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Abstract—We study the problem of how an agent that negoti-
ates over multiple issues with an opponent can make offers given
that it has incomplete information about the user it represents
and the opponent it plays against. To tackle this problem, we
take a multi-objective optimization stance, where the negotiating
agent estimates the preferences of both user and opponent to
generate bids that are (near) Pareto-optimal. However, since the
negotiating agent needs to approximate the actual preferences of
two parties, uncertainty is involved. To handle this uncertainty,
we propose a fuzzy approach consisting of a two-phase Pareto-
bid generation step where Phase-I generates the non-dominated
solutions using a fuzzy multi-objective evolutionary algorithm,
and Phase II ranks them to find the best bid to offer the
opponent using a fuzzy multiple-criteria decision-making method.
Rigorous experimentation shows that the hybrid fuzzy approach
of generating the (near) Pareto-optimal bids reduces the average
distance to the Pareto curve and increases the average joint or
social welfare utility of the agents leading to “win-win” situations.

Index Terms—Fuzzy NSGA-II, Fuzzy TOPSIS, User preference
uncertainty, Fuzzy Multi-Objective Optimization problem

I. INTRODUCTION

Automated bilateral negotiation involves two autonomous
software agents, typically representing the interests of human
users, seeking to reach agreement by exchanging offers over
multiple issues [1]. This is not a trivial task due to (a) the
uncertainty of the opponent agent’s preferences (opponents
keep their preferences private to avoid exploitation), and (b)
the human user an agent represents (in applications with a
large space of possible offers, users do not always have the
means to specify complete examples on how the agent should
bid). In addition, humans often impose deadlines, so agents
need in limited time to create “win-win” outcomes, viz.,
generate bids that optimize their own utility and are more
likely to be accepted by the opponent.

Generating bids that approximate “win-win” situations cor-
responds to a Multi-Objective Optimization (MOO) problem.
In particular, one seeks to derive Pareto-optimal solutions, i.e.,
such that none of the agents can be made better off without
making at least one agent worse off. Although previous work
has explored Pareto-optimality in multi-issue negotiations [4],
[7], [9], [11], there is little account of how to handle user and
opponent uncertainty in the MOO problem.

When building a negotiation agent, we normally consider
three phases: pre-negotiation phase (i.e. estimation of agent
owner’s preferences, preference elicitation), negotiation phase
(i.e. offer generation, opponent modeling) and post-negotiation
phase (i.e. assessing the optimality of offers) [3]. In this
paper, we are interested in the uncertainty that arises in the
first two phases. In the first phase, the uncertainty is due
to the estimation of the user’s preferences/utility function,
while in the second phase, the uncertainty arises due to
the estimation of opponent preferences/utility function. These
uncertainties present a critical and sensitive obstacle because it
may influence the bid search process and consequently hamper
the identification of efficient solutions.

In this work we propose, to the best of our knowledge,
the first bilateral negotiation model that combines MOO and
uncertainty modelling with fuzzy techniques. Our approach
consists of a two-phase Pareto-bid generation step during the
bidding phase of multi-issue bilateral negotiation. In the first
phase, a fuzzy population-based multi-objective evolutionary
algorithm called fuzzy Non-dominated Sorted Genetic Algo-
rithm - II (NSGA-II) [2] is used to create the non-dominated
solutions. Then in the second phase, a fuzzy multiple criteria
decision making method called Fuzzy Technique for Order of
Preference by Similarity to Ideal Solution (TOPSIS) [22] is
used to rank the Pareto-optimal bid solutions and select one
best bid to offer to the opponent agent.

Our work is inspired by a recently proposed negotiation
model called ANESIA [4], which relies on the meta-heuristic
optimization for estimating the user preferences in the pre-
negotiation phase, and the combination of NSGA-II and TOP-
SIS to generate Pareto-optimal bids in the negotiation phase.
However, ANESIA does not account for how uncertainty
propagates from the first to the second phase before generating
(near) Pareto-optimal bids. In this sense, our negotiation model
can be seen as a fuzzy extension of ANESIA. To evaluate our
approach with the state-of-the-art, we conducted simulation
experiments in different negotiation domains and against the
negotiating agents presented at the ANAC’19 competition1

where all the agents, dealing with their owner’s preference
uncertainties, span a wide range of strategies and techniques.

