Contribution

The author of this thesis contributed towards (a) the writing of the paper, (b) the writing

of the code used for experiments, as well as (c) running the experiments and presenting the

experimental data.

5.1 Introduction and Contribution

The homomorphicencryption.org consortium have begun an effort to standardise both

an API [BDH+17] and advice on secure parameter selection for LWE-based homomorphic

encryption schemes. The Homomorphic Encryption Security Standard (HE Standard) [ACC+18]

recommends parameter sets for usage in homomorphic encryption schemes achieving target

security levels λ ∈ {128, 192, 256}.

Recall from Chapter 2 that LWE instances can always be transformed into Normal form,

where the secret follows the error distribution [ACPS09]. For error distributions Dσ which

satisfy σ = O(
√
n), reductions exist from worst-case hard lattice problems to LWE [Reg05].

In this setting, hardness results for a binary secret s ∈ {0, 1}n can be obtained at the cost

of increasing the LWE dimension [BLP+13]. We note that there are currently no known

hardness results for ternary secret LWE, or sparse-secret LWE.

Implementations of LWE-based homomorphic encryption libraries typically choose an error

distribution which is much narrower than those considered in security reductions. Indeed, an

early example uses σ = 3.19 [GHS12], which remains a popular choice today. We note that

for σ = 3.19, currently known security reductions do not apply1. However, σ = 3.19 is used

for all of the the currently recommended parameter sets in the HE Standard [ACC+18].

The HE Standard specifies parameters (n, q, σ) achieving a security level λ ∈ {128, 192, 256}
according to the LWE Estimator [APS15], described in Chapter 2. The parameters considered

are power-of-two ring dimensions n ∈ {1024, 2048, ..., 32768}, and a fixed Discrete Gaussian

error distribution Dσ with standard deviation σ = 3.19. For each ring dimension n, a bit-

length log q is standardised. For a given modulus q, the constraint on the error distribution

can be equivalently expressed as fixing the parameter α = 8
q , where α is defined such that

σ = αq√
2π

, as outlined in Definition 2.30. Typical secret distributions χs used in homomorphic

1Further, we note that this is not just the case for homomorphic encryption schemes, and that some of the
parameters typically considered in e.g. lattice-based KEMs (see Chapter 4) are not covered by these reductions
either.
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encryption schemes are:

1. uniform ternary, i.e. s is chosen uniformly at random from the set {−1, 0, 1}n,

2. uniform, i.e. s is chosen uniformly at random from the set Znq ,

3. error, i.e. each coefficient of s is sampled from the error distribution Dσ, or

4. uniform binary, i.e. s is chosen uniformly at random from the set {0, 1}n,

and we note that the HE Standard supports the first three secret distributions. All major

implementations of homomorphic encryption use a uniform binary or a ternary secret distribution.

Moreover, many implementations use a sparse secret, for which all but a certain Hamming

weight h of the coefficients are zero. As an example, HEAAN [HEA20], uses by default a

sparse ternary secret of Hamming weight h = 64. An important issue motivating the use of

sparse secrets is the complexity of bootstrapping.

It is worth noting that, in this chapter, we are not concerned with the depth of computation,

or any potential issues with correctness. Our goal is, for power-of-two ring dimensions n, to

provide a maximal permissible modulus log q which allows a user to attain a desired level

of security λ, as in the HE Standard [ACC+18]. Determining the optimal parameters for a

specific computation of multiplicative depth L is beyond the scope of this work.

5.1.1 Bootstrapping Complexities for CKKS, BFV, and BGV

We provide a brief overview of the complexity of the bootstrapping procedures for the

CKKS [CKKS17], BGV [BGV12], and BFV [FV12] schemes. We have deliberately chosen

to omit details on encoding and decoding as these details are not required. Recall that

Rq = Zq[X]/(Xn + 1). Throughout this section we let χ be some distribution which samples

small polynomials from the ring Rq. We also set R3 = Z3[X]/(Xn + 1) and we recall here

that Z3 = {−1, 0, 1} and, therefore, the co-efficient vector g of non-zero polynomials g ← R3

satisfies ‖g‖∞ = 1.
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5.1.1.1 CKKS

We briefly outline the CKKS homomorphic encryption scheme as presented in [CKKS17].

Consider values p, q0 > 0,q` = p`q0 for 0 < ` ≤ L for some L ∈ N, and set P ≈ qL.

� KGen(1n). The key generation algorithm takes as input the security parameter and

generates three keys: a secret key sk, a public encryption key pk, and a public evaluation

key ek.

– To generate the secret key, we sample a small polynomial s← R3 and set:

sk = (1, s) ∈ R2
qL
.

– To generate the public key, we sample a← RqL , e← χ and set:

pk = (−(as+ e) mod qL, a) ∈ R2
qL
.

– To generate the evaluation key we sample a′ ← RPqL , e
′ ← χ and set:

ek = (−a′s+ e+ Ps2 mod PqL, a
′) ∈ R2

PqL
.

� Enc(pk,m). The encryption algorithm takes as input a public key pk = (pk1, pk2) ∈ R2
qL

and a message m ∈ R, samples v ← R3 and e1, e2 ← χ, and outputs:

c = vpk + (m+ e1, e2) ∈ R2
qL
.

� Dec(sk, c). The decryption algorithm takes as input a secret key sk = s ∈ R3 and a

ciphertext c = (c1, c2) ∈ R2
qL

, and outputs:

m′ ← (c1 + c2s) mod qL.

� Add(c, c′). The addition algorithm takes as input two ciphertexts c, c′ ∈ R2
q`

and outputs:

c+ = (c1 + c′1, c2 + c′2) mod q`.

� Mult(c, c′). The multiplication algorithm takes as input two ciphertexts c = (c1, c2), c′ =

(c′1, c
′
2) ∈ R2

q`
and computes the values d1 = c1c

′
1, d2 = c1c

′
2 + c2c

′
1, and d3 = c2c

′
2. The

algorithm outputs:

c× = (d1, d2) + bP−1 · d3 · eke mod q`.
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The decryption function in the CKKS scheme is a modular reduction, i.e. evaluating:

m′ ← 〈ct, sk〉 mod qL.

In order to bootstrap we need to homomorphically evaluate the decryption function, we note

that this decryption function can be represented as a scaled sine function [CHK+18]:

〈ct, sk〉 mod qL =
q

2π
· sin

(
2π

qL
· 〈ct, sk〉

)
+O

(
ε3 · qL

)
,

when ‖[〈ct, sk〉]qL‖ ≤ ε · qL. Bootstrapping can therefore be implemented by evaluating a

Chebyshev interpolant (polynomial) in degree d = O(K + log q), where q is the ciphertext

modulus, and K is a constant depending on the secret distribution. This evaluation requires

O(
√
d) ciphertext multiplications [CCS19a]. For sparse secrets with Hamming weight h, the

heuristic argument of [CHK+18] shows that we have K = O(
√
h), while for a uniform ternary

secret we have K = O(
√
n). We note that a passive attack against CKKS, as well as potential

countermeasures, has been outlined in [LM20].

5.1.1.2 BGV

We briefly outline the BGV homomorphic encryption scheme as presented in [CLP19]. Here,

the ciphertext space is Rq and the plaintext space is Rt. We note that w is a base, and

` denotes the number of terms in the decomposition of an integer modulo q into base w,

i.e. w = blogw(q)c.

� KGen(1n). The key generation algorithm takes as input the security parameter and

generates three keys: a secret key sk, a public encryption key pk, and a public evaluation

key ek.

– To generate the secret key, we sample a small polynomial s← R3 and set:

sk = s.

– To generate the public key, we sample a← Rq, e← χ and set:

pk = (−(as+ te) mod q, a).

– To generate the evaluation key, for 1 ≤ i ≤ ` we sample ai ← Rq and ei ← χ, and

set:

ek =
{(
−(ais+ tei) + wis2 mod q, ai

)}`
i=1

.
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� Enc(pk,m). The encryption algorithm takes as input a public key pk = (pk1, pk2) ∈ R2
q

and a message m ∈ Rt, samples v ← R3 and e1, e2 ← χ, and outputs a ciphertext of

the form:

c = (pk1v + te1 +m, pk2v + te2) ∈ R2
q .

� Dec(sk, c). The decryption algorithm takes as input a secret key sk = s ∈ Rq and

aciphertext c = (c1, c2) ∈ R2
q , and outputs:

m = (c1 + c2s mod q) mod t.

� Add(c, c′). The addition algorithm takes as input two ciphertexts c, c′ ∈ R2
q and outputs:

c+ = (c1 + c′1 mod q, c2 + c′2 mod q).

� Mult(c, c′). The multiplication algorithm takes as input two ciphertexts c, c′ ∈ R2
q and

computes the values d1 = c1c
′
1 mod q, d2 = c1c

′
2 + c2c

′
1 mod q, and d3 = c2c

′
2 mod q.

From there, we output c× = (d1, d2, d3), that is:

c× = (c1c
′
1 mod q, c1c

′
2 + c2c

′
1 mod q, c2c

′
2 mod q).

� Relinearize(ek, c). The relinearisation algorithm takes as input an evaluation key ek =

{(eki,1, eki,2)}`i=1 and a ciphertext c = (c1, c2, c3), expresses c3 in base w, i.e. computes

c3 =
∑`

i=1 c
(i)
3 wi. Computes d1 = c1 +

∑`
i=1 eki,1c

(i)
3 and d2 = c2 +

∑`
i=1 eki,2c

(i)
2 , and

outputs crelin = (d1, d2), that is:

crelin = (c1 +
∑̀
i=1

eki,1c
(i)
3 , c2 +

∑̀
i=0

eki,2c
(i)
3 ).

The decryption function in the BGV scheme is:

m′ ← (c1 + c2s mod q) mod t,

and bootstrapping therefore requires the evaluation of a circuit of depth log (‖s‖1)+log t [CH18],

where t is the plaintext modulus. This evaluation requires O(log3/2 ‖s‖1 + log1/2 ‖s‖1 · log t+

log2 t) ciphertext multiplications [CH18, Table 2].

145



5.1 Introduction and Contribution

5.1.1.3 BFV

We briefly outline the BFV homomorphic encryption scheme as presented in [CLP19]. Here,

the ciphertext space isRq and the plaintext space isRt. We also define the quantity ∆ = bq/tc.
We note that w is a base, and ` denotes the number of terms in the decomposition of an integer

modulo q into base w, i.e. w = blogw(q)c.

� KGen(1n). The key generation algorithm takes as input the security parameter and

generates three keys: a secret key sk, a public encryption key pk, and a public evaluation

key ek.

– To generate the secret key, we sample a small polynomial s← R3 and set:

sk = s.

– To generate the public key, we sample a← Rq, e← χ and set:

pk = (−(as+ e) mod q, a).

– To generate the evaluation key, for 1 ≤ i ≤ ` we sample ai ← Rq and ei ← χ, and

set:

ek =
{(
−(ais+ ei) + wis2 mod q, ai

)}`
i=1

.

� Enc(pk,m). The encryption algorithm takes as input a public key pk = (pk1, pk2) ∈ R2
q

and a message m ∈ Rt, samples v ← R3 and e1, e2 ← χ, and outputs a ciphertext of

the form: and outputs a ciphertext of the form:

c = (pk1v + e1 + ∆m, pk2v + e2) ∈ R2
q .

� Dec(sk, c). The decryption algorithm takes as input a secret key sk = s ∈ R3 and a

ciphertext c = (c1, c2) ∈ R2
q , and outputs:

m′ =

⌊
t

q
(c1 + c2s) mod q

⌉
mod t.

� Add(c, c′). The addition algorithm takes as input two ciphertexts c, c′ ∈ R2
q and outputs:

c+ = (c1 + c′1 mod q, c2 + c′2 mod q).
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� Mult(c, c′). The multiplication algorithm takes as input two ciphertexts c, c′ ∈ R2
q

and computes the values d1 =
⌊
t
q c1c

′
1

⌉
mod q, d2 =

⌊
t
q (c1c

′
2 + c2c

′
1)
⌉

mod q, and d3 =⌊
t
q c2c

′
2

⌉
mod q. From there, we output c× = (d1, d2, d3), that is:

c× =

(⌊
t

q
c1c
′
1

⌉
mod q,

⌊
t

q
(c1c

′
2 + c2c

′
1)

⌉
mod q,

⌊
t

q
c2c
′
2

⌉
mod q

)
.

