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Search efficiency of discrete fractional Brownian motion in a random distribution of targets
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Efficiency of search for randomly distributed targets is a prominent problem in many branches of the sciences.
For the stochastic process of Lévy walks, a specific range of optimal efficiencies was suggested under variation
of search intrinsic and extrinsic environmental parameters. In this paper, we study fractional Brownian motion
as a search process, which under parameter variation generates all three basic types of diffusion, from sub- to
normal to superdiffusion. In contrast to Lévy walks, fractional Brownian motion defines a Gaussian stochastic
process with power-law memory yielding antipersistent, respectively persistent motion. Computer simulations
of search by time-discrete fractional Brownian motion in a uniformly random distribution of targets show that
maximising search efficiencies sensitively depends on the definition of efficiency, the variation of both intrinsic
and extrinsic parameters, the perception of targets, the type of targets, whether to detect only one or many of
them, and the choice of boundary conditions. In our simulations, we find that different search scenarios favor
different modes of motion for optimising search success, defying a universality across all search situations.
Some of our numerical results are explained by a simple analytical model. Having demonstrated that search by
fractional Brownian motion is a truly complex process, we propose an overarching conceptual framework based
on classifying different search scenarios. This approach incorporates search optimization by Lévy walks as a
special case.
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I. INTRODUCTION

Finding randomly located objects is a challenge for every
human being, be it the search for mushrooms [1], for lost keys
[2], or for food [3]. Within the context of modern society,
attempts to solve this problem fuelled the development of
operations research, which aims at optimising tasks such as
search games [4], locating submarines [5], or human rescue
missions [6]. For biological organisms, the successful location
of food sources is crucial for their survival, as is addressed
within movement ecology [7–9]. On a theoretical level, bio-
logical foraging processes are typically modelled in terms of
stochastic dynamics [2,8,10]. An important paradigm for this
modeling was put forward by Karl Pearson, who suggested
at the beginning of the last century that organisms may mi-
grate according to simple random walks [11] characterized
by Gaussian position distributions in a suitable scaling limit.
This paradigm was challenged two decades ago by the exper-
imental observation [12] and a corresponding theory [13] that
wandering albatrosses searching for food performed flights
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according to non-Gaussian step length distributions [14]. In
this case, the mean square displacement (MSD) of an ensem-
ble of moving agents may not grow linearly in time like for
Gaussian spreading generated by random walks or Brownian
motion. Instead, it may grow nonlinearly, 〈x2(t )〉 ∼ tα with
α �= 1, where x(t ) is the position of an agent in space at time
t . This phenomenon is known as anomalous diffusion, where
α > 1 denotes superdiffusion and α < 1 subdiffusion while
α = 1 refers to normal diffusion [15–19].

Motivated by these developments, much recent research
was devoted to explore the relevance of more nontriv-
ial diffusion processes for modeling foraging. Inspired by
Refs. [12,13], the focus was on superdiffusive Lévy walks
(LWs) determined by power-law step length distributions
[10]. Along similar lines normal diffusive intermittent motion
[2] and correlated random walks [8,20] have been analysed.
Nevertheless, an overarching framework for stochastic search
in movement ecology is still missing. Especially for the
wide variety of anomalous stochastic processes beyond LWs
[19], efficiency of search has not very much been investi-
gated. This applies particularly to fractional Brownian motion
(fBm), a paradigmatic stochastic process that, in contrast to
Lévy dynamics, exhibits Gaussian distributions and power-
law memory by generating the whole spectrum of anomalous
diffusion [21]. The goal of our paper is to explore in a very
systematic way, based on extensive computer simulations and
simple analytical arguments, the complexity of search exhib-
ited by fBm. We hope that our work will set the scene for
further studies to understand biological foraging on the basis
of stochastic theory.
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A. Background

Already at the beginning of the 90’s it was suggested that
superdiffusive motion obtained from Lévy flights and walks
may optimize the search for targets by increasing the search
efficiency compared to Brownian motion [22]. Lévy flights
can be modelled as a Markov process, where the instantaneous
jumps over certain distances are sampled randomly from a
power-law distribution [17,23]. In the special case of LWs,
any jump length is coupled with the time to perform the jump
by assuming a constant speed [24]. In order to explain the
experimental albatross data of Ref. [12], Ref. [13] proposed
a simple two-dimensional stochastic search model. It consists
of a Lévy walker searching for targets, which are disks uni-
formly random distributed in the plane. For a sparse field
of replenishing, immobile targets a suitably defined search
efficiency yielded a maximum for power-law jumps, while
Brownian motion was optimal when the density of the target
distribution increased [13,25,26]. This result became famous
as the Lévy flight foraging hypothesis (LFFH) [10,13]. The
LFFH initiated a long debate, particularly when applied to
finding many targets under biologically realistic search con-
ditions [2,8–10,14,24,27–41]. A special case of the LFFH is
single target search in simplified theoretical settings, which
defines mathematically solvable first passage (FP) and first
arrival (FA) problems [8,42–45]. ‘Passage’ corresponds to
the situation of a biological cruise forager, who can perceive
a target while moving. Thus, a target is found whenever a
cruise searcher “passes” it. A saltatory forager, on the other
hand, does not scan for a target while moving but has to land,
respectively to ‘arrive’ on it, or within a suitable neighborhood
of it, to perceive it after performing a jump [2,33,44,46].
Examples of cruise foragers are large fish, such as tuna and
sharks. Saltatory foraging was observed among smaller fish,
ground foraging birds, lizards and insects [47].

The LFFH created awareness that apart from models re-
lated to classical random walks and Brownian motion, which
yield normal diffusion with Gaussian distributions, more ad-
vanced stochastic processes are available, and needed, in
order to understand data of foraging organisms (see, e.g.,
Refs. [8,9,24,27,34–36] and respective discussions). Most
notably, it motivated the experimental biological foraging
community to look for power laws in data. Over the past
two decades many analyses of foraging data indeed sug-
gested the existence of dynamics governed by power laws
[10,28–31,36]. At the same time, however, evidence accu-
mulated that in many cases questionable data analyses were
performed by checking for Lévy dynamics, partially due to a
lack of full appreciation of the relevant theoretical background
[2,8,9,14,24,27,34,37,40,46,48]. Another fundamental prob-
lem was missing knowledge whether the observed movements
are intrinsic or extrinsic to a forager [7,8], being induced,
say, by the food source distribution or other environmental
conditions [9,12,27,29,46,48,49], which by themselves could
be governed by power laws. The complex interaction between
forager and environment during search defines a topic of more
recent research [20,26,27,38,41,50–55]. A question related to
this is to which extent the optimality of a specific search
strategy as predicted by a given model is robust with respect to
varying parameters of the process and the given environment.

Further, it remains unclear whether this optimality depends on
other details of the search scenario. Along these lines the orig-
inal theoretical results leading to the LFFH [13,25,26] were
critically investigated by limiting their range of application
[2,8,27,33,38,46,48,56–58]. In very recent work they were
eventually largely refuted [37]; however, see Refs. [39,40] for
an associated reply and comment, and also Ref. [38]. We will
come back to these important points at the end of our work in
the light of our new results.

Apart from using simple random walks, classical Brown-
ian motion or Lévy dynamics for modeling foraging, other
theoretical studies considered intermittent motion [2,59], cor-
related random walks [20,60,61], multiscale random walks
[50,57,58], more nontrivial one-dimensional motion [62] and
generalizations of the original [13] LW search model [51,53].
Yet beyond these models, there exist numerous other types of,
in particular, anomalous stochastic processes [15–17,19,63]
which, to our knowledge, have not been assessed for opti-
mising search. One of the most famous and important classes
is fractional Brownian motion (fBm), which was originally
studied by Kolmogorov [64] and Yaglom [65] and has become
more widely known through the work of Mandelbrot and Van
Ness [21]. FBm defines a Gaussian stochastic process gen-
erating anomalous diffusion [43,66–69]. However, while for
non-Gaussian Lévy dynamics anomalous diffusion originates
from sampling power-law distributions, in the case of fBm
it is generated by a power-law correlation function decay in
time yielding non-Markovian dynamics. This enables fBm to
produce the whole spectrum of anomalous diffusion under
parameter variation, from sub- to normal, to superdiffusion.
LWs, on the other hand, are purely superdiffusive. Hence these
two stochastic processes represent fundamentally different
classes of anomalous dynamics. FBm has been widely used
to describe the experimentally observed anomalous diffusion
of a tracer particle in a visco-elastic system [70], in artificially
crowded environments [71–73], in complex intracellular me-
dia [74,75], and in living cells [76]; for a wide range of further
applications of fBm see Ref. [77]. On the other hand, so
far fBm has been rarely used to understand the search by
biological organisms. Motivated by insect motion and other
problems in ecology, the efficiency of search of fBm and LWs
has been compared in computer simulations [78]. In Ref. [32],
nontrivial autocorrelation function decay was observed in
experimental data of bumblebee flights, with the conclusion
that correlation decay is important to characterize biological
search. While both exponential and power-law decay of cor-
relations has been reported for biological cell migration [79],
extracting correlation functions from experimental data has
not been very prominent in the foraging literature. By study-
ing search in fBm we thus further advocate the use of cor-
relation functions, or memory, for understanding biological
foraging. We may also remark that very recently, subdiffusive
search related to fBm has even been studied on the human
proteomic network, as a possible explanation that via protein
expression the COVID-19 virus only attacks a certain subset
of organs [80]. FP problems of fBm on both finite and infinite
domains have been analysed rigorously mathematically [81],
as well as in relation to physical and biological applications
[43,77,82–85]. However, apart from Ref. [78], more complex
search scenarios have not been investigated for fBm.
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B. Scope of this work

In this paper, we compute the efficiency of a searcher
moving by fBm in a two-dimensional array of uniformly
random distributed targets. The target distribution is deter-
mined by the number density and the radius of the circular
targets as two extrinsic parameters. In addition, there are
two parameters that are intrinsic to fBm, the Hurst expo-
nent determining the type of diffusion generated by fBm
and the mean jump length of the process characterising the
strength of the diffusive spreading. Under these conditions,
we consider both cruise and saltaltory foragers (viz. FP and
FA problems) for finding targets. We compare these two
different settings by using two generically different types
of efficiencies. The first one employs an ensemble aver-
age of moving fBm particles for finding one target only,
while the second one is given by the time-ensemble aver-
age of searchers for finding many targets along their whole
trajectories [13,25,26,33,37,44,46,51,53,56–58,61,62]. These
efficiencies are numerically computed under variation of the
two intrinsic parameters of fBm.

