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Abstract 14 

 15 

This study uses organic-rich sediments from the Tarfaya Basin, Morocco, to assess the 16 

Cd- and Zn-isotope response to dramatic global palaeoenvironmental change during the 17 

Cenomanian–Turonian interval (Late Cretaceous). These organic-rich continental-18 

margin deposits include an expression of Oceanic Anoxic Event 2 (OAE 2, ~94 Ma), an 19 

interval associated with the spread of low-oxygen marine environments and widespread 20 

burial of organic-rich sediments. Due to placement of the Tarfaya Basin in a region of 21 

upwelling and relatively constant local environmental conditions, the stratigraphic 22 

variations in δ114C      δ66Zn values largely reflect changes in the seawater isotopic 23 

composition of the sub-surface proto-North Atlantic Ocean. Positive shifts of ~0.2–0.3 ‰ 24 

away from background values    δ114C      δ66Zn are observed during the main phase 25 
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of the positive carbon-isotope excursion associated with OAE 2. These isotopic shifts 26 

are coeval with decreases in Cd/TOC and Zn/TOC ratios and thus imply that drawdown 27 

of isotopically light Cd and Zn from seawater inventories was a result of extensive burial 28 

of these metals in organic-                         b    . L w δ66Zn values during the 29 

Plenus Cold Event, a cooler episode during OAE 2, are similar in timing and magnitude 30 

to variations found in the English Chalk (Eastbourne, UK) and support the inference of a 31 

global control on these isotopic excursions. The δ66Zn values during the Plenus Cold 32 

Event are taken to record global oxygenation, possibly including the remobilization of 33 

isotopically light Zn from continental-margin sediments. A considerably smaller change 34 

in δ114Cd values for this interval implies that the Cd- and Zn-isotope systems can provide 35 

information about slightly different environmental processes, with global seawater 36 

composition with respect to Zn also being influenced by the magnitude of oxic removal 37 

sinks and isotopically light Zn input fluxes from sediments and hydrothermal fluids. 38 

39 
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1. Introduction 40 

 41 

Continental margins are important repositories for organic carbon in the modern ocean 42 

and are hotspots of ocean deoxygenation (e.g. Muller-Karger et al., 2005). These 43 

features are particularly pronounced in low-latitude sites of upwelling where Oxygen 44 

Minimum Zones (OMZs) develop with high rates of organic-carbon burial occurring in 45 

response to enhanced primary productivity. The immobilization of many redox-46 

dependent, bio-active trace metals such as Cd, Zn and Mo at these depositional settings 47 

can have significant impact on the global cycles of these metals (e.g. Brumsack, 2006; 48 

Scholz, 2018). Organic-rich continental-margin sediments also represent a possibly 49 

important archive for the reconstruction of global metal budgets associated with past 50 

global environmental change. Here, Cd- and Zn-isotope analyses of organic-rich 51 

continental-margin sediments are used to evaluate the impact of global environmental 52 

change on the mass balance of these elements in Late Cretaceous time. 53 

 54 

1.1. Oceanic Anoxic Event 2 55 

The widespread deposition of organic-rich sediments during a number of intervals in the 56 

Mesozoic Era has been associated with global warming, the spread of low-oxygen 57 

marine environments, and other perturbations to ocean chemistry (e.g. Jenkyns, 2010; 58 

Dickson, 2017  O’B          .  2017). One of the most severe and best-studied examples 59 

of these events is the Cenomanian–Turonian (Late Cretaceous, ~94 Ma) Oceanic 60 

Anoxic Event 2 (OAE 2) (Schlanger and Jenkyns, 1976; Arthur et al., 1990). To drive 61 

and sustain the high export productivity rates needed to reproduce the oceanic redox 62 

change associated with this event, geochemical models require a high availability of 63 

nutrients in the surface ocean for timescales on the order of 105 years (Monteiro et al., 64 
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2012). The availability of the major nutrients phosphorus and nitrogen can be explained 65 

by their behaviour under anoxic conditions. Phosphorus can be regenerated from anoxic 66 

sediments, while the increased fixation of atmospherically derived N2 by cyanobacteria 67 

acts to increase bio-available nitrogen (e.g. Kuypers et al., 2004; Mort et al., 2007; Kraal 68 

et al., 2010; Monteiro et al., 2012). The overarching positive carbon-isotope excursion 69 

that reflects globally enhanced marine organic-matter burial is conventionally taken to 70 

define OAE 2 and can be used as a correlative tool (e.g. Schlanger & Jenkyns, 1976; 71 

Arthur et al., 1990; Tsikos et al., 2004). Subdivisions of the carbon-isotope excursion 72 

include the Plenus Cold Event interval (section 1.1.1) and the so-called plateau phase 73 

that features high an        v       b   δ13C values reflecting peak-organic carbon burial 74 

conditions globally (Figure 2). 75 

Cd and Zn are bio-active trace elements, with at least the latter involved in a 76 

number of critical enzymes required for marine life, and both show strong nutrient-like 77 

behaviour in the modern ocean (e.g. Bruland, 1980; Morel et al., 1994).  Both these 78 

elements have a strong affinity for sulfides and are therefore removed from the ocean 79 

when reducing conditions increase the formation of such compounds (e.g. Little et al., 80 

2015).  Previous studies have suggested that there were decreases in redox-sensitive or 81 

chalcophilic trace-element concentrations in seawater during OAE 2 in response to the 82 

spread of reducing environments (van Bentum et al., 2009; Hetzel et al., 2009; Owens et 83 

al., 2016; Dickson et al., 2016, 2017). However, the magnitude and geographical extent 84 

of trace-metal drawdown is difficult to assess from sediment concentration data, due to 85 

strong redox controls on their burial in the local environment.  Cd- and Zn-isotope ratios 86 

offer a complementary way to quantify the behaviour of these important bioactive 87 

elements during major environmental perturbations such as OAE 2, because changes in 88 
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the global mass balance will affect the seawater isotopic composition (e.g. John et al., 89 

2017; Isson et al., 2018). 90 

 91 

1.1.1 The Plenus Cold Event 92 

Environmental conditions were not uniform during OAE 2. The Plenus Cold Event 93 

represents a period of intra-OAE cooling and was associated with major changes to 94 

ocean chemistry (Gale & Christensen, 1996; Forster et al., 2007; Sinninghe Damsté et 95 

al., 2010; van Helmond et al., 2014, 2016; Jenkyns et al., 2017; Gale et al., 2019; 96 

O’C           .  2020). This interval of cooling was associated with more oxygenated 97 

conditions, illustrated by colonization of formerly anoxic sea floors by benthonic 98 

organisms, and coincides with a slight negative excursion in the global C-isotope curve, 99 

which likely indicates a temporary drop in global organic-carbon burial rates (Tsikos et 100 

al., 2004; Jarvis et al., 2011; Jenkyns et al., 2017). Trace-element anomalies found in 101 

carbonates recording the Plenus Cold Event have been linked to reoxygenation of 102 

previously deposited organic matter and temporary loss of anoxic sinks for redox-103 

sensitive and chalcophilic elements (Jenkyns et al., 2017). Similar anomalies in trace-104 

element concentrations and Cr isotopes from time-equivalent sections from the Western 105 