� Relinearize(ek, c). The relinearisation algorithm takes as input an evaluation key ek =

{(eki,1, eki,2)}`i=1 and a ciphertext c = (c1, c2, c3), expresses c3 in base w, i.e. computes

c3 =
∑`

i=1 c
(i)
3 wi. Computes d1 = c1+

∑`
i=0 eki,1c

(i)
3 mod q and d2 = c2+

∑`
i=1 eki,2c

(i)
3 mod

q, and outputs crelin = (d1, d2), that is:

crelin = (c1 +
∑̀
i=1

eki,1c
(i)
3 mod q, c2 +

∑̀
i=1

eki,2c
(i)
3 ) mod q.

The decryption function in the BFV scheme can be written as:

m′ ←
⌊

(c1 + c2 · s mod q)

∆

⌉
,

which requires the evaluation of a circuit of depth log (‖s‖1)+log log t. This, in turn, requires

O((log ‖s‖1 + log t)1/2 log ‖s‖1) ciphertext multiplications [CH18, Table 2].

5.1.1.4 Summary

For sparse ternary secret with Hamming weight h, we have ‖s‖1 = h, whereas for a uniform

ternary secret we expect ‖s‖1 = O(n). Current implementations for bootstrapping in CKKS,

BGV or BFV use sparse secrets for efficiency reasons [CH18, CHK+18]. We also note that

there are works aimed towards improving bootstrapping techniques for non-sparse keys [BMTPH20].

We summarise this discussion in Table 5.1.

5.1.1.5 Sparse Secrets

Sparse secret distributions are not currently supported in the HE Standard. This is likely

due to the loss of security as compared to a uniform ternary secret for a fixed set of LWE

parameters (n, q, σ), as well as uncertainty over the attack landscape for these distributions.
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Scheme CKKS BGV BFV

Decryption circuit depth O(K + log q) log (‖s‖1) + log t log (‖s‖1) + log log t

Ciphertext multiplications O(
√
d) O(log3/2 ‖s‖1 + log1/2 ‖s‖1 · log t+ log2 t) O((log ‖s‖1 + log t)1/2 log ‖s‖1)

Parameter sizes when s← B− K = O(
√
n) ‖s‖1 = O(n) ‖s‖1 = O(n)

Parameter sizes when s← B−h K = O(
√
h) ‖s‖1 = h ‖s‖1 = h

Table 5.1: A summary of the bootstrapping complexities for CKKS, BGV and BFV.

The loss of security is intuitive, as this corresponds to shrinking the size of the keyspace.

Moreover, several attacks are known which can exploit the sparsity of an LWE secret [How07,

Alb17, HHC19]. As discussed in Chapters 3 and 4, these attack techniques trade-off the

probability of guessing τ secret components against the lower cost of solving a lattice problem

in dimension (d− τ).

Another way in which the recommended parameter sets in the HE Standard do not always

reflect implementation choices is in the maximal supported dimension n = 215. For example,

many implementations of bootstrapping, such as [CHK+18, CCS19a, HHC19], choose ring

dimension n = 216. In addition, advanced applications of homomorphic encryption, such as

logistic regression training [KSK+18, KSW+18], have been reported using dimension n = 216

or n = 217. Such large dimensions are used to support the choice of q, which is chosen to be

large enough to allow for evaluation of a circuit of a specific depth.

5.1.2 Structure and Contributions

The discussion from Section 5.1.1.5 motivates the widening of the recommended parameter

sets to include sparse secrets, or parameter sets for larger dimension n > 215. In this chapter

we consider such possible extensions.

An outline of the structure and contributions of this chapter is as follows. In Section 5.2 we

make some comments on small and sparse secret LWE. In Section 5.3 we discuss algorithms

used to solve small and sparse LWE, including introducing the hybrid dual attack [CHHS19].

In Section 5.4 we outline some of the parameter sets recommended in the current variant

of the HE Standard. In Section 5.5 we assess the impact on security and performance of

using a sparse secret of Hamming weight h instead of a uniform ternary secret, for various

choices of h. In Section 5.5.4 we show how the methodology of the Standard could be used
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to select parameters with larger power-of-two dimension n ≥ 216. In Section 5.6 we discuss

open problems and future work.

5.2 Comments on Small and Sparse-secret LWE

Definition 2.34 outlines some small-secret distributions of interest. Recall that the uniform

ternary distribution is denoted by B−, and the uniform binary distribution is denoted by B+.

5.2.1 Keyspace Size

When considering combinatorial attacks against LWE, the size of the keyspace is an important

quantity, since this determines the maximal size of the guessing set in combinatorial attacks.

To illustrate this, we consider the following examples:

1. when the secret is drawn from Znq , the size of the keyspace is ‖SZnq ‖ = qn,

2. when the secret is drawn from B−, the size of the keyspace is ‖SB−‖ = 3n,

3. when the secret is drawn from B−h , the size of the keyspace is ‖SB−h ‖ =
(
n
h

)
· 2h,

4. when the secret is drawn from B+, the size of the keyspace is ‖SB+‖ = 2n, and

5. when the secret is drawn from B+
h , the size of the keyspace is ‖SB+‖ =

(
n
h

)
.

In Figure 5.1 we highlight the size of the keyspace B−h , and B+
h , for each potential value of

h when the associated ring dimension is n = 1024. If h = 64 then the size of the keyspace

is ≈ 2405, whereas if the secret is is drawn from B− then the size of the keyspace is ≈ 21623.

We note that the LWE Estimator, as well as our scripts for hybrid attacks, assume that

uniformly random ternary secrets have fixed Hamming weight h = b2n
3 c, and that uniformly

random binary secrets have fixed Hamming weight h = bn2 e. For the examples considered

in Figure 5.1, we have that h = b2×1024
3 e = 683 and ‖SB−683‖ =

(
1024
683

)
· 2683 ≈ 21618, and

h = b1024
2 e = 512 and ‖SB+512‖ =

(
1024
512

)
≈ 21018.
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Figure 5.1: Example LWE (secret) keyspace sizes with n = 1024 for binary, ternary, fixed-
weight binary, and fixed-weight ternary secrets.

5.2.2 Secret Density

Keeping a fixed Hamming weight (e.g. h = 64) for a variety of ring dimensions means that

the density κ = h
n of the secret decreases as n grows. One approach to scaling sparse secrets

is to fix the density parameter :

κ =
h

n
.

For example, we could consider κ = 1
16 such that:

(n, h) ∈ {(1024, 64), (2048, 128), (4096, 256), . . . }.

This follows the approach of several submissions to the ongoing NIST post-quantum standardisation

effort: for example, Lizard [CKLS18] uses h = n
8 , i.e. κ = 1

8 . For larger ring dimensions used

in homomorphic encryption libraries this approach can lead to a large Hamming weight h,
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leading to a more expensive bootstrapping operation. For example, for a ring dimension

n = 32768, choosing κ = 1
16 would require h = 2048.

Another approach is to fix the ratio between the Hamming weight h of the secret and the

security parameter λ, i.e. fix the value ζ, where:

ζ =
h

λ
.

This approach would mean that, for each target security level λtarget, the value of the Hamming

weight h for every ring dimension n = 2k is fixed. For example, if ζ = 1, then for a fixed

security level λ we consider secrets of Hamming weight h = λ. Such an approach means that

the (theoretical) complexity of bootstrapping would remain the same for each dimension n

with an associated security level λ. In this work we consider the second approach, i.e. fixing

the value of ζ = h
λ .

5.3 Algorithms for solving Small-secret LWE

As discussed in Chapter 2, the concrete security of LWE-based parameter sets is typically

determined by considering the best known attacks. That is, given an LWE parameter

set (n, α, q) and a corresponding secret distribution, we set λ to be the logarithm of the

running time of the fastest attack. The current version of the HE Standard [ACC+18] uses

the LWE Estimator to determine parameters, based on the running time of three attacks:

uSVP, decoding and dual. Hybrid attacks [How07, CHHS19] are typically among the most

competitive in the case of sparse secrets, although they are not currently supported by the

LWE Estimator, and therefore have not been considered in the latest version of the HE

Standard.

Following the HE Standard, in this chapter we only consider sieving-based cost models for

BKZ. Specifically, we view BKZ as a black box which runs in (pre-quantum) time:

TBKZ(β, d) = 20.292β+16.4+log(8d),

and, if instantiated with quantum algorithms to solve SVP, runs in time:

TBKZ(β, d) = 20.265β+16.4+log(8d).

Estimates for the primal decoding attack [LP11, LN13] reported by the LWE Estimator do not

assume state-of-the-art techniques, hence may be inaccurate and are often not competitive.
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More precisely, the Estimator currently assumes the decoding attack is implemented with the

Nearest Planes algorithm [LP11] as opposed to the more efficient pruned enumeration [LN13].

Moreover, the Estimator does not consider combinatorial techniques for the decoding attack

as considered in [ACW20] and Chapter 3. As an example, for the example parameter set

n = 653, q = 4621, σ ≈
√

2/3, χs = B−100 considered in Section 3.4, the decoding estimate

provided by the LWE Estimator estimates the complexity as 2229.9, whereas the batch-BDD

techniques outlined in Chapter 3 report a complexity of 2186.1. For this reason, we do not

report dec estimates in this chapter.

We consider the uSVP, hybrid-decoding, dual and hybrid-dual attacks on LWE. For uSVP

and dual, we consider the small-secret variant of these attacks as described in Chapter 4. For

the hybrid-decoding attack, as discussed in Chapter 3, we outline the assumptions considered

in this Chapter in Section 5.3.1. We describe the hybrid-dual attack in Section 5.3.2.

5.3.1 Hybrid-decoding Attack Assumptions

As discussed in Chapter 3, an analysis of the hybrid-decoding attack requires the usage of

several assumptions. In Chapter 3 we considered multiple sets of assumptions. For clarity,

we outline the assumptions considered in this chapter:

� The output GSO basis shape of lattice reduction is given by the Geometric Series

Assumption [Sch03].

� The (heuristic) success probability of Babai’s Nearest Plane algorithm follows the analysis

in [Wun18] and is given by:

p ≈
∏

1≤i≤d

(
1− 2

B(d−1
2 , 1

2)
·
∫ 1

min(ri,1)
(1− t2)(d−3)/2 dt

)
,

where d is the dimension of the lattice under consideration, and ri = ‖b∗i ‖/2‖v‖
where ‖v‖ is the (expected) norm of the target vector, and B(·, ·) denotes the Beta

function [OLBC10].

� The cost of running Babai’s Nearest Plane algorithm in a lattice of dimension d is given

by Tbabai = d2

21.06
.

� The meet-in-the-middle search phase provides a square-root speed-up as compared to

an exhaustive search.
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� The associated meet-in-the-middle probability is set to be pmitm = 1, thus providing an

explicit underestimate of security.

� The meet-in-the-middle search phase has access to unlimited memory.

Under these assumptions, the cost of the hybrid-decoding attack is given by:

min
β,τ,d,t

TBKZ(β, d) + d2

21.06
·
√∑t

i=0 ‖Si‖

p ·
∑t

i=0 pi
,

where β is the BKZ blocksize, d is the dimension in which lattice reduction is performed,

τ is the guessing dimension (i.e. the number of guessed components of the secret), t is the

maximal Hamming weight considered in the search space, and
∑t

i=0 ‖Si‖ is the size of the

search space, i.e. the number of points on which we decode. Here p is the probability of

success of Babai’s Nearest Plane algorithm, and pi is the probability that the guessed part of

the secret has Hamming weight i. Estimates for the cost of the hybrid-decoding attack are

generated using custom code2.

5.3.2 The Hybrid-dual Attack

Albrecht’s variant of the dual attack, as described in Chapter 4, was recently adapted by

Cheon et al. [CHHS19] to include a meet-in-the-middle step in the combinatorial search

phase of the attack, giving rise to a hybrid-dual attack. It is shown in [CHHS19] that when

fixing a maximal memory of 280, the hybrid dual attack outperforms the dual attack for

certain homomorphic encryption-style parameter sets with a sparse ternary secret. Cheon et

al. [CHHS19] provide a script3 that can be used to estimate the security of a given parameter

set against the hybrid dual attack. Recall from Chapter 4 that the small-secret variant of the

dual attack proceeds by performing lattice reduction on the lattice Λ′′, where:

Λ′′ =

{
(v,w) ∈ Zm ×

(
1

c
· Z
)n∣∣∣∣vA ≡ cw mod q

}
.