In the former case of single target search, we define the set-
ting so that boundaries play no major role. In the latter case of
long trajectories hitting many targets, however, we inevitably
run into the problem of boundary conditions. They are more
than a technicality, as in reality all media in which search may
take place (such as a lake, a forest or living cells) are sur-
rounded by boundaries that the searching element can (or will)
not exceed. In our simulations we model bounded regions by
a box with reflecting boundaries. For foraging we found this
setup more realistic than using periodic boundaries, apart from
the problem that the long time memory in superdiffusive fBm
may lead to questionable effects in combination with periodic
boundaries. Interestingly, recent experimental and theoreti-
cal studies have demonstrated that so-called active particles,
which model self-propelled biological motion [86,87], spend
most of their time close to reflecting boundaries exhibiting
‘stickiness’ to the walls [53,54,87–91]. A similar phenomenon
has recently been reported for superdiffusive fBm [92,93] that
by definition displays strong persistence, similar to self-driven
active Brownian particles. Therefore we explore the interplay
between non-Markovian persistence in fBm and reflecting
boundary conditions in comparison to using periodic ones.
For reflecting boundaries we find very intricate phenomena
determining the success or failure of search.

The main lesson to be learned from our research is that
for fBm we do not observe any universal search optimization
in terms of maximising a search efficiency. On the contrary,
exploring a range of different search scenarios by both varying
parameters and search settings we identify different mech-
anisms determining search success. Boundary effects play
a crucial role for search, which to our knowledge has not
been sufficiently appreciated in previous work. Our studies
demonstrate that search is a very flexible, complex process
that sensitively depends on the interplay between its differ-
ent ingredients. We believe that these findings further open
up the field of biologically inspired search research [5]. In
particular, our work suggests to shift the focus from finding
simple universalities to developing a much broader picture
of search. Within this general framework the LFFH takes its
place as a special case.

Our paper is organized as follows. In Sec. II, we briefly
review the concept of fBm and define our basic search setting
by introducing all relevant model parameters. In Sec. III, we
study FA and FP problems, viz. saltatory and cruise foraging,
of finding only the first target in a field of resources under
variation of both intrinsic parameters. Numerical findings are
explained by a simple analytical argument. Section IV re-
ports results for multitarget search along a trajectory, both
in saltatory (arrival at targets) and cruise (passage through
targets) mode. This is done for finding either replenishing
or nonreplenishing targets, which in this setting becomes a
nontrivial variation. Within this context, the impact of bound-
ary conditions turns out to be crucial, yielding a wealth of
different search mechanisms. In our concluding Sec. V, we
give a coherent overview of all different search scenarios
that we have investigated in our work and the quantities they
depend on by summarising our main results.

II. THE MODEL

In this section, we first review the stochastic process of
fBm by explaining its main characteristics. We then define
our specific search problem by identifying all relevant model
parameters.

A. Fractional Brownian motion

FBm in d dimensions can be generated by the stochastic
equation of motion [21,43,64,65,67]

xH (t ) = BH (t ) (1)

with position xH ∈ Rd at time t , where H ∈ (0, 1) is the Hurst
exponent. Here, xH (t ) holds for a Gaussian stochastic process
with zero mean,

〈xH (t )〉 = 0 , (2)

and position autocorrelation function

〈xH (t )xH (t ′)〉 = dKH (|t |2H + |t ′|2H − |t − t ′|2H ) , (3)

where KH yields a generalized diffusion coefficient [68].
Here we represent d-dimensional fBm by d independent
one-dimensional fBms, i.e., one for each component. Similar
to recent work on two-dimensional Lévy walks [94], other
definitions of two-dimensional fBm may be possible. The
power-law decay of the correlation function makes the process
non-Markovian in terms of a very slow decay of memory with
time. As we will argue below, this memory can be physi-
cally understood in terms of nontrivial position correlation
decay in time within a heat bath in which a particle moving
according to fBm is immersed. Equation (3) results via the
Taylor-Green-Kubo formula in the MSD

〈(xH (t ))2〉 = 2dKHt2H (4)

with α = 2H as the exponent of anomalous diffusion. De-
pending on the value of the Hurst exponent, fBm thus leads to
subdiffusion, H < 1/2, or to superdiffusion, H > 1/2. This
corresponds to antipersistent, respectively persistent motion
of fBm particles, as can be seen from calculating the ve-
locity autocorrelation function of the process [67]. That is,
for H < 1/2 it decays to zero from negative values for long
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FIG. 1. The three generically different types of fractional Brow-
nian motion (fBm) and basic parameters defining our search setup.
The trajectory for Hurst exponent H = 0.25 displays antipersistent
subdiffusive dynamics, the one for H = 0.5 normal diffusion, and the
one for H = 0.75 persistent superdiffusion. An fBm searcher moves
with mean jump length ld in a field of uniformly random distributed
targets of radius Re, which are a mean distance l f apart from each
other.

times reflecting anticorrelations. Topologically this shows up
as trajectories that display a lot of turns, see the example
for H = 0.25 in Fig. 1. In contrast, for H > 1/2 this func-
tion decays to zero from positive values yielding positive
correlations. Accordingly particles move more in one direc-
tion displaying trajectories that are more elongated, see the
example for H = 0.75 in Fig. 1. These two types of corre-
lation function decay have been experimentally observed for
bumblebee flights [32]. In the limiting case of H = 1, fBm
generates ballistic motion with α = 2. For H = 1/2 the cor-
relation function decay Eq. (3) boils down to a delta function,
and one recovers the Markovian Wiener process with normal
diffusion, α = 1; see again Fig. 1 for a third example. Hence
there are three generic cases of fBm dynamics, antipersistent
subdiffusion, normal diffusion and persistent superdiffusion
depending on the value of H as displayed in Fig. 1.

This discussion suggests that fBm is a generalization of
Brownian motion by correlating the position autocorrelation
function. To see this more clearly one rewrites Eq. (1) in the
form of a stochastic differential equation [18,68],

ẋH (t ) = f H (t ) , (5)

where f H (t ) denotes d-dimensional fractional, i.e., power-
law correlated Gaussian noise (fGn) [21,64,65,95]; see
Refs. [43,67–69] for details. Equation (5) can be understood
as an overdamped Langevin equation [43,67]. Within this
framework the left-hand side can be interpreted as a constant
friction term without memory and the right hand side as a
correlated random force. The latter models collisions of a
tracer with heat bath particles that perform dynamics with
power-law memory decay. We remark that related equations
have recently been used as models of active Brownian par-
ticles [96,97]. These particles are self-propelled due to the

fact that by definition, as in Eq. (5), the fluctuation-dissipation
relation is broken [98]. That is, here we only have memory in
the noise but not in the friction [67]. This type of dynamics
has also been applied to model biological cell migration [79].

FBm can be generated numerically by different meth-
ods either (theoretically) exactly [99–101] or approximately
[102–104]. In this work, we obtain fBm from discrete time
fGn using Hosking’s method [99]. According to Eq. (5), the
increments of fBm are then computed by the integral BH (t ) =∫ t

0 f H (t ′)dt ′. In practice, we discretize the motion of an fBm
particle to a series of successive jumps at unit time steps,
t0 = 1. Then the integral breaks down to the discrete sum
BH (t ) � �n

i=1 f H (ti )t0, where ti = it0, t = tn. This means that
such a time-discrete fBm particle performs ballistic jumps
during unit times t0 according to the increments generated
from fGn at time t . The direction of the subsequent ballistic
step is then determined by the next increment of the fGn. The
underlying Hurst parameter controls whether these consecu-
tive steps are positively of negatively correlated. Importantly,
this time-discrete set-up allows us to study both FP and FA
search. In the latter case, a searcher may cross a target without
finding it. This is in contrast to rigorous time-continuous fBm,
where due to the strict self-similarity of the trajectories FP
is identical to FA. Evidently, this self-similarity is absent for
time-discrete trajectories generated at short times t ∼ t0; see
Ref. [78] for a related discussion. We note, however, that in a
suitable scaling limit the time-discrete fBm as defined above
converges to the mathematically exact fBm.