Interior Seaway have, however, stressed mafic volcanic influence without specific 106 

attribution to the changing redox conditions (Eldrett et al., 2014; Holmden et al., 2016). 107 

Perturbations to the global Zn and U cycles during the Plenus Cold Event interval have 108 

also been inferred from seawater isotopic compositions of these elements preserved in 109 

carbonate successions: data that are consistent with generally more oxygenated 110 

conditions globally (Clarkson et al., 2018; Sweere et al., 2018). 111 

 112 

1.2. Cd- and Zn-isotope systematics 113 
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B              k                        C                  δ114Cd values in the modern 114 

               w       δ66Zn values of surface waters are generally lower than in deep 115 

waters (e.g. Conway and John, 2014, 2015). For Zn, this observation is remarkable, as 116 

culture studies have generally shown the preferential uptake of isotopically light Zn by 117 

primary producers in most conditions (John et al., 2007, John and Conway, 2014, 118 

Köbberich and Vance, 2019). One explanation for this apparent discrepancy is the 119 

reversible scavenging of isotopically heavy Zn by sinking particles (John and Conway, 120 

2014; Weber et al., 2018). Other studies have also stressed the importance of Southern 121 

Ocean Zn cycling on global patterns (Vance et al., 2017; De Souza et al., 2018; Sieber 122 

et al., 2020), whereas more recent studies show evidence for an (anthropogenic) source 123 

of isotopically light Zn to the surface ocean (Lemaitre et al., 2020). Despite these 124 

complexities, both elements are highly depleted in surface waters relative to deep waters 125 

so that, to a first approximation, phytoplankton quantitively remove the elements and 126 

therefore have a similar isotope composition to that added to the surface by upwelling 127 

and vertical diffusion. However, recent data on particulates suggests that partial 128 

remineralization in sub-surface waters may leave sinking particles isotopically lighter 129 

than dissolved Cd (Janssen et al., 2019). The isotopic composition of the deep ocean is 130 

nearly homogeneous for both elements and is set by the relative proportions of different 131 

oceanic input and output fluxes. 132 

F           w                  v      δ66Zn input to the modern ocean has a 133 

value of ~0.33 ‰  which is within the uncertainties of estimates for the bulk silicate earth 134 

            (0.28 ± 0.05 ‰  2   )                   (C         .  2013; L           .  135 

2014). Recent estimates for the isotopic composition of Zn inputs from continental 136 

margins (-0.51 to +0.01‰) and hydrothermal sources (~ -0.42 ‰) have considerably 137 

lower δ66Zn values than riverine inputs (Lemaitre et al., 2020), but the size and global 138 
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relevance of these fluxes are still debated (John et al., 2008; Conway and John, 2014; 139 

Little et al., 2014; Roshan et al., 2016). Organic-rich continental-margin sediments 140 

represent the only known sink for isotopically light Zn (Little et al., 2016). Sediments 141 

underlying the restricted, euxinic deep waters of the Black Sea and Cariaco Basin have 142 

 v      δ66   v         ~0.5 ‰       ical to the average deep-ocean composition as a 143 

result of near-quantitative removal of Zn under such conditions (Vance et al., 2016; 144 

Isson et al., 2018). δ66Zn values for other sinks in oxic environments (Fe-Mn 145 

oxyhydroxides, carbonates) are 0.4–0.5 ‰        than those of average deep ocean 146 

seawater (Pichat et al., 2003; Little et al., 2014).  147 

 The Cd cycle shows similarities to Zn as the average lithosphere (∼-0.04‰)  148 

riverine (∼0.24‰)          (∼-0.02‰)                  (∼0.06‰)           C         149 

ocean all have lower δ114Cd values than the dissolved deep-ocean composition (∼0.3‰) 150 

(John et al., 2017 and references therein). The isotopic compositions of ocean outputs 151 

have not been characterized in great detail, apart from those of Fe-Mn oxyhydroxide 152 

crusts, which are not associated with significant isotopic fractionation and record 153 

seawater values (Schmitt et al., 2009; Horner et al., 2010). In contrast to Zn, Cd sinks 154 

that are isotopically heavier than seawater have not been recognized. 155 

Cd and Zn outputs to organic-rich marine sediments are likely to relate to two 156 

main fluxes: organically bound metals and metal sulfides. Uptake in cellular organic 157 

carbon generally represents the main export mechanism of Cd and Zn to the sediment, 158 

where it may be buried as part of organic material or fixed as metal sulfides (Little et al., 159 

2015; Weber et al., 2018). The formation of Cd and Zn sulfides in sulfdic pore waters or 160 

seawater is associated with the preferential incorporation of the lighter isotopes for both 161 

Cd and Zn, which may lead to isotopic fractionation between water and sediment if 162 

removal is non-quantitative (Conway and John, 2015; Little et al., 2016; Vance et al., 163 
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2016; Guinoiseau et al., 2018). However, due to the high stability of CdS and ZnS 164 

complexes (Al-Farawati and Van den Berg, 1999), sulfide precipitation for these 165 

elements may generally be expected to be quantitative in most environments. Non-166 

quantitative sulfide formation may occur in conditions where dissolved Cd and Zn are 167 

available in excess of sulfide, for example, in redox transition zones in pore waters 168 

(Scholz and Neumann, 2007). It is unclear how relevant such conditions are for the 169 

global isotopic mass balances. Nonetheless, sulfide formation can impact the isotopic 170 

composition of the bulk sediment in various settings as it affects the relative proportion of 171 

sedimentary Cd and Zn in other sedimentary phases (John et al., 2017; Isson et al., 172 

2018; Weber et al., 2018; Sweere et al., 2020). Of particular relevance to this study is 173 

organic material for which the metal-isotope ratios may be isotopically lighter than 174 

seawater due to non-quantitative biological uptake in the surface ocean or partial 175 

remobilization of sinking particles (John et al., 2007; John and Conway; 2014; Janssen 176 

et al., 2019). 177 

Consequently, local redox conditions may impact the proportion of Cd and Zn 178 

removal in the form of CdS and ZnS and may thus explain differences in δ114Cd and 179 

δ66Zn for various modern marine sediments. Modern organic-rich continental-margin 180 

sediments accumulating underneath relatively shallow waters (~264 m) with anoxic to 181 

mildly sulfidic conditions, such as in the Peruvian Margin, feature higher sedimentary 182 

δ66   v      (δ66Zn = ~0.3‰)                                                (δ66Zn = 183 

