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CD44 interactions with hyaluronan (HA) play a key role in various malignancies, supporting
tumor cell migration, adhesion, and survival. In contrast to solid tumors, the expression of
CD44 standard and variant forms and their functional interplay with HA is less understood
in hematological malignancies. Chronic lymphocytic leukemia (CLL) is a highly abundant B-
cell malignancy with a well coordinated balance between cell cycle-arrest and proliferation
of tumor subpopulations.The long-term survival and proliferation of CLL cells requires their
dynamic interactions with stromal and immune cells in lymphoid organs. Interactions of HA
with CD44 and HA-mediated motility receptor (RHAMM) contribute to CLL cell localization,
and hence CLL pathophysiology, by shaping homing, interstitial migration, and adhesion of
the tumor cells. CD44 can complex with key prognostic factors of CLL, particularly CD38
and CD49d, bridging the gap between prognosis and cellular function. Here, we review the
current evidence for the individual and associated contributions of CD44 to CLL pathophys-
iology, the dynamic functional regulation of CD44 upon CLL cell activation, and possible
therapeutic strategies targeting CD44 in CLL.
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INTRODUCTION
The tumor microenvironment, shaped by interactions between
malignant and non-malignant cells, is influential for tumor for-
mation and progression of various cancers. Chronic lymphocytic
leukemia (CLL) is a disease of mature B lymphocytes and is man-
ifested by progressive accumulation of these malignant cells in
blood, bone marrow (BM), and lymphoid tissues (1). Charac-
teristically, CLL follows extremely variable clinical courses with
survival times ranging from months to decades, making it nec-
essary to classify the patients according to prognostic risk (2).
Besides genomic aberrations such as 17p deletion,13q deletion, tri-
somy 12, and 11q deletion, a most important and long-established
prognostic marker is the mutational status of the B-cell receptor
(BCR) immunoglobulin variable heavy chain (IgVH) genes (2–4).
Patients with CLL cells that express IgVH genes without significant
levels of mutation (<2% difference from germline gene counter-
part, “unmutated”) follow a more aggressive clinical course with
shorter times to first treatment and overall survival than patients
harboring IgVH gene mutations (≥2% difference from germline,
“mutated”) (5). Other common prognostic parameters are the
extent of expression of CD38 and zeta-chain-associated protein
kinase 70 (ZAP-70), earlier suggested as surrogate markers for
the IgVH mutation status (6). However, both have independent
prognostic power, too.

CD49d, despite being the newest among the prognostic mark-
ers, is the strongest flow cytometry-based predictor of overall
survival and treatment-free survival in CLL (7). Following the
first reports on the poor outcome of patients with an expression

of CD49d on≥30% of the tumor cells (8,9), its high prognostic rel-
evance has been unequivocally confirmed by several groups (10–
15). Expression of CD38 and CD49d is associated in about 80%
of samples (12, 16) and the molecules can form macromolecular
complexes with CD44 (17, 18).

