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Object localisation, dimensions estimation and tracking

Abstract

Localising, estimating the physical properties of, and tracking objects from audio and video

signals are the base for a large variety of applications such as surveillance, search and rescue,

extraction of objects’ patterns and robotic applications. These tasks are challenging due to low

signal-to-noise ratio, multiple moving objects, occlusions and changes in objects’ appearance.

Moreover, these tasks become more challenging when real-time performance is required and

when the sensor is mounted in a moving platform such as a robot, which introduces further prob-

lems due to potentially quick sensor motions and noisy observations. In this thesis, we consider

algorithms for single and multiple object tracking from static microphones and cameras, and

moving cameras without relying on additional sensors or making strong assumptions about the

objects or the scene; and localisation and estimation of the 3D physical properties of unseen ob-

jects. We propose an online multi-object tracker that addresses noisy observations by exploiting

the confidence on object observations and also addresses the challenges of object and camera mo-

tion by introducing a real-time object motion predictor that forecasts the future location of objects

with uncalibrated cameras. The proposed method enables real-time tracking by avoiding com-

putationally expensive labelling procedures such as clustering for data association. Moreover,

we propose a novel multi-view algorithm for jointly localising and estimating the 3D physical

properties of objects via semantic segmentation and projective geometry without the need to use

additional sensors or markers. We validate the proposed methods in three standard benchmarks,

two self-collected datasets, and two real robotic applications that involve an unmanned aerial ve-

hicle and a robotic arm. Experimental results show that the proposed methods improve existing

alternatives in terms of accuracy and speed.
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ũ, ṽ Horizontal/vertical location component of a ground-truth annotation

w̃, h̃ Width/height of a ground-truth annotation



13

µk,λ Squared error of the prediction for λ -th object at time k

Lk Number of particles at time k

ω i
k,λ Association cost between i-th detection and λ -th object at time k

ẋi
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Chapter 1

Introduction

In this chapter, we first show the motivation for the work done in this thesis (Sec. 1.1); then,

we introduce the problem formulation (Sec. 1.2); then, we show the contributions of this thesis

(Sec. 1.3); and, finally, we present the organisation of the rest of the thesis (Sec. 1.4).

1.1 Motivation

The availability of high quality and inexpensive sensors such as microphones and video cameras,

and the increasing need for analysis and understanding the behaviour of objects (e.g. people)

have generated a great interest in the artificial intelligence field in the last decades. Localisation

and tracking of objects form the basis of a large variety of applications including surveillance

(Fig. 1.1a), extraction of patterns from the objects’ behaviour (Fig. 1.1b) and robotic applications

(Fig. 1.1c).

Vision-based multiple object tracking (MOT) has been studied in-depth during the last decades

[15, 25, 149, 217] and has achieved impressive results since object detectors drastically improved

their performance in the deep-learning era [66, 154, 211]. However, when the camera is installed

on a moving platform, such as a ground robot or a flying unmanned aerial vehicle, the tracking

performance deteriorates. This is due to additional challenges such as noisy observations, spe-

cially produced by motion blur due to camera motion, multiple moving objects with unknown

motion models, pronounced object occlusions when a ground robot navigates in a crowded scene

and similar object appearance among objects when, for instance, the illumination is poor or

objects look similar (e.g. a group of bees). To handle these challenges, existing works often

15
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11/29/2016 Computational Vision and Geometry Lab

http://cvgl.stanford.edu/projects/uav_data/ 1/2

INTRODUCT ION

When humans navigate a crowed space such as a university campus or the sidewalks of a busy street, they follow
common sense rules based on social etiquette. In order to enable the design of new algorithms that can fully take
advantage of these rules to better solve tasks such as target tracking or trajectory forecasting, we need to have
access to better data. To that end, we contribute the very first large scale dataset (to the best of our knowledge)
that collects images and videos of various types of agents (not just pedestrians, but also bicyclists, skateboarders,
cars, buses, and golf carts) that navigate in a real world outdoor environment such as a university campus. In the
above images, pedestrians are labeled in pink, bicyclists in red, skateboarders in orange, and cars in green.

C ITAT ION

If you find this dataset useful, please cite this paper (and refer the data as Stanford Drone Dataset or SDD):

A. Robicquet, A. Sadeghian, A. Alahi, S. Savarese, Learning Social Etiquette: Human Trajectory Prediction  in
European Conference on Computer Vision (ECCV), 2016.

PUBL ICAT ION

Stanford Drone Dataset

HOME RESEARCH PEOPLE PUBLICATIONS RESOURCES TEACHING

(a) (b) (c)

Figure 1.1: Examples of video-based applications that benefit from object tracking: (a) surveil-
lance, (b) automatic pedestrian flow monitoring and (c) robotic applications. Figure (a) extracted
from [125]. Figure (b) extracted from [158].

over-simplify the problem by relying on strong assumptions such as the full knowledge of the

objects (e.g. known object appearance [141]) or of the scenes (e.g. planarity of the scene [120]),

or requiring additional sensors (e.g. depth cameras [39] or electromagnetic measurements [9]).