~0.0‰) (Little et al., 2016). A mostly sulfidic water column results in quantitative Zn 184 

removal in the restricted Black Sea and Cariaco Basin (δ66Zn = ~0.5‰  V          .  185 

2016; Isson et al., 2018). Modern sediment data are not available for Cd in such detail, 186 

but the first results suggest generally similar patterns (Bryan, 2019). 187 

 188 
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2. Material and methods 189 

 190 

2.1 The Tarfaya Basin 191 

Sediments from the Tarfaya Basin (Morocco) comprise a well-studied Cenomanian–192 

Turonian boundary interval (e.g. Tsikos et al., 2004). The focus of this study is on core 193 

S57, which contains ~37 m of cyclically bedded organic-rich calcareous sediments of 194 

Cenomanian–Turonian age, well dated with nannofossils and planktonic foramnifera, 195 

with a very low abundance of detrital minerals (Kolonic et al., 2005; Kuhnt et al., 2005). 196 

During deposition, the basin was located in an open shelf setting at ~15°N and is 197 

thought to have been fed by the upwelling of nutrient-rich waters (Lüning et al., 2004; 198 

Kolonic et al., 2005; Figure 1). Organic biomarker, Fe-speciation, and trace-metal data 199 

from high-resolution studies on part of this core, including the Plenus Cold Event 200 

interval, have revealed dominantly euxinic conditions with short intervals of anoxic non-201 

sulfidic conditions (Kolonic et al., 2005; Poulton et al., 2015; Goldberg et al., 2016). 202 

Conditions in the Tarfaya Basin during deposition of the rest of the core were likely at 203 

least as reducing as implied by the generally higher Mo enrichments for these other 204 

intervals (Kolonic et al., 2005; Goldberg et al., 2016; Dickson et al., 2016). 205 

 206 

2.2. Analytical methods 207 

Aliquots of powdered sample material taken from archived samples of drill core S57 208 

were weighed into Teflon digestion vessels together with a 113Cd-111Cd or 67Zn-64Zn 209 

double spike. The sample powders were digested on a hotplate for 48 hours in inverse 210 

aqua regia (iAR, 3 parts HNO3, 1 part HCl) to preferentially dissolve authigenic shale 211 

components. Cd and Zn were separated from major-element cations and interferences 212 

in a two-stage anion column chromatography procedure modified from previous studies 213 
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(Dickson et al., 2016; Sweere et al., 2018; Sweere et al., 2020).  214 

 Stable-isotope analyses were performed on a Nu Instruments Plasma I multi-215 

collector ICP-MS at the University of Oxford. Data were processed offline using an 216 

exponential mass-bias correction, measured relative to NIST-3108 Cd and IRMM-3702 217 

                              δ114Cd = [114/110Cdsample/
114/110CdNIST]-1)*1000     δ66Zn = 218 

[66/64Znsample/
66/64ZnIRMM-3702]-1) × 1000 + 0.28. External reproducibility was estimated 219 

based on repeated analyses of the USGS SDO-1                         : δ114CdSDO-1 = 220 

0.13 ± 0.06 ‰ (2 SD, n = 5), and δ66ZnSDO-1 = 0.43 ± 0.07 ‰ (2 SD, n=9). Reported 221 

errors in Figure 2 are the 2 standard error propagated uncertainties based on the 222 

reproducibility of the bracketing standards and the internal error of sample analysis. 223 

Enrichment factors (EF) are calculated relative to average upper continental crust 224 

concentrations as TMEF = (TM/Al)sample/ (TM/Al)crust (Rudnick and Gao, 2003, Cd/Alcrust = 225 

0.011 × 104; Zn/Alcrust = 8.22 × 104 g/g). 226 

 227 

2.3 English Chalk, Eastbourne  228 

For comparison of the Tarfaya data to other sedimentary archives, Cd/Ca data for time-229 

equivalent sediments from an outcrop near Eastbourne, UK are also presented. This 230 

section consists of organic-lean epicontinental pelagic nannofossil-rich deposits of the 231 

English Chalk, which have previously been studied for their δ66Zn and Zn/Ca 232 

compositions (Jenkyns et al., 2017; Sweere et al., 2018). The previously unpublished 233 

Cd/Ca data presented here are from the same set of carbonate phase measurements 234 

presented by Jenkyns et al. (2017). Briefly, carbonates were selectively dissolved from 235 

bulk rock using 0.5M acetic acid. After centrifugation to remove undissolved sedimentary 236 

components, the supernatant was diluted to 10 ppm Ca, and measured on a Thermo 237 

Scientific Element 2 magnetic-sector ICP-MS. 238 
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 239 

2.4. Chemostratigraphic Divisions 240 

                v                                     δ114C      δ66Zn variations, 241 

samples for the Tarfaya core were grouped into different chemostratigraphic divisions, 242 

based mainly on the carbon-isotope stratigraphy. The shading of these different 243 

divisions, as indicated in Figure 2, are used later to compare metal concentrations and 244 

isotope compositions for these different intervals. 245 

 246 

3. Results 247 

 248 

Both Cd and Zn are strongly enriched in the Tarfaya sediments relative to upper 249 

continental crust. Values for CdEF range from ~20–850, with an average of 238 (n = 36); 250 

whilst those for ZnEF range from ~3.2–207 and average 40 (n = 35). Enrichments of Zn 251 

and Cd follow similar stratigraphic patterns (Figure 2). 252 

The Cd- and Zn-isotope compositions for the S57 core show stratigraphic 253 

patterns coincident with changes in other geochemical parameters. δ114Cd values range 254 

from ~-0.61 to 0.26‰ w        v         -0.07‰ (n = 36). The maximum δ114Cd values 255 

found for Tarfaya sediments approach the modern deep-ocean value of ~0.3‰ (e.g. 256 

Conway and John, 2015). The lowest δ114Cd observed are considerably lower than 257 

dissolved δ114Cd values generally found for the modern ocean and closer to values 258 

found in CdS precipitation experiments (Guinoiseau et al., 2018). δ66Zn values range 259 

from ~-0.09 to 0.85‰ w        v         0.32‰ (n = 38).       w    δ66Zn values 260 

observed are lower than those of the bulk silicate E     (~0.3‰  C         .  2013)     261 

of   v             (~0.3‰) b       lower than some estimates for Zn inputs from 262 

continental margins (~-0.8 to -0.5‰)                 v     (~-0.5    0.3‰) (C  w       263 
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John, 2014; compilation in Vance et al., 2016). The maximum δ66Zn values observed are 264 

higher than dissolved δ66Zn values measured for the modern deep ocean of δ66Zn 265 

=0.5‰, but lower than some ocean outputs, including carbonates, which have average 266 

δ66Zn values of ~ 0.9 ‰ and Fe-Mn oxyhydroxide crusts with values of ~1.0‰ (e.g. 267 