B. Search in a random distribution of targets

In analogy to Ref. [13], we consider the basic setting where
a searcher moves in a plane, d = 2, to find uniformly ran-
dom distributed targets, see again Fig. 1. The motion of the
searcher is obtained from the aforementioned fBm process.
This means that according to Eq. (3), the searcher has a
memory of its past positions. The memory could arise from
extrinsic environmental conditions, for instance when a bi-
ological cell diffuses in a visco-elastic medium where the
diffusing element is part of a larger evolving system [70].
Or, it could be an intrinsic property of a searcher, like inter-
nal memory during a foraging process [7,8,79]. Within our
fBm framework we consider the memory to be intrinsic. In
terms of movement, one may think of memory as generating
persistence or antipersistence between the different steps in
the process. We say the search process exhibits nonrenewal
if the memory lasts during our whole measurement time. If
the memory has a certain duration, i.e., the memory kernel
in an fBM process possesses a cutoff, we say the process
has a renewal. Accordingly, below we may speak of resetting
the process to some initial condition if we truncate it, or
of nonresetting. The cutoff time can be a constant value or
the process can be renewed after visiting a target. The latter
situation was considered in Ref. [13] by truncating a LW upon
hitting a target. This aspect will become important when we
define two different types of search efficiencies further in this
paper.

Within this setting we consider the two different search
modes of cruise and saltatory foraging [2,9,33,44–46,56,57]
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briefly mentioned in Sec. I A. In detail they are defined as
follows.

(1) A cruise forager perceives a target while moving. Ac-
cordingly, whenever a target is passed it is found. The special
problem that a cruise forager detects only the first target yields
mathematically a FP problem [2,25,26,37,45,46,50,62,85].

(2) A saltatory forager cannot find a target while moving.
It has to land on the target after performing a jump, or suffi-
ciently close to it, to find it. After a jump the searcher typically
changes direction. In the case of first target search this can be
formulated as a FA (or hitting) problem [33,38,44,45,56–58].

However, our setting is not yet complete, as we have to
specify how a searcher “perceives” a target. This can be mod-
elled in two ways [2,13,37,46].

(A) We may assign a radius of perception Rp to a searcher.
This means that within Rp it perceives a target with certainty.
In this case, even point targets are found. Here, the perception
radius is a parameter intrinsic to the searcher.

(B) The searcher is blind and only finds a target when
hitting it. In this case, the searcher is reduced to a point
without any perception. It thus can only find targets that have
an extension.

Combining case 1 with cases A and B yields the following
two rules for cruise search [27,44,46].

(1.A) A perceptive cruise forager: If a target intersects with
a tube of radius Rp around the searcher’s trajectory it is found.

(1.B) A blind cruise forager: If the searcher’s trajectory
crosses a target it is found.

For saltatory search we get accordingly [44,46].
(2.A) A perceptive saltatory forager: If after a jump of

duration t0 the target intersects with a circle of perception
radius Rp around the searcher’s position it is found.

(2.B) A blind saltatory forager: If after a jump of duration
t0 the searcher’s position is within a target it is found.

Figure 1 depicts the special case of 1.B. where a blind
cruise forager searches for disks of radius Re. This suggests
that Re defines an extrinsic parameter specifying the environ-
ment. But for circular targets one can scale away either Rp

or Re by combining both parameters. As we have already en-
countered in the case of memory, speaking here of an extrinsic
parameter is consequently ambiguous. These interpretations
thus depend on the specific situation at hand. Consequently,
for disks case 1.A. is mathematically equivalent to 1.B. and
2.A. to 2.B. In the search scenario shown in Fig. 1 we there-
fore only need to distinguish between cruise and saltatory
foraging, cases 1. and 2., which is what we study in the
following.

Our second extrinsic parameter quantifies the density of
targets. We consider the case where N point targets are uni-
formly random distributed in a two-dimensional box of side
length L. This results in a target number density of n = N/L2.
The mean (free flight) distance l f between a point target and
its nearest neighbor is thus calculated to

l f =
√

1

n
; (6)

see Fig. 1 for the pictorial meaning. If not said otherwise,
we choose reflecting boundaries for the simulation box. That
is, when a particle crosses a boundary during a displacement

drawn from fGn, it is specularly reflected back to the bulk.
However, this does not affect its next step governed by the
memory in the fGn. This means we do not “truncate” the tra-
jectory by hitting a wall but keep its memory. An illustration
of this process can be found in the inset of Fig. 6(a).

An important intrinsic length scale determining such a
search process is the mean jump length of a searcher. Note
that this only comes into play because of our choice of time-
discrete fBm thus yielding a slight variation of mathematically
rigorous fBm. If we assume that the trajectory of a searcher
consists of a series of consecutive jumps with time steps t0, cf.
Fig. 1, using the MSD suggests an average displacement of a
searcher during t0 as

ld =
√

〈(xH (t0))2〉 , (7)

which is the standard deviation of fGn, see Eq. (5). By Eq. (4)
one can express ld in terms of the generalized diffusion coef-
ficient KH and the time step t0 as

ld =
√

2dKHt2H
0 . (8)

As mentioned before, in our simulations we set t0 = 1. This
is convenient, since that way in Eq. (8) we decouple ld from
α = 2H . We thus vary ld by varying KH , which in turn de-
pends on the fGn strength f H (t ). While ld relates to the
strength of diffusion, the second intrinsic parameter α, which
we introduced before, determines the type of diffusion. For
our studies, we keep the two extrinsic parameters Re and l f

fixed, which defines a specific search environment. We then
explore the impact of varying the two intrinsic parameters α

and ld on two generic types of foraging efficiencies, which
we define later in the text. However, first we select the basic
environmental regime viz. the properties of the targets that we
focus on in this work in relation to all three length scales Re,
l f and ld introduced above.

The situation of scarce targets is perhaps the most inter-
esting one as it poses the challenge to efficiently locate a
target after many time steps. This regime of target densities
translates geometrically to the condition that the effective
target radius is much smaller than the mean distance between
two point targets, Re 	 l f . This means that after finding a
target, there exists no other target for a searcher within radius
Re. Furthermore, for effectively modeling low target densities,
the mean jump length should be much smaller than the mean
target distance, ld 	 l f . We remark that it is typically assumed
for LWs that ld 	 Re [13,26,37,53]. For all our simulations,
the box size, effective radius and mean target distance were
set to L = 10000, Re = 1, and l f = 40. Instead, we varied the
jump length 0.04 � ld � 24 and 0 < α < 2.

III. EFFICIENCIES FOR FINDING THE FIRST TARGET

In this section, we study the problem of finding only
the first target. For this purpose, we consider an ensemble
of searchers and numerically compute two suitably defined
search efficiencies. We do so under variation of the expo-
nent α = 2H of anomalous diffusion for different mean jump
lengths ld , in the case of both saltatory and cruise foragers.
We explain our numerical results heuristically and by a simple
analytical approximation.
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A. Efficiencies based on inverse mean search times

For finding a single target, a search process consists of
a starting point represented by a respective initial condition
of a searcher and an end point, which is when a target has
been found. For a saltatory searcher, such a search process
is characterized by the mean FA time [33,38,44,45,56–58].
For a cruise searcher, the corresponding quantity is the FP
time [2,8,25,26,37,45,46,50,62,85]. The situation of single
target search applies, for instance, to nonrecurrent chemical
processes, where as soon as a reactant finds a target, the chem-
ical reaction takes place and the search ends [2,10,42,43]. To
simulate this search scenario, we let a searcher start from
a randomly chosen initial position. Note that the choice of
initial condition is nontrivial [20,33,44,45,56–58,62], as we
will discuss in Sec. IV for replenishing targets. When the
searcher finds the first target, the process starts again from
another random initial position. This can be considered as a
resetting procedure, however, as eventually we average over
all initial conditions, in effect this yields an ensemble average
of searchers with respect to random initial conditions. In order
to avoid here, as far as possible, the impact of boundaries on
the results, the initial position is chosen from a small box in
the center of the main simulation box. The size of the box is
such that for a smaller jump length ld the probability that the
searcher will find a target before reaching the boundaries is
very large. For larger ld , however, boundary effects do come
into play, as we discuss below. They will be investigated in
full detail in Sec. IV.

Based on the mean FA (FP) time written as 〈tA/P〉, where
the angular brackets denote an ensemble average over both
random initial conditions of the searcher and different target
positions, we define the corresponding efficiency ηA/P as
[8,10,13,25,37,46,62]

ηA/P = 1

〈tA/P〉 . (9)

For the ensemble average, we considered 105 simulation runs.
After 500 runs, we regenerated the (uniform) distribution of
point targets thereby averaging over this distribution. Since we
can follow trajectories numerically for only finite times, we
set the maximum time for each search process to T = 105t0.
If until then no target was found, we stop the search and use
T for the corresponding trajectory to calculate the average in
Eq. (9). In that sense, modulo small statistical errors we obtain
an upper bound for the efficiency ηA/P. The results of these
simulations for ηA/P under variation of α for different jump
lengths ld are displayed in Fig. 2. Panel (a) depicts the effi-
ciencies calculated using FA times, (b) is for FP times. Each
curve in the figure is normalized with respect to the maximum
value of the efficiency obtained at the corresponding jump
length, i.e.,

η̂A/P = ηA/P

ηmax
A/P

. (10)

The reason for the normalization is that the unnormalized
efficiencies vary over several orders of magnitude with ld ,
see Fig. 3(b) that we discuss afterwards. Figure 2 shows
that for very small jump lengths ld compared to the effective
radius Re = 1 and the mean distance l f = 40, which are both
held constant, the exponent α of anomalous diffusion that

FIG. 2. Normalized efficiencies η̂A/P defined by Eq. (10) for first
arrival and first passage at a target under variation of the exponent α

of the mean square displacement Eq. (4) for different jump lengths
ld . Panel (a) shows the efficiencies η̂A for first arrival, (b) η̂P for first
passage.