For an LWE instance (A,b = As + e), with sparse secret of Hamming weight h, the crux of

the meet-in-the-middle process is based on considering the noisy relationship:

As1 ≈ b−As2

2This code can be found at https://github.com/bencrts/hybrid_attacks/hybrid_decoding.py
3The script is available at https://github.com/swanhong/HybridLWEAttack.
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for a pair s1, s2 satisfying s1 + s2 = s. The attack begins by considering the list which

constructs Av1 for candidate values v1 of s1:

T = {Av1 | v1 ∈ {−1, 0, 1}n : HW(v1) ≤ h′},

which is constructed for some h′ ≤ h. Note that h′ is an attack parameter and can be

optimised over. A hash table H, initialised as 2m empty linked lists with indexes in {0, 1}m,

is generated from this list by appending an entry t ∈ T into the position indexed with sgn(t)

where:

sgn(t)i =

{
1 if ti ∈ [0, q/2)

0 else
.

After this process is completed for all t ∈ T , we begin a search overH. The search proceeds by

checking whether b−Av2 is close to the list T for candidate choices v2, where the closeness

depends on the size of the error vector e. That is, we are interested in the norm of:

‖As1 − (b−As2)‖∞ = ‖e‖∞,

and the meet-in-the-middle process is successful if ‖e‖∞ < B, for some B. This is referred to

as a B-noisy collision.

Definition 5.1 (B-noisy collision [CHHS19]) For a vector a ∈ Zmq , a vector t ∈ Zmq is

referred to as a B-noisy collision of a if ‖a− t‖∞ ≤ B for some B < q
2 .

In the analysis of [CHHS19], the parameter B is chosen as:

B =

(
2 +

1√
2π

√
m

m+ n
· αq‖y‖

)
,

where y is the short vector retrieved via lattice reduction on the lattice Λ′′. If we can find

a B-noisy collision of As1, for a candidate s1, then we can find b −As2 and therefore solve

decisional LWE.

The search phase takes as input the constructed hash table H, a query point q (which

corresponds to b−Av2 for some candidate v2 of s2) as well as a distance bound B. Defining:

sgn′(t)i =

{
sgn(ti) if ti ∈ VB
× else

,

where VB = [−q/2 +B,−B) ∪ [B, q/2−B), we then consider:

sgn′(q),
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where q is a candidate for s2. sgn′(q) represents a list of binary strings generated by replacing

each × by 0 or 1. Then, for each element x in this list, we check if H contains a set indexed

by x. If this is the case, then for every t within this list we check if:

‖q− t‖∞ < B,

and, if this is the case, we return this vector.

To summarise, the hybrid-dual attack consists of three phases:

1. a lattice reduction phase, where we perform lattice reduction on the lattice Λ′′,

2. a hash-table construction phase, where we generate the hash table H, and

3. a searching phase, where we search for B-noisy collisions using the hash table H.

The total cost of phases 2. and 3. is the sum of:

(a) constructing the list T ,

(b) generating the hash table H, and

(c) the cost of the search algorithm applied to the candidate secrets.

These costs are computed as NT (n2 + m) for steps (a) and (b) and O(Nq2
4mB/q) for step

(c) [CHHS19].

5.3.2.1 Hybrid-dual Assumptions

In this thesis, we do not use the script provided by [CHHS19].4 Instead, we conservatively

assume that the meet-in-the-middle process admits a square-root speed-up with no probability

loss – thus providing an explicit underestimate of security, for the purposes of generating

conservative parameters. This matches our approach with the hybrid-decoding attack (i.e. pmitm =

1). To do this, we consider Albrecht’s attack script [Est20] and, in the search phase, balance

the cost of searching with the square of the lattice reduction cost (as opposed to simply

balancing the cost of searching with the cost of lattice reduction). The changes to the source

code can be found in Figure 5.2.

4This is because the script was not designed to be used for non-sparse (i.e. uniform-ternary) secrets.
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if postprocess:

repeat = current["repeat"]

dim = current["d"]

for i in range(1, k):

cost post i = (2 * repeat * dim * k) + (repeat * binomial(k, i) * (b=a)**i * i)

probability i = success probability drop(n, h, k, i, rotations=rotations)

if cost post + cost post i >= cost lat**2:
postprocess = i

break

cost post += cost post i

probability += probability i

current["rop"] = cost lat + sqrt(cost post)

Figure 5.2: Changes applied to the dual attack source code inside the LWE Estimator to
produce our hybrid-dual estimates. This replaces lines 1944-1959 in commit 428d6ea of the
LWE Estimator.

5.4 Currently Recommended Parameters

In Tables 5.2 we reproduce a subset of the parameter sets (n, log q, α) recommended in the

current version of the HE Standard [ACC+18] to achieve target security level λ for λ ∈
{128, 192, 256}, for power-of-two ring dimensions between 1024 and 32768 and for a secret

having coefficients chosen uniformly in {−1, 0, 1}. Table 5.2 reports the estimated cost of

running the uSVP, decoding, and dual attacks on these parameter sets under the sieving cost

model:

T (β, d) = 20.292β+16.4+log(8d).
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n log q α usvp decoding dual λtarget

1024 27 8/q 131.6 160.2 138.7

128

2048 54 8/q 129.7 144.4 134.2

4096 109 8/q 128.1 134.9 129.9

8192 218 8/q 128.5 131.5 129.2

16384 438 8/q 128.1 129.9 129.0

32768 881 8/q 128.5 129.1 128.5

1024 19 8/q 193.0 259.5 207.7

192

2048 37 8/q 197.5 233.0 207.8

4096 75 8/q 194.7 212.2 198.5

8192 152 8/q 192.2 200.4 194.6

16384 305 8/q 192.1 196.2 193.2

32768 611 8/q 192.7 194.2 193.7

1024 14 8/q 265.6 406.4 293.8

256

2048 29 8/q 259.1 321.7 273.5

4096 58 8/q 260.4 292.6 270.1

8192 118 8/q 256.7 270.4 260.6

16384 237 8/q 256.9 264.2 259.8

32768 476 8/q 256.4 260.2 258.2

Table 5.2: Currently standardised LWE parameters at the 128-, 192- and 256-bit security
level for uniform ternary secret specified in [ACC+18, Table 1] and estimates of their
security against usvp, decoding, and dual attacks under the BKZ cost model T (β, d) =
20.292β+16.4+log(8d), where β is the blocksize and d is the dimension. The best performing
attack for each parameter set is highlighted in bold.

5.5 Investigating Sparse-secrets

It may be desirable to extend the HE Standard to include parameter sets with sparse secret

distributions, due to the complexity of bootstrapping outlined in Section 5.1.1. In this section,

we consider the feasibility and impact of including sparse ternary secret distributions in the

HE Standard. To begin, in Figure 5.3 we compare the four attack techniques discussed in
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this chapter for the parameter set n = 1024, q = 240 and σ ≈ 3.2 with a sparse ternary secret

of Hamming weight h ∈ {64, 128, 256, 512}, to see which attacks perform best as the density

of the secret changes.
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Figure 5.3: A comparison of the usvp, dual, hybrid=dual and hybrid=decoding attacks under
the BKZ cost model T (β, d) = 20.292β+16.4+log(8d), for the parameter set n = 1024, q = 240 and
σ ≈ 3.2 with a sparse ternary secret with a variety of Hamming weights h ∈ {64, 128, 256, 512}.

5.5.1 Using Sparse Secrets with Existing Recommended Parameter Sets

Next, we consider the impact of using a sparse ternary secret of Hamming weight h = 128

for the sets of parameters (n, log q, α) as recommended in Table 5.2 for uniform ternary

secret. That is, we take the parameter sets currently recommended in the HE standard for

uniform-ternary secrets, and swap the secret distribution to be sparse ternary of Hamming

weight h = 128, in order to determine the effect on the security. In Table 5.3 we report the

output of the LWE Estimator giving an estimate of the concrete security of the parameter

sets (n, log q, α, h) with a sparse ternary secret of Hamming weight h = 128. For consistency,
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we have used the same sieving cost model T (β, d) = 20.292β+16.4+log(8d) which is used to

generate [ACC+18, Table 1].

n log q α h usvp dual λtarget

1024 27 8/q 128 124.9 127.8

128

2048 54 8/q 128 125.0 122.0

4096 109 8/q 128 124.9 117.9

8192 218 8/q 128 126.4 117.2

16384 438 8/q 128 127.0 117.1

32768 881 8/q 128 127.5 116.5

1024 19 8/q 128 178.2 179.2

192

2048 37 8/q 128 186.5 173.7

4096 75 8/q 128 186.6 165.2

8192 152 8/q 128 186.4 167.5

16384 305 8/q 128 187.7 159.1

32768 611 8/q 128 188.8 161.9

1024 14 8/q 128 235.4 238.5

256

2048 29 8/q 128 231.9 217.3

4096 58 8/q 128 234.3 210.2

8192 118 8/q 128 232.8 207.9

16384 237 8/q 128 233.8 195.8

32768 476 8/q 128 234.6 214.7

Table 5.3: Impact of using a sparse ternary secret of Hamming weight h = 128, using the
currently standardised LWE parameter sets at the target 128-, 192- and 256-bit security level
for uniform ternary secret specified in Table 5.2. Estimates of the security of each parameter
set against usvp and dual attacks under the BKZ cost model T (β, d) = 20.292β+16.4+log(8d) are
presented, where β is the blocksize and d is the dimension. The best performing attack for
each parameter set is highlighted in bold.

It can be seen from Table 5.3 that introducing a sparse secret of Hamming weight h = 128,

there is a noticeable security loss, by up to 11 bits at the target 128-bit security level, by

up to 32 bits at the target 192-bit security level, and by up to 60 bits at the target 256-bit

security level. Table 5.3 does not take into account hybrid attacks, which are likely to be
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competitive, and hence the security loss may be even greater.

5.5.2 Sparsity vs. Performance Trade-off

In Table 5.4 we illustrate the effect of using a sparse ternary secret with various Hamming

weights h on the bit size log q with n = 1024 and σ = 3.19 fixed. For comparison, we also

note the bit-length logQ which is currently recommended to achieve target security level λ

for the same n, σ with a uniform ternary secret in the HE Standard. A smaller modulus q

may impact on practical performance of the schemes. For example when we need to ensure

that q is large enough to support the full computation, to ensure correct decryption. The

lower q required by introducing a sparse secret may necessitate moving to a higher dimension

n to support the computation, which in turn will be slower.

5.5.3 Sparsity as a Proportion of Target Security: Exploration of Choices for ζ

In Table 5.5 we present an exploration of possible choices for the value ζ = h
λ , illustrating

the reduction in bit-length log q required to retain the desired level of security when using a

sparse ternary secret compared to a uniform ternary secret. Table 5.5 uses the cost model

T (β, d) = 20.292β+16.4+log(8d), i.e. BKZ.sieve available in the LWE Estimator, and considers

the following attacks: uSVP, dual, hybrid-decoding, and hybrid-dual. We provide as a point

of comparison logQ, the bit-length of the modulus Q currently recommended in [ACC+18]

for the given parameters (n, σ = 3.19) with uniform ternary secret at target security level λ.

Table 5.5 indicates that a choice such as ζ = 1 gives a reasonable trade-off between performance

and security. In this case, we can retain secure parameters with at most a 24% drop in the bit-

length of the modulus log q compared to that recommended at target security level λ for the

same values of n and σ = 3.19) and uniform ternary secret. This choice corresponds to a sparse

ternary secret with Hamming weight h ∈ {128, 192, 256}, depending on the desired security

level, which allows for more efficient bootstrapping when compared to uniform-ternary secrets.
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h n λ log q usvp dual logQ

64 1024 128 24 131.0 133.8 27

192 16 193.8 198.3 19

256 11 265.2 279.1 14

128 1024 128 26 130.4 131.4 27

192 17 198.6 199.8 19

256 12 269.6 279.7 14

256 1024 128 27 128.1 134.1 27

192 18 194.9 208.6 19

256 13 267.0 293.2 14

512 1024 128 27 132.0 137.6 27

192 18 202.9 219.0 19

256 14 261.3 292.6 14⌈
2n
3

⌋
1024 128 27 133.3 138.7 27

192 19 194.7 207.7 19

256 14 265.6 293.8 14

Table 5.4: Bit-length log q of moduli required to provide target security level λ, for λ ∈
{128, 192, 256}, for various secret densities. We note that the LWE Estimator treats uniform
ternary secrets as ternary fixed-weight secrets with Hamming weight h =

⌈
2n
3

⌋
. The best

performing attack for each parameter set is highlighted in bold.

5.5.4 Standardising Larger Dimensions n

With current progress in applied homomorphic encryption it is becoming necessary to work

in dimensions larger than n = 215, the largest dimension currently supported in the HE

Standard. Several recent papers [CHK+18, CCS19a, HHC19, KSK+18] have reported implementations

in dimension n = 216, and an implementation in dimension n = 217 was reported in [KSW+18].