Pichat et al., 2003; Little et al., 2014).  268 

     v      δ114C      δ66Zn values for background conditions are -0.10 ± 0.09 269 

(n = 17) and 0.31 ± 0.12 and (1 SD, n = 18), respectively (Figure 2). The Plenus Cold 270 

Event interval contains the lowest enrichments of Cd and Zn. This chemostratigraphic 271 

  v                       w            v          b    C         w     v      δ114Cd and 272 

δ66Zn values of -0.24 ± 0.23 and 0.14 ± 0.18 ‰, respectively (1 SD, n = 9). However, low 273 

δ114C      δ66Zn values during the Plenus Cold Event show different stratigraphic 274 

patterns. The         δ114C      δ66Zn values are found in the stratigraphic interval just 275 

post-                  C     v   . Av      δ114C      δ66Zn values observed for the 276 

plateau-phase of the OAE 2 interval are 0.11 ± 0.09 (n = 10) and 0.45 ± 0.23 (1 SD, n = 277 

11), respectively. Cd/Ca values for the Eastbourne chalk vary between 0.019 and 0.19 278 

μ   /    with the highest values found in the interval of the Plenus Cold Event. 279 

 280 

4. Discussion 281 

 282 

The two most prominent features of the Tarfaya record are (i) higher Cd- and Zn-isotope 283 

values during the plateau phase of OAE 2 and (ii) a decrease in Cd- and Zn-isotope 284 

values during the PCE. The following discussion focuses on several key mechanisms 285 

that might account for the observed variations. 286 

 287 

4.1. Hydrographic setting of the Tarfaya Basin 288 
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The degree and nature of water exchange between the Tarfaya Basin and the open 289 

ocean (proto-North Atlantic) are of critical importance in understanding stratigraphic 290 

δ114C      δ66Zn patterns because these phenomena control the amount and isotopic 291 

composition of dissolved Cd and Zn coming into the basin. The hydrographic conditions 292 

of the Tarfaya Basin can be evaluated using a Cd/Mo vs Co × Mn cross-plot, because 293 

modern organic-rich sediments have distinct Cd/Mo and Co × Mn values for different 294 

hydrographic regimes (Sweere et al., 2016). 295 

Cd/Mo ratios of organic-rich marine sediments are thought to reflect the relative 296 

importance of export production versus preservation of organic material, due to the high 297 

Cd uptake in organic cellular material (Little et al., 2015; Sweere et al., 2016). Co and 298 

Mn concentrations are generally very low in sediments from oxygen minimum zones 299 

below upwelling regions, in contrast to restricted basins like the Black Sea (Brumsack, 300 

2006; Sweere et al., 2016). These different geochemical signatures are thought to reflect 301 

the hydrographic conditions that impact both the supply and removal efficiencies of Co 302 

and Mn to the sediment. 303 

Low removal efficiencies of Mn are expected in both restricted basins and 304 

upwelling settings, considering the high solubility of this element in reducing conditions 305 

(e.g. Tribovillard et al., 2006 and references therein). However, the supply of Mn and Co 306 

is likely to be higher in restricted basins as Co and Mn concentrations in rivers (and 307 

surface waters) are much higher than in open-ocean sub-surface waters that feed 308 

upwelling regions. With limited water exchange due to hydrographic restriction, these 309 

elements are effectively trapped in restricted basins, allowing higher dissolved and 310 

sedimentary concentrations to develop. Low supply in upwelling systems coupled to low 311 

removal efficiencies from seawater to sediment in OMZs allows these elements to be 312 
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transported away from the OMZ and hence result in low sedimentary concentrations 313 

compared with those in restricted basins (Sweere et al., 2016).  314 

An empirical comparison between elemental data from Tarfaya with modern 315 

marine sediment data suggests an open-ocean depositional regime for the Tarfaya 316 

Basin (Figure 3). This regime probably had relatively high primary productivity that was 317 

fed by upwelling of sub-surface waters from the proto-North Atlantic Ocean. Importantly, 318 

no significant difference in Cd/Mo versus Mn × Co relationships is observed between the 319 

three chemostratigraphic divisions, suggesting that the hydrographic conditions of the 320 

Tarfaya Basin remained relatively constant during the studied interval. This 321 

reconstruction agrees with previous suggestions that the Tarfaya Basin was situated in a 322 

region of active upwelling of nutrient-rich sub-surface waters from the proto-North 323 

Atlantic Ocean, promoting high primary productivity and high mass accumulation rates of 324 

organic carbon (Lüning et al., 2004; Kolonic et al., 2005; Trabucho-Alexandre et al., 325 

2010; Dickson et al., 2016; Scholz et al., 2019). 326 

 327 

4.2. Redox variations in the Tarfaya Basin 328 

Despite the strong and relatively constant connection to the open ocean, there may have 329 

been variations in local redox conditions of the Tarfaya Basin that impacted Cd and Zn 330 

burial pathways and the isotopic offset between sediments and seawater. Temporarily 331 

more oxygenated conditions could have resulted in a larger isotopic offset between 332 

sediments and seawater, as found in modern continental-margin sediments (Little et al., 333 

2016; Bryan, 2019). Such conditions would be comparable to sediments deposited in 334 

suboxic to anoxic environments in the                      w   w   δ66Zn values than 335 

sediments from the anoxic to mildly sulfidic Peru Margin (Little et al., 2016). 336 
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MoEF values provide an independent proxy for local redox conditions (Figures 2, 337 

4, and 5; e.g. Scott and Lyons, 2012). MoEF values are generally high and reasonably 338 

constant for the S57 core, implying that anoxic to euxinic environments dominated 339 

conditions in the Tarfaya Basin during most of the studied interval (Kolonic et al., 2005; 340 

Dickson et al., 2016; Figures 2 and 4). While global drawdown of Mo may have occurred 341 

during the OAE 2 interval, there are no signs for severe local drawdown in the Tarfaya 342 

Basin; thus, stratigraphic patterns in MoEF are thought to mostly reflect local redox 343 

conditions (Dickson et al., 2016). Low MoEF values (<50) are almost exclusively limited to 344 

the Plenus Cold Event interval (Division 2), suggesting temporarily more oxygenated 345 

conditions. This interpretation of redox conditions in the Tarfaya Basin is generally 346 

consistent with a study on a different core (SN4), which concluded that conditions for the 347 

time-equivalent interval studied here were anoxic to mildly euxinic and relatively 348 

constant, apart from more oxygenated conditions during the Plenus Cold Event interval 349 

(Scholz et al., 2019). 350 

           C     v         v                       w    δ114C      δ66Zn values 351 

for the S57 core, which could thus be the result of temporarily more oxidizing conditions. 352 