optimizes both efficiencies η̂A and η̂P lies in the superdiffusive
regime close to the ballistic limit α = 2. The physical explana-
tion is that a searcher needs to compensate for small values of
ld by performing quasiballistic motion in order to move at all
through in space. If ld increases for both efficiencies, persis-
tent motion close to α = 2 is not optimal anymore for finding
targets. This reflects undersampling, i.e., instead of efficiently
exploring a given area, a persistent searcher with large α,
which performs in addition jumps of large length ld , moves
immediately to another area by starting there its search again
from scratch. However, since it encounters a new random
target distribution in this area, the searcher loses time. This
has two important consequences for both η̂A and η̂P. First, for
larger ld both efficiencies develop a minimum at larger α val-
ues. Second, accordingly a maximum emerges in both η̂A and
η̂P for smaller α. In this region, there appears to be an optimal
interplay between a larger jump length ld and less persistence
in the motion of a searcher leading to more frequent turns,
which compensates for too large jumps by yielding an optimal
scanning of a given area. While this is observed for both FA
and FP, a crucial difference between both foraging modes is
that for large ld , FA exhibits leapovers [33,44,45,56], where a
searcher misses a target by jumping across the target without
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FIG. 3. (a) Fraction of failed tries to find a target within the nu-
merically given time T viz. the survival probability P of first passage
for the targets under variation of α for different ld s. Results for first
arrival are very similar. (b) Unnormalized efficiencies ηA/P, Eq. (9),
for both first arrival and first passage as functions of ld . Shown are
results for three different exponents α of anomalous diffusion as
given by the legend.

landing on it. We will discuss this phenomenon in more detail
in relation to Fig. 3(b). Another observation is that, as ld in-
creases by approaching Re � 1, the optimal exponent α for η̂P

seems to accumulate around α = 1.5, while for η̂A it exhibits a
shift towards the normal diffusive regime around α = 1. This
indicates that for FP, there is a special regime of parameters ld
and α that optimizes search related to the scanning procedure
discussed above. This regime avoids both undersampling for
large α, as well as oversampling [2,20,33,37,46,53,56,59] of
a small region by too many nearby trajectories for small α. In
contrast, for η̂A there is a less pronounced accumulation of the
maximum for larger ld with the peaks shifting and flattening
out. That is, η̂A becomes to some extent independent of α

around α = 1 for larger ld . This suggests that oversampling
for small α is less of a problem for FA processes. which intu-
itively looks plausible, as this search process is characterized
by random points in space and not by the full trajectories. We
call this flattening out of η̂A in α the “paradise” regime, as for
ld � l f /2 the jumps of the searcher become large enough that
it can always find a target irrespective of its persistence if α is
not too large or too small. The factor of 1/2 is due to choosing

random initial positions between two targets. Note that, to
some extent, a paradise regime also exists for FP search at
the largest ld = 24, however, it is not as pronounced as for FA
processes.

For large ld and large α > 1.8, boundary effects come into
play. However, here we argue that they do not play a role
for the results presented in Fig. 2 and their interpretation, as
follows: In Fig. 3(a), we plot the fraction of search processes
that failed for finding a target during the given maximum time
T . Accordingly, this quantity yields the survival probability P,
i.e., the probability of finding no target until time T , which in
a way is an inverse measure of search efficiency. Shown are FP
results for P as a function of α for different ld . But we remark
that P is essentially the same for FA, as it is significantly
different from zero only for small α or small ld , where there
are no leapovers. The most important result of Fig. 3(a) is
the existence of two maxima at small and large α, which
correspond to the respective minima of η̂A/P in Fig. 2. The
family of curves displaying small maxima around α = 2 for
large ld values is indeed due to boundary effects, which will be
explicitly investigated in Sec. IV. In this case, if a searcher hits
the reflecting wall with a large velocity component perpen-
dicular to it, due to the strong persistence in the fBm motion
for large α, it will bounce back and forth off the wall for a
long time. Consequently it is essentially stuck in one area by
the wall, which means that no target may be found anymore.
This effect is worse for smaller ld values, while for larger ld
the searcher can still explore larger areas, which explains why
the small peak around α = 2 decreases for larger ld values.
Note that in any case, the fraction of searchers affected by
this boundary effect is very small [typically much below 5%
for ld > 0.4, cf. Fig. 3(a)]. Therefore this does not explain the
drop-off in the efficiencies in Fig. 2 at larger α values, which
conversely becomes stronger for larger ld values. For small α

values, in most cases of ld the subdiffusive search times are so
long that they go beyond the numerically accessible regime.
However, as explained above, for α < 1 all efficiencies safely
yield at least an upper bound for the exact efficiency values.

Figure 3(b) supplements the analysis of normalized effi-
ciencies η̂A/P presented in Fig. 2 by showing the unnormalized
counterparts ηA/P, here as functions of ld for three different α.
As we mentioned before, both quantities vary over orders of
magnitude. Most notably, ηP increases monotonically close
to a power law in ld [for exponents see Fig. 5(a)], while ηA

saturates for larger ld . The saturation is a consequence of the
leapover phenomenon discussed above, which exists for FA
but not for FP. Indeed, the saturation of ηA sets in around
ld � 2 = 2Re, which matches exactly the condition where a
searcher can jump over the full diameter of a target without
finding it. We also note that ηA seems to decrease slightly for
larger ld , which might be due to further undersampling related
to the leapovers. Furthermore, both efficiencies decrease with
larger α. This is in line with Fig. 2, where it was explained by
undersampling.

B. Comparison to efficiencies for Lévy walks

We now relate these results to previous works on LWs in
which similar search scenarios have been studied [10,13,37].
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FIG. 4. Normalized efficiencies ˆ̃ηA/P based on the normalized
Eq. (11) for first arrival and first passage at a target under variation of
the exponent α of the mean square displacement Eq. (4) for different
jump lengths ld . (a) shows η̂A for first arrival, (b) η̂P for first passage.

As explained before, LWs and fBm define in principle two
fundamentally different stochastic processes. However, in
both cases there are important parameters that govern the
type of diffusive spreading. For fBm, this is the exponent
0 < α < 2 in the correlation function decay Eq. (3), which
determines the MSD Eq. (4). For LWs, in turn, the crucial
quantity defining this process is the distribution P(r) from
which the jump lengths r are sampled randomly at each time
step, which is assumed to follow a power law, P(r) ∝ |r|−μ

with 1 � μ � 3. Via continuous time random walk theory, the
MSD can be calculated for this process, which depends on μ

in a more complicated way [24]. Crucially, for μ = 3, a LW
reproduces normal diffusion, while μ = 1 yields the limit of
ballistic motion. As far as diffusion is concerned, one may
compare the LW parameter regime of 1 � μ � 3 with the
respective parameter regime of 0 � α � 2 for fBm. A basic
difference is that LWs do not generate subdiffusion, hence
there is no matching for 0 � α < 1 in fBm to a corresponding
parameter regime for LWs. However, one may identify qual-
itatively α = 2 with μ = 1 and α = 1 with μ = 3, since in
the case of the former parameter values both processes yield

FIG. 5. (a) Unnormalized efficiency ηP, Eq. (9), for first passage
search as functions of the mean jump length ld computed for different
exponents α of anomalous diffusion. The data corresponding to α =
1.43 and α = 1.66 are multiplied with factors of 5 and 10 for sake of
clarity. Lines indicate power laws of the efficiencies with ηP ∼ l2/α

d

in agreement with Eq. (14). (b) Normalized efficiencies η̂P, Eq. (10),
as functions of the exponent α of anomalous diffusion for different
ld fitted with Eq. (14).

purely ballistic motion, while in the latter case they reproduce
normal (Brownian) diffusion.

It has now been claimed in the literature that for
LWs, a universal exponent around μ = 2 yields an op-
timal efficiency for finding sparsely distributed targets
[10,13,25,26,28,29,61,62]. Intuitively, a LW for μ = 2 suit-
ably combines properties of the two extreme cases of ballistic
and Brownian motion generating trajectories that explore a
given area by avoiding oversampling (too frequent turns), as
well as undersampling (too straight trajectories). However,
this points to our previous argument about the accumulation
of optimal efficiencies around α = 1.5 for fBm with FA for
which we have given an analogous microscopic explanation.
One may thus conclude that, under certain conditions, a search
process that is intermediate between two extreme cases may
indeed optimize search efficiencies. We emphasize, however,
that we see no universality of such exponents for optimising
search, as their values depend very much on the precise con-
ditions of the search problem at hand. For example, our FA
efficiency depicted in Fig. 2 does not exhibit any clear accu-
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mulation of maximal efficiencies around a particular α, and
even for FP this effect is quite washed out. This is fully in line
with the conclusions in Ref. [1] that the optimal exponent μ

for LWs largely depends on scaling, as has been substantiated
in the very recent Refs. [37,40]. For a LW search in more
complex settings, it has been found that while for similar qual-
itative reasons an optimal exponent typically appears to exist,
its value depends on the variation of intrinsic and extrinsic
parameters, as well as the precise topography at hand [51,53].