It is well established that the CLL pathophysiology relies on
the lymphoid tumor microenvironment. Unusual for tumor cells,
CLL cells circulating in the peripheral blood are cell cycle arrested.
Ex vivo, CLL cells rapidly die from apoptosis if not co-cultured
with immune or stromal cells, suggesting that the malignant cells
are in constant need of supportive signals from the lymphoid
microenvironment (19). It is therefore believed that at least a sub-
population of the peripheral blood CLL pool is able to recirculate
into lymphoid organs in order to receive signals for proliferation
and survival. Moreover, retention in these organs appears to favor
onset and progression of CLL. Consequently, therapeutic targeting
the microenvironmental interactions and lymphoid localization
of the malignant cells emerges as a most successful strategy to
permanently control CLL. This is impressively reflected by the
clinical success of novel drugs such as ibrutinib and idelalisib that
inhibit downstream signals of the BCR and retention molecules
(20–23). Notably, the mode of action of ibrutinib and idelalisib
is likely dual, they antagonize tumor cell proliferation in a NF-
κB dependent manner (24, 25) and disrupt CLL cell retention in
lymphoid organs. Particularly, during the first period of treatment
with these drugs, a redistribution of CLL cells from the lymphoid
organs into the peripheral blood of patients can be observed (21,
26, 27), obviously depriving the tumor cells of supportive signals.
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Despite this recent therapeutic progress, the detailed mecha-
nisms that underlie the communication of CLL cells and accessory
cells in the lymphoid microenvironment are still far from under-
stood. Adhesion molecules and homing receptors orchestrate the
localization and retention of CLL cells in lymphoid proliferation
areas where CLL cells receive activation and protection signals. The
glycoprotein CD44 can direct microenvironmental communica-
tion and intracellular signaling for growth and motility in many
types of cancers (28). On hematopoietic cells, CD44 is universally
expressed (28). The CD44 gene encodes different CD44 variant
(CD44v) isoforms, which are generated by alternative splicing.
The standard isoform of CD44 (CD44s) lacks the entire variable
region. Hyaluronan (HA), the main ligand of CD44, is bound via
a conserved BX7B binding motif (in which B represents Arg or Lys
and X7 represents any seven non-acidic amino acids, but includes
an additional Arg or Lys) present in the extracellular part of CD44
(28). The binding ability of the ubiquitously expressed molecules
CD44 and HA needs to be strictly controlled. This can be achieved
by posttranslational modifications such as glycosylations, CD44v
expression, or CD44 clustering (28). In CLL, an external activation
stimulus leads to increased CD44v expression and N-linked gly-
cosylation, which induces CD44–HA binding (29). Concordantly,
many studies have implicated CD44v rather than CD44s in tumor
progression, dependent on the stage of progression and type of
tumor (28).

In CLL, elevated CD44s and CD44v serum levels have been sug-
gested as markers for disease progression and potential functional
contributions to the pathophysiology have been discussed; how-
ever, the underlying biological mechanisms remain elusive. With
some aspects controversially described, it has become necessary to
further examine and more deeply understand the role of CD44
in this disease. Here, we discuss the prognostic role of CD44 and
CD44v, its involvement in localization of CLL cells in lymphoid
organs and tumor cell survival, and its suitability for therapeutic
exploitation.

HA RECEPTORS AND CLL PROGNOSIS
CD44 is described to form a complex with the prognostic markers
CD49d and CD38, outlined in the introduction (18, 30). However,
first reports on an individual prognostic role of CD44 in CLL were
already published in the early 1990s (31), long before this com-
plex was found. Despite this early discovery, the existing data are
not completely consistent. In 1993, de Rossi and colleagues distin-
guished three groups of CLL patients, depending on either high,
intermediate or low CD44 surface expression, defined in relation
to the CD44 expression on T-cells. In this study, patients of the
CD44-high group presented with an increased incidence of diffuse
BM infiltration, which is a negative prognostic marker itself (31–
33). Illogically, the follow up study of the same group identified
these CD44-intermediate/high classified patients as good clini-
cal outcomes (34). Subsequently and more consistent to the early
findings, Eisterer and colleagues confirmed the prognostic value
of CD44 by immunohistochemistry of BM specimen. CD44-high
patients presented with advanced disease, a diffuse pattern of BM
infiltration, and reduced survival within the observation period
(35). Much later, Herishanu et al. (36) suggested that IgVH unmu-
tated CLL cases express higher CD44 expression (36). We did not

find any differences in the intensity of CD44s expression in low
and high risk patients, stratified according to IgVH mutation sta-
tus, CD38, ZAP-70, or CD49d expression (29). This was confirmed
by Fedorchenko et al. (37) when grouping patients according to
IgVH mutational status or ZAP-70 expression.

The reason of these diverging observations remains unclear
but one could hypothesize a differential activation status of the
samples. We found that CD44 surface expression of CLL cells is
induced upon their stimulation with activated T-cells or CD40
Ligand (CD40L) (29). In addition, several variant isoforms of
CD44, known as markers for tumor progression in various malig-
nancies (28), are transcribed and expressed at the surface upon
activation (29).