Stratigraphic patterns for both elements in sediments recording the Plenus Cold Event 353 

interval, however, are considerably different. δ114Cd shows two abrupt perturbations to 354 

v      w δ114Cd (< -0.4‰), whereas δ66Zn values display a gradual decrease throughout 355 

the interval. High-resolution TOC, Fe-speciation, and Mo data from previous studies on 356 

the same core offer a more detailed look at the possible impact of changing redox 357 

  v             δ114C      δ66Zn patterns during the Plenus Cold Event (Figure 5; 358 

Poulton et al., 2015; Dickson et al., 2016; Goldberg et al., 2016). The Fe-speciation data 359 

indicate euxinic conditions with brief, cyclically occurring shifts to anoxic non-sulfidic 360 

conditions. Patterns in MoEF do not vary systematically with the cyclic alternation in 361 



 

 

 

16 

Fepy/FeHR and more closely resemble TOC patterns over this interval that show lower 362 

values for two intervals around 51 and 53 m depth (Figure 5).  363 

Cross-plots of δ114C      δ66Zn with MoEF for all samples (Figure 4) can be 364 

considered alongside detailed stratigraphic information for the Plenus Cold Event 365 

interval (Figure 5) to assess the impact of local redox conditions on δ114C      δ66Zn. 366 

 367 

4.2.1 Local redox controls on δ114Cd 368 

     δ114Cd values for the carbon-isotope plateau phase (Figure 2) of the OAE interval 369 

           b       b                    δ114Cdseawater towards higher values, but some 370 

effect of changing local redox conditions cannot be excluded. There is a generally 371 

positive relationship  b   v   b  w    δ114Cd and MoEF, based on all samples (Figure 372 

4), which implies there was a local redox control on the Cd-isotope composition of 373 

sediments in the Tarfaya Basin (Sweere et al., 2020). However, this positive relationship 374 

is absent within the different chemostratigraphic divisions separately, despite 375 

         b   v            δ114Cd and MoEF within them. Additionally, samples from the 376 

carbon-isotope plateau phase of the OAE 2 interval show consistently higher δ114Cd 377 

values than background conditions, even for low MoEF samples, implying that there was 378 

  k                    δ114Cdseawater during deposition of sediments belonging to these two 379 

divisions. 380 

Outliers with very low δ114Cd values (< -0.4 ‰)                       Plenus Cold 381 

Event interval (Division 2 in Figure 2), do suggest a larger isotopic offset between 382 

sediments and seawater as they all feature relatively low MoEF values. In a more detailed 383 

view of this interval (Figure 5), the lowest Cd-isotope values are not systematically 384 

registered in non-sulfidic intervals, only one of the  w        b            w δ114Cd being 385 

coincident with an interval of lower Fepy/FeHR (Poulton et al., 2015; Figure 5). δ114Cd 386 
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patterns more closely follow trends in TOC and MoEF, with the lowest δ114Cd consistently 387 

occurring in low-MoEF and -TOC intervals.                   w δ
114Cd values (< -0.4‰) 388 

observed during the Plenus Cold Event are therefore attributed to a temporarily larger 389 

isotopic offset between seawater and sediments preserved under more oxygenated 390 

conditions. 391 

W                  (   k         )              δ114Cd values for the Plenus 392 

Cold Event interval (-0.09 ± 0.16 ‰  2  . .    = 5)            b                   393 

Cenomanian–Turonian background conditions (-0.10 ± 0.18 ‰)       w        δ114Cd 394 

values for the plateau phase of the carbon-isotope excursion (b        ~0.3 ‰). δ114Cd 395 

values for the remaining samples gradually drop to a minimum of ~-0.2‰ near the end of 396 

the Plenus Cold Event interval. This geochemical change cannot directly be explained 397 

by varying local redox conditions, as it changes independently of MoEF and Fepy/FeHR 398 

patterns (Figure 5). More likely, this gradual stratigraphic change in δ114Cd during the 399 

Plenus Cold Event reflects the evolution of δ114Cdseawater to lower values. This inferred 400 

perturbation to the global Cd-isotope cycle is consistent with elevated Cd/Ca ratios for 401 

the time-equivalent interval in the Eastbourne chalk, which indicates a substantial 402 

increase in dissolved Cd in seawater during the Plenus Cold Event (Figure 7).  403 

 404 

4.2.2 Local redox controls on δ66Zn 405 

A cross-plot of δ66Zn with MoEF values does not show a clear positive relationship, which 406 

implies local redox conditions were not the dominant control on δ66Zn values of the 407 

Tarfaya Basin sediments. Samples with the lowest δ66Zn values (0.0–0.1‰), found 408 

exclusively for the Plenus Cold Event interval, generally do show low MoEF values. 409 

However, there is no systematic relationship of stratigraphic δ66Zn patterns with 410 

Fepy/FeHR, MoEF, or TOC, for this interval (Figure 5) and therefore no apparent local 411 
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redox or export productivity control on the decrease    δ66Zn. The stratigraphic change in 412 

δ66Zn values over the Plenus Cold Event interval is gradual, in contrast to patterns in 413 

MoEF and Fepy/FeHR values that vary over shorter intervals. These observations imply 414 

that the transition to lower δ66Zn values can largely be attributed to a change in the 415 

global seawater isotopic composition. Temporarily changing Δ66Znsediment-seawater, as a 416 

function of local redox conditions, would have likely led to more abrupt changes in 417 

sedimentary δ66Zn values. This interpretation is consistent with a time- q  v      δ66Zn 418 

shift of similar magnitude that has been found for organic-lean carbonate sediments from 419 

the Plenus Cold Event interval in southern England (Eastbourne) and southern Italy 420 

(Raia del Pedale) and was associated with higher Zn/Ca values (Figure 7, Sweere et al., 421 

2018). Together, these studies provide strong evidence for a global perturbation to the 422 

Zn cycle during the Plenus Cold Event. 423 

 424 

4.3 Concentrations of dissolved Cd and Zn 425 

Sedimentary Cd and Zn concentrations relative to total organic carbon (TOC) can 426 

provide information on the availability of the dissolved elements. Low dissolved Mo 427 

concentrations in modern restricted euxinic basins have been shown to lead to 428 

proportionally lower Mo/TOC ratios in accumulating sediments (Algeo and Lyons, 2006) 429 

and a similar effect can be caused by the widespread removal of Mo from seawater 430 

during global anoxic episodes such as OAE 2 (van Bentum et al., 2009; Hetzel et al., 431 

2009; Dickson et al., 2016, 2017; Owens et al., 2016). Considering the strong open-432 

ocean connection (section 4.1), local drawdown of the dissolved Cd and Zn pool is 433 

unlikely to have impacted sedimentary enrichments for sediments of the Tarfaya Basin. 434 

Notably, Mo isotopes also do not display any evidence of periodic trace-metal drawdown 435 

at the study site (Dickson et al., 2016). More broadly, however, trace-metal drawdown in 436 
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the wider proto-North Atlantic/Tethys region, or globally, could have impacted supply to 437 

the Tarfaya Basin and therefore the sedimentary Cd/TOC and Zn/TOC values.  438 

Low Cd/TOC and, to a lesser extent, Zn/TOC values are observed for sediments 439 

from the intervals of the Plenus Cold Event (Division 2) and plateau-phase of the OAE 2 440 