1http://ii.tudelft.nl/nego/node/7

978-1-6654-4407-1/21/$31.00 © 2021 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/457691631?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ii.tudelft.nl/nego/node/7


The rest of the paper is organized as follows: Section
2 reviews the various related works in multi-issue bilateral
negotiation domain for generating the Pareto-optimal bids.
Section 3 describes the negotiation setting with fuzzy MOO
problem. Section 4 describes our 2-phase process of generating
the (near) Pareto-optimal bids under incomplete preference
information. In section 5, we empirically evaluate the proposed
method in a range of negotiation settings and scenarios. Fi-
nally, section 6 outlines the conclusions and future directions.

II. RELATED WORK

The idea of generating a Pareto-optimal offer with perfect
information was originally proposed by Raiffa in [5]. Jaza-
yeriy et al. in [7] presented the Maximum Greedy Trade-
offs algorithm to generate Pareto-optimal offers with perfect
information. This was further extended in [8] to generate
near Pareto-optimal offers with incomplete information of
opponent’s preferences, but complete preference information
of the user. Sanchez-Anguix et. al. in [6] and [9] proposed
a bottom-up approach to achieve a Pareto-optimal solution
in a group decision making setting. By assuming incomplete
preferences of the opponent only, they also provided proof that
a Pareto-optimal solution in a subgroup is also Pareto-optimal
in the super-group containing the sub-group.

Ehtamo et. al. in [16] considered a non-biased mediator
to reach the Pareto-optimal solutions requiring that bilateral
negotiation agents know their utility function and introduced
a constraint proposal method, extended later to multi-party
negotiations in [17]. Hara and Ito in [18] used a mediator-
based negotiation approach in which a Genetic Algorithm
was used over interdependent multiple issues. Instead, in our
evolutionary approach we do not rely on mediation and we
assume independent issues.

In [10], the prioritized fuzzy constraints were incorporated
by Luo et. al. into a buyer-seller negotiation setting, and
the negotiation problem was considered as a fuzzy constraint
satisfaction problem. However, we deal with the fuzziness
in the objective/utility functions of negotiators. The recent
work of Montazeri et.al. in [11] generated Pareto solutions
with the help of deep reinforcement learning for e-commerce
considering only opponent’s preference information. Also,
a mediator was used to exclude the unreasonable (or less
beneficial for buyer) offers from the feasible set of negotiation
offers by the negotiation strategy. To this end, it is clear that
the simultaneous consideration of uncertainties in both the user
and opponent’s preferences to generate (near) Pareto-optimal
bid generation is still an area which needs attention.

Evolutionary approaches have been shown to be a powerful
technique for MOO since they offer both flexibility in goal
specification and good performance in multi-modal, non-
linear search spaces [12]. The Genetic Algorithm (NSGA-
II) [13] has been used previously to find multiple Pareto-
optimal solutions in automated Web service negotiation for
QoS components [14]. The hybridization of NSGA-II and
TOPSIS has also been seen in the recent research of Bagga et.
al. [4] in the multi-issue negotiation domain for generating the

(near) Pareto optimal bids assuming incomplete information
in the both negotiating parties. However, in this paper, we use
extended-NSGA-II [2] proposed by Bahri et. al. to deal with
fuzzy MOO problems to reflect the uncertainties in estimated
user and opponent models which was missing in [4] and
also hybridize it with fuzzy TOPSIS [15] to choose one best
among a set of ranked near Pareto-optimal outcomes during
negotiation. We have seen this amalgamation of extended-
NSGA-II and fuzzy-TOPSIS only in a supplier selection and
multi-product allocation order problem [25], so to the best of
our knowledge, we are the first to explore this combination in
multi-issue bilateral negotiation.