Audio-based single object tracking (SOT) can be of great help when vision features are de-

teriorated (e.g. in a poorly illuminated scene). When the sensor is composed of multiple micro-

phones (i.e. microphone array), existing algorithms, based on strong mathematical formulations,

can produce accurate results [21, 178]. However, when these algorithms are required to work in

noisy environments (e.g. in a flying unmanned aerial vehicle - UAV), the performance is signif-

icantly degraded. When the target sound source is a person talking out loud, the signal-to-noise

ratio (SNR) received by a microphone array installed in a UAV is extremely low (< -15 dB) [C3].

To handle these challenges, existing works often rely on complex calibration procedures (e.g. mi-

crophone array calibration [77]) or use prior information (e.g. noise correlation matrix [76]).

Over the past decade, important progress has been made towards introducing robots in human-

inhabited environments, such as factories and households. In this context, the capability of robots

to exchange a wide range of objects with humans is particularly important. For supporting such

robotic manipulation tasks, localising and estimating the physical properties (e.g. dimensions) of

unseen objects (e.g. a drinking cup) in 3D is required. In this direction, several vision-based al-

gorithms achieved very accurate results. However, most solutions require either a full knowledge

of the 3D objects physics [41, 46, 141, 185, 205] or markers on the object and a motion capture

system [122] to work. Therefore, when objects are unseen (i.e. no prior knowledge of the object

is available) and markers are undesirable, these methods are inaccurate or fail to work.

In this thesis, we tackle the above challenges and introduce

• an online multiple object tracker that relies on an accurate object motion prediction that is
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aware of the camera motion and does not use object appearance information for tracking

multiple objects with a moving uncalibrated camera, without assumptions on the objects or

the scene [C1, C4, C7];

• an automatic method for quantifying the uncertainty in the ground-truth annotations of any

tracking dataset, and for generating confidence interval for a given evaluation score by only

using existing annotations [C5];

• an audio-visual framework that combines audio processing techniques and online tracking

to enable, for the first time, to track a moving sound source from a UAV in an outdoor

scenario [C3, C6];

• a vision-based multi-view algorithm that is able to localise and estimate the dimensions

in 3D of an unseen object which is then combined with a robotic arm for performing real-

world dynamic human-to-robot handovers without the need for either a full 3D object model

or markers on the object [C2, J1].

1.2 Problem formulation

Let’s have a sensor (i.e. an RGB camera or a microphone array) that perceives the environment

and encodes the information into a signal S = {Sk}K
k=1, at each time step k, where K is the total

number of time steps. For each k, let a detector, D, estimate the location of the objects of interest

in the environment (e.g. people) as Zk = D(Sk), where Zk = {z j
k}
|Zk|
j=1 are the observations (or

detections) and j is the observation index. The detector can miss to localise existing objects

(false negatives), generate inaccurate observations or observations that refer to objects that do

not exist in the environment (false positives). For each detection z j
k, the detector provides a

confidence score s j
k. For each k, let a tracker, T , estimate the identity of each of the objects and

refine their location (tracking state) as Xk = T (X1:k−1,Zk,Sk), where X1:k−1 are the previous

tracking states, and Xk = {xk,λ : ∀λ ∈ Λk} are the current tracking states with Λk = {λ i
k}
|Λk|
i=1 the

set of current tracking identities. In this thesis, detections and tracking states are encoded as:

bounding boxes or points, when the sensor is a camera; and as direction of arrival of a target

sound source, when the sensor is a microphone array (Fig. 1.2).

When the sensor is an RGB camera, the signal at each time k is an image (frame), Sk = Ik ∈

NW×H×C of width W , height H and C = 3 channels, with N being the set of natural numbers

between 0 and 255. For each time k and each j-th detected object, we define a bounding box
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Figure 1.2: Sample of the three types of observations considered in this thesis. When the sensor
is a camera: (a) bounding box and (b) point; and, when the sensor is a microphone array, (c)
direction of arrival (DOA). Note that the bounding box in (b) is just shown for visualising that the
observed points indicate the location in between a person’s feet. Images (a) and (b) from [125].

observation as

z j
k =

(
u j

k,v
j
k,w

j
k,h

j
k

)T
, (1.1)

where (u j
k,v

j
k) are the image coordinates (e.g. object centre), and (w j

k,h
j
k) are the width and height

on the image plane and T is the transpose operator. For each time k, we define the tracking state

with identity λ as

xk,λ =
(
uk,λ , ūk,λ ,vk,λ , v̄k,λ ,wk,λ ,hk,λ

)T
, (1.2)

where (uk,λ ,vk,λ ) and (ūk,λ , v̄k,λ ) are the horizontal and vertical components of the image location

and velocity, respectively; and (wk,λ ,hk,λ ) are width and height of the state. When detections and

tracking states are points, the definitions are analogous but we discard the dimension components.