In resting CLL cells, however, surface expression of CD44v is
only detectable in the minority of CLL cases (38). These cases
differ from the CD44v low expressing cases in regard to disease
progression, lymphocyte doubling time, and therapy requirement
(39). We found transcripts of CD44v3, v5, v6, v7, v8, v9, and v10
in unstimulated CLL cells, and a robust upregulation of CD44v3
and v6 upon CLL cell activation (29).

Soluble CD44, lacking the transmembrane region (40, 41) is
found in serum due to shedding events (40, 42). High serum
levels of CD44s, elevated in approximately half of CLL sam-
ples, are significantly associated with high tumor burden and the
presence of other unfavorable prognostic markers such as high
beta2-microglobulin levels (38, 43). The correlation is stable in
time, treatment independent, and allows separation of two dis-
tinct patient groups with differential survival times (38). While
de Rossi and colleagues did not observe any differences in CD44v
in serum of CLL patients compared to healthy donors (38), a
later study by Eisterer and colleagues identified elevated serum
CD44v6 levels being associated with advanced disease defined by
lymph node involvement and splenomegaly, and therapy require-
ment (44). This divergence was attributed to differential sen-
sitivities of the statistical tests used. Nevertheless, independent
analyses are required to solve these issues, particularly in case of
CD44v6.

In CLL, little is known on the role of the second major HA-
binding molecule RHAMM. One report describes a prominent
expression of RHAMM and its splice variant RHAMM−exon 4

in advanced CLL (45). As RHAMM expression was missing in
peripheral blood mononuclear cells (PBMCs) from healthy indi-
viduals, it was suggested as a tumor-associated antigen (TAA) in
CLL (45). A follow up study provided evidence of an additional
prognostic role of RHAMM expression among CLL patients with
mutated IgVH genes (46).

MIGRATION AND LOCALIZATION
The CD44 molecule was originally defined as a lymphocyte hom-
ing receptor that can be bound by the Hermes class of antibodies
(47–49). Homing hereby means the rapid process, in which circu-
lating hematopoietic cells actively cross the blood/endothelium
barrier to enter the tissue (50). BM homing of normal prog-
enitor cells is dependent on CD44 expressed on these cells
and HA displayed on the BM endothelium (51–53). Moreover,
CD44 participates in homing and engraftment of various tumor
cells (54–57).
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The contribution of CD44 to homing of CLL cells to BM and
secondary lymphoid organs has not been dissected yet. However,
we have previously established the integrin VLA-4, a heterodimer
of the negative prognostic marker CD49d and the beta1 integrin
subunit CD29, as the chief orchestrator of CLL BM homing (12,
58). Moreover, it was also shown that interaction of E-selectin with
a specific glycoform of CD44 (HCELL) induces VCAM-1 binding
of VLA-4. Thereby, HCELL ligation triggers inside-out upregula-
tion of VLA-4 adhesiveness via G-protein dependent signal trans-
duction leading to firm adhesion and subsequent transendothelial
migration of human mesenchymal stem cells (59). Notably, in
CLL, CD44v and VLA-4 constitute a cell surface docking complex
for matrix metalloproteinase 9 (MMP-9) (in the pro and active
form) (30). Here, proMMP-9 does not act as a protease upon
docking to this surface receptor complex but fulfills functions in
promoting CLL cell survival (60). MMP-9 lacks a transmembrane
domain and is therefore dependent on cellular binding sites for
all directed functions (61). Most recently, it was observed that
high proMMP-9 expression and binding to these sites inhibits
migration and reduces the homing capacity of CLL cells, suggest-
ing a cooperation of VLA-4 and CD44(v) with MMP-9 (in the
pro and active form) leading to CLL cell retention in lymphoid
organs (62).

Consistent with this idea of CD44-mediated stop signals, we
discovered that upon CLL cell activation by T-cells in lymphoid
organs, high avidity CD44–HA interactions are formed due to
induction of CD44v, most prominently CD44v6, harboring N-
linked glycosylations. These interactions result in reduced cellular
motility and lock CLL cells to immobilized HA. Thus, activa-
tion results in stop signals to migrating CLL cells by inducing
strong cellular adhesion to the substrate, which may subsequently
allow proliferation (29) (Figure 1). Since MMP-9 is particularly
bound to CD44v rather than CD44 (30), it will be interesting
how the suggested functions of MMP-9 in CLL are modulated by
the activation-induced CD44v expression (29) and contribute to
proliferation.