III. FUZZY MULTI-OBJECTIVE OPTIMIZATION (MOO)
FOR NEGOTIATION

In this section, we discuss our negotiation settings and
provide background on fuzzy MOO to formulate the nego-
tiation problem as a fuzzy MOO problem. We assume that
our negotiation environment consists of two self-interested
agents negotiating with each other over some domain D. A
domain D consists of m different issues, D = (I1, I2, . . . Im),
where each issue can take a finite set of k possible values:
Ii = (vi1, . . . v

i
k). An agent’s bid ω is a mapping from each

issue to a chosen value (denoted by ci for the i-th issue), i.e.
ω = (v1c1 , . . . v

m
cm). The set of all possible bids or outcomes

is called an outcome space and is denoted by Ω s.t. ω ∈ Ω.
Before the agents can begin the negotiation and exchange bids,
they must agree on a negotiation protocol, which determines
the valid moves agents can take at any state of the negotia-
tion [19]. Here, we consider the alternating offers protocol
[20], with possible Actions = {offer(ω), accept , reject}.
Furthermore, we assume that each negotiating agent has its
own private preference profile which describes how bids are
offered over the other bids. This profile is given in terms of a
utility function U defined as follows:

U(ω) = U(v1c1 , . . . v
m
cm) =

m∑
i=1

wi ·ei(vici), where
m∑
i=1

wi = 1

(1)
where, wi are the normalized weights indicating the impor-
tance of each issue to the user and ei(v

i
ci) is an evaluation

function that maps the vici value of the ith issue to a utility.
Note that in (1), each issue is evaluated separately contributing
linearly without depending on the value of other issues and
hence U is referred to as the Linear Additive Utility space.

In our settings, we assume that U is unknown and our agent
is given incomplete information in terms of partial preferences
i.e. a randomly generated partial ordered � ranking over bids
(w.r.t. U ) s.t. ω1 � ω2 → U(ω1) ≤ U(ω2). Hence, during
the negotiation, one of the objectives of our agent is to derive
an estimate Û of the real utility function U from the given
partial preferences. Our other objective is to generate the (near)
Pareto-optimal solutions during the negotiation which can be
defined as an MOO problem as follows:

max F (x) = (f1(x), f2(x)) s.t x ∈ S (2)



In (2), F (x) is the vector of n = 2 objective functions to be
maximized (one objective is user’s estimated utility function
(Ûu) and another is opponent’s estimated utility function (Ûo))
and x = (x1, . . . , xm) is the vector of decision variables (i.e.
a vector of all the m issues in a domain D) from the set of
feasible solutions S associated with equality and inequality
constraints. In a combinatorial MOP, the feasible region S
becomes a discrete set of solutions, i.e. S is an outcome
space Ω, which is equal to total possible bids. Besides, F (x)
maps the decision variables x from the decision space to
the objective space by assigning a cost function y ∈ Y that
evaluates the quality or fitness of each solution as follows:

F : X → Y ∈ Rn, F (x) = y =

y1...
yn

 (3)

where Y = F (S) represents the feasible points or solutions in
the objective space, and yi = fi(x) is a point of this space that
represents the solution/bid quality or fitness. A solution x∗ ∈
X is considered to be an optimal (or a non-dominated) solution
if ∀x ∈ X,F (x) does not dominate F (x∗), that is, F (x) ⊀
F (x∗)2. Since we consider uncertainties in the objectives, the
MOP with uncertain objectives can be defined as follows [2]:

max F (x, ξ) = max[f1(x, ξ), f2(x, ξ)] s.t. x ∈ X, ξ ∈ Usc
(4)

In (4), F is the set of objective functions that may depend
on uncertainty scenarios Usc, x is a decision variable vector
from its admissible region X ⊆ Rn and ξ = (ξ1, ξ2, . . . ξq)
is a vector of independent uncertain variables [2]. Each
fi(x, ξ) is an uncertain quantity induced by ξ. Also, the
cost of evaluating F (x, ξ) is represented by intervals such
as a Triangular Fuzzy number (TFN). Formally, a TFN is
represented with a triplet of values A = [a, â, a], where [a, a]
is the interval of possible values called its support and â
denotes its modal or kernel value (the most plausible). TFN
can also be deduced from transformations of other different
shapes by linguistic modifiers, compositions, projections and
other operations [2]. The triangular fuzzy-MOO problem of
generating (near) Pareto bids in bilateral negotiation domain
(i.e. two objectives: f1 = Ûu, f2 = Ûo) can be defined as:

max F (xτ ) = (f1(xτ ), f2(xτ )) s.t. x ∈ X, τ ∈ R (5)