When the sensor is a microphone array, the signal at each time is a voltage defined as Sk =

Ak ∈RM, with M the number of microphones within the array and R the set of real numbers. For

each time k and each j-th detected object, we define an observation as

z j
k = (θ j

k ), (1.3)

where θ
j

k is the direction of arrival of the target sound source. For each time k, we define the

tracking state with identity λ as

xk,λ = (θk,λ , θ̄k,λ )
T , (1.4)

where θk,λ and θ̄k,λ are the estimated direction of arrival and the angular velocity, respectively.
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1.3 Contributions

The main contributions of the thesis are the following:

1. An online multi-object tracker, based on the Probability Hypothesis Density Particle Filter

framework, that introduces the concept of performing data association just after the pre-

diction stage, thus avoiding the need for computationally expensive labelling procedures

such as clustering which is common in this type of frameworks. We propose a simple yet

powerful multi-detector fusion for generating an over-populated detection output that, then,

we use to introduce the concept of strong and weak detections. High-confidence (strong)

detections are used for label propagation and object initialisation. Low-confidence (weak)

detections only support the propagation of labels, i.e. tracking existing objects. Further-

more, we exploit perspective information in prediction, update and newborn particle gen-

eration. The proposed tracker, that does not use any image information, runs in real time

and results show that our method outperforms alternative online trackers on several tracking

benchmarks in terms of accuracy, false negatives and speed [C7].

2. An accurate model to forecast the position of moving objects by disentangling global and

object motion without the need of camera calibration or planarity assumptions. The pro-

posed predictor uses past observations to model the motion of objects in an online fashion

by selectively tracking a spatially balanced set of keypoints and estimating scene transfor-

mations between pairs of frames. The predictor can forecast up to 60% more accurately

than state-of-the-art predictors while being resilient to noisy observations. In addition, the

proposed predictor is robust to frame-rate reduction and outperforms alternative approaches

while processing only 33% of the frames with moving cameras. This allows one to inten-

tionally reduce the video frame rate and hence the energy consumption, an important aspect

for moving platforms. We integrated the object motion predictor in a real-time multi-target

tracker. Experimental results show that the use of the proposed model improves tracking

accuracy with respect to using traditional linear predictors in moving-camera scenarios.

Moreover, the proposed tracker obtains results that are comparable to using a linear pre-

diction model by processing only half the number of frames, thus making it suitable for

resource-constrained platforms where less number of frames might be desirable [C4, C1].

3. A method for jointly localising objects and estimating their dimensions in 3D using two

calibrated RGB cameras and without relying on depth information, markers or 3D models.
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We first localise the 3D centroid of the object by using semantic segmentation and pro-

jective geometry. Then, we estimate the dimensions of an object by sampling at different

heights a set of sparse circumferences with iterative shape fitting and image re-projection

to verify the sampling hypotheses in each camera using semantic segmentation masks. We

evaluate the proposed method on a novel dataset, that we made publicly available, of ob-

jects with different degrees of transparency and captured under different backgrounds and

illumination conditions. Experimental results show that the proposed method outperforms

existing alternatives that use depth maps in terms of localisation success and dimension es-

timation accuracy. The proposed method obtains an object localisation success of 86.96%

with an average object width estimation error of 0.5 cm. Furthermore, we present a multi-

modal method that uses the proposed method together with a robotic arm for performing

dynamic human-to-robot handovers of unseen objects without relying on motion capture

systems, markers, or prior knowledge of the specific objects. We distribute, as open source,

the implementation of the overall pipeline to enable comparisons and facilitate research

progress [J1, C2].

4. A method to track a moving sound source such as a human speaker from an unmanned

aerial vehicle only using audio signals. We combine a time-frequency filtering, peak de-

tection, and particle filtering. The effectiveness of the proposed method is exemplified

with experiments that use real-recorded data with a drone platform and a moving sound

source. We collected and made publicly available an audio-visual dataset recorded out-

doors with an 8-microphone circular array and a camera mounted on a unmanned aerial

vehicle. For the evaluation, we propose to use the on-board camera for the sound source

localisation annotation for which we design an audio-visual calibration procedure com-

posed of camera calibration, audio-visual temporal alignment and geometrical alignment

for allowing the concurrent use of both audio and video streams, which are independently

generated [C3, C6].

5. An automatic method for quantifying the uncertainty in the ground-truth annotations, which

are often generated using semi-automatic procedures such as linear interpolation, in track-

ing datasets. To account for this uncertainty when comparing trackers, the proposed method

calculates a confidence interval for a given evaluation score and dataset to complement ex-

isting tracking scores only using information from the existing ground-truth annotations.
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The confidence intervals quantify the uncertainty in the annotation and allow us to appro-

priately interpret the ranking of trackers with respect to the chosen tracking performance

score. Results conducted in widely used tracking benchmarks indicate that existing track-

ing accuracy metrics cannot be used to rank trackers confidently; moreover, the tracking

precision often contains no information that can be used reliably for ranking trackers [C5].

1.4 Organisation of the thesis

The thesis is organised as follows.

Chapter 1: we exposed the motivation and problem formulation for the work of this thesis com-

prising object localisation, dimensions estimation and tracking from generic input signals.

Also, we listed the main five contributions of the thesis.

Chapter 2: we review the existing related work for object localisation and dimensions estima-

tion, object tracking and performance measures for these tasks. We focus the analysis of

the related work in object motion prediction and multi-object tracking where we specifi-

cally focus in the Probability Hypothesis Density Particle Filter (PHD-PF) framework as it

is the base of some of the contributions presented in this work.