C. Efficiencies based on mean inverse search times

For calculating search efficiencies, Eq. (9) does not always
yield a sensible definition, as in certain situations (like single
target search on the line by Brownian motion) the mean FA
and/or FP times may diverge [42,56]. Hence, in this case
one would only obtain the trivial result ηA/P = 0. It was thus
proposed to redefine efficiencies by using the different average
[33,56–58]

η̃A/P =
〈

1

tA/P

〉
. (11)

Note that this definition implies a completely different weight-
ing of search times compared to Eq. (9): While long times now
only mildly suppress the value of η̃A/P yielding small inverse
values, the large inverse values for short search times con-
tribute to the efficiency more profoundly. This relates to the
specific properties of the tails of FA and FP time distributions
which, however, are numerically difficult to obtain because of
their extreme statistics. Figure 4 shows simulation results for
the renormalized efficiency ˆ̃ηA/P of both FA and FP searches,
where we set the time for failed processes to infinity. The
data is, as before, for 105 runs with a length of T = 105t0
time steps. By comparing these curves with the ones in Fig. 2
we see, first, that for the efficiency obtained from Eq. (11),
regardless of the jump length, the most efficient way of finding
a target is to perform ballistic motion. We also observe that
by decreasing α the efficiency is decreasing, which for α < 1
reproduces roughly the same trend as in Fig. 2. However,
the new efficiency wipes out any nontrivial dependencies due
to long search times. This means that the decay for large
α is completely gone and correspondingly there is no local
maximum anymore. Note that numerically there is a sharp
drop of ˆ̃ηA/P for α → 0, which is very difficult to resolve com-
putationally due to difficulties with properly capturing very
long search processes, see Fig. 3(a). For practical purposes,
one may thus need to make a sensible choice as to which
definition to use for calculating efficiencies depending on the
situation at hand. We also remark that this example shows very
clearly how profoundly optimality depends on the definition
of efficiency that one employs.

D. Analytical approximation of efficiencies

In view of the non-Markovian nature of fBm and the com-
plexity of two-dimensional multitarget search, providing a
theory for respective FA and FP problems is a nontrivial task
[10,13,26,37–40,85,105]. Here, we outline an extremely sim-
ple, hand-waving argument that analytically reproduces some
of the parameter dependencies for the FP efficiencies as seen

before. We emphasize that this argument has to be handled
with much care, as we discuss in the following subsection,
where we relate it to more substantial, general theories pub-
lished in previous literature [85,105].

We start by simplifying our two-dimensional FP problem
to a one-dimensional setting as follows: We interpret the mean
free distance l f between two targets as the length of a line
between two absorbing boundaries. Let the searcher start the
diffusion process right in the middle of the line. Then it needs
to travel a distance l f /2 towards the left or the right to hit a
target. For estimating the mean FP time, one may now simply
use the MSD of the fBm process given by Eq. (4). Replacing
xH (t ) = l f /2 and solving for time t , we obtain

t =
(

l f

2
√

2Kα

)2/α

. (12)

The generalized diffusion constant Kα can be in turn approxi-
mated to, see Eq. (8) with d = 1,

Kα = l2
d

2tα
0

, (13)

where in our case t0 = 1. We can now calculate the FP effi-
ciency ηP in terms of all relevant parameters by substituting
the FP time in Eq. (9) by the one of Eq. (12) supplemented by
Eq. (13). This yields

ηP �
(√

2ld
l f

)2/α

. (14)

Our simple argument may be understood as a kind of mean-
field approximation, in the sense that we use a single-target
picture to approximate multitarget search in a low density
limit. It should also apply to FA search as long as leapovers
do not dominate, see Fig. 3(b). We test the validity of our
approach by comparing the dependencies of ηP on ld and α

as predicted by Eq. (14) with numerical data.
Figure 5(a) shows the unnormalized efficiency ηP as a

function of the mean jump length ld for different exponents α

of anomalous diffusion [compare with Fig. 3(b)]. While due to
the simplicity of the theoretical argument we may not expect
a full quantitative matching between data and approximation,
at least the power-law dependence of ηP with ld for different α

is reproduced surprisingly well. Note that for large α we have
restricted our fit region to smaller ld , as we may not expect our
theory to capture the effect of undersampling. For smaller α,
we need to go to larger ld due to the otherwise high percentage
of failed searches, see Fig. 3(a). We did not include results for
α < 0.91, as here the efficiencies become so small that they
are difficult to compute numerically, cf. again Fig. 3(a) and
our respective diuscussion. Figure 5(b) displays results for the
normalized efficiency η̂P as a function of α for different ld
[selected range of data from Fig. 2(b)]. The fits have been
adjusted to an intermediate region of α values, as for small
α the data is not reliable due to many failed searches, see
Fig. 3(a), which yields insufficient statistics to check for fine
details. For larger α we may not expect Eq. (14) to reproduce
the nonmonotonic dependencies of η̂P due to undersampling,
see in Fig. 2(b). Again, in this intermediate regime our hand-
waving theory predicting an exponential dependence on 2/α

works surprisingly well.

023169-9



KHADEM, KLAPP, AND KLAGES PHYSICAL REVIEW RESEARCH 3, 023169 (2021)

E. Relation between our approximation and other results for
mean first passage times

Here, we first show that our simple approximation Eq. (14)
forms a special case of a much more advanced theory for
calculating mean FP times of fBm [85]. This theory, on the
other hand, is recovered within the framework of a more
general theory [105] which, if applied to our particular setting,
indicates important limits of validity of our approach.

The first layer of embedding is provided by the theory of
Guérin et al. [85], who derived analytical results for the mean
FP time 〈tP〉 of compact (as explained below) non-Markovian
random walkers for finding a single target in a d-dimensional
volume V confined by reflecting boundaries. By applying
a generalized form of a renewal equation, for fBm in one
dimension the mean FP time was calculated to

〈tP〉 = V βH

x0

(
x0√
KH

)1/H

, (15)

where x0 is the initial condition of the searcher with a target
at position x = 0. The constant βH is a nontrivial quantity
that captures the non-Markovianity of the process and can
only be computed numerically [85]. Comparing our trivial
formula Eq. (12) with Eq. (15), one can see that the former
yields the same dependence of the mean FP time on KH as the
latter. Furthermore, replacing x0 = l f /2 in Eq. (15) according
to our simplified assumption, as well as using V = l f for
our one-dimensional setting, for the FP time in Eq. (12) we
obtain exactly the same scaling with l f as in Eq. (15). To what
extent the scaling of the FP time with α for fixed Kα and l f

is reproduced is not so clear, as in detail this depends on βH .
The relation between Eqs. (12) and (15) also explains why our
analytical approximation cannot be applied to the efficiency
definition Eq. (11). We thus conclude that our approximation
Eq. (12) corresponds to a simplified version of Eq. (15) if
strictly constrained to one dimension.

A more general theory for calculating mean FP times
of non-Markovian scale-invariant, aging diffusion processes,
which includes the one of Ref. [85] as a special case, was
developed by Levernier et al. [105]. A crucial feature of
this theory is to distinguish between compact and noncom-
pact stochastic processes, as these two cases lead to different
formulas for the corresponding mean FP times. Compact-
ness (or recurrence) means that a process comes back to
its starting point with probability one while noncompactness
(or transience) implies the opposite [42,43,106,107]. Conse-
quently, this mathematical property intimately relates to what
before we called oversampling, respectively undersampling.
For nonageing dynamics [105], a simple criterion for com-
pactness is derived from the walk dimension dw of a stochastic
process, defined by 〈x2(t )〉 ∼ t2/dw (t → ∞) [43,105,107]. If
dw is greater than the dimension d of the embedding space of
the walk, dw > d , a process is called compact. Conversely,
noncompactness means dw < d; the case dw = d is called
marginal [43,106,107]. For fBm with dw = 1/H , cf. Eq.(4),
we thus have that in dimension d = 1 it is compact for all
0 < H < 1. Hence, strictly speaking Eqs. (12) and (15) only
hold for compact one-dimensional fBm.

In higher dimensions, the theoretical results for mean FP
times of both Refs. [85,105] are in many respects much

more complicated. For the particular case of fBm in d = 2
dimensions, the above definition yields that fBm is compact
for H < 1/2 while for H > 1/2 it is noncompact. This is
reflected in different formulas for 〈tP〉 in both regimes [105].
By using the notation of Ref. [105] (see the results in Tables
I and II therein), let R denote the confining domain size, r the
distance the walker starts from a target and a the target size.
Working in the limits R � 1 and a 	 r, it was shown that for
compact fBm in d dimensions

〈tP〉 ∼ Rd r1/H−d , (16)

while in the noncompact case

〈tP〉 ∼ Rd a1/H−d . (17)

Let us now assume that R = l f and r = l f /2, as in our
approximation, and in our setting we have a = 2Re. For one-
dimensional (compact) fBm, the scaling of 〈tP〉 ∼ l1/H

f is
then recovered from Eq. (16), in agreement with the one-
dimensional fBm results Eqs. (12) and (15). The very same
scaling holds for d = 2 but only in the compact case of H <

1/2 while for H > 1/2 Eq. (17) leads to 〈tP〉 ∼ (l f /Re)d R1/H
e .

For two-dimensional fBm the theory of Ref. [105] thus pre-
dicts different laws for 〈tP〉 in the compact and noncompact
regimes. In contrast, our numerical results Fig. 5(b) display a
smooth transition around H = 1/2 viz. α = 1 under variation
of α, well fitted by the single formula Eq. (12) that according
to the above theory should only hold for H < 1/2 in one
dimension.