In (5), F (xτ ) can be defined as a fuzzy cost function that rep-
resents the fitness of solutions/bids by assigning a triangular-
valued objective vector Yτ :

F : X → Y ⊆ (R× R× R)n,

F (xτ ) = Y τ =

(
y1 = [y1, ŷ1, y1]
y2 = [y2, ŷ2, y2]

)
(6)

2An objective vector y = (y1, . . . , yn) Pareto-dominates another objective
vector y′ = (y′1, . . . , y

′
n) (denoted by y ≺ y′) iff no component of y′ is

greater than the corresponding component of y and at least one component
of y is strictly greater. For more details on Pareto-optimality, see [2].

IV. SOLUTION METHODS

In this section, we present the proposed two-phase solution
and provide the background on the fuzzy methodologies used
in this work. Our proposed work consider the state-of-the-art
deep reinforcement learning based multi-issue bilateral nego-
tiation architecture called ANESIA [4], which assumes incom-
plete information of the preferences of the user and opponent
agents. In this model, the user modeling (i.e. estimation of user
utility function) is done before the negotiation begins with the
help of Cuckoo Search Optimization (CSO) [21], whereas
opponent modeling is done with the help of distribution-based
frequency model [24] during the negotiation. However, this
work hasn’t addressed the uncertainty aspect while generating
the (near) Pareto-optimal bids in the bidding strategy while
using the combination of NSGA-II and TOPSIS, which is
not realistic. Therefore, we extend the ANESIA model by
addressing the fuzzy MOO problem of generating Pareto-
optimal bids in which uncertainty is expressed by means
of triangular fuzzy numbers. This new approach (called f-
ANESIA) is a two-phase process as shown in Figure 1.

A. Phase I
We address the effects of uncertainty propagation in the

multi-objective setting where uncertainty is assumed to occur
in the objective functions i.e. user and opponent utility func-
tions, because of lack of information. We use an extended-
NSGA-II [2], which replaces the classic Pareto dominance
with the fuzzy Pareto dominance. Let Y and Y ′ be two
triangular fuzzy solutions. Y strong dominates Y ′, if either yi
total dominates or partial dominates yi’ in one objective and
weak3 dominates it in another [2]. This modification allows
to ensure the fitness assignment ranking in a fuzzy setting.
Afterwards, a crowding-comparison procedure is applied based
on a Crowding Distance (CD) that discriminates the solutions
having the same rank level. Formally, the CD of a solution is
the sum of its individual objectives’ distances, that in turn are
the differences between the solution and its closest neighbours
as shown below.

CD(i) =
∑
i=1...n

(fi(i+1)−fi(i−1))/(fmaxi −fmini ) s.t. i ∈ F

(7)
where n is the number of objectives, fi(i + 1) and fi(i − 1)
are the neighbor objective values of the i-th objective, fmaxi

and fmini are the maximum and minimum objective values
respectively in the population, and F is the i-th front to which
solutions are associated. Since our objective functions are TFN
vectors, the distance measure must be adapted to fuzziness.
Thus, these objectives are approximated by computing their
expected values before applying CD. The expected value E
of a given TFN yi = [yi, ŷ, yi] is calculated as follows:

E(yi) = (yi + 2× ŷi + yi)/4 (8)

To reflect the uncertainty in fuzzy objective values caused
by the possibility of multiple utility functions as solutions,

3yi partially weak dominates y′i iff there is fuzzy overlapping or fuzzy
inclusion.