Chapter 3: we present an audio-visual calibration for allowing audio and video signals to be

used concurrently; then, we introduce a novel algorithm for multi-view object localisation

and dimensions estimation of unseen objects; we present the self-collected CORSMAL

containers dataset that is used for validation of the method presented in this section; lastly,

we propose a multi-modal algorithm, based on the object localisation and dimensions es-

timation algorithm, to perform human-to-robot handovers of unseen objects with a real

robotic arm.

Chapter 4: we display three tracking algorithms, all based on the probability hypothesis density

particle filter framework, that tackle different challenges. The first challenge is extremely-

low only audio signals (Sec. 4.1). The second challenge is multiple and time-varying num-

ber of objects from a static camera (Sec. 4.2). The third challenge is an extension of the

previous one where the camera is also moving (Sec. 4.3). A second self-collected dataset

is introduced, the Audio-Visual Quadcopter (AVQ) dataset, where the single-object tracker

is evaluated. In addition, we introduce a procedure that creates confidence interval for a
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given evaluation score and dataset to account for the inaccuracies that exist in the dataset

annotations.

Chapter 5: we summarise the achievements presented in this thesis and discuss the known lim-

itations and future work.



Chapter 2

Related work

In this chapter we present an overview of existing vision-based object localisation and dimen-

sions estimation algorithms (Sec. 2.1), tracking methods (Sec. 2.2), object motion prediction

(Sec. 2.3), multi-object tracking (Sec. 2.4), as focus on the probability hypothesis density par-

ticle filter (Sec. 2.5), performance measures for the previous tasks (Sec. 2.6), and finally draw

some discussion (Sec. 2.7).

2.1 Object localisation and dimensions estimation

Detection is to localise objects of interest (e.g. people or cars) given an input signal. Detectors can

be divided on the basis of they work in 2D (e.g. images) or 3D, as introduced in Sec. 1.2. Object

detectors that work in the image plane (2D) can be classified as traditional [47, 54, 197] or deep-

learning-based [66, 154, 155, 211]. In this thesis, we employ existing 2D object detectors which

generate observations for the forthcoming tracking methodologies introduced in Sec. 4. For

further information about 2D object detection, we refer the reader to existing surveys [75, 107,

224]. Similarly, we use state-of-the-art sound source localisation algorithms and their literature

review lies outside the scope of this thesis.

In this section, we discuss methods that are able to localise and to estimate 3D physical

properties of the objects of interest. Detecting objects in 3D and estimating their properties

(e.g. dimensions, shape), as well as their 6 Degrees of Freedom (DoF) pose (location, orienta-

tion), is important for several robotic tasks, such as grasping [164, 194], manipulation [36] and

human-to-robot handovers [122]. However, objects can widely vary in shape, size, material,

23
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and transparency, thus making the estimation of their properties through vision a challenging

problem. Furthermore, the 3D detection of an object and the estimation of its properties are

challenging under different viewpoints, illuminations, intra-class variations, object rotation and

scale changes, and occlusions. Moreover, there often exist the requirement for performing with

high accuracy and high speed for being suitable for real-time applications. Vision approaches

to estimate the physical properties of an object can be marker-based, model-based, or inference

based. Marker-based approaches [64, 88, 122] rely on motion capture systems to accurately track

the pose of a human hand or object in 3D [64]. These approaches are economically expensive

and require markers to be installed on objects which might be undesirable as the properties of

the objects might change due to the markers. To avoid using markers, feature points [48, 109]

can be localised in an image and matched against a 3D object model to estimate the object pose

by solving a Perspective-n-Point problem [98]. However, this strategy may fail when objects ex-

hibit limited texture or are captured under unfavourable lighting conditions [128]. Model-based

approaches exploit prior knowledge on the object and its physical properties through dense 3D

models [70, 103, 141, 185]. Large amounts of annotated data facilitate the training of deep

neural networks to estimate the object pose [70, 103, 141, 185]. However, (manual) annota-

tions are expensive to generate and might be biased [145, C5]. Moreover, this type of approach

limits operations to known objects. Approaches based on deep neural networks learn from

large sets of annotated data with high-level object categories [105] using 3D models or depth

data [103, 128, 141, 185, 187]. For example, DenseFusion [185] combines features obtained

from RGB-D images and can handle occlusions and inaccurate segmentation. Pixel-wise Voting

Network (PVNet) [141] estimates the pose of occluded or truncated objects with an uncertainty-

driven Perspective-n-Point, learning a vector-field representation to localise a sparse set of 2D

keypoints and their spatial uncertainty. Normalized Object Coordinate Space (NOCS) [187] uses

a normalised object coordinates space formulation that jointly estimates the 6 DoF pose and the

dimensions (in the form of a 3D bounding box) of a novel object (i.e. an object whose shape was

not seen during training). Although deep neural networks estimate the 6 DoF object pose quite

accurately, their training requires large amount of data usually annotated only for the high-level

object category, containing images and/or known dense 3D models [70, 128, 141, 185, 187].