These seemingly different facts can be reconciled as fol-
lows. References [85,105] consider the case of a walker
starting at a given initial condition that searches for a single
target at another given position. In contrast, we reported re-
sults for finding one out of many randomly distributed targets
by averaging over random initial conditions of the searcher.
In our approximation, this is roughly captured by assuming
R = l f and r = l f /2 (see above). But these two particular as-
sumptions cancel out the dimensionality dependence d in the
compact case Eq. (16). Hence, the respective one-dimensional
result carries over to two dimensions, which in turn is what
we assumed for our approximation. We also note that both
Eqs. (16) and (17) are proportionalities (up to a prefactor
independent of geometric parameters) yielding no information
about the generalized diffusion coefficient KH and the associ-
ated jump length ld that we varied. Finally, for our choice of
fixed parameters we have a = 2Re = 2, while r = l f /2 = 20,
which does not quite match to the condition a 	 r underlying
the derivation of both Eqs. (16) and (17), nor do we necessar-
ily work at low densities of targets. In that respect the theory
developed in Ref. [105] describes a different asymptotic pa-
rameter regime compared to our setting. We thus argue that
it cannot be applied directly to understand the transition in
the efficiency around α = 1 displayed in Fig. 5(b). To explain
in further detail why for our data the transition in α looks
smooth and is reproduced by the formula that according to
Eqs. (16) and (17) should only hold for the compact regime
thus remains an interesting open question.

In view of the above theoretical results it becomes clear,
however, that in more general situations our simple approx-
imation Eq. (12) can only be of rather limited validity.
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Typically, the dimensionality dependence of 〈tP〉 will not can-
cel out, and one may thus not trivially extrapolate a result for
one to higher dimensions; see Refs. [37,39,40] for an analo-
gous discussion in the case of LWs. Exactly for that reason
we expect Eq. (12) to be wrong under variation of l f . To study
the dependence of 〈tP〉 on the density of targets hence yields
another interesting problem for further study. While thus there
remain challenging open questions, we see no contradiction
between neither our numerical results nor our hand-waving
approximation and the theories developed in Refs. [85,105].

IV. EFFICIENCIES FOR SUBSEQUENTLY FINDING
MANY TARGETS

We now study the problem of a searcher that, without re-
setting, finds many targets during one run. First we introduce
the basic framework of this search problem by defining a suit-
ably adapted search efficiency. This type of search very much
depends on details of the environment, in particular properties
of the target and boundary conditions. We first explore the
search for targets in the bulk, here both replenishing and
nonreplenishing resources, before we investigate the impact
of boundary conditions on finding replenishing targets. The
latter case establishes a cross-link to the very recent field of
active particles.

A. Multitarget search along a trajectory

In numerous realistic situations, such as recurrent chemical
reactions or animals looking for food [2,8,10,43] many targets
need to be found by a single searcher. Compared to the search
problem of Sec. III, one may call this scenario nonresetting, as
here a searcher consumes targets along a single path generated
by its continuous movements in time. In Sec. III, efficiencies
were calculated by the inverse of FA and FP times, which in
turn were defined as ensemble averages over many searchers
starting at different initial conditions, see Eq. (9). In order to
adequately describe multitarget search along a trajectory, one
replaces this average by a combined time-ensemble average
as follows. First one counts the number N of targets that
have been visited along a trajectory during a given time T
[8,10,13,37,46,51,61,62]. The fraction T/N then yields the
time average for finding N targets along the trajectory of a
searcher. This is easily seen by < t >= 1/N

∑N−1
k=0 (Tk+1 −

Tk ), where T0 = 0 is the initial time and Tk the time to find the
kth target. For large N , we can neglect (T − TN )/(N + 1) and
have < t >� T/N . If not said otherwise, for the following
results we fix T = 106. Since for this finite search time the
outcome may still depend on the specific path of the searcher,
in addition we average over an ensemble of searchers start-
ing at random initial positions. And we typically choose 104

simulation runs. In analogy to Eq. (9), an adequate definition
of efficiency is then obtained by [8,37,51,61,62]

η∗
A/P = 〈NA/P〉

T
. (18)

As before, the angular brackets denote the average over an
ensemble of searchers starting at random initial positions, here
with respect to the number NA/P of targets found during the to-
tal time T while arriving (A) at or passing (P) through targets.

It is trivially clear that the above equation gives nothing else
than the inverse of the combined time-ensemble average for
the average time 〈TA/P〉 = T/〈NA/P〉 along a path.

In analogy to Sec. III, in what follows we numerically
investigate this search situation for both saltatory and cruise
searchers, viz. arrival at and passage through targets, by vary-
ing the exponent α of anomalous diffusion. We do so for
the same fixed extrinsic parameters L, Re, l f as before, cf.
Sec. II, by choosing different jump lengths ld . The key quan-
tity to compute is again the efficiency, in this case defined
by Eq. (18). However, in contrast to first target search, for
consecutively finding many targets one needs to distinguish
between two different types of resources [8,10,13,37,51,60].

(1) Nondestructive, or replenishing targets. After a target
is visited by a searcher, it remains intact and can be revisited.
Typically, such a target is modelled as a replenishing resource,
i.e., it reappears either when a certain delay time has passed
after its consumption [26], or after the searcher has passed a
certain cutoff distance away from it [27,37]. This prevents the
searcher from artificially consuming the same target over and
over again. For our subsequent studies, we choose a cutoff
distance of dc = 2Re = 2.

(2) Destructive, or nonreplenishing targets [53,61]. After
being visited by a searcher the target disappears forever.

These two extrinsic environmental conditions for
the targets define completely different search scenarios
[10,13,37,60]. An additional crucial complication that we will
explore in detail is the interplay between these two different
target types and the boundary conditions.

B. Replenishing and nonreplenishing targets in the bulk

We start by investigating the situation of replenishing target
search in the bulk, i.e., without elaborating on the impact of
boundaries. Figure 6 shows simulation results for the effi-
ciencies η∗

A/P, Eq. (18), of both arrival (a) at and passage (b)
through replenishing targets under variation of the exponent α

of anomalous diffusion for different jump lengths ld . We see
that for the smallest ld = 0.04, in both cases, ballistic motion
outperforms any other type of motion, in analogy to Fig. 2.
The physical explanation is the same as for Fig. 2. A large α

needs to compensate for a small ld for the searcher to move
anywhere. Furthermore, if a target is found, for small jump
lengths the cutoff distance dc translates into long delay times
before the visited target reappears. Hence, the return time to
revisit the same target is very long, which explains why effi-
ciencies are close to zero in the subdiffusive regime of α < 1,
where returns dominate the search due to antipersistence in
fBm. This particular type of return dynamics, which we call
the revisiting target mechanism, will subsequently become
very important. Note that not any subdiffusive dynamics is
characterized by returns. A counterexample is a continuous
time random walk, where subdiffusion originates from power-
law waiting times at a given position [15]. This dynamic
should thus yield very different search efficiencies compared
to fBm.

For the slightly larger jump length ld = 0.4, the region of
maximal values of the two efficiency curves widens a bit by
including slightly smaller α values. One may speculate that,
as in Fig. 2, the maximal efficiency now starts to shift to
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FIG. 6. Efficiencies η∗
A/P defined by Eq. (18) for arrival (A) at

and passage (P) through replenishing targets along the trajectory of
a searcher during a given time T under variation of the exponent α

of the mean square displacement Eq. (4) for different jump lengths
ld . (a) shows the efficiencies η∗

A for arrival (saltatory) and (b) η∗
P for

passage (cruise) search. The inset in (a) illustrates our definition of
reflecting boundaries. It shows a corner of the wall confining the sim-
ulation box. The black line with the arrows represents the trajectory
of an fBm particle that has hit the wall at least once already. The blue
dotted lines depict how it would continue without the presence of
the wall. The red dotted line indicates how the particle is specularly
reflected at the wall. For a particle with persistence, this leads to the
phenomenon of “stickiness” at the wall. The grey disks are scatterers,
as in Fig. 1.

smaller α values due to undersampling around α = 2. Overall,
both efficiencies are getting larger for all α values. That this
happens in the region of α < 1 can again be explained by
the revisiting target mechanism described above. Notably, for
larger ld it now switches from slowing down search to en-
hancing it, because the searcher leaves the target more quickly
after finding it, leading it to replenish quickly. However, due
to the antipersistence of fBm, for α < 1, the searcher more
frequently returns to the same target. Hence, by increasing

ld subdiffusive dynamics yields a new important search strat-
egy for exploiting replenishing targets. That subdiffusion can
enhance search success has also been reported for a very dif-
ferent search setting in Ref. [82]. Very recently, by analyzing
experimental data it has been found that subdiffusion ade-
quately describes the area-restricted search of avian predators
[41].

For the next largest jump length ld = 1, instead of the
maximum around α = 2 further shifting to smaller α values
as in Fig. 2, there is a dramatic increase of both efficiencies
towards α = 2 again, which is in sharp contrast to the first
target search. We will argue in the next Sec. IV C that this
is due to an interplay between persistence in fBm and the
reflecting boundaries that we have chosen. However, as this is
a highly nontrivial problem by itself, we now primarily focus
on α < 1.5 where searchers typically do not hit the bound-
aries and bulk dynamics dominates the search. Here, both
efficiency curves further increase by increasing ld compared
to the two previous smaller jump lengths by flattening out up
to α < 1.5. This increase may again be explained by smaller
delay times for a visited target to reappear when ld is getting
larger, which enables normal and sub-diffusive search to more
strongly contribute to search success due to the revisiting
target mechanism. Note that at the smallest α values the search
times become very large and have to be numerically truncated,
cf. Fig. 3(a) and our respective discussion. Hence, beyond the
numerically supported general trend to small efficiencies, we
cannot resolve whether the shown fluctuations are due to sta-
tistical errors or hint at more subtle local nonmonotonicities.