A natural extension of the current standard would therefore be to standardise parameter sets

for dimension n = 2k for some k ≥ 16, since power-of-two n remain the most widely used

in practice. Moreover, power-of-two n enables convenient coefficient-wise error sampling and

161



5.5 Investigating Sparse-secrets

n λ log q(ζ= 1
2

) log q(ζ= 3
4

) log q(ζ=1) log q(ζ= 3
2

) logQ

1024 128 14 19 21 23 27

192 10 13 14 16 19

256 7 10 11 12 14

2048 128 27 37 41 46 54

192 19 26 29 32 37

256 15 19 22 24 29

4096 128 55 74 83 92 109

192 37 52 57 64 75

256 30 39 44 49 58

8192 128 111 148 171 186 218

192 84 100 114 130 152

256 60 79 89 98 118

16384 128 223 300 342 377 438

192 157 201 232 265 305

256 115 161 176 202 237

32768 128 496 619 699 767 881

192 350 411 479 523 611

256 263 313 361 408 476

Table 5.5: The reduction in bit-length log q of the modulus q required to retain the desired
level of security against the dual, usvp, hybrid-dual and hybrid-decoding attacks, under our
assumptions, when using a sparse ternary secret parameterised by ζ = h

λ compared to a

uniform ternary secret. The lattice reduction cost model is T (β, d) = 20.292β+16.4+log(8d), and
a (conservative) estimate for both the hybrid-dual and hybrid-decoding attacks are obtained
by considering a square-root speed-up in the search space, and ignoring any meet-in-the-
middle probabilities.

would require no change to the currently standardised error distribution.

For n = 216, it is straightforward to apply the methodology used in the current HE Standard [ACC+18],
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i.e. to use the LWE Estimator to find an appropriate log q to meet security requirements for

fixed σ = 3.19 and a currently standardised secret distribution. We present the results of such

an analysis for a uniform ternary secret distribution in Table 5.6, which gives an estimate of

the security of the proposed parameter sets (n = 216, σ = 3.19, log q) against the usvp and

dual attacks under a sieving lattice reduction cost model.

λ n log q usvp dual

128 65536 1782 128.3 128.4

192 65536 1242 192.5 192.0

256 65536 963 256.7 257.7

Table 5.6: Required bit-length log q of moduli required to attain target security level λ under
the usvp and dual attacks, with λ ∈ {128, 192, 256}, for dimension n = 65536, under the
sieving-based cost model T (β, d) = 20.292β+16.4+log(8d).

For n ≥ 217 the same methodology works in theory, although it can become cumbersome to

run hybrid attack estimates many times for such very large parameter sets. To find suitable

moduli q achieving target security λ for higher values of n, we can extrapolate using the data

we already have using the apparent linear relationship between n and log q. That is, for a

fixed σ, n log q is essentially constant for a fixed target security level. This means we can easily

extrapolate entries for larger values of n, without having to explicitly run new experiments.

We illustrate in Figure 5.4 this for a sparse ternary secret of fixed Hamming weight h = λ

(i.e. ζ = 1). When considering pre-quantum estimates, we can represent log(q) as a linear

function of n by extrapolation from the data in Table 5.5:

logqsieve(λ,ζ)=(128,1)(n) = 0.021370n− 3.601989

logqsieve(λ,ζ)=(192,1)(n) = 0.014630n− 3.139303, and

logqsieve(λ,ζ)=(256,1)(n) = 0.011007n− 1.184080.

These linear models were found using the find fit function in SageMath [S+20]. For readability,

we round the coefficients to six decimal places in each case.
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Figure 5.4: Extrapolation to n = 65536 and n = 131072 using the data from Table 5.5
for the value ζ = 1. Here, we consider the lattice reduction cost model TBKZ(β, d) =
20.292β+16.4+log(8d) and extrapolate using the SageMath function find fit. Note that the solid
lines represent values covered by data points, and the dashed lines represents extrapolation.

We can use these extrapolations to generate values for log(q). For n = 65536, we see that:

blogqsieve(λ,ζ)=(128,1)(65536)c = 1396,

blogqsieve(λ,ζ)=(192,1)(65536)c = 955,

blogqsieve(λ,ζ)=(256,1)(65536)c = 720,

that is, for λ = 128 we have log(q) = 1396, for λ = 192 we have log(q) = 955, and for λ = 256

we have log(q) = 720. For n = 131072, we see that:

blogqsieve(λ,ζ)=(128,1)(131072)c = 2797,

blogqsieve(λ,ζ)=(192,1)(131072)c = 1914, and

blogqsieve(λ,ζ)=(256,1)(131072)c = 1441,
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that is, for λ = 128 we have log(q) = 2797, for λ = 192 we have log(q) = 1914, and for

λ = 256 we have log(q) = 1441.

5.5.4.1 Standardising the Standard Deviation σ

The choice of standard deviation σ = 3.19 is somewhat arbitrary, and we could consider

including wider standard deviations. In Table 5.7 we consider the impact of various standard

deviations σ ∈ {0.80, 2.90, 3.20, 32, 320, 3200} on the bit-length log q of the required modulus

to achieve a target level of security λ for fixed λ = 128, and fixed weight ternary secret

with Hamming weight h = 128. As an illustrative example, we choose the case of n = 8192.

We consider security against the usvp and dual attacks under the sieving-based cost model

T (β, d) = 20.292β+16.4+log(8d) for lattice reduction. However, we note that, as σ decreases, it

may be beneficial to guess components of the error vector, and the LWE Estimator does not

consider such techniques.

σ n log q usvp dual

0.80 8192 194 141.8 128.5

2.90 8192 196 141.7 128.5

3.20 8192 196 141.8 128.6

32 8192 204 138.2 128.4

320 8192 203 141.5 128.1

3200 8192 211 137.9 128.1

Table 5.7: Maximal moduli q required to attain target security level λ = 128 for various
values of σ. In each case, we consider a ring dimension of n = 8192 and a fixed weight ternary
secret with Hamming weight h = 128.

In general, we can see that as the value of σ increases, we attain a larger permissible value of

log(q) for the fixed value of n = 8192.
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5.6 Conclusion

In this chapter, we have considered the current state of the Homomorphic Encryption Security

Standard. We have considered the impact and feasibility of considering sparse secret parameter

sets in future variants of the standard. We note that the current version of the HE Standard

does not consider hybrid attacks, and urge that any parameter sets are analysed against

hybrid attacks before standardisation.

We have shown that, when sparse secrets are considered, the LWE modulus q can require a

significant reduction in size in order to attain the target security level. This can be problematic

in homomorphic encryption schemes, where we are looking for a large modulus q in order to

be able to carry out computations correctly. The attack landscape for sparse-secret LWE is

fast moving, with new contributions [CHHS19, EJK20] emerging in recent years.
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Privacy-preserving Kriging Interpolation
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This chapter is based on the following publication:

James Alderman, Benjamin R. Curtis, Oriol Farràs, Keith M. Martin, and Jordi Ribes-

González. Private Outsourced Kriging Interpolation. The 5th Workshop on Encrypted Computing

and Applied Homomorphic Cryptography. In International Conference on Financial Cryptography

and Data Security Workshops (pp. 75-90). Springer, volume 10323 of Lecture Notes in

Computer Science. 2017. Additional details have been added in this thesis.

In this chapter we present a solution which enables private outsourced Kriging interpolation.

We outline techniques that can be used to “factor out” sensitive parameters from the system

of equations which need to be solved by the server. Using these technique, alongside additively

homomorphic encryption, we can securely outsource Kirging interpolation.
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The author of this thesis contributed towards (a) the design of the private outsourced kriging

interpolation scheme, and (b) the writing of the paper. No contribution was made towards the

implementation, and therefore minimal details are provided in this chapter.

6.1 Introduction and Contribution

Kriging is a spatial interpolation algorithm which provides the best linear unbiased prediction

(BLUP) of an observed phenomenon, by taking a weighted average of samples within a

specified neighbourhood. It is widely used in areas such as geo-statistics where, as an example,

it may be used to predict the quality of mineral deposits at an unobserved location based on

previous measurements. There are many variants of Kriging, but we focus on the widely used

Ordinary Kriging variant, and refer to it simply as Kriging throughout this chapter. Kriging

can be outsourced to a cloud service provider, although measurements and predictions can

be highly sensitive and must therefore be protected.

In this chapter, we present a method for the private outsourcing of Kriging interpolation. We

use a modified variant of the Kriging algorithm in combination with homomorphic encryption

(as described in Chapter 2). Our solution allows crucial information relating to measurement

values to be hidden from the cloud service provider. Crucially, we only require additively

homomorphic encryption which allows for an efficient solution to be built.

Kriging is a form of linear interpolation that predicts the value [z∗0 ] of some phenomenon

at an unobserved location q0 = (x0, y0) in a two-dimensional region. The quality of Kriging

prediction relies on the parameters considered, as well as the variogram model which describes

the spatial continuity of the data. These parameters, and the variogram model, are chosen

prior to interpolation. The Kriging prediction is then formed as a weighted sum of prior

measurements, where measurements closer to the query point q0 are given a greater weight in

the sum than those which are further away. This reflects the assumption that measurements

taken at nearby locations are more likely to be ‘similar’ than measurements taken further

apart.

Kriging was designed with geo-statistical applications in mind (e.g. to predict the best location

to mine based on the mineral deposits found at previous measurements within a region), but

has also found applications in a variety of settings including remote sensing [RDB94], real-
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estate appraisal [KH14], and computer simulations [Kle09]. Kriging has been identified as a

good candidate process to be outsourced, based on the practical and legislative requirements

of industrial users [Cla16, Ing16].

Many users may need access to a Kriging prediction service (indeed, legal frameworks may

require such data to be shared amongst relevant authorities [Eur07]). A secured storage server

may be preferable to distributing copies of the entire dataset to each authorised user, especially

when datasets are large and/or user devices are constrained. Furthermore, Kriging might

need to be performed over data owned by multiple organizations, with an independent cloud

service provider performing processing duties on behalf of all concerned parties.1 Centralised

outsourcing also makes sense when remote sensors take frequent measurements and push the

results to a central database.

Consider a client C that owns a Kriging dataset (a set of measurements taken at various

locations) which it wishes to outsource to an honest-but-curious cloud service provider S. In

the honest-but-curious model, the cloud service provider S follows the protocol as described,

but also attempts to learn as much as possible from the resulting transcript of messages.

Our results do not translate to the malicious setting, since we have no way of verifying the

computations made by the sever in our solution. A maliciously-secure protocol for the private

outsourcing of Kriging interpolation is left for future work. The client C would like to make

use of both the storage and computational power of the server S to make a Kriging prediction

service on its dataset available to multiple users. Further, other data generating nodes may

be authorised by C to add/remove data (measurements) to/from the outsourced dataset.

A trivial solution consists of encrypting all data using a symmetric encryption scheme and

using the server only for storage-as-a-service. To compute a Kriging prediction, all relevant

data is retrieved, decrypted and computed on locally. Unfortunately, this solution may not be

efficient, particularly if client devices have limited computational power or storage capacity.

Moreover, this solution requires high bandwidth during queries. This may be an issue if, for

example, a surveyor in the field requires an on-line Kriging prediction service. In this case,

mobile data services may be expensive, intermittently available, or slow.

An alternative is to compute the entire Kriging process on encrypted data by encrypting

all data using FHE. Unfortunately, Kriging involves several computations that are currently

1In this case, it may be preferable to use Multi-key Homomorphic Encryption [LTV12, PS16, CCS19b,
CDKS19]. We do not consider this setting in our work, and assume that there is a single data owner C.
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challenging when using FHE, including computing square roots and natural exponentiations.

It is certainly possible to outsource the Kriging process and protect all information using

FHE. However, this results in prohibitively high encryption and decryption costs as well as

a large amount of interactivity and local computation, which may diminish the benefits of

the client/server setting. Preliminary experiments using the SEAL library [Mic20] (without

optimization of code or parameter choices) did not yield promising results when computing

a Kriging prediction using a dataset of only three measurements.

Our proposed solution uses additively homomorphic encryption to outsource Kriging interpolation

efficiently. We make a trade-off by protecting only the most sensitive parameters. That is,

we protect the measurement values in the dataset, the generated Kriging predictions and (a

subset of) the variogram parameters chosen by the client. We do not hide locations (of prior

measurements or queries), noting that prior measurement locations may well be externally

observable (e.g. if measurements come from previous mining operations). We discuss issues

surrounding data leakage in more detail in Section 6.6.