For example, PoseCNN [205], DenseFusion [185], SegOPE [70] and PVNet [141] evaluate

only on objects with high-quality 3D models and good visibility in depth [205]. Table 2.1
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Table 2.1: Comparison of markerless methods for localising in 3D and estimating the dimensions
of textureless objects. Note that Saxena et al. [163] localise the grasping points in 3D instead of
the object. KEY: Ref., reference; N-3D, no 3D object model; N-D, no depth; HLC, known high-
level category; Loc., object localisation in 3D; and Dim., object dimensions estimation in 3D.

dimensions given by the 3D model.

Ref. Method Assumptions Tasks Transparency
N-3D N-D HLC Loc. Dim.

[163] Saxena X X X X
[103] DeepIM X X
[128] StoCS X X
[141] PVNet X X X
[185] DenseFusion X X
[70] SegOPE X X X
[187] NOCS X X X X

Sec. 3.5 LoDE X X X X X X

compares relevant works, and comprehensive reviews of object pose estimation can be found

in [70, 141, 185, 187]. With previously unseen objects, inference-based approaches localise

them in 3D using only partial knowledge, such as dimensions, estimated through uni-modal [39]

or multi-modal sensing [151], or by estimating the 6-DOF of textured objects by solving the

Perspective-N-Point problem with known 2D-3D correspondences [169][98]. However, typical

objects with textureless, reflective or transparent materials, like those in our benchmark, hinder

reliable correspondences [97]. Moreover, depth sensors [187] cannot be applied with sufficient

accuracy [163] or speed for a smooth handover [119].

2.2 Tracking

Tracking can be defined as localising an object in all frames of a video sequence [112]. Tracking

approaches perform temporal association of object hypothesis to estimate trajectories while com-

pensating for miss-detections and rejecting false-positive detections. A comprehensive literature

review in generic object tracking is presented and discussed in this section.

Tracking can be categorised on the basis of different criteria including the number of objects,

reference system, number of sensors, initialisation mode, processing mode and mathematical

methodology. Table 2.2 shows an overview of the proposed tracking categorisation.

2.2.1 Number of objects

The number of objects to be tracked can be used as another criteria to categorise tracking methods

either as Single Object Tracking (SOT) or Multiple Object Tracking (MOT). SOT works [80,



Chapter 2: Related work 26

Table 2.2: Tracking categorisation according to the number of objects, reference system, number
of sensors, initialisation mode, processing mode and mathematical methodology.

Number of objects Single
Multiple

Reference system Image plane
World coordinates

Number of sensors Single
Multiple

Initialisation mode Detection free
Tracking-by-detection

Processing mode
Online
Buffered
Offline

Mathematical methodology Probabilistic
Deterministic

214] mainly focus on building robust appearance models or motion models to cope with scale,

rotations and illumination variations. MOT methods [15, 149, 217] additionally need to assign

an identity to each object and maintain it throughout the time and deal with further challenges

including inter-object occlusions, initialisation and termination of trajectories, unknown number

of objects, similar appearance among objects or interaction among them.

2.2.2 Reference system

Similarly to detectors, trackers can also be classified according to the reference system used.

Tracking can be classified according to the reference system used: image plane or world coor-

dinates. Most of the current approaches work on the image plane reference system mainly for

simplicity reasons [30, 38, 80]. Tracking in the world coordinates can potentially provide more

accurate estimations and effective occlusion handling [140]. When the 3D vertical component

is avoided, assuming planar ground, objects are considered to move on the ground plane and

occlusions can be handled more robustly [149].

2.2.3 Sensors

Tracking can be performed with data captured by a single sensor or multiple sensors. Single-

sensor (e.g. camera) tracking is an old problem that has been studied in depth and lot of works

have been published [80, 115, 117, 138, 181]. Multiple state-of-the-art surveys have been pub-

lished in the last decades covering these works and analysing in detail the multiple challenges

present in this field [112, 203, 213]. These challenges are still open research problems such
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as: drastic appearance variations, similar appearance among objects, occlusions or moving cam-

eras among others. Multi-sensor tracking allows to deal with more challenging scenarios where

single-sensor tracking cannot cope with such as tracking over wide areas (greater than the field

of view of a single camera) or crowded scenes. Multi-sensor scenario [27, 86, 121, 130, 179]

has multiple sensors spread on the scene. When multiple static cameras are used for tracking, it

is known as camera network scenario. Tracking using multiple sensors provides several advan-

tages compared to single-sensor tracking such as: potentially more accurate tracking, robustness

to sensor failures and scalability [161]. Multi-sensor tracking adds several challenges including

camera calibration, topology of the network, drastic illumination and appearance variations. The

case where multiple moving sensors are used provides more flexibility since the field of view

of each sensor is dynamic and might be adapted according to the necessities of the scenario.

However, the difficulty of the challenges in this scenario increases and includes new ones such as

inter-camera tracking, fusion, communication and synchronisation. RGB cameras are considered

as the default sensor in this thesis.