The suggestion of CD44(v) as a retention signal of interstitial
motility – a process completely different from homing – is in line
with early reports on the involvement of RHAMM rather than
CD44 in IL-8-triggered motility of CLL cells on HA (63). This
is consistent to our findings that blocking CD44 does not inter-
fere with motility of resting CLL cells under shear free conditions
but antagonizes their HA binding and adhesion, once they are
activated (29).

CD44 AND CLL CELL SURVIVAL
Human CD44 expression is increased by microenvironmental
stimulation of CLL cells not only by CD40L-induced activation
(29, 37) but also by the presence of feeder cells, known to pro-
vide prosurvival signals and early activation (64, 65). Activated
CLL cells are protected against spontaneous and drug-induced
apoptosis (66–68). Several previous studies suggested that CD44
is part of the survival signaling in CLL (37, 64, 69, 70). The addi-
tion of blocking anti-CD44 antibodies to CLL co-cultures with
follicular dendritic cells reduced the survival of CLL cells, paral-
leled by decreased levels of the anti-apoptotic protein myeloid cell
leukemia sequence 1 (Mcl-1) (64). Recently, Federochenko and

FIGURE 1 | Hypothetical model how CD44 and CD44v contribute to the
CLL cell life cycle. By the ability of CD44 to complex with VLA-4
(CD49d/CD29), a key molecule for homing of CLL cells, CD44 may
influence the homing process. Interstitial migration in the lymphoid organs
is CD44 independent but mediated by RHAMM binding to hyaluronan.
Interactions with T-cells and hyaluronan-displaying stromal cells secure CLL
cell survival and activate the malignant cells. Activation is responsible for a
rearrangement from CD44s to CD44v expression enhancing the affinity for
hyaluronan, which induces a stop signal for the CLL cell. This retention
allows CLL cell proliferation.

colleagues recapitulated the inhibitory effect of CD44 blockage or
downregulation on Mcl1 protein levels in vitro and in vivo. To
study the impact of CD44 on murine leukemogenesis, the authors
used CD44 gene deletion, crossing CD44−/− animals with Eµ-
TCL1 transgenic (tg) mice (37), which represent a well established
murine model for CLL (71). In these mice, a CD5/CD19-double
positive clonal B-cell hyperplasia arises in the peritoneal cavity
and the disease subsequently spreads into other organs (spleen,
BM, LNs, blood), with an overt leukemic phase starting from 8
to 10 months (71, 72). Eµ-TCL1 tg CD44−/− mice displayed a
reduced peripheral blood tumor load at 12 months and signif-
icantly reduced spleen weights (37) compared to Eµ-TCL1 tg
CD44+/+ mice. The CD44 deficient murine CLL cells had marked
signs of apoptosis, e.g., increased expression of cleaved caspase-
3, suggesting a role of CD44 in tumor cell survival in the spleen
microenvironment.

Notably, a novel humanized anti-CD44 mAb, RG7356, was
recently found to induce apoptosis particularly in ZAP-70 posi-
tive CLL cells, in a caspase-dependent manner (70). The effects of
this antibody occurred independent of complement and immune-
effector cells and were attributed to ligation of CD44, altering its
potential complexing with ZAP-70. This involvement of ZAP-70
in CD44-mediated CLL survival signaling and its physical com-
plexing with CD44 clearly impacts on BCR signaling. ZAP-70
is known as an enhancer of BCR signaling upstream of sur-
vival and proliferation signals such as protein kinase B (Akt)
and extracellular-signal-regulated kinases (ERKs) (73), which in
turn induce anti-apoptotic proteins such as Mcl-1 and Bcl-xL
(74). In consequence, the data may also suggest alterations of
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the known complex of MMP-9 with CD44 and CD49d (VLA-
4) (60) dependent on the BCR reactivity, which is shaped by
ZAP-70.