(Division 3), in comparison to background values (Division 1) (Figures 2, 6). For the 441 

Plenus Cold Event interval, these geochemical signatures can partly be explained by 442 

more oxygenated conditions, as indicated by low MoEF values, that would have limited 443 

the formation of sulfides. By contrast, samples from the plateau phase of the OAE 2 444 

interval generally show high MoEF values, indicative of locally euxinic conditions, which 445 

would have enhanced export and burial of Cd and Zn relative to TOC as sulfides. Low 446 

Cd/TOC and Zn/TOC values for some of these samples therefore likely reflect the 447 

drawdown of the dissolved elements in the wider proto-North Atlantic/Tethys region or 448 

globally. This interpretation is consistent with anomalously low Zn concentrations that 449 

have been reported previously for the OAE 2 interval on the Demerara Rise (Hetzel et 450 

al., 2009; Owens et al., 2016).  451 

 452 

4.4 The Cd- and Zn-isotope composition of Cenomanian–Turonian seawater 453 

With relatively constant hydrographic (section 4.1) and redox (section 4.2) conditions in 454 

            B                          v                                        δ114Cd and 455 

δ66Zn patterns would have been the isotopic composition of the sub-surface proto-North 456 

Atlantic waters that fed the basin. The Cd- and Zn-isotope composition of the modern 457 

deep ocean is homogenous and set by the proportion of different inputs and outputs 458 

(e.g. Conway and John 2014; 2015, Vance et al., 2016; Weber et al., 2018). 459 

Reconstructions of sub-surface proto-N     A        δ114C      δ66Zn compositions may 460 

thus be used to infer changes in the global mass balance associated with 461 
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paleoenvironmental change during the Cenomanian–Turonian interval. However, this 462 

interpretation requires some assumptions on Δ66Znsediment-seawater and Δ114Cdsediment-seawater 463 

to be made. 464 

 465 

4.4.1 Constraining δ114Cdseawater values 466 

The limited amount of available modern data suggest   Δ114Cdsediment-seawater value of ~-467 

0.3‰                  -rich continental-margin sediments (Bryan, 2019). Application of 468 

this offset to the data presented here, excluding outliers in the Plenus Cold Event 469 

Interval (section 4.2), would imply a total range    L    C          δ114Cdseawater of 0.09 470 

   0.56 ‰. On average, δ114Cdseawater values for Division 1 (background conditions, 0.20 471 

± 0.09, 1 SD) and Division 2 (       C     v     0.21 ± 0.08 ‰  1  )     472 

indistinguishable, and lower than values for Division 3 of Figure 2 (plateau phase, 0.41 ± 473 

0.09 ‰  1   ). T     v          L    C          δ114Cdseawater are plausible and roughly 474 

vary around the modern deep-                  (~0.3 ‰). However, the uncertainties 475 

associated with these first reconstructions of Cenomanian–         δ114Cdseawater values, 476 

further complicated by poor constraints on some aspects of the modern global isotopic 477 

mass balance, currently do not allow a meaningful quantitative assessment of variations 478 

in the global mass Cd mass balance during Late Cretaceous time. 479 

 480 

4.4.2 Constraining δ66Znseawater values 481 

Of the three modern continental-margin sites for which δ66Zn data are available (Peru 482 

Margin, Mexican Margin, California Borderland basins, Little et al., 2016), the highly 483 

reducing, highly productive conditions in the Tarfaya Basin were probably most 484 

comparable to the modern Peru Margin. This margin is characterized by high export 485 

productivity and organic-carbon burial rates, anoxic to mildly sulfidic (euxinic) conditions, 486 
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and sediments with high TOC and total sulfur contents (Reimers and Suess, 1983; Suits 487 

and Arthur, 2000; Little et al., 2016). The studied Peru Margin sediments also feature a 488 

similar water depth (264 m) to that suggested for the Tarfaya Basin during Cenomanian–489 

Turonian times (~200–300 m). δ66Zn values of the Tarfaya Basin sediments may 490 

          b               v  b    ~0.2‰   w        the deep-ocean composition 491 

during the Late Cretaceous, similar to the difference for the present-day Peruvian 492 

Margin. 493 

Applying a Δ66Znsediment-seawater of -0.2‰                            n average 494 

δ66Znseawater composition for the proto-North Atlantic deep ocean during background 495 

conditions (Division 1 in Figure 2)    0.51‰  w           istinguishable from modern 496 

deep-ocean compositions (e.g. Conway and John, 2014). Based on a 3-point moving 497 

average, δ66Znseawater values for the studied interval range from 0.14    0.76 ‰. The 498 

magnitude and timing of major stratigraphic trends are generally consistent with data 499 

from the Chalk of southern England at Eastbourne (Figure 7, Sweere et al., 2018). 500 

These observations thus support the inference of a change to the global zinc cycle, 501 

represented by its seawater composition, across an interval of widespread 502 

environmental change. 503 

 504 

4.5 Drivers of δ66Znseawater change 505 

 506 

4.5.1 Defining the isotopic mass balance 507 

A simplified global isotopic mass-balance model is used to assess the drivers of the 508 

              δ66Znseawater change. In steady state, the total input flux (Finput) is equal to 509 

the sum of the outputs (Foutput) into oxic (Fox), anoxic (Fanox) and euxinic (Feux) sediments 510 

so that 1 = fox + fanox + feux. Here, foxic reflects Zn burial in Fe-Mn phases in oxic conditions 511 
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(e.g. Little et al., 2014), fanoxic refers to the Zn burial in organic-rich sediments on 512 

continental margins (Little et al., 2016), and feuxinic reflects the burial of Zn in strongly 513 

euxinic (restricted) basins, like the modern Black Sea (Vance et al., 2016; Isson et al., 514 

2018). 515 

The isotopic mass balance is as follows: 516 

 517 

δ66Zninput = δ66Znoxic*foxic+ δ66Znanoxic*fanoxic + δ66Zneuxinic*feuxinic (1), 518 

 519 

The isotopic composition of ocean outputs can all be expressed relative to the seawater 520 

isotope composition (Δ66Znoutput-sw = δ66Znoutput - δ66Znseawater). By combining the two 521 

equations above, the Zn-isotope composition of seawater can then be expressed as a 522 

function of fanox and feux as: 523 

 524 

δ66Znsw = (Δ66Znoxic-sw - Δ66Znanox-sw)*fanox + (Δ66Znoxic-sw - Δ66Zneux-sw)*feux + 525 