Sensors can capture information of different nature including optical/visual, acoustic, thermal

or electrical signals. A single sensor can capture homogeneous information such as RGB [118,

149], infrared [22, 59, 214], thermal [99, 100] or monochrome [93]. Sensors of different nature

can be collaboratively used for tracking. For example, RGB-D captures RGB and depth infor-

mation [59] or RGB-W captures RGB and wireless signals [9] and both signals are used for

performing tracking.

2.2.4 Initialisation

Methods can be grouped into two categories according to how to initialise trajectories: Tracking-

by-detection (TBD) and Detection Free (DF). In TBD, object hypothesis, also known as detec-

tions or observations, are first detected in each frame and then temporally associated into trajecto-

ries [9, 126, 217]. Object hypotheses approaches can be divided into two groups: object-detection

based and motion-detection based. When objects are people, a multitude of detectors have been

proposed. Object detectors may search for trained intensity patterns such as [44, 47, 54]. These

intensity patterns can be the colour gradient (e.g. edges) [44, 54], the spatial arrangement of

colours (e.g. textures) [196], colour attributes [85] or having a high response to a pool of filters

(deep learning) [212]. Detection fusion aims to combine candidate object position generated by

diverse detectors in order to blend different designs and to boost detection reliability. Motion-
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based detectors model the background (e.g. applying frame difference) to then detect object hy-

pothesis on the motions detected on the foreground. However, DF requires a manual initialisation

of a fixed number of objects in the first frame, then the method tracks these fixed number of ob-

jects in the next frames [80, 118, 214]. As a summary, on one hand TBD approaches can deal

with varying number of objects and, initialisation and termination of trajectories but are limited

to a specific type of object and its performance is closely related with the object detector’s per-

formance. On the other hand, DF approaches cannot cope with varying number of objects, as

manual initialisation is required.

2.2.5 Processing mode

Trajectories can be generated offline [184], buffered [147] or online [217]. Offline trackers use

both past and future detections and can therefore better cope with miss-detections using long-

term re-identification [167]. While offline methods can theoretically obtain global optimal solu-

tion generally providing a higher tracking accuracy compared to online approaches, they generate

trajectories with delay and cannot be used for time constrained applications such as autonomous

navigation of robots [53], and time-critical applications such as object re-identifications in large-

scale camera networks [61]. The global optimum is usually formulated as a particular type

of optimisation problem. For example, Bipartite Graph Matching [167], Dynamic Program-

ming [201], Min-cost Max-flow Network Flow [221] or Conditional Random Fields [127, 209].

There is a subgroup of offline trackers known as buffered, also known as short-latency, that col-

lects detections within a time window to estimate trajectories with a delay with respect to the

current time instant. Online trackers estimate the object state at each time instant as detections

are produced. Online trackers are suitable for real-time applications but suffer from shortage

of observation. Online tracking can be performed by means of frame-by-frame detection asso-

ciations (e.g. Hungarian algorithm [90]) with adaptive features based on the surrounding scene

complexity [172]. Ambiguous association zones are identified based on the proximity of objects

within these zones. Features such as appearance and motion can be used for object discrimi-

nation. Alternatively, detection association between consecutive frames can be achieved with

Markov Decision Processes (MDPs) [204]. MDPs define the state evolution (trajectory) in terms

of actions and rewards received based on these actions. In order to quantify the rewards, the

MDPs need to learn the parameters. Features used in this context are optical flow, appearance,

position and bounding box size. To overcome object occlusions, online trackers can use (esti-
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mated) physically plausible paths through occluded regions in order to re-assign the identity after

an occlusion [149]. When the number of objects in a scene is large, occlusions are more likely

to occur and motion in previous time steps can help tracking [24, 89]. In case of miss-detections,

online trackers may rely on predictive models to continue tracking until a matching detection is

found [149]. An object motion model can be designed based on the optical flow of the scene

and can be used to predict the objects’ position under the constrained motion of a crowd. There

exists some relations between processing mode and initialisation mode. DF methods require to

compute the state of the objects sequentially (i.e. in an online fashion) as the video stream is

generated.

2.2.6 Mathematical methodology

Trackers can be divided into probabilistic and deterministic according to the mathematical method-

ology used. In probabilistic tracking [116, 156, 159, 181], object states are represented with

probabilistic distributions that are being updated as the current observations are generated. The

estimation of the states might vary among different executions over the same input data. Tracking

based on deterministic optimisation [15, 167, 201, 202] collects the observations in an image se-

quence and some relations among them are built based on their appearance, spatial and temporal

similarities. Then the tracking problem becomes an optimisation problem where the estimations

are based on deterministic optimisation resulting in constant results over different trials. There

exists some relations between mathematical methodology and processing mode. Most online ap-

proaches estimate the state of the objects in a probabilistic way while offline approaches always

follow deterministic optimisation in the calculation of the states.

2.2.7 Discussion

To conclude, tracking is a well studied field but multiple challenges remain open research prob-

lems. We present in this thesis, tracking methodologies for single and multiple sensors. Most

possible applications based on tracking including statistics, crowd analysis or surveillance need

to obtain information from multiple objects, which can also be applicable to single-object track-

ing. The number of objects can vary in time since objects might enter and exit the field of view,

consequently initialisation and termination processes are required as the number of objects at

each time is unknown. Therefore, tracking-by-detection is the most common solution for MOT

since this approach allows to automatically initialise new objects in each frame. As discussed
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earlier in this section, when objects are people or cars, multitude of pre-trained detectors are

available. Applications become interesting in this scenario when the processing can be done

in real time. Therefore only online methods are suitable for these scenarios that usually adopt

probabilistic inference for the state estimation.