Fig. 1. Two-phase process of generating a Pareto-optimal solution during bid
generation phase

we collected K = 100 best user models derived by CSO.
Since, the fitness value for each objective function is a TFN,
â is the average utility of the K models for that bid, and the
upper and lower bounds are 5-th and 95-th percentile of the
k utility models respectively. Given this distribution of utility
values, we derive the principles triangular sets as triangular
approximation of the empirical normal approximation of the
distribution. That is, let σ̂ and µ̂ be the observed standard
deviation and mean respectively, then the fuzzy-set could be:
[l,m, u] where m = µ̂, l = µ̂ − kσ̂ and u = µ̂ + kσ̂
for some k = 1, 2, 3 (we choose k = 2). The membership
U of each element is given by the corresponding Gaussian
probability density function value, i.e., U(m) = 1/(σ̂

√
2π),

U(l) = U(u) = e−k
2/2/(σ̂

√
2π). For the fuzzy opponent

objective function, â is the current opponent model at any time
t, the upper and lower bounds are opponent models obtained
at time t ∈ [0.4, 0.6] and t ≤ 0.2 respectively. The fuzzy
NSGA-II generates a Pareto-frontier which has numerous (P )
preferable optimal solutions (P ∈ Ω). Hence, decision making
approaches are essential to pick an individual solution from
the Pareto Frontier.
B. Phase-II

We employ a fuzzy Multi-Criteria Decision-Making
(MCDM) method called fuzzy TOPSIS [22] to pick the
best optimal solution from Pareto Frontier. In our model,
we have only two criteria (m = 2) or objectives: maxi-
mizing user utility and maximizing opponent utility (since
our focus is more on “win-win” situations), based on which
Ω solutions/bids/alternatives will be ordered. Our agent im-
plements fuzzy TOPSIS with the help of vertex method to
calculate the distance between two triangular fuzzy numbers
y = (y1, . . . , ym) and y′ = (y′1, . . . , y

′
m) as follows:√

1/3[(y1 − y′1)2 + . . .+ (ym − y′m)2] (9)

The procedure of fuzzy TOPSIS is defined as follows:
• A fuzzy decision matrix M = n × m consisting of n

alternatives and m criteria is created. Here, n = |P |,
m = 2, and m1 = Û(ωi) and m2 = Û(ωoi ).

• Then, we normalize the fuzzy decision matrix M using
(10), where i = 1, 2, . . . , n, j = 1, 2, . . . ,m and xij is a
value assigned to the ith solution w.r.t jth criteria.

r̃ij =

(
y1

c∗j
,
ŷ1
c∗j
,
y1
c∗j

)
, and

c∗j = maxi{cij}
(10)

• Subsequently, we create a weighted normalized decision
matrix W where xij is replaced with vij and vij = wj ·rij .
In our experiments, we use the same weights which were
learned in the existing ANESIA model. These weights
scale with negotiation time t. So, w1 = a · t+ b and w2

= 1− (a · t+ b). Here, a = −0.75 and b = 0.6.
• Once the weighted normalized matrix is ready, the dis-

tance of each alternative from fuzzy ideal positive and
negative solutions is computed.

• Finally, the ranks are ordered from high to low as per the
relative closeness of each alternative to the ideal ones.

A bid solution/bid/alternative with top rank is chosen by our
agent to propose to the opponent agent during this time period.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

All the experiments have been performed using the popular
GENIUS negotiation platform [26]. These experiments are
designed to prove the following hypotheses:
• Hypothesis A: Fuzzy hybridized versions of existing

negotiation strategies outperform their non-fuzzy variants
in terms of Uind, Distp and Usoc.

• Hypothesis B: f-ANESIA outperforms the existing ANE-
SIA agent and other winning agents from ANAC’19
competition in terms of Uind, Distp and Usoc.

A. Performance Metrics

We consider the same (widely adopted) metrics [23] inspired
by the GENIUS simulation platform:
• Ravg: Average number of rounds over all successful

negotiations (Ideal value: Low(1))
• Distp: Average distance to the Pareto Curve4 (nearest bid

on the frontier) (Ideal value: Low (0))
• Uind: Average utility gained by an agent on successful

negotiations (Ideal value: High (1.0)
• Usoc: Average utility gained by both negotiating agents

on successful negotiations (Ideal value: High(2.0)
• S%: Proportion of successful negotiations (Ideal value:

High (100%))
• tneg: Average time on successful negotiations (Ideal

value: low (1ms))