If we further increase the jump length to ld > 1, we obtain
two different families of efficiencies for arrival compared to
passage search for all α values. This is because of the onset
of leapovers for arrival search as discussed in Sec. III, see
particularly Fig. 3(b). That is, while η∗

A generally starts to
slightly decrease for all α by increasing ld , in line with our
results for first target search in Fig. 3(b), η∗

P generally keeps
slightly increasing with ld until a quite perfect plateau region
has been reached for α < 1.5 up to the largest ld considered
here. It is intuitively clear that for passage search, a larger ld
should generally increase the search efficiency unless there
are other effects mitigating this mechanism.

Remarkably, we observe two rather spectacular transitions
at the largest α values, from maximal efficiencies for ld < 1
to minimal values for ld > 1, and then the reverse between
ld = 2.8 and ld = 4. This happens for both arrival and pas-
sage search and thus cannot be attributed to the onset of
leapovers as discussed above. In the following section, we
will argue that these two transitions are again subtle boundary
effects. Correspondingly, for 1 < ld < 2.8 now nonballistic
search with α < 1.5 yields the largest efficiencies for both
passage and arrival search. This can be understood again by
the revisting target mechanism introduced above. We argue
that, surprisingly, subdiffusive search maximizes our search
efficiencies within this ld parameter regime, cf. again Ref. [82]
for related results.

Figure 7 demonstrates that this mechanism provides indeed
the correct explanation. Similar to Fig. 6, it displays results for
both efficiencies η∗

A and η∗
P as functions of α, here for the two

particular jump lengths ld = 1, 2. However, in this case, we
have nonreplenishing targets that are destroyed after a visit,
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FIG. 7. Efficiencies η∗
A/P defined by Eq. (18) for arrival (A) at and

passage (P) through nonreplenishing targets along the trajectory of a
searcher during a given time T . Shown are results under variation
of the exponent α of the mean square displacement Eq. (4) for two
different jump lengths ld .

hence the revisiting target mechanism cannot contribute to
search success anymore. Note that the y-axis for the values
of the efficiencies is scaled by a factor of 10−6, in sharp
contrast to Fig. 6 where the scale is 10−3. Overall, both search
efficiencies are diminuished dramatically in the case of non-
replenishing targets. In the subdiffusive regime of α < 1, the
efficiencies are indeed close to zero, which confirms the im-
portance of the revisiting target mechanism. We furthermore
observe, at least with respect to two values of ld , that both
efficiencies decrease for all α by increasing ld > 1. While for
arrival this is in line with Figs. 6(a) and 3(b) due to the onset of
leapovers, for passage this is exactly the opposite to Fig. 6(b).
One may speculate that this reflects some interplay between
the periodic boundaries and FP search. However, based on
only two curves more detailed conclusions cannot be drawn
and remain open for further research. The existence of local
maxima in 1 < α < 1.5 viz. the suppression of efficiencies for
α → 2 reflects again boundary effects, as will be explained in
the next section.

C. Replenishing targets and boundary conditions

We now explain the two transitions between maxima and
minima around α = 2 in both η∗

A and η∗
P shown in Fig. 6 to

which we referred in passing above. In the strongly superdif-
fusive, quasi-ballistic regime of α > 1.5, a searcher quickly
approaches the boundaries of the system. But since we have
chosen reflective walls, the searcher is thrown back into the
bulk after hitting a boundary. However, since for α > 1.5 fBm
displays strong persistence in the motion, the searcher will
immediately move back to the wall by getting reflected again,
and so on. This microscopic mechanism is illustrated in the
inset of Fig. 6(a). It leads to the phenomenon of stickiness to
the wall, see the blue trajectory in Fig. 8, recently investigated
for fBm in Refs. [92,93]. This is more widely known for

FIG. 8. Three examples of trajectories of a searcher moving ac-
cording to fBm with exponents of anomalous diffusion α = 0.49
(green), 1.2 (red), and 1.8 (blue) in a medium containing uniformly
distributed point targets. The jump length is ld = 4, the total iteration
time T = 106. All the other parameters are as explained in Sec. II.

active Brownian particles that by definition of activity exhibit
persistence in their motion [53,54,87–91]. In more detail,
when hitting the wall one can decompose the velocity of a
searcher into a component parallel and one perpendicular to
it. Since the probability that a searcher hits the wall strictly
perpendicular to it is zero (with respect to Lebesgue mea-
sure in angular space), there will always be a component of
the velocity parallel to the wall. Typically, an fBm searcher
will thus for a long time move along the wall by displaying
zigzag quasi-one-dimensional quasiballistic creeps. These are
constrained to a boundary layer of an approximate width ld ,
which defines a crucial boundary length scale. However, on
top of that, two further length scales come into play, governing
the search process in this boundary layer. The second one
is the effective (perception) radius Re = 1, which defines the
relevant parameter for first finding a target. If a searcher is
moving in a boundary layer of width ld in which there are
randomly distributed (point) targets, the efficiency for finding
targets will be best if approximately ld � Re, where Re can
alternatively be interpreted as determining the average exten-
sion of a circular target, cf. Sec. II. We call this maximization
of efficiency the pac-man effect, in analogy to an old computer
game where a searcher subsequently eats targets by moving
along channels in a maze, as this channeling helps to locate
targets by increasing the search efficiency; see again the blue
colored regions at the boundaries in Fig. 8. However, once
ld > Re, the ld boundary layer is getting too wide compared
with Re, and the searcher starts to miss targets. This explains
the breakdown of the maximum at α = 2 from ld = 1 to
ld = 1.24 by a breakdown of the pac-man effect. Note that
for ld � Re, the pac-man effect equally applies to arrival and
passage search, which elucidates why here the maxima are
very similar for both efficiencies (for ld = 1 the maxima look
even identical). However, this mechanism does not clarify
why the maxima when ld � 1 become minima for 1 < ld < 4.

However, there is a third length scale that plays a crucial
role at the boundary, which is the cutoff distance dc = 2
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specific to replenishing targets. If we now consider the motion
approximately perpendicular to the wall, a searcher must leave
a target region of approximately 2dc = 4 before the target can
replenish. However, this defines yet another boundary layer
of respective width that a searcher should leave as quickly
as possible to benefit from the revisiting target mechanism,
here induced by antipersistence due to the reflecting bound-
aries. Indeed, a target will not replenish at all for a searcher
bouncing multiple times perpendicularly to the wall with jump
length ld < 4. We call this the bouncing fly effect, as this is
similar to a fly hitting a window many times, sometimes at
almost the same spot, by trying to escape. While this effect
is always present when ld < 4, for ld < 1, it seems to be
dominated by the above pac-man effect. However, as pac-man
breaks down for ld > 1, our explanation of the minimum at
α = 2 for 1 < ld < 4 is that here a searcher moves in a bound-
ary layer that is deficient for revisiting target search induced
by antipersistence due to the reflecting boundaries.

This effect minimising efficiencies breaks down again
when ld > 4, as then for the first time a searcher can jump
over a distance larger than the cutoff replenishing target re-
gion. This now reactivates the revisiting target mechanism
as a beneficient search strategy since during a jump, a target
replenishes and is available again to be found. This explains
why for ld = 4, we have again maximal efficiencies at α = 2.
In the transition from smaller to larger α values at ld = 4, there
even appears to be a slight minimum around α � 1.7 in η∗

P
while, conversely, the corresponding efficiency for FP search
in Fig. 2(b) is rather maximal in the same parameter region.
This demonstrates again the sensitivity of optimal search on
the variation of both internal and external parameters of the
whole process.

Similarly, the minima in Fig. 7 for the ld = 1 curves around
α = 2 can be explained. Since in this case the targets are
nonreplenishing, the boundary layer of width ld will become
depleted of targets, which is detrimental to repeated pac-man
search success by generating very small efficiencies. Minima
for ld = 2 around α = 2 existed before already in both Figs. 6
and 7, and there is no other mechanism in place that could
yield any larger efficiency here.

Finally, to confirm the impact of the boundary conditions
on the efficiencies, Fig. 9 shows again η∗

A/P for reflecting
boundaries, cf. η∗

A/P at ld = 1, 2 in Fig. 6, in comparison to
the ones for periodic boundaries. One can see that the periodic
boundary conditions eliminate the maxima and minima at
α = 2 in all cases. This unambiguously demonstrates that all
these extrema are indeed due to boundary effects, as argued
above. We furthermore remark that while for passage search
ballistic motion with α = 2 now yields optimal efficiencies for
replenishing targets in Fig. 9(b) (if we neglect the fluctuations
at small α values), this is not the case for arrival processes with
ld = 2. This might be due to leapovers that become stronger
for larger α values.