2.3 Object motion prediction

Object motion predictors model the dynamics of objects and estimate their future position on

the image plane or in 3D. The ability to predict the motion of objects across frames is important

for applications such as video coding [63, 74, 153], social-aware autonomous robots [110, 198],

action recognition [186, 195], lifelogging [31], and object tracking [16, 34, 39, 93, 120]. In

particular, an accurate object motion prediction is important in MOT applications since it allows

to predict the potential position of objects in future frames which can be critical in presence of

occlusions or low frame rate videos. Object motion prediction become essential in applications

that require online MOT as decisions need to be made just with current information and cannot

rely on future measurements and where other important tracking features such as appearance are

not available (e.g. sports or insect tracking).

Moreover, cameras are becoming smaller due to technology miniaturisation and now they

are installed in ground robots, drones and wearable devices. Likewise, power batteries need to

become smaller in size to fit within the devices, thus efficient use of battery capacity becomes

an essential point for achieving a desired trade-off between performance power and battery du-

ration. In the MOT scenario, accurately predicting object trajectories in the future tens of frames

can save computation workload as only one computation at the present time can be enough to ac-

curately predict the object location for the next tens of frames. Therefore, accurate object motion

predictors can potentially save battery life, a crucial point in mobile devices [162].

2.3.1 Static camera

It is a common practise to assume that objects move smoothly between frames, i.e. at constant

velocity and/or with certain process noise [33, 165, 218]. A linear motion model performs suf-

ficiently well with static cameras [33, 165, 218] for objects such as pedestrians and cars that

approximately follow linear trajectories in the real world when captured by a camera at high

frame rate. In this modelling, the velocity of objects in the next frame is the same as the one in
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the previous frames with certain independent process noise as

(u,v)k = (u,v)k−1 +(ū, v̄)k−1∆k +N(u,v)
k (2.1)

where (ū, v̄)k−1 is the estimated velocity, ∆k is the time lapsed between consecutive frames and

N(u,v)
k is the process noise that models the unknown changes that might happen over time to the

location of the object (e.g. camera motions). The velocity is modelled similarly as

(ū, v̄)k = (ū, v̄)k−1 +N(ū,v̄)
k , (2.2)

where (ū, v̄)k−1 is the estimated velocity at time k−1 and N(ū,v̄)
k is the process noise that models

the unknown changes that might happen over time to the velocity of the object (e.g. accelera-

tions).

These models have been proved to perform well in static cameras [33, 165, 218] as objects

such as pedestrians or cars use to follow linear trajectories in the real world.

This type of modelling, known as linear motion prediction (LMP), is the most commonly

used in the tracking literature because of its simplicity and good accuracy in static-camera sce-

narios. However, it is inadequate for moving cameras. Fig. 2.1 depicts a graphical example

where two pedestrians (feet position marked in red) move on a straight line in the real world but

the perceived motion on the image plane drastically differs from a straight line. This is because

Fig. 2.1a is recorded from a static camera whereas Fig. 2.1b is recorded from a moving camera. It

is clearly visible that LMP models cannot accurately model moving-camera scenarios, even that

the objects move linearly on the real world. This occurs because LMP models cannot estimate

the object motion as this is masked with the one of the camera. Therefore, LMP can potentially

fail/drift in presence of object direction changes, unexpected object motions, reduced frame rate

videos or moving cameras.

2.3.2 Moving camera

In sequences where the camera is moving, the motion of an object is challenging to estimate as

its motion is combined with that of the camera and both, object and camera, potentially move

simultaneously and independently. In practice, tracking drifts occur when LMP is used in moving

cameras. Multiple methods propose to estimate the camera motion for improving the accuracy
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(a) (b)

Figure 2.1: Moving pedestrians recorded from (a) static camera and (b) moving camera. Both
pedestrians are following a (similar) linear trajectory in the real world but the apparent motion on
the image planes is not linear when the camera moves. The bounding box indicates the location
of the person in the current time instant. Red solid squares indicate the location of the object in
each time instance in the last 2 seconds. Source images from [94].