B. Experimental settings

We assume that prior to designing an agent’s negotiation
strategy: (a) each agent has no knowledge of the preferences
and negotiating characteristics of its opponent; (b) the negoti-
ation time is limited and there is a specific deadline (known to
both negotiating parties in advance) for its termination (here, it
is 60s normalised in [0, 1]), therefore the agents must consider
the risk of rejecting their offer from the opponent with regard
to the limited time; (c) the utility of offers might decrease
over time (in negotiation scenarios with discount factor; we
use the default value in GENIUS) [4]), thus, timely decision
on rejecting or accepting an offer and making acceptable

4Pareto frontier is obtained assuming complete preference information of
both the negotiating parties.



offers are of high importance for negotiators. We evaluate
our approach on the same benchmark domains used in [4],
i.e. Laptop (|Ω| = 27), Holiday (|Ω| = 1024) and Party
(|Ω| = 3072). For each configuration, each agent gets the
chance to play both sides of the negotiation (e.g. buyer and
seller in Laptop domain). We call user profile the specific
agent’s role along with its associated preferences.

C. Empirical Evaluation

1) Hypothesis A: Fuzzy hybridized versions outperform
their Non-fuzzy variants: We performed the analysis of fuzzy
hybrid approach of generating (near) Pareto-optimal bids by
combining it with different negotiation strategies dealing with
user’s and opponent’s preference uncertainties. We used 12
combinations of negotiations strategies involving 2 population-
based user modeling approaches (Cuckoo Search CS and
Genetic Algorithm GA), whereas 3 opponent-modeling ap-
proaches5 (Bayesian model, Smith Frequency Model and a
Simple/Uniform model) with and without the component of
Fuzzy Hybrid approaches for the total of 6600 simulations,
each in 2 different domains (Party and Holiday) with 3
different user profiles (B = 0.2×|Ω|, 0.4×|Ω|, 0.6×|Ω|). Table
I shows that the the negotiation strategies involving fuzzy
component (starting with ′f ′−) outperforms their non-fuzzy
variants, mainly in terms of Uind, Distp and Usoc leading to
“win-win” situations.

2) Hypothesis B: Performance of f-ANESIA outperforms
ANESIA and other agents: We also tested f-ANESIA in a GE-
NIUS tournament setting against opponents (winning agents)
from the ANAC’19 competition6, for a total of 1200 sessions
in 3 different domains, where each agent negotiates with every
other agent. Table II compares their performance in terms of
Uind, Ravg , S%, and tneg . Figure 2 shows the increase in
Usoc of ANESIA agent with fuzzy Pareto approach, whereas
Figure 3 decrease in Distpareto w.r.t original ANESIA agent.
Results demonstrate that our proposed hybrid approach of gen-
erating (near) Pareto optimal bids has significantly impacted
the performance of ANESIA agent. In this experiment, we
chose two different user profiles and two different preference
uncertainties (B ∈ 10, 20), same as in [4]. The low successful
negotiation rate in Table I with high Uind and high Usoc (in
Figure 2) indicates the non-greedy behaviour of f-ANESIA
agent, which is often seen in the agents belonging to the same
institution, when they want to achieve the maximum mutual
benefit instead of reaching an agreement which can be less
beneficial to one of them.

VI. CONCLUSIONS

We have presented an experimental analysis of a fuzzy-
NSGA-II and fuzzy-TOPSIS for the generation of (near)
Pareto-optimal bids under user and opponent preference uncer-
tainties. To the best of our knowledge, this combination is the
first attempt for solving multi-objective problem of finding the

5Available in GENIUS
6SAGA (Genetic algorithm), KakeSoba (Tabu Search), and AgentGG (Sta-

tistical frequency modeling)

Fig. 2. Average Social Welfare Utility (↑): ANESIA Vs f-ANESIA in 3
different domains with 2 user profiles B =10, 20

Fig. 3. Average Distance to Pareto Curve (↓): ANESIA Vs f-ANESIA in 3
different domains with 2 user profiles B =10, 20