Our main contribution is to show that the Kriging process can be adapted such that the

sensitive variogram parameters may be ‘factored out’ from the online computation provided

by the server, whilst the remainder of the Kriging computation may be performed on encrypted

measurement values using an additively homomorphic encryption scheme. We thus gain a

practical, efficient, and secure solution to privately outsource Kriging. An outline of our

protocol is as follows:

1. C uploads an encrypted dataset, consisting of n measurements, to S.

2. S prepares the Kriging dataset for future queries. This process includes plaintext

operations that are also necessary in an unprotected outsourced Kriging scheme.

3. C makes a query to S requesting a Kriging prediction at a location (x0, y0), which is

done in plaintext with virtually no cost.

4. S computes the interpolation on encrypted measurements.

5. C decrypts the result.

Cryptographically-secured Kriging has been studied previously in a different setting, where a

server owns a dataset and clients may query the dataset at a previously unsampled location [TP13]:
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the queried location and resulting prediction should be private from the server, whilst the

dataset held by the server should be private from the client. Two solutions are proposed

in [TP13] which, unlike our solution, support only one variogram model and require high

communication complexity, interactivity and local computation. The first is based on creating

random ‘dummy’ queries to hide the queried location, and using an oblivious transfer protocol

to hide predictions for all but the legitimate query location. The second solution uses the

Paillier encryption scheme [Pai99] in an interactive protocol requiring multiple round-trips

between client and server. In [TP14] collaborative private Kriging was investigated, where

users combine their datasets to gain more accurate Kriging predictions.

The remainder of this chapter is structured as follows. In Section 6.2 we describe the Kriging

interpolation process. In Section 6.3 we define our system model and analyse the required

security properties of each piece of data in our setting. In Section 6.4 we introduce the idea

of a canonical variogram, which we use in our construction to allow the server to compute a

Kriging prediction without relying on the sensitive parameters. Our construction is given in

Section 6.5 and we discuss its performance in Section 6.6. Finally, in Section 6.7, we conclude

and outline some potential directions for future work.

6.2 Kriging Interpolation

This section outlines the background theory of Kriging interpolation. For more detail, see

[CD99, Cre92, Kri51, Wac13]. To highlight which objects are to be kept secret from the sever,

we use brackets, e.g. [x] represents that we want to keep the value x secret (via encryption

or other techniques). The Kriging process starts with a set of measurements taken at some

locations in a spatial region, and produces predicted measurements at unsampled locations.

We denote this spatial region by R ⊂ R2, and the locations of prior measurements by P =

(r1, r2, . . . , rn), where each ri = (xi, yi) ∈ R. The Euclidean distance2 between two locations

ri, rj ∈ R is:

d(ri, rj) =
√

(xi − xj)2 + (yi − yj)2.

We refer to the set of taken measurements by S = ([z1], [z2], . . . , [zn]), where [zi] corresponds

to a measurement taken at the corresponding location ri ∈ P . We define the Kriging dataset

to be the tuple (P, S), which consists of all measurement values and their corresponding

2We note that some Kriging datasets consider the Great Circle distance, i.e. the distance between two points
along the surface of a sphere, as the distance metric; we do not consider such cases in this chapter.

171



6.2 Kriging Interpolation

locations. That is:

(P, S) = ((r1, r2, . . . , rn), ([z1], [z2], . . . , [zn])).

The Kriging process allows a client to query an arbitrary location r0 ∈ R, in order to receive

a prediction [z∗0 ] of the true value [z0] that would be measured at r0.

6.2.1 Overview of the Kriging Procedure

Informally, Kriging consists of three phases:

1. Computing the experimental variogram: one of the underlying assumptions of the Kriging

process is that two measurements of a phenomenon will be similar when measured at

nearby locations. Using the sampled dataset, one can plot the experimental variogram

to show the dependence between measurements sampled at locations at certain distances

h.

2. Fitting a variogram model : the experimental variogram is not usually sufficient to

use in the Kriging prediction directly, since there may not be sampled data at every

required distance. Therefore, one chooses a variogram model and empirically selects

model parameters to fit a curve to the points of the experimental variogram.

3. Computing the prediction: using the variogram, we can determine the appropriate

weights for each measurement (based on the distance between each measurement and

the queried location). The Kriging prediction is then computed as a weighted sum of

the measured samples.

6.2.2 The Variogram

Let N(h) be the set of all pairs of measurements taken approximately distance h apart, that

is:

N(h) = {([zi], [zj ]) | d(ri, rj) ∈ (h−∆, h+ ∆)}.3

3The approximation tolerance ∆ can be increased when the Kriging dataset does not include enough sample
points at a close enough distance.
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The experimental variogram γ∗ plots, for every distance h such that N(h) 6= ∅ :

γ∗(h) =
1

2N(h)

∑
(zi,zj)∈N(h)

([zi]− [zj ])
2. (6.1)

A suitable variogram function γ : R≥0 → R must satisfy a set of conditions [CD99, Cre92].

The most commonly used models require:

� γ(0) = 0,

� γ(h) is positive and bounded, and

� the existence of the limits limh→0+ γ(h) and limh→∞ γ(h).

These models are parametrized by the following four variables:

1. the nugget effect [η]: the limit of γ(h) as h→ 0+,

2. the sill [ν]: the limit of γ(h) as h→∞,

3. the range ρ: which controls how fast γ(h) approaches [ν] as h increases, and

4. the partial sill [µ]: the difference between the sill and the nugget, i.e. [µ] = [ν]− [η].

Typically, a variogram model is chosen from a set of standard parametric variogram models.

This model is then fitted to the experimental variogram by empirically adjusting the nugget

effect, sill, and range parameters. The most common choices of bounded variogram models

are, for h > 0:

1. the bounded linear model : γ(h) = [ν]− ([ν]− [η])
(

1− h
ρ

)
· 1(0,ρ)(h),

2. the exponential variogram model : γ(h) = [ν]− ([ν]− [η])e−h/ρ,

3. the spherical variogram model : γ(h) = [ν]− ([ν]− [η])
(

1− 3h
2ρ + h3

2ρ3

)
· 1(0,ρ)(h), and

4. the Gaussian variogram model : γ(h) = [ν]− ([ν]− [η])e−h
2/ρ2 ,

where 1I(x) = 1 if x ∈ I, and 1I(x) = 0 otherwise.
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6.2.3 The Normal Equations

Let γ be one of the variogram models discussed in Section 6.2.2 with parameters chosen

to fit the experimental variogram. To construct the best linear unbiased predictor of the

phenomenon at a queried location r0 = (x0, y0) ∈ R, we first form the Kriging matrix K ∈
R(n+1)×(n+1) with elements:

� Ki,j = γ(d(ri, rj)) for 1 ≤ i, j ≤ n,

� Kn+1,i = Ki,n+1 = 1 for i 6= n+ 1, and

� Kn+1,n+1 = 0.

That is,

K =



γ(d(r1, r1)) γ(d(r1, r2)) . . . γ(d(r1, rn)) 1

γ(d(r2, r1)) γ(d(r2, r2)) . . . γ(d(r2, rn)) 1
...

... . . .
...

...

γ(d(rn, r1)) γ(d(rn, r2)) . . . γ(d(rn, rn)) 1

1 1 . . . 1 0


∈ R(n+1)×(n+1).

Define v ∈ Rn+1 with vi = γ(d(r0, ri)) for 1 ≤ i ≤ n, and vn+1 = 1. Finally, let w ∈ R(n+1)

satisfy Kw = v:

γ(d(r1, r1)) γ(d(r1, r2)) . . . γ(d(r1, rn)) 1

γ(d(r2, r1)) γ(d(r2, r2)) . . . γ(d(r2, rn)) 1
...

... . . .
...

...

γ(d(rn, r1)) γ(d(rn, r2)) . . . γ(d(rn, rn)) 1

1 1 . . . 1 0





w1

w2

...

wn

wn+1


=



γ(d(r0, r0))

γ(d(r0, r1))
...

γ(d(r0, rn))

1


.

The (Ordinary) Kriging prediction [z∗0 ] of the measured phenomenon at the location r0 is

computed as the weighted sum of the sampled measurements, with the weights defined by w.

Specifically, we have:

[z∗0 ] =
n∑
i=1

wi[zi].
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The set of linear equations defined by K, w, and v are known as the Normal Equations.

They are derived by ensuring that the induced linear predictor is unbiased (this is done by

forcing the first n weights to sum to one, i.e.
∑n

i=1wi = 1) while minimizing the variance

of the induced linear predictor [Wac13]. The resulting minimized variance [σ∗20 ] is called the

(Ordinary) Kriging variance, and it is described by the following expression:

[σ∗20 ] = wn+1 +
n∑
i=1

wiγ(d(r0, ri)).

The Kriging variance allows for the construction of confidence intervals for each prediction and

this describes the error associated with the prediction. We define a variogram function to be

non-degenerate if [η] 6= [ν], and we restrict our attention to non-degenerate variograms in this

chapter. Using the degenerate variogram (also called the nugget effect variogram [Wac13])

results in the average Kriging predictor [z∗0 ] =
∑n

i=1[zi]/n at all unsampled locations r0 /∈ P ,

with Kriging variance [σ∗20 ] = n+ 1.

6.2.4 Toy Example

Throughout this chapter, we make use of a small example dataset for illustrative purposes.

To do this, we use the PyKrige library [PYK20] following in a similar fashion to the example

code provided with the library. Specifically, we expand their Ordinary Kriging example code

and utilise their example dataset. This example code considers the toy dataset, consisting of

five points, outlined in Table 6.1.

x y [z]

0.3 1.2 [0.47]

1.9 0.6 [0.56]

1.1 3.2 [0.74]

3.3 4.4 [1.47]

4.7 3.8 [1.74]

Table 6.1: The toy dataset used throughout this section, as in the ordinary kriging example
used in the PyKrige library [PYK20]. The xi, yi values are coordinates of the measurement
[zi].

In our example, we choose to set the value of ∆ to be 0. Therefore, since the size of our
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6.2 Kriging Interpolation

def compute experimental variogram(data):

vals = []

Nh = 1

variogram vals = []

h = []

for i in range(len(data)):

for j in range(i+1,len(data)):

xij = data[i][0] = data[j][0]

yij = data[i][1] = data[j][1]

zij = data[i][2] = data[j][2]

hij = sqrt(xij**2= yij**2)

h.append(hij)

vals.append(zij**2)

variogram vals = [1/(2*Nh) * z for z in vals]

return (h, variogram vals)

Figure 6.1: Code used to plot the experimental variogram of a dataset, such as the example
dataset presented in Table 6.1.

dataset is five points, we note that there are at most
(

5
2

)
= 10 distinct sets of the form:

N(hk) = {([zi], [zj ]) | d(ri, rj) = hk},

for 1 ≤ k ≤ 10. For our dataset, it turns out that each value hk is distinct, and we therefore

have exactly ten sets {N(hk)}10
k=1. We plot h against γ∗(h) in Figure 6.2.

We can use the custom code outlined in Figure 6.1 to determine a good variogram model.

We note that PyKrige allows the usage of binning when computing a variogram, which

corresponds to a selection of ∆ 6= 0 and considering Euclidean distances in the range (h −
∆, h + ∆). As noted above, we consider ∆ = 0 in our example. We begin by plotting the

experimental variogram according to Equation 6.1 in Figure 6.1.