THERAPY
Therapeutically, CD44 is difficult to exploit due to its high variabil-
ity and ability to complex with different partners in which CD44
function is apparently influenced. It is therefore not surprising
that CD44 is not easily druggable, with some cases of previous fail-
ures (clinical trial identifier: NCT02254031; NCT02254044). The
anti-CD44v6 antibody bivatuzumab (previously BIWA 4) coupled
with a non-radioactive cytotoxic drug mertansine, for example,
was used in studies against breast neoplasms (NCT02254005)
and squamous cell carcinomas of the head and neck (HNSCC)
(NCT02254018) (75–77). The death of one patient terminated
the HNSCC trial (NCT02254044) whereas in the breast cancer
study the antibody was found in non-tumor tissue as well and was
therefore stopped (NCT02254031).

Nevertheless, several recent approaches could be advanced
from preclinical status to testing in clinical trials. One promis-
ing candidate is the Å6 peptide (Ac-KPSSPPEE-amide), which
is derived from the non-receptor binding domain of uroki-
nase plasminogen activator and known to share a homologous
sequence with CD44 (78, 79) (see also article by Finlayson in
this volume). This homologous sequence (120-NASAPPEE-127)
is found in the HA-binding site and is therefore present in all
CD44 isoforms independent of alternative splicing events (80,
81). In preclinical studies, treatment with the Å6 peptide sig-
nificantly decreased tumor growth and metastasis in a breast
cancer mouse model without direct evidence of cytotoxicity or
anti-proliferative activities toward the tumor (78). Instead, tumor
and endothelial cell migration was clearly impaired by the pep-
tide suggesting its impact on tumor invasion, metastasis, and
angiogenesis. Similarly, Å6 reduced lymph node metastasis in a
prostate cancer model (82). Notably, Å6 inhibited the migra-
tion of a subset of ovarian and breast cancer cell lines in vitro
by inducing high adhesion of the CD44-expressing cells to an
HA substrate and altering CD44 conformation (79), obviously
locking the cells to substrates of HA, abundantly found, e.g., in
LNs. First clinical trials demonstrated that Å6 was well toler-
ated (83, 84), resulting at least in an increased time to clinical
disease progression of women with epithelial ovarian, fallop-
ian tube, or primary peritoneal cancer in clinical remission (85)
(NCT00083928). Currently a phase 2 trial is under way to deter-
mine the safety, tolerability, and efficacy of Å6 in CLL patients
(NCT02046928).

A second promising candidate in CLL is the anti-CD44 anti-
body RG7356 (also known as RO5429083 or ARH460-16-2), a
humanized antibody targeting a glycosylated, extracellular con-
stant region of CD44 (86). As outlined above, this apoptosis-
inducing antibody exerts a particular influence on BCR signaling
in CLL and may be promising in light of the current success of all
BCR-downstream-signal-targeting drugs.

Two clinical trials are underway to examine the pharmaco-
kinetics, pharmacodynamics, safety, and efficacy of RG7356 in
acute myelogenous leukemia (AML) patients and patients with
metastatic and/or locally advanced CD44-expressing solid tumors.

SUMMARY AND OPEN QUESTIONS
In summary, CD44 emerges as a key molecule of CLL cell inter-
actions with the lymphoid microenvironment, shaping malignant
cell positioning, and in consequence survival and proliferation in
a fine-tuned manner. Nevertheless, some open questions remain
on the mode of CD44 regulation in dependence of the activa-
tion status of the cells and the respective complex partner, such as
CD49d/VLA-4. In addition, little is known on the second chief
receptor interacting with HA, RHAMM. It is conceivable that
RHAMM and CD44 fulfill distinct functions of cell migration
and retention in CLL, which should be addressed in more detail
in future. A deeper understanding of the functional regulation of
CD44–HA interactions by splicing events and posttranslational
modifications might help solving the existing controversies of its
role in prognosis and survival. More functional studies as well as
comprehensive patient cohorts and a clear clinical stratification
of the patient groups would allow addressing these issues with
sufficient statistical power and also assisting in the choice of the
appropriate type of CD44 antagonizing therapy in CLL.
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