V. SUMMARY AND CONCLUSIONS

In this work, we studied the efficiency of search generated
by fBm in a random field of targets. In more general terms
we explored the sensitivity of search succes on the specific
setting and the parameters defining the search process, the

FIG. 9. Efficiencies η∗
A/P defined by Eq. (18) for saltatory (arrival

at targets) (a) and cruise (passage through targets) (b) search of
replenishing resources along the trajectory of a searcher during a
given time T . Shown are results under variation of the exponent α of
the mean square displacement Eq. (4) for two different jump lengths
ld for both periodic (PBC; black symbols) and reflecting boundary
conditions (RBC; colored symbols).

environment and the interaction of both with each other. That
way our essentially computational study suggests a conceptual
framework that should apply to any theoretical description
of a respective search problem, irrespective of whether one
considers fBm, LWs or other types of motion. Figure 10 iden-
tifies important ingredients on which such a generic search
setting depends. They can be broadly classified as intrinsic
to a searcher by characterising its dynamics, or extrinsic to
it by defining the search environment [7,8]. The results also
depend on the quantity by which search success is assessed
in terms of statistical analysis [33]. For fBm we have inves-
tigated all of the conditions marked by (black) stars, as we
will briefly summarize below by going through this figure.
We emphasize that the picture put forward in Fig. 10 provides
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FIG. 10. Search is a complex process. This diagram categorizes conditions on which search success depends. Some of them are intrinsic
to the searcher by determining its modes of motion and target detection. Some of them are extrinsic to the searcher by characterising the
search environment and the type of target. Yet others are specific to the statistical analysis of the problem in terms of how to assess chosen
observables. Black stars mark properties investigated in this paper for fractional Brownian motion. Red crosses indicate the search scenario on
which the Lévy flight foraging hypothesis is based.

only a first sketch, which invites to be amended in future
research.

The given properties of the searcher (light blue box to
the left and associated tree structure in Fig. 10) define a key
aspect of search. For search dynamics one needs to distinguish
between the motion of the searcher and its associated modes
of target detection. In our case, the motion was stochastic
and governed by the two intrinsic parameters defining fBm,
the jump length ld Eq. (8) and the exponent α of the mean
square displacement Eq. (4). The latter determines in turn
the memory of the process via the position autocorrelation
function decay Eq. (3). In case of intermittent search, one has
a separation of the search dynamics into local exploitation and
long-range exploration [20,50]. Concerning target detection,
one distinguishes between cruise searchers that perceive a tar-
get while moving and saltatory foragers that only find targets
after landing within the perception radius Re next to it [46].
The former relate mathematically to (first) passage problems
of finding a target while the latter are (first) arrival, or (first)
hitting problems [44]. Yet another distinction is whether one
looks at the problem of finding only one target, which we
modelled by a resetting procedure of the searcher to a random
initial position, or many of them along a single trajectory,
which we denoted as nonresetting after visiting a target.

These properties in turn determine how a search process
is assessed by evaluating observables (turquoise box at the
bottom in Fig. 10). Here we defined two generically different
efficiencies depending on the statistical averaging applied,
see Eqs. (9) [13], respectively (18) [61]. The averaging was
even obtained in a third way leading to yet another type of

efficiency, see Eq. (11) [33]. We found that for non-Markovian
processes with memory these three definitions yield very
different values. Recent results showed that for LWs the di-
mensionality of the search process plays a crucial role for
determining the values of efficiencies [37], which however we
did not explore in this work.

The search environment (green-grey box at the top) we
modelled by a disordered, i.e., uniformly random distribution
of homogeneous targets in the plane. Computer simulations
are constrained to a finite area or volume determined by the
length of the simulation box L as an extrinsic parameter.
This quantity becomes a nontrivial parameter when an fBm
searcher interacts with the walls of the system depending on
the boundary conditions [92]. Here we considered primarily
reflecting boundaries but compared some of our results to the
situation of periodic ones. In some works, the impact of drift
on (Lévy flight) search has been investigated [33,56].

As targets (red-brown box to the right) we chose disks of
radius Re, see Sec. II B, with a density measured by the mean
target distance l f Eq. (6), which yields another two extrinsic
parameters. As explained before, Re can be reinterpreted as
the radius of perception of a searcher for finding point targets,
hence it is ambiguous to categorize it as an intrinsic or extrin-
sic parameter. The disks were immobile, and we had many of
them. One also needs to choose the type of resource [13]. A
target may be nondestructive in the sense that it replenishes
after having been found, or it is destroyed upon finding it
and does not replenish. In the former case, one needs to
introduce another extrinsic parameter, which in our case was
the cutoff distance dc the searcher has to be away from the
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target after having found it, in order for it to replenish [37], see
Sec. IV.

We performed computer simulations to study the depen-
dence of our three different search efficiencies on the above
two intrinsic parameters by keeping the three extrinsic ones
fixed. We also tested the impact of the boundary conditions.
Our main results are summarized as follows.

(1) For FA and FP search in a replenishing field of targets,
we observe the existence of maxima in both search efficiencies
for intermediate α values, 0.5 < α < 1.7, see Fig. 2. The max-
ima are especially sharp in this regime if Re � ld 	 l f , and for
FP with Re < ld < l f they accumulate around α � 1.5. The
latter seems to reflect an optimal sampling of the target space
in-between over- and undersampling.

Similar results have been reported for FP search by LWs
leading to the LFFH, i.e., that search strategies right between
ballistic dynamics and normal diffusion are optimal to find
sparse, replenishing targets in bounded domains [13]. The
specific search scenario yielding the LFFH is marked by red
stars in Fig. 10. It is thus recovered as a special case in our
overarching conceptual framework.

(2) For FA search, we encounter a paradise regime when
the jump length starts to exceed the mean target distance,
Re 	 ld � l f . In this case, ld is large enough for the searcher
to always find a target. This is essentially independent of
the persistence in fBm if α is not too large or too small. In
Fig. 2(a), this is represented by the efficiency curve flattening
out, which implies that targets are found with maximal effi-
ciency over a wide range of α values, 0.5 < α < 1.5.

(3) In contrast to FP problems, FA processes exhibit
leapovers when ld � Re, that is, a searcher can jump over a
target without finding it [33]. This mechanism diminuishes
search efficiencies, as is clearly seen in Fig. 4(b) for FP com-
pared to FA, and also in Fig. 7 by comparing the efficiencies
for arrival (saltatory) search to the ones for passage (cruise)
search under variation of ld .

(4) Optimising search by maximising efficiencies depends
very much on the definition of efficiency that one chooses.
This is demonstrated in Figs. 2, 6, and 7, which display results
for the three different efficiency definitions Eqs. (9), (11),
and (18), respectively. One can see that these three different
efficiencies yield totally different results.

(5) We put forward a very simple analytical argument,
which may be considered as a boiled-down version of the
theory in Ref. [85], that analytically reproduced the functional
forms of the FP efficiencies under variation of ld and α,
respectively, see Fig. 5.

(6) Subdiffusion can optimize search efficiencies for mul-
titarget search along a trajectory of both arrival and passage
processes in an area with reflecting boundaries when Re <

ld 	 l f , see Fig. 6. This is due to a revisiting target mech-
anism, which in turn is generated by the antipersistence in
fBm for α < 1 [82]. The mechanism also holds for arrival
processes under periodic boundary conditions in this regime
of ld as shown in Fig. 9(a).

(7) Reflecting boundaries can generate very intricate
memory effects in search governed by fBm [92]. This is rep-
resented by multiple transitions between maxima and minima
in the efficiencies of multitarget search along a path for both
arrival and passage processes, cf. again Fig. 6 for α > 1.5.

We explained these variations microscopically by what we
called pac-man and bouncing fly effects. There is a cross-
link between these effects and the well-known stickiness of
active particles to walls due to self-driven persistent motion
[87].

We conclude that a seemingly simple problem of stochastic
search in a random distribution of targets delivered highly
nontrivial numerical results. Search turned out to be an
extremely sensitive process, exhibiting all signatures of a
complex system, where the whole is more than the sum of its
single parts. Testing different search scenarios by differently
combining search process, environment and their interaction
with each other yielded entirely different results for respective
search efficiencies, as is reflected in a high sensitivity of all
results on variation of model parameters. A somewhat re-
lated sensitivity was already observed in foraging experiments
[32,41]. Our simulation results are thus in sharp contrast to
claims of robust, universal optimal search strategies suggested
by the LFFH and reported verifications of it by experiments
conducted in the wild [10]. They are, however, fully in line
with recent work limiting the range of validity of the LFFH
[37,40] by re-evaluating the theoretical model underpinning
it. While here we did not investigate LWs, for the LW search
that led to the LFFH the general framework is the same as
the one summarized in Fig. 10. The specific search situation
that applies to the LFFH does have its place in this figure,
but it only defines a small subset in it, as marked by the (red)
crosses. We believe that this gives proper credit to the LFFH
by adequately embedding it into a more general framework.
For a similar search setting, we have found that maximizations
of search efficiencies for fBm are not robust under variation
of the search conditions and are thus not universally valid. In
Refs. [37,40] it was shown that the same holds to quite some
extent for LWs.

In this work, we explored how search by fBm depends
on the variation of a large number of important conditions
defining a specific search scenario. Our main results summa-
rized above, in combination with Fig. 10, reveal the need to
investigate further search scenarios on a case by case basis.
The most straightforward extension would be to study search
under variation of the three external parameters of our model,
which deliberately we kept fixed, i.e., the target size Re, the
density of targets governed by l f , and the cutoff distance
for the replenishing of targets dc. While we believe that we
have identified generic boundary effects in our work, check-
ing for their robustness under parameter variation would be
interesting. More complicated problems would be search for
moving targets, as studied to some extent already in Ref. [4].
Biologically, one might be interested in search restricted to
the home range of a forager [108], and investigating swarms
of searchers is important for robotic applications [109]. We
furthermore remark that stochastic dynamics with persistence
became very prominent as models for active Brownian par-
ticles reproducing self-propelled biological motion [96,97].
Within the latter context, it might be interesting to study
biologically relevant search problems in more detail [52,54].
Finally, a more comprehensive analytical description of fBm
search [85,105] going beyond our simple handwaving argu-
ment would be highly desirable. This theory should explain
the intricate dependence of search efficiencies on the variation
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of model parameters and other settings as observed in our
simulations.
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