We can also use Pykrige to plot the experimental variogram, which we do using the example

code provided with the PyKrige library, and fit a linear variogram to the data (since Figure 6.2

shows that this is a good model for fitting). Recall that the linear model is of the form:

γ(h) = [η]− ([η]− [ν])(1− h

ρ
),
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γ
∗ (
h

)

Experimental variogram values

Figure 6.2: The experimental variogram for our example dataset, presented in Table 6.1, with
∆ = 0

and PyKrige fits a model of the form:

γ(h) = 5.2517 · 10−11 + 0.1168h,

which corresponds to choices of ρ = 1, [η] ≈ [0.1168], [ν] = [5.2517 ·10−11]. Note that PyKrige

does not consider a range in their linear models, so we have omitted the Indicator function

used in Section 6.2.2. For this variogram we perform Kriging interpolation on a 10× 10 grid

between the values x, y ∈ [0, 5], and the results are displayed in Figure 6.4. We can, of course,

change the granularity of this prediction and predict over an (r × s) grid for any r, s ∈ Z.
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γ(h)

Figure 6.3: A linear model fitted to the experimental variogram using the Pykrige library, for
our example dataset presented in Table 6.2.
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y | x 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

5.0 0.90 0.95 1.02 1.11 1.20 1.31 1.42 1.52 1.61 1.67 1.72

4.5 0.83 0.89 0.96 1.05 1.15 1.27 1.40 1.51 1.61 1.69 1.73

4.0 0.77 0.81 0.88 0.97 1.08 1.21 1.34 1.47 1.59 1.70 1.74

3.5 0.70 0.74 0.79 0.88 1.00 1.13 1.27 1.40 1.52 1.64 1.69

3.0 0.64 0.67 0.71 0.81 0.93 1.05 1.18 1.31 1.43 1.53 1.59

2.5 0.58 0.61 0.66 0.75 0.85 0.97 1.09 1.21 1.32 1.42 1.48

2.0 0.53 0.56 0.61 0.69 0.78 0.89 1.01 1.12 1.23 1.32 1.39

1.5 0.49 0.51 0.56 0.62 0.71 0.81 0.92 1.04 1.14 1.23 1.30

1.0 0.46 0.48 0.52 0.56 0.63 0.74 0.85 0.96 1.06 1.15 1.22

0.5 0.45 0.46 0.49 0.53 0.58 0.69 0.80 0.90 1.00 1.08 1.15

0 0.44 0.46 0.49 0.52 0.58 0.67 0.76 0.86 0.94 1.02 1.09

Figure 6.4: Example interpolation grid using the linear model fitted to the experimental
variogram presented in Figure 6.3.
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6.3 Private Outsourced Kriging Interpolation

We now introduce the setting that we consider in this chapter. We have a client C that

owns a Kriging dataset (P, S), as defined in Section 6.2, along with a variogram γ computed

as in Section 6.2.4. We also have an honest-but-curious server S that is willing to perform

outsourced Kriging on behalf of the client C. Finally, we have additional users U that are

authorised by C to make Kriging queries to S, and we may also consider additional data

generating nodes (e.g. several remote sensors placed in locations of interest) that may update

the outsourced dataset by producing additional measurement data or removing previous

(e.g. outdated) measurements. The requirements of each party are as follows:

� The data owner must choose the variogram model to be used, as well as the associated

parameters. They upload a Kriging dataset to the server, and should be able to update

data and request Kriging predictions.

� The data users may request Kriging predictions and update data. Here, update data

refers to the addition of a new measurement [zi] to the set of measurements S, and the

addition of the corresponding location ri to the set of locations P . After an update has

taken place, all future Kriging predictions use the updated dataset.

� The data generating nodes should only be able to update data.

� The honest-but-curious server should only be able to perform Kriging predictions, and

should do so without learning the data used in the computation.

We now informally describe the protocol, which proceeds as follows:

1. The data owner C chooses the variogram model to be used and runs the Outsource

algorithm to generate the (protected) dataset to be sent to the server, as well as ‘keys’

that are issued to authorise a party to update the outsourced dataset, or to perform

Kriging queries.

2. Upon receipt of the protected data, the server may run the Setup algorithm to process

the data and perform any necessary pre-computation. After this step has been completed,

the system is ready to accept queries and perform the associated predictions.
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6.3 Private Outsourced Kriging Interpolation

3. The data owner, or an authorised data user (in possession of the query key), may request

a Kriging prediction at a specified location by running the Query algorithm to generate

a query token Q.

4. This query token Q is sent to the server, who runs the Interpolate algorithm using the

processed database to generate an encrypted prediction and an encoding of the Kriging

variance (the estimation of the error in the prediction).

5. A party authorised to perform queries may learn the prediction and variance by running

the Decrypt algorithm.

6. To dynamically update the outsourced dataset, an authorised party (in possession of

the update key) may run the AddRequest algorithm on a specified location r′ and

measurement [z′], or the DeleteRequest algorithm on a specified location r. These

algorithms produce an addition token αr′,[z′] or deletion token δr, respectively, that

is sent to the server.

7. Upon receipt of an addition or deletion token, the server runs the Add or Delete

algorithm, respectively, to update the database accordingly.

We note that, throughout execution of all of the algorithms discussed above, the server

cannot access the underlying predictions due to the encryption provided by the homomorphic

encryption scheme. In this chapter, we assume that any user authorised to generate a Kriging

query is also permitted to update the dataset. If this is not the case, then the construction

can be modified to include a digital signature computed on any addition or deletion token,

where the signing key is contained in the update key (and not the query key). The server

should be trusted to reject any tokens that do not have a valid signature (which is the case

since we are working in the honest-but-curious model). In this case, only users in possession

of the private signature key would be able to update the dataset. We now formalise this

discussion.

Definition 6.1 (Private Outsourced Kriging Interpolation Scheme) A private

outsourced Kriging interpolation scheme is made up of the following algorithms:

� (UK,QK,C)
$←− Outsource(1λ, P, S, γ): a probabilistic algorithm run by C which takes

as input a security parameter λ, the Kriging dataset which is made up of measurement

locations P and measurement values S, and the chosen variogram γ. It produces:
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– an update key UK that may be used to update the outsourced dataset, which is

given to parties authorised by C to update the dataset,

– a query key QK which may be used to form Kriging queries, which is kept by C,

and

– an outsourceable dataset C that may be transmitted to the server.

� DB← Setup(C): a deterministic algorithm run by S which takes as input the outsourceable

dataset C. This algorithm enables S to perform any necessary processing that will enable

it to compute Kriging predictions, and produces a processed outsourced dataset DB.

� Q
$←− Query(QK, r0): a probabilistic algorithm run by C or a data user in U which takes

as input a query key QK and a query location r0 = (x0, y0) ∈ R for which a Kriging

prediction should be computed. The output is a query token Q which is sent to S.

� (Z̃0, σ̃0
∗2)← Interpolate(Q,DB): a deterministic algorithm run by S that, given a query

token Q and the database DB, returns an encrypted Kriging interpolation Z̃0 and the

partially computed Kriging variance σ̃∗20 .

� ([z∗0 ], [σ∗20 ]) ← Decrypt(QK, Z̃0, σ̃0
∗2): a deterministic algorithm run by C or a user in

U that takes the query key QK, the Kriging results Z̃0 and σ̃0
∗2 from the server and

outputs the Kriging prediction [z∗0 ] and the Kriging variance [σ∗20 ] at the queried location.

� αr′,[z′] ← AddRequest(UK, r′, [z′]): a deterministic algorithm run by C, a data user in U
or a data generating node, which takes the update key UK, a location r′, a measurement

value [z′], and outputs an addition token αr′,[z′].

� DB′ ← Add(DB, αr′,[z′],): a deterministic algorithm run by S which takes the current

outsourced database DB and an addition token αr′,[z′], and outputs an updated database

DB′ representing the Kriging dataset (P ∪ {r′}, S ∪ {[z′]}).

� δr ← DeleteRequest(UK, r): a deterministic algorithm run by C, a data user in U or a

data generating node which takes as input a location r ∈ P and the update key UK and

outputs a deletion token δr.

� DB′ ← Delete(DB, δr): a deterministic algorithm by the server which takes as input the

current database DB, as well as a deletion token δr, and outputs an updated database DB′

representing the Kriging dataset (P \ {r}, S \ {[zr]}), where [zr] ∈ S is the measurement

corresponding to location r ∈ P in DB.
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Next, we analyse the security requirements of each component within a Kriging system.

1. The measurement values [zi] ∈ S are highly sensitive and must be protected at all times.

2. We consider the coordinates ri ∈ P of previous measurements to not be sensitive. This

is reasonable since in some applications these locations may be externally observable,

such as the case where they are the locations of previous mining activity.

3. The queried location r0 at which a new prediction should be computed may reveal

areas of particular interest to the user. The sensitivity of this relies on the setting and

individual user requirements. However, in practice, Kriging queries are often made at

every location within a region to produce a heat map of a phenomenon (as considered in

our toy example), which may limit the sensitivity of individual query locations. Further,

the basic assumption of Kriging is that the quality of predictions degrades with distance.

Therefore, the best Kriging results will be obtained when the queried location is broadly

within the region of prior (observed) measurements.

4. The computed prediction [z∗0 ] is highly sensitive as it may form the basis of future

decisions and may also be business-critical, and therefore must be protected.

5. The choice of variogram model (without the variogram parameters) may reveal something

about the overall trend of the spatial dependencies of the measurements. We assume

that this is not particularly sensitive information, and we leave a detailed leakage

analysis to future work.

6. The range parameter ρ of the variogram is a constant scaling of the region R denoting the

inter-measurement distance h at which the spatial dependency becomes negligible. For

distances h > ρ, the variogram approaches the variance of the measurements [Wac13],

which is represented by the sill [ν].

7. The nugget effect [η] reveals the spatial dependency at very small distances.

We assume that the range is not sensitive (as it merely scales the region R), but that

information revealed by the nugget and sill may be sensitive. Even in applications where

this direct information on the variance and spatial dependency of measurements is deemed

non-sensitive, it may be the case that the variogram parameters are commercially sensitive.

These parameters must be chosen empirically to best fit the experimental data, a process

which may be time-consuming. The quality of predictions depends on how well the variogram

matches the experimental variogram. We summarise our security requirements in Table 6.2.
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Data ri [zi] (x0, y0) [z∗0 ] γ model ρ [ν] [η]

Protection 7 3 7 3 7 7 3 3

Table 6.2: Data protection offered by our private outsourced Kriging scheme.

6.4 Our Techniques

In this section we introduce the main concepts used in our construction: the canonical

variogram. We show how to factor out the variogram parameters in the Normal equations

which allows us to remove these parameters from the outsourced dataset, and use them

to recover the final prediction on the client side. The crux of our solution for the private

outsourcing of Kriging interpolation is to observe how the Kriging prediction varies according

to the variogram nugget effect [η], the sill [ν], and range ρ in the non-degenerate case. We

define a canonical variogram for each variogram model by arbitrarily fixing the parameters

[η] = ρ = 1 and [ν] = 0, although our results clearly translate to other choices.

Since the Kriging process is inherently linear, we show how to ‘factor out’ the sensitive

parameters [η] and [ν] from the variogram to leave just the canonical variogram. Using

this result, in combination with an additively homomorphic scheme, an untrusted server can

compute a related Kriging prediction, and variance, without any knowledge of [η], [ν] and the

actual measurements. The variogram parameters can then be used by the client locally to

compute the final prediction.

6.4.1 The Canonical Normal Equations

Definition 6.2 (Canonical Variogram) Let γ(h) be a non-degenerate variogram function

with nugget effect [η], sill [ν] and range ρ. We define its associated canonical variogram as the

function γ̃ : R≥0 → R satisfying γ̃(0) = 0 and:

γ̃(h) = − 1

[ν]− [η]
γ(ρh) +

[ν]

[ν]− [η]
for h > 0. (6.2)

Note that for any non-degenerate variogram function coming from the parametric variogram

models defined in Section 6.2.2, the canonical variogram depends only on the model and not
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on any of the parameters. Given a Kriging dataset (P, S) of n measurements, a query position

r0 /∈ P and a variogram function γ with nugget effect [η], sill [ν] and range ρ, let Kw = v be

the corresponding Normal equations as defined in Section 6.2. Our main result is that it is

sufficient to consider a canonical version of the Normal equations that depends only on the

chosen variogram model, as well as P and the range parameter ρ of γ.

Definition 6.3 (Canonical Normal Equations) We define the canonical Normal equations

as the linear system obtained from the Normal equations Kw = v by replacing:

1. every ri ∈ P by ri/ρ, i.e. (xi, yi) 7→ (xiρ ,
yi
ρ ),

2. the query position r0 by r0/ρ, similarly to above, and

3. the variogram γ(h) by the canonical variogram γ̃(h).

Note that when the positions are scaled we have

d(ri/ρ, rj/ρ) =
1

ρ
d(ri, rj).

We denote the canonical Normal equations as K̃w̃ = ṽ. The matrix K̃ is given by:

γ̃(d(r1/ρ, r2/ρ)) γ̃(d(r1/ρ, r2/ρ) . . . γ̃(d(r1/ρ, rn/ρ)) 1

γ̃(d(r2/ρ, r1/ρ)) γ̃(d(r2/ρ, r2/ρ)) . . . γ̃(d(r2/ρ, rn/ρ)) 1
...

... . . .
...

...

γ̃(d(rn/ρ, r1/ρ)) γ̃(d(rn/ρ, r2/ρ)) . . . γ̃(d(rn/ρ, rn/ρ)) 1

1 1 . . . 1 0


∈ R(n+1)×(n+1),

and the canonical Normal equations are given by the system of equations:

K̃



w1

w2

...

wn

wn+1


=



γ̃(d(r0/ρ, r0/ρ))

γ̃(d(r0/ρ, r1/ρ))
...