Pareto-optimal outcomes in multi-issue bilateral negotiations.
Extensive experiments show that the proposed hybrid approach
outperforms the other agents in the analysis as well as the
original non-fuzzy Pareto approach. As future work, we plan
to perform experiments with concurrent bilateral negotiations
over multiple issues under user preference uncertainty.
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TABLE I
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Distp(↓) (0.16, 0.16, 0.10) (0.18, 0.16, 0.12) (0.14, 0.14, 0.10) (0.14, 0.14, 0.10) (0.15, 0.13, 0.08) (0.16,0.16,0.11)
Usoc(↑) (1.59, 1.59, 1.67) (1.58, 1.60, 1.64) (1.54, 1.58, 1.64) (1.61, 1.62, 1.68) (1.60, 1.62, 1.70) (1.59, 1.60, 1.66)
Uind (↑) (0.78, 0.81,0.84) (0.76, 0.78, 0.87) (0.76, 0.79, 0.87) (0.83, 0.82, 0.86) (0.80, 0.81, 0.85) (0.78, 0.80, 0.85)
Metric GA-Smith GA-Uniform GA-Bayesian CS-Smith CS-Uniform CS-Bayesian
Ravg(↓) (489.46, 327.08, 378.22) (436.53, 344.19, 285.96) (771.89, 609.39, 400.27) (610.97, 530.02, 285.61) (692.11, 888.04, 521.09) (946.87,834.125,673.05)
Distp(↓) (0.18, 0.17, 0.12) (0.17,0.17,0.11) (0.18, 0.17, 0.14) (0.16, 0.16,0.13) (0.15, 0.14, 0.11) (0.16, 0.15, 0.12)
Usoc(↑) (1.56, 1.58, 1.65) (1.56, 1.57, 1.66)) (1.56, 1.58, 1.63) (1.59, 1.60, 1.63) (1.60, 1.61, 1.66) (1.59, 1.60, 1.64)
Uind (↑) (0.77, 0.78, 0.86) (0.78, 0.78, 0.81) (0.68, 0.79, 0.80) (0.80, 0.81, 0.82) (0.80, 0.81, 0.85) (0.81, 0.81, 0.84)

Party domain (B = 0.2Ω, B = 0.4Ω, B = 0.6Ω)
Metric f-GA-Smith f-GA-Uniform f-GA-Bayesian f-CS-Smith f-CS-Uniform f-CS-Bayesian
Ravg(↓) (2.65, 2.71, 61.11) (926.38,2090.4,1887.62) (1463.56,1709.94,1887.42) (2.86, 2.71, 2.50) (2.72, 2.64, 3.0) (2408.59,1743.44,4999.87)
Distp(↓) (0.12, 0.13, 0.07) (0.12, 0.11, 0.14) (0.17, 0.16, 0.14) (0.11, 0.14, 0.08) (0.14, 0.08, 0.06) (0.16, 0.11, 0.08)
Usoc(↑) (1.45, 1.46, 1.51) (1.44, 1.34, 1.39) (1.36, 1.37, 1.5) (1.43, 1.45, 1.55) (1.43, 1.52, 1.59) (1.39, 1.39, 1.42)
Uind (↑) (0.67, 0.72, 0.78) (0.74, 0.66, 0.69) (0.65, 0.66, 0.69) (0.74, 0.79, 0.81) (0.77, 0.80, 0.94) (0.67, 0.71, 0.85)
Metric GA-Smith GA-Uniform GA-Bayesian CS-Smith CS-Uniform CS-Bayesian
Ravg(↓) (687.0, 782.48,839.76) (791.81,798.13,1107.12) (1670.60,1538.79,1766.26) (955.28,1308.46,2827.50) (798.61,1069.97,2062.0) (1833.04,1626.81,1809.86)
Distp(↓) (0.13,0.13, 0.10) (0.14, 0.12, 0.12) (0.18,0.17,0.14) (0.14, 0.13,0.15) (0.13, 0.13, 0.11 ) (0.17,0.16,0.18)
Usoc(↑) (1.45, 1.45, 1.44)) (1.42, 1.33, 1.33)) (1.33, 1.30, 1.32) (1.43, 1.43,1.45) (1.42, 1.42, 1.49) (1.35, 1.4, 1.5)
Uind (↑) (0.61, 0.70, 0.75) (0.70, 0.69, 0.66) (0.61,0.63,0.63) (0.75, 0.73, 0.70) (0.75, 0.74, 0.70) (0.50,0.69,0.75)