δ66Zninput - Δ
66Znoxic-sw (2). 526 

 527 

By assuming feux is a fixed proportion (b) of fanox (i.e. feux = b × fanox), δ
66Znsw can then be 528 

plotted against fanox (Figure 8). Here, the gradient is given by (Δ66Znoxic-sw - Δ66Znanox-sw) + 529 

(Δ66Znoxic-sw - Δ66Zneux-sw) × b, and the y-axis           b  δ66Zninput - Δ
66Znoxic-sw. 530 

 531 

4.5.1 The Plenus Cold Event interval and pre-OA  δ66Zn excursion. 532 

This isotopic mass-balance model implies that the inferred drop in the δ66Znseawater value 533 

for the Plenus Cold Event interval reflects a global decrease in the proportion of Zn 534 

removal into anoxic organic-rich sediments relative to oxic sediments (Figure 8). This 535 

interpretation is consistent with U-isotope evidence for a more oxygenated seafloor 536 
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during the Plenus Cold Event (Clarkson et al., 2018). These lower δ66Znseawater values 537 

also might reflect the remobilization of previously buried isotopically light Zn from 538 

organic-rich continental-margin sediments following large-scale ocean oxygenation (cf. 539 

Conway and John, 2014; Lemaitre et al., 2020), alongside other chalcophilic and redox-540 

sensitive trace metals as inferred for data from carbonate successions for this interval 541 

(Jenkyns et al., 2017; Clarkson et al., 2018; Sweere et al., 2018). Spikes in 542 

concentrations of the trace metals Co, Cu, Sc, and Cr, and the negative shift in Cr 543 

isotopes, as found in sediments from the Western Interior Seaway, have also been 544 

linked to mafic input from the Caribbean and High Arctic Large Igneous Provinces (LIPs) 545 

during the Plenus Cold Event interval (e.g. Eldrett et al., 2014; Holmden et al., 2016). 546 

This mafic event may have also impacted the Zn (and Cd) cycle and contributed to an 547 

           w   δ66Znseawater value for this interval. 548 

 A             v           δ66Zn values of similar magnitude has been observed in 549 

European carbonate archives stratigraphically just below the onset of the carbon-isotope 550 

excursion that defines the OAE 2 interval (Sweere et al., 2018). T            δ66Zn 551 

values could represent a particularly strong pulse of isotopically light Zn to the ocean 552 

from hydrothermal fluids or low-temperature reactions between seawater and mafic 553 

rocks due to the onset of a LIP, for which there is independent evidence from the global 554 

osmium-isotope record (Turgeon and Creaser, 2008; Du Vivier et al., 2014, 2015). The 555 

corresponding interval in the Tarfaya succession also features anomalously low δ66Zn 556 

values, as well as low δ114Cd values (Figure 7). These observations provide support for 557 

a direct link between the onset of a major magmatic episode and ocean nutrification as a 558 

trigger for increased carbon burial.  559 

 560 

4.5.2 Carbon-isotopic plateau-phase of the OAE 2 interval 561 
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Higher δ66Znseawater values for the plateau phase of the OAE 2 interval require a higher 562 

proportion of isotopically light Zn burial into anoxic organic-rich sediments relative to 563 

background conditions (Figure 8). A              ~0.25‰ for the plateau phase of the 564 

OA       v         0.5    0.75‰  w       v    q      most of the Zn output to have 565 

been into anoxic organic-rich sediments. This interpretation is generally consistent with 566 

evidence from other proxies. Mn-oxide burial is estimated to have decreased by 40 to 567 

80% associated with a positive thallium-isotope shift during the OAE 2 interval 568 

(Ostrander et al., 2017), so a decrease in Zn burial in oxic sediments of similar 569 

magnitude is likely. Organic-carbon burial rates during OAE 2 are estimated to be ~1.7 570 

to 3.1 times higher than modern ocean burial rates based on TOC and δ13C patterns 571 

(Owens et al., 2018). 572 

 573 

The current uncertainties in the quantitative interpretation of the global Zn-isotope mass 574 

balance changes may be improved by: (i) The analysis of OAE 2 sediments from other 575 

sites               δ66Znseawater more accurately; (ii) Improved understanding of the 576 

processes leading to isotopic differences between seawater and various sediment types 577 

in the modern ocean, particularly for organic-rich continental- margin sediments; and (iii) 578 

Better constraints on possible past variations in δ66Zninput, through assessment of  the 579 

flux and isotopic composition of Zn inputs from hydrothermal systems, LIPs, and 580 

sedimentary sources. 581 

 582 

4.6 Comparing δ114Cd and δ66Zn 583 

Despite uncertainties on the absolute values of the Cd-isotope composition of the 584 

Cenomanian–Turonian ocean, the relative changes are clear and generally show a 585 

remarkably similar stratigraphic pattern to δ66Zn. A strong correlation in a cross-plot of 586 
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Cd and Zn concentrations implies that local controls on export and burial of these 587 

elements were also generally similar.  However, δ114Cd versus δ66Zn reveals 588 

considerable scatter (Figure 9). M        b    δ114Cd values comprise a much smaller 589 

range and values for the Plenus Cold Event interval are similar to background values for 590 

the OAE 2 interval  w     δ66Zn values show considerably lower values. This contrast 591 

may reflect the lack of a Cd output flux heavier than seawater compositions, in contrast 592 

to Zn where oxic outputs provide a substantial sink of isotopically heavy Zn (e.g. Little et 593 

al., 2014). Additionally, the disparity in δ114Cd versus δ66Zn values may reflect 594 

differences in the isotopic composition of ocean inputs. Zn may be more easily 595 

remobilized from continental-margin sediments or have a larger, more isotopically 596 

distinct hydrothermal/volcanic source signatures (Lemaitre et al., 2020), as also implied 597 

by comparison of dissolved δ114Cd and δ66Zn patterns from the North Atlantic Ocean 598 

(Conway and John, 2014; 2015). A substantial input of isotopically light Zn from 599 

enhanced basalt-seawater interaction or the release from continental-margin sediments 600 

associated with large-scale oxygenation during the Plenus Cold Event may explain 601 

               δ66       δ114Cd patterns. 602 

 603 

5. Conclusions 604 

 605 

- Stratigraphic patterns of δ114C      δ66Zn in the Tarfaya Basin S57 core 606 

(Morocco) can largely be interpreted as a result of changing seawater values. 607 

The location of the Tarfaya Basin in an upwelling zone on the margins of the 608 

proto North-Atlantic Ocean suggests that the δ114C      δ66Zn values of 609 

seawater supplied to the basin represent sub-surface conditions and may thus be 610 

extrapolated to infer changes in the global mass balance of these elements.  611 
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- A combination of Cd and Zn concentrations relative to TOC, Mo enrichments, 612 

    δ114C      δ66Zn values of the sediments suggests ocean-wide drawdown of 613 

Cd and Zn resulting from extensive organic-rich sediment burial during the main 614 

phase of the OAE. This drawdown is expressed as isotopic shifts of ~ +0.2–0.3 615 