γ̃(d(r0/ρ, rn/ρ))

1


.

Note that, since the canonical variogram is parameterless, the canonical Normal equations

involve only the variogram model and the locations in P scaled by 1/ρ. This observation
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allows us to take advantage of the linearity of the Kriging predictor in order to protect the

measurements and interpolation value, whilst hiding the sill and nugget parameters [ν] and

[η] from the server by storing them locally. We now discuss the solution to the canonical

Normal equations in Proposition 6.1.

Proposition 6.1 Let K,K′ ∈ R(n+1)×(n+1) be real matrices, and let v,v′ ∈ Rn+1 be real

vectors such that:

1. there exists a, b ∈ R such that K′i,j = aKi,j + b and v′i = avi + b for all 1 ≤ i, j ≤ n,

2. Ki,n+1 = Kn+1,i = K′i,n+1 = K′n+1,i = vn+1 = v′n+1 = 1 for all 1 ≤ i ≤ n,

3. Kn+1,n+1 = K′n+1,n+1 = 0.

Then, if w ∈ Rn+1 satisfies Kw = v, the vector w′ ∈ Rn+1 defined by:

w′i = wi for all 1 ≤ i ≤ n, and

w′n+1 = awn+1,

satisfies K′w′ = v′.

Proof. Note that:

(K′w′)i = avi + b

n∑
i=1

wi,

for 1 ≤ i ≤ n, and we have (K′w′)n+1 = 1. Since
∑n

i=1 wi = 1 (by the last equation of the

system Kw = v), the result follows. �

This result extends an observation in [Cre92], which states that summing a constant to the

variogram does not alter the solutions of the Normal equations, and that such a transformation

of the variogram may sometimes be necessary in order to obtain a numerically stable Kriging

prediction. We apply this proposition to the Normal equations with a = −1/([ν] − [η]) and

b = [ν]/([ν] − [η]), and consider the canonical Normal equations. By the definitions of the

Kriging prediction and the Kriging variance in Section 6.2, we obtain Proposition 6.2.

Proposition 6.2 Let [z∗0 ] and [z̃0
∗] be the Kriging predictions computed from the Normal and

the canonical Normal equations respectively. Denote by [σ∗20 ] and σ̃0
∗2 the Kriging variance
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associated with each of the predictors. Then:

[z̃0
∗] = [z∗0 ] and σ̃0

∗2 = − 1

[ν]− [η]
[σ∗20 ] +

[ν]

[ν]− [η]
.

In the case that the variogram is non-degenerate, the Kriging prediction is independent of

the sill [ν] and nugget [η] parameters of the variogram, whilst the range parameter [ρ] scales

positions. When we apply a linear transformation to the variogram, the Kriging variance of

the obtained Kriging predictor changes according to the same transformation.

6.5 Our Construction

We now outline the operation of each of the algorithms in our scheme. Denote by H =

(KGen,Enc,Dec,Eval) an IND-CPA-secure additive homomorphic encryption scheme. Then:

� (C,UK,QK)
$←− Outsource(1λ, P, S, γ): If γ is a degenerate variogram function, halt

and return ⊥; in this case, our protocol fails.4 Otherwise, generate a keypair for the

homomorphic encryption scheme:

(pk, sk)← KGen(1λ).

Recall that: P ⊆ R2 is the ordered set of locations (ri)
n
i=1, S ⊆ R is the ordered set of

measurements ([zi])
n
i=1, and that the variogram γ is made up of three parameters: the

nugget [η], the sill [ν] and the range ρ. Let γ̃ be the canonical variogram associated

with γ, as defined in Section 6.4. Define the update key UK and the query key QK as:

UK = (pk, ρ) and QK = (sk, [η], [ν], ρ).

To account for the factor of ρ in the input to γ in Equation 6.2, compute the scaled

locations:

P̃ = ((xi/ρ, yi/ρ))ni=1.

Finally, encrypt each measurement in S and define the ordered set:

Z = (Enc(pk, [zi]))
n
i=1.

Output C = (P̃ ,Z, γ̃), along with UK and QK.

4However, if γ is degenerate, the variogram is constant (the so-called ‘nugget effect model’) and models a
purely random variable with no spatial correlation. In this case the prediction is [z∗0 ] =

∑
[zi]/n for r0 6∈ P

and the variance is [σ∗20 ] = n+ 1.
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� DB← Setup(C): Instantiate the matrix K̃ from the canonical Normal equations using

the positions r′i ∈ P̃ , 1 ≤ i ≤ n, and the canonical variogram γ̃. Set

1. K̃i,j = γ̃(d(r′i, r
′
j)) for 1 ≤ i, j ≤ n,

2. K̃n+1,i = K̃i,n+1 = 1 for i 6= n+ 1, and

3. K̃n+1,n+1 = 0.

Return DB = (K̃, C).

� Q
$←− Query(r0, QK): Let r0 = (x0, y0) and, recalling that ρ is contained within QK,

return Q = (x0/ρ, y0/ρ).

� (Z̃0, σ̃0
∗2) ← Interpolate(Q,DB): Recall that C = (P̃ ,Z, γ̃). If Q ∈ P̃ , then the exact

measurement is contained in the outsourced dataset and no prediction is required. Let

j be the index such that Q = rj , and return (Zj ,⊥), where ⊥ is a distinguished symbol

denoting that the prediction is exact.

Otherwise, compute the vector v from the canonical Normal equations using the locations

r′i ∈ P̃ , the query position Q and the canonical variogram γ̃:

1. vi = γ̃(d(Q, r′i)) for 1 ≤ i ≤ n, and

2. vn+1 = 1.

Compute the solution w̃ to the canonical Normal equation K̃w̃ = ṽ in plaintext. This

step essentially computes the Kriging coefficients w using the canonical variogram and

the scaled locations without requiring the parameters of the variogram. Then, using the

homomorphic property of the encryption, compute the encrypted prediction Z̃0:

Z̃0 =
n∑
i=1

w̃i · Zi and σ̃0
∗2 = w̃n+1 +

n∑
i=1

w̃i · γ̃(Q, r′i).

Return the encrypted prediction Z̃0, and the partially computed Kriging variance (error

estimation) σ̃0
∗2.

� ([z∗0 ], [σ∗20 ])← Decrypt(Z̃0, σ̃0
∗2, QK): First decrypt the Kriging prediction:

[z̃0
∗] = Dec(sk, Z̃0),

where sk is contained within QK. Then, if σ̃0
∗2 =⊥, set [σ∗20 ] = 0. Else, compute the

Kriging variance:

[σ∗20 ] = [ν]− ([ν]− [η])σ̃0
∗2.
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This final step essentially adds back in the parameters of the variogram, which were

removed for outsourcing, using the result from Proposition 6.2.

� αr′,[z′] ← AddRequest(r′, [z′], UK): Let ra = r′

ρ and compute the ciphertext:

Za = Enc(pk, [z′]),

where ρ and pk are contained within UK. Output the addition token:

αr′,[z′] = (ra, Za).

� DB′ ← Add(DB, αr′,[z′]): Recall that αr′,[z′] = (ra, Za). Compute the updated dataset:

if ra ∈ P̃ then let j be the index such that rj = ra and modify Zj ∈ Z to be Za.

Otherwise, set C ′ = (P̃ ∪ {ra},Z ∪ {Za}, γ̃). Return the output of Setup(C ′).

� δr ← DeleteRequest(r, UK): Return δr = r/ρ.

� DB′ ← Delete(DB, δr): If δr /∈ P̃ , return DB as there is nothing to remove. Otherwise,

let j be the index such that r = rj in P̃ . Compute the updated dataset C ′ = (P̃ \
{rj},Z \ {Zj}, γ̃) and return the output of Setup(C ′).

6.6 Discussion

The correctness of the scheme is immediate from Proposition 6.2 as well as the correctness of

the homomorphic encryption scheme H. These homomorphic properties enable addition and

scalar multiplication of ciphertexts, whilst ensuring that the results decrypt appropriately.

Proposition 6.2 shows that the Kriging prediction, as well as the Kriging variance, can be

computed by applying a linear transformation to the result computed using the canonical

(parameterless) variogram. Correctness of the updates is apparent because the addition and

deletion tokens format the data in the same way as the original dataset. Since we are using

the honest-but-curious model, the server will modify the dataset correctly. The remainder of

the update algorithms then simulate a new setup procedure running Setup on a new Kriging

dataset from Outsource.

In terms of security, measurement values are always in encrypted form whilst outsourced.

Leakage is bounded by the variogram model as well as both the queried and observed

locations (scaled by the inverse of range parameter ρ). Therefore, assuming no collusion
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between the server and users, the data is confidential from the server. The homomorphic

encryption scheme enables the computation to be performed on the measurements whilst

they are encrypted, and therefore at no point during the computation is the data revealed to

the server.

It is also clear that neither the variogram parameters η and ν, nor any values computed from

them, are ever revealed to the server. The final parameter of the variogram, the range ρ, is

never explicitly given to the server. However, the server does learn the coordinates (scaled

by ρ) of the measurements. Hence, the range could be revealed if the server has existing

knowledge of the measurement locations. Of the three variogram parameters, we believe

that the range is the least sensitive: it reveals how quickly the variogram approaches the sill

(i.e. the distance at which the spatial correlation between measurements becomes negligible)

but does not reveal anything relating to the measurement values themselves.

Whilst the queried location is revealed in the plain to the server, we note that the mechanism

of Tugrul and Polat [TP13] may easily be used to gain a weak form of secrecy: during the

Query algorithm, the party carrying out the query may choose (q − 1) additional locations

from the region, and scale each by ρ. The query token then is made up of q scaled locations,

randomly permuted. The server must perform Interpolate for each location, and the client

discards all results except the one that it is interested in. Unlike [TP13], we do not require

an oblivious transfer protocol, since the querier is authorised to learn as many queries on the

dataset as it wishes. However, as in [TP13], the server may guess the location of interest with

probability 1/q (but cannot learn the prediction at this location). Data generating nodes

cannot learn Kriging predictions as they do not have the decryption key and H is assumed

to be IND-CPA secure.

6.6.1 Implementation

We have used the PHE library [PHE16] to implement our construction, and consider the

Paillier encryption scheme [Pai99]. We note that the plaintext space of the Paillier encryption

scheme is Zn for some n. In order to encode the values [zi] ∈ R into this plaintext space, we

can use the phe.encoding function in PHE. This function takes as input a number x ∈ R,

multiplies by a large constant, usually 10k for some value of k, and rounds the result to

recover dx10kc ∈ Z. The implementation is intended as a proof of concept to evaluate the

efficiency of the proposed solution. All code is executed locally on an Amazon EC2 instance
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with a 2.5GHz Intel Xeon processor and 1GB memory running Ubuntu 14.04.4. All timings

are averaged over 30 iterations, each on a new randomly generated dataset.
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Figure 6.5: Graphs showing the timing costs of each algorithm.

Figures 6.5 and 6.6 give some basic timing results for the implementation our construction.

Figure 6.5 shows the algorithm costs. Note that the cost of the Outsource algorithm dominates

all others, and this is due to the cost of n encryptions.

Therefore, for clarity, we also present Figure 6.6, which shows the same results with the

exclusion of the Outsource algorithm. It can be seen that, with the exception of the (high)

one-time cost of Outsource (which may be amortised over many queries), the remaining client-

side processes are very efficient. The server must perform quadratic work to perform Setup,

but this will be required only during initial setup and when the outsourced dataset is updated.

The online workload of the client is very low, whilst the server’s online workload is linear in

the size of the dataset. Further, we note that the server’s online workload greater than the

client’s workload, which makes outsourcing worthwhile.
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Figure 6.6: Graphs showing the timing costs of each algorithm, excluding Outsource.

We believe that these experiments demonstrate the performance and scalability of our solution.

We have considered the well-known Meuse dataset [BMML15], which contains 155 measurements,

and we believe this to be reasonable compared to what is used in practice.

6.7 Conclusion

The Kriging interpolation technique describes the best unbiased linear prediction of an observed

phenomenon in a geographical region, based on a set of measurements, and it is used in a

wide range of applications. In this chapter, we have presented a construction that allows

for Kriging interpolation to be securely outsourced to a cloud service provider, such that the

measurement values and sensitive variogram parameters are withheld from the server. This

solution allows the Kriging interpolation technique to be performed in a privacy-preserving

manner, under the assumption that the cloud service provider acts in an honest-but-curious
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manner. We have implemented this solution in the PHE library, making use of the Paillier

encryption scheme, and have provided some timing results for our implementation.
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Chapter 7

Conclusion and Future Work
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7.1 Conclusion

In this thesis we have considered a variety of topics within lattice-based cryptography and

homomorphic encryption. Our work has focused around three areas: security, standardisation,

and applications. We have studied the security of lattice-based cryptosystems in Chapters 3, 4,

and 5, standardisation efforts in Chapters 4 and 5, and applications in Chapter 6.