TABLE II
PERFORMANCE COMPARISON OF F-ANESIA (WITH STRATEGY TEMPLATE) VS WINNING AGENTS FROM ANAC’19 (BEST RESULTS ARE IN BOLD)

Metric f-ANESIA AgentGG KakeSoba SAGA
Laptop domain (B = 10, B = 20)

Uind (↑) (0.98 ± 0.0044, 0.99 ± 0.0124) (0.90 ± 0.0072, 0.88 ± 0.0128) (0.88 ± 0.0096, 0.93 ± 0.0008) (0.83 ± 0.0078, 0.79 ± 0.0039)
Ravg(↓) (66.46 ± 20.33, 64.85 ± 23.00) (2575.71 ± 5086.512, 5089.774 ± 8463.00) (2081.211 ± 2965.04, 4991.53 ± 3578.63) (263.99 ± 261.81, 885.83 ± 759.40)
S%(↑) (42.12 , 52.5 ) (70.5 , 58.17) (79.67 ,61.33) (77.83 , 74.83)
tneg(↓) (9.56 ± 285.03, 13.91 ± 305.19) (21.81 ± 640.67, 40.67 ± 1730.37) (15.17 ± 537.03, 39.16 ± 870.27) (12.51 ± 308.611, 17.91 ± 1363.95)

Holiday domain (B = 10, B = 20)
Uind (↑) (0.92 ± 0.007, 0.93 ± 0.055) (0.87 ± 0.0036, 0.89 ± 0.021) (0.85 ± 0.0136, 0.85 ± 0.044) (0.76 ± 0.0291, 0.74 ± 0.0087)
Ravg(↓) (158.73 ± 660.71 , 135.22 ± 732.85) (848.37 ± 313.98, 441.29 ± 546.79) (677.70 ± 540.84, 319.63 ± 724.39) (510.91 ± 3035.42, 466.94 ± 284.32)
S%(↑) (66.83, 62.17) (68.67, 77.17) (74.00, 82.00) (74.83, 73.00)
tneg(↓) (26.26 ± 977.39, 23.69 ± 361.14) (28.90± 416.10, 20.00 ± 797.25) (26.67± 323.47, 15.52 ± 786.34) (20.25 ± 1026.51, 20.01 ± 559.35)

Party domain (B = 10, B = 20)
Uind (↑) (0.92 ± 0.025, 0.90 ± 0.025) (0.76 ± 0.044, 0.75 ± 0.039) (0.77 ± 0.11, 0.89 ± 0.0039) (0.55 ± 0.042, 0.54 ± 0.0471)
Ravg(↓) (100.00 ± 673.16, 123.06 ± 523.17) (644.32 ± 933.16, 735.55 ± 886.89) (669.011 ± 932.39, 781.80 ± 562.44) (428.18 ± 972.89, 395.22 ± 835.17)
S%(↑) (24.83, 25.00) (60.33, 61.83) (60.33, 59.83) (70.17, 71.83)
tneg(↓) (22.157 ± 714.09, 26.26 ± 308.17) (37.25 ± 776.29, 39.69 ± 775.12 ) (41.15 ± 695.85, 43.89 ± 800.258) (25.27 ± 812.02, 22.48 ± 817.24)
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World congress on nature & biologically inspired computing (NaBIC)
(pp. 210-214). Ieee, 2009.

[22] C. T. Chen, “Extensions of the TOPSIS for group decision-making under
fuzzy environment”, Fuzzy sets and systems, 114(1), 1-9, 2000.

[23] T. Baarslag, M J Hendrikx, K. V. Hindriks, and C. M. Jonker. “Learning
about the opponent in automated bilateral negotiation: a comprehensive
survey of opponent modeling techniques”, Autonomous Agents and
Multi-Agent Systems, 30(5), 849-898, 2016.
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