‰        δ114C      δ66Zn composition of sub-surface waters, relative to 616 

background conditions.  617 

- Pelagic carbonate (English Chalk, Eastbourne) and organic-rich sedimentary 618 

archives (Tarfaya) from different oceanic regimes record similar stratigraphic 619 

            δ66Zn during the Cenomanian–Turonian interval, particularly during 620 

the Plenus Cold Event. The similarities imply                            δ66Zn 621 

                 v                         v   δ66Zn, and that these archives 622 

record global palaeo-environmental information. 623 

- Perturbations to the global Zn cycle during the Plenus Cold Event are suggested 624 

to reflect widespread ocean re-oxygenation, thereby lowering the fraction of 625 

isotopically light Zn buried in organic-rich sediments and possibly re-mobilizing 626 

previously buried isotopically light material by the oxygenation of organic-rich 627 

sediments. The increased input of isotopically light Zn from enhanced basalt-628 

seawater interaction during this interval may have also contributed to relatively 629 

low δ66Zn values. 630 

631 
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Figure captions 1008 

 1009 

Figure 1. Palaeogeographical reconstruction at 90 Ma with approximate study locations, 1010 

modified from Jarvis et al. (2011). 1011 

 1012 

Figure 2. Cenomanian–         δ114C      δ66Zn stratigraphy of the S57 core from the 1013 

Tarfaya Basin compared with a) δ13C data from Tsikos et al., 2004, (b) TOC data from 1014 

Kolonic et al., 2005, and (c) δ98Mo and MoEF data from Dickson et al., 2016. The 1015 

chemostratigraphic divisions are as follows: (Division 1) In white are samples from 1016 

stratigraphically below the onset level of the carbon-isotope excursion that demarcates 1017 

OAE 2, as well as those from above the termination of the so-called plateau phase that 1018 

is characterized by the highest carbon-isotope values (c.f. Tsikos et al., 2004). These 1019 

samples represent background conditions for the Cenomanian–Turonian interval. 1020 

(Division 2) In dark grey are samples from an interval approximately coeval with the 1021 

Plenus Cold Event. The timing of this event, initially recognized by the occurrence of 1022 

boreal fauna and relatively heavy bulk oxygen-isotope compositions in the English chalk, 1023 

can be correlated to sections that lack characteristic fossils by carbon-isotope chemo-1024 

stratigraphy (Gale and Christensen, 1996; Jenkyns et al., 2017; Gale et al., 2019; Gangl 1025 
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et al., 2019). Here, this chemostratigraphic division is extended just beyond the slight dip 1026 

in the carbon-isotope curve to cover the interval of relatively lower Cd, Mo, and Zn 1027 

enrichment factors. (Division 3) In light grey are samples from the intervals that record 1028 

maximum organic-carbon burial globally during the peak of OAE 2. This division covers 1029 

a short interval stratigraphically just below sediments recording the Plenus Cold Event 1030 

and sediments from the overlying plateau phase of the carbon-isotope excursion (c.f. 1031 

Tsikos et al., 2004). 1032 

 1033 

Figure 3. Cd/Mo and Co × Mn values for the Tarfaya Basin sediments compared to 1034 

values for modern organic-rich sediments from various environments following Sweere 1035 

et al. (2016). The shading represents the different chemostratigraphic divisions as 1036 

highlighted in Figure 2. 1037 

 1038 

Figure 4. δ114C      δ66Zn versus MoEF. MoEF is used as a proxy for local redox 1039 

conditions (e.g. Scott and Lyons, 2012). Some outliers of very low δ114Cd and low MoEF 1040 

are attributed to a larger isotopic offset between sediments and seawater in more 1041 

oxygenated conditions. Patterns for the remaining data imply that local redox conditions 1042 

were not the dominant control on δ114C      δ66Zn. 1043 

 1044 

Figure 5. Close-up of an interval from the S57 core comparing δ114C      δ66Zn values 1045 

with high-resolution Fepy/FeHR and Mo isotope and concentration data. Samples marked 1046 

in red highlight intervals that are taken to reflect a larger isotopic offset between 1047 

sediments and seawater in more oxygenated conditions. See text for discussion. a) 1048 

Tsikos et al., 2004, (b) Poulton et al., 2015 (c) Goldberg et al., 2016. The grey-shaded 1049 

bands reflect anoxic non-sulfidic intervals (Poulton et al., 2015). 1050 
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 1051 

Figure 6. Cd and Zn concentrations versus Total Organic Carbon (TOC). The shading in 1052 

(A) reflects the chemostratigraphic divisions as defined in Figure 2. The colours in (B) 1053 

indicate different ranges of MoEF values, a proxy for local redox conditions (e.g. Scott 1054 

and Lyons, 2012). 1055 

 1056 

Figure 7. Comparison of data from organic-rich sediments (this study) and the organic-1057 

lean English Chalk at Eastbourne (Sweere et al., 2018) during the Cenomanian–1058 

Turonian boundary interval. The two sites are correlated using key points in the C-1059 

isotope stratigraphy (Tsikos et al., 2004), as indicated by the dashed lines. The grey-1060 

shaded bands highlight time-equivalent intervals of lower δ66Zn. 1061 

 1062 

Figure 8. Simplified global isotopic mass-balance model based on steady-state 1063 

conditions for           δ66Zninputs values. foxic reflects Zn burial in Fe-Mn phases in oxic 1064 

conditions (e.g. Little et al., 2014), fanoxic refers to the Zn burial in organic-rich sediments 1065 

on continental margins (Little et al., 2016), and feuxinic reflects the burial of Zn in strongly 1066 

euxinic (restricted) basins, like the modern Black Sea (Vance et al., 2016; Isson et al., 1067 

2018). The horizontal black line represents modern ocean conditions, the red and blue 1068 

lines +0.25 and -0.4‰            δ66Znseawater, as constrained in section 4.4, for the OAE 1069 

2 carbon-isotope plateau phase and PCE conditions, respectively. The isotopic offsets 1070 

between different sedimentary archives and seawater used here are based on 1071 

observations in the modern ocean as summarized in Vance et al. (2016) and are as 1072 

follows: Δ66Znoxic-sw = +0.4 ‰, Δ66Znanox-sw = -0.5 ‰, Δ66Zneux-sw = 0.0 ‰. *The estimate 1073 

for the proportion of feux relative to fanox comes from output flux estimates by Isson et al. 1074 

(2018). 1075 
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 1076 

Figure 9. Comparison of Cd and Zn data generated in this study. The concentrations 1077 

show very similar patterns, whereas the δ114Cd     δ66Zn are considerably different. 1078 

      b   v                   δ114C      δ66Zn values provide complementary 1079 

information on the proportion of oxic sinks and sedimentary and hydrothermal inputs. 1080 
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