7.1.1 Security

Understanding the security of the Learning with Errors problem is of central importance

to the future of lattice-based cryptography. In this thesis, we have considered variants of

the uSVP, dual, decoding, hybrid-dual, and hybrid-decoding attacks which can be used to

determine the security of a given set of LWE parameters.
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Specifically, in Chapter 3 we introduced a guess-and-verify decoding attack (g-v decoding)

on small-secret LWE. This approach follows the approach of the hybrid-decoding attack, but

considers a more expensive, higher probability, BDD solver. This alters the landscape of

trade-offs and we show that, when the BKZ simulator is assumed, aswell as an enumeration

cost model for BKZ, our g-v decoding technique outperforms a (non-mitm) variant of the

hybrid-decoding attack.

In Chapters 4 and 5 we have considered the security of a variety of different LWE-based

parameter sets currently involved in standardisation processes. As part of this work, we have

also contributed to the LWE Estimator, to ensure that current state-of-the-art attacks are

switched on for binary secrets, and have also released custom code1.

7.1.2 Standardisation

Standardisation efforts for public-key encryption schemes, digital signature algorithms, and

homomorphic encryption schemes based on the Learning with Errors problem are well underway.

The NIST standardisation process, discussed in Chapter 4, aims to standardise a suite of

public-key encryption and digital signature algorithms designed for use in an era where

quantum computers exist. In this thesis, we have analysed the security of all of the first

round submissions against the uSVP and dual attacks (where appropriate). This resulted in

a large set of security estimates, which allows for any two schemes to be compared in a fair

manner. Moreover, our work highlighted that cost models for BKZ are not order preserving.

We also provided an update regarding the current state of the NIST standardisation process,

including some security estimates for the schemes in the third round.

The homomorphicencryption.org standardisation effort, discussed in Chapter 5, aims to

standardise LWE-based parameter sets to be used in homomorphic encryption schemes2. In

our work we have considered potential extensions to the latest variant of the Homomorphic

Encryption Security Standard. Specifically, we considered the feasibility and impact of

standardising LWE-based parameter sets with a sparse secret distribution. We present a

variety of parameter sets which balance security requirements with the cost of the expensive

1Available at https://github.com/bencrts/hybrid_attacks and https://github.com/estimate-all-

the-lwe-ntru-schemes/estimate-all-the-lwe-ntru-schemes.github.io.
2The consortium is also in the process of standardising an API for use in homomorphic encryption schemes.
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bootstrapping step.

7.1.3 Applications

Applications of homomorphic encryption schemes are plentiful and ever-increasing. In Chapter 6,

we have considered the outsourcing of an interpolation algorithm called Kriging to an honest-

but-curious cloud server. In our work, we showed how to “factor out” sensitive parameters in

order to allow the system of equations used to determine the weights to be solved by the server

in a secure manner. When used in combination with an additively homomorphic encryption

scheme, this allows for the weights to be applied to the encrypted measurement values, and

for the sum to be computed securely. Finally, the sensitive parameters are re-applied on the

client-side, to allow for the interpolation value to be determined.

7.2 Future Work

In this section we conclude this thesis with some comments on potential future work.

7.2.1 Security

Cryptanalysis of lattice-based cryptography is a fast-moving field. Further work is required

to accurately estimate the cost of the hybrid-decoding attack, and this includes verification of

the various heuristics considered in the hybrid-decoding attack. Future areas to explore also

includes considering the impact of quantum enumeration algorithms on the concrete running

time of the hybrid-decoding attack, and studying sieving-based BDD solvers in more detail.

Moreover, an accurate analysis of the meet-in-the-middle probability for the g-v decoding

approach would allow for a direct comparison with the hybrid-decoding attack. Further work

is also needed to fully understand the effects of using a sparse secret on the concrete security

of LWE.
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7.2.2 Standardisation

As the NIST standardisation process continues into the final rounds, it is important for the

literature to attempt to converge onto BKZ cost models for both the enumeration and sieving

cases. Once this has been achieved, estimating attack complexities becomes a more simple

process. Moreover, it is also important for the memory cost of cryptanalytic attacks to

be considered, as the majority of cryptanalytic arguments in the submissions to the NIST

standardisation process focus solely on the time cost of attacks. As an example, we have seen

that hybrid-decoding attacks, as outlined in Chapter 3, can outperform the dual and uSVP

attacks. However, these attacks require exponential memory.

In terms of homomorphic encryption standardisation, the methodology in the current variant

of the HE Standard relies on the LWE Estimator. However we note that the LWE Estimator

has a number of limitations, including outdated decoding estimates and lack of support for

hybrid attacks. Moreover, the attack landscape for sparse-secret LWE is fast moving, with

several new contributions emerging in recent years. Further work is needed to ensure that any

parameter sets standardised for homomorphic encryption schemes are analysed under hybrid

attacks.

7.2.3 Applications

Our proposed construction for the private outsourcing of Kriging interpolation may be extended

in several ways. For example, we could consider extending our protocol to protect the

locations of the query points. This can be achieved by increasing interactivity, communication

complexity, and client computation in the query process. However, this approach requires the

server to compute square roots and natural exponentials over encrypted data (in an efficient

manner) which remains an open problem.
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[LTV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-

fly multiparty computation on the cloud via multikey fully homomorphic

encryption. In Howard J. Karloff and Toniann Pitassi, editors, 44th Annual

ACM Symposium on Theory of Computing, pages 1219–1234, New York, NY,

USA, May 19–22, 2012. ACM Press.

[Mic18] Daniele Micciancio. On the hardness of lwe with binary error. Technical report,

UCSD, February 2018. http://cseweb.ucsd.edu/~daniele/papers/BinLWE.

pdf.

[Mic20] Microsoft Research. SEAL. https://github.com/Microsoft/SEAL, 2020.

Github repository, commit c9af10d.

[Moo17] Dustin Moody. The NIST post quantum cryptography “competition”.

Available at https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-

Cryptography/documents/asiacrypt-2017-moody-pqc.pdf, 2017.

[Moo19] Dustin Moody. NIST announcement of 2nd round candidates.

Available at https://groups.google.com/a/list.nist.gov/g/pqc-

forum/c/bBxcfFFUsxE, 2019.

[Moo20] Dustin Moody. NIST announcement of 3rd round candidates. Available

at https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/0ieuPB-

b8eg, 2020.

[MR09] Daniele Micciancio and Oded Regev. Lattice-based cryptography. In Daniel J.

Bernstein, Johannes Buchmann, and Erik Dahmen, editors, Post-Quantum

213

http://cseweb.ucsd.edu/~daniele/papers/BinLWE.pdf
http://cseweb.ucsd.edu/~daniele/papers/BinLWE.pdf
https://github.com/Microsoft/SEAL
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/asiacrypt-2017-moody-pqc.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/asiacrypt-2017-moody-pqc.pdf
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/bBxcfFFUsxE
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/bBxcfFFUsxE
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/0ieuPB-b8eg
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/0ieuPB-b8eg


BIBLIOGRAPHY

Cryptography, pages 147–191. Springer, Heidelberg, Berlin, Heidelberg, New

York, 2009.

[MS01] Alexander May and Joseph H. Silverman. Dimension reduction methods for

convolution modular lattices. In Cryptography and Lattices, International

Conference, CaLC 2001, Providence, RI, USA, March 29-30, 2001, Revised

Papers, pages 110–125, 2001.

[MW15] Daniele Micciancio and Michael Walter. Fast lattice point enumeration with

minimal overhead. In Piotr Indyk, editor, 26th Annual ACM-SIAM Symposium

on Discrete Algorithms, pages 276–294, San Diego, CA, USA, January 4–6, 2015.

ACM-SIAM.

[NAB+17] Michael Naehrig, Erdem Alkim, Joppe Bos, Léo Ducas, Karen Easterbrook,
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Antonio de la Piedra, Peter Schwabe, Douglas Stebila, Martin R. Albrecht,

Emmanuela Orsini, Valery Osheter, Kenneth G. Paterson, Guy Peer, and

Nigel P. Smart. NewHope. Technical report, National Institute of Standards

and Technology, 2019. available at https://csrc.nist.gov/projects/post-

quantum-cryptography/round-2-submissions.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity

classes. In International Conference on the Theory and Applications of

Cryptographic Techniques, pages 223–238. Springer, 1999.

[Pal20] PALISADE development team. PALISADE. https://gitlab.com/palisade/

palisade-release, 2020. GitLab repository, commit 7eec669e.

[Pei16] Chris Peikert. How (not) to instantiate ring-LWE. In Vassilis Zikas and Roberto

De Prisco, editors, SCN 16: 10th International Conference on Security in

Communication Networks, volume 9841 of Lecture Notes in Computer Science,

pages 411–430, Amalfi, Italy, August 31 – September 2, 2016. Springer,

Heidelberg, Germany.

[PFH+17] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim

Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William

Whyte, and Zhenfei Zhang. FALCON. Technical report, National Institute

215

https://drive.google.com/file/d/1g-l0bPa-tReBD0Frgnz9aZXpO06PunUa/view
https://drive.google.com/file/d/1g-l0bPa-tReBD0Frgnz9aZXpO06PunUa/view
https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/nZBIBvYmmUI
https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/nZBIBvYmmUI
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://gitlab.com/palisade/palisade-release
https://gitlab.com/palisade/palisade-release


BIBLIOGRAPHY

of Standards and Technology, 2017. available at https://csrc.nist.gov/

projects/post-quantum-cryptography/round-1-submissions.

[PFH+19] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim

Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William

Whyte, and Zhenfei Zhang. FALCON. Technical report, National Institute

of Standards and Technology, 2019. available at https://csrc.nist.gov/

projects/post-quantum-cryptography/round-2-submissions.

[PFH+20] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim

Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William

Whyte, and Zhenfei Zhang. FALCON. Technical report, National Institute

of Standards and Technology, 2020. available at https://csrc.nist.gov/

projects/post-quantum-cryptography/round-3-submissions.

[PHAM17] Le Trieu Phong, Takuya Hayashi, Yoshinori Aono, and Shiho Moriai.

LOTUS. Technical report, National Institute of Standards and Technology,

2017. available at https://csrc.nist.gov/projects/post-quantum-

cryptography/round-1-submissions.

[PHE16] python-paillier: a library for partially homomorphic encryption in

python, Data61|CSIRO. https://github.com/NICTA/python-paillier, 2016.

Accessed: 11/12/2016.

[Pla19] Rachel Player. Parameter selection in Lattice-based cryptography. PhD thesis,

Royal Holloway University of London, 2019.

[PS16] Chris Peikert and Sina Shiehian. Multi-key FHE from LWE, revisited. In Martin

Hirt and Adam D. Smith, editors, TCC 2016-B: 14th Theory of Cryptography

Conference, Part II, volume 9986 of Lecture Notes in Computer Science, pages

217–238, Beijing, China, October 31 – November 3, 2016. Springer, Heidelberg,

Germany.

[PYK20] Geostat framework. pykrige. https://github.com/GeoStat-Framework/

PyKrige, 2020.

[RAD78] R.L. Rivest, L. Adleman, and M.L. Dertouzos. On data banks and privacy

homomorphisms. In Foundations on Secure Computation, Academia Press,

pages 169–179, 1978.

216

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://github.com/NICTA/python-paillier
https://github.com/GeoStat-Framework/PyKrige
https://github.com/GeoStat-Framework/PyKrige


BIBLIOGRAPHY

[RDB94] Richard E. Rossi, Jennifer L. Dungan, and Louisa R. Beck. Kriging in the

shadows: Geostatistical interpolation for remote sensing. Remote Sensing of

Environment, 49(1):32 – 40, 1994.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and

cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th Annual

ACM Symposium on Theory of Computing, pages 84–93, Baltimore, MA, USA,

May 22–24, 2005. ACM Press.

[RSA78] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining

digital signatures and public-key cryptosystems. Communications of the ACM,

21(2):120–126, 1978.

[S+20] William Stein et al. Sage Mathematics Software Version 8.0. The Sage

Development Team, 2020. http://www.sagemath.org.

[Saa17] Markku-Juhani O. Saarinen. HILA5. Technical report, National Institute

of Standards and Technology, 2017. available at https://csrc.nist.gov/

projects/post-quantum-cryptography/round-1-submissions.

[SAB+17] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède
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