Table 2.3: Object motion predictors. KEY: Ref, reference; CS, coordinate system; A, approach;
L, linear; NL, non linear; CM, robust to camera motion; FS, robust to frame skipping; NC, works
without camera calibration; NS, not scene specific; and FO, objects can move freely in the scene.
Type Ref Strategy CS A CM FS NC NS FO

D
at

a
dr

iv
en [180] learns typical motion patters using clustering 2D NL X X X

[8] accounts for person-to-person interactions with LSTMs 2D NL X X X
[144] accounts for person-to-person interactions and obstacles with LSTMs 2D NL X X X
[19] handles long-term occlusions with LSTM 2D NL X X X

M
od

el
ba

se
d

[7] probabilistic multimodal approach 2D NL X X X
[208] online learning for prediction of objects and groups of objects 2D NL X X X
[207] pedestrian trajectory prediction 2D NL X X X
[131] Brownian model 2D L X X X
[218] Markov Chain Monte Carlo data association 2D L X X X
[165] linear modelling with Gaussian noise 2D L X X X
[34] linear modelling with Gaussian noise 2D L X X X
[115] accounts for perspective and frame-rate 2D L X X X
[C7] accounts for perspective and frame-rate 2D L X X X
[120] frame registration (aerial video) for camera motion estimation 2D L X X
[101] homography (aerial videos) camera motion estimation 2D L X X
[16] ground plane prediction (homography) for camera motion estimation 2D L X
[39] geometry priors (requires an RGB-D camera) for camera motion estimation 3D L X X X
[93] frame-registration (aerial videos) for camera motion estimation 2D L X X

Sec. 4.3.1 decouples global and object motion (homography) 2D L X X X X X

in their application task. Indeed, the estimation of the camera motion is an important source of

information for multiple computer vision applications including: simultaneous localisation and

mapping [51, 132], action recognition [186, 195] and multiple object tracking [16, 39, 93, 120].

Next, we overview the most relevant related works for object motion prediction.

Predictors may be specifically designed for static [8, 180] or moving cameras [101, 120];

may assume that objects move on a common ground plane [93]; or may need camera calibration

information [16, 39]. We can identify two main classes of predictors, namely data-driven and

model-based predictors (see Table 2.3).
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Data-driven predictors learn patterns from (large amounts of) training data [8, 19, 144, 180].

In structured environments, a clustering-based method can be used to predict the motion pattern

of people [180]. A Long Short-Term Memory (LSTM) can predict the position and scale of

objects [19]; whereas multiple LSTMs can learn person-to-person interactions to predict the

position of people [8, 144]. Model-based predictors [7, 207, 208] may rely on no assumptions

on object motion [131] or may assume that objects maintain a certain velocity, which is learned

over recent observations [34, 165, 218]. First or higher order Markov models can be used to

model motion [7, 34], or an independent noise component can account for velocity variations

(i.e. accelerations) [165, 218]. Acceleration and noise can be modelled based on the camera-

object distance [115, C7], frame rate [115, C7], or physics [16]. Moreover, non-linear motion

patterns can be learned online with a hierarchical association of tracklets [208].

The motion predictors mentioned above are applicable to static cameras only. There exist

other model-based approaches that account for both object and global (camera) motion [16, 39,

93, 101, 120]. Object motion is the observed motion of an object on the image plane when

the camera is stationary. Global motion is the observed motion of an object on the image plane

when, in the 3D world, the object is stationary and the camera moves. Global motion information

may be extracted from the coherent motion of the background by considering moving objects

as outlier motions, for example if they move on a common plane [16, 93, 101, 120]. Model-

based predictors for moving cameras may use transformations among planes across consecutive

frames [16] or 3D models that account for interacting objects using global and object motion,

geometric constraints and a reversible jump Markov chain Monte Carlo particle filter [39].

Camera pose is another constraint that can be used by predictors: some methods are appli-

cable only to top-down looking cameras mounted on a drone when the scene can be considered

planar [93, 101, 120]. This assumption simplifies the explicit decoupling of camera and object

motion, which is obtained by estimating a frame-by-frame transformation (e.g. homography or

registration) and then by subtracting camera motion from observed motion. To conclude, meth-

ods and datasets, such as the trajectory Forecasting Benchmark [23], often consider only static or

top-down looking cameras on high-altitude stationary drones and are therefore limited to specific

scenarios.
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2.4 Multi-object tracking

MOT, also known as multiple target tracking, is an interesting field included in the general track-

ing problem as seen in the previous section. MOT can be employed to automatically process

large quantity of videos for video analysis and annotation [146]. When objects are people or

cars, a large amount of highly accurate detectors have been developed for those specific type of

objects. Thus, TBD is a commonly used framework to tackle the tracking problem of this type of

objects. TBD in MOT estimates object states by temporally associating detections, also known as

measurements or observations, and assigning identities based on appearance-spatio-temporal re-

lationships while compensating for miss-detections and rejecting false-positive detections. MOT

faces multiple challenges including short- and long-term occlusions, initialisation and termina-

tion of trajectories, unknown number of objects, similar appearance among objects, interaction

among objects, drastic object appearance variations, potentially moving cameras or dynamic

backgrounds.

In general, the main components of MOT are observation model and motion model. Obser-

vation model measures the similarities between trajectories and detections including appearance,

motion, interaction and exclusion modelling, and occlusion handling. Whilst motion model stud-

ies the transition of the states across time.

2.4.1 Appearance modelling

Appearance modelling is considered as a vital cue in visual MOT since it can be highly dis-

criminative in certain scenarios. Selecting the right features is a critical point in tracking. In an

ideal case, the set of features should unequivocally identify each object, as well as distinguish

it from others, in the chosen feature space. Appearance modelling can be seen as a two-step

process: visual representation and statistical measuring. Visual representation is how to de-

scribe the visual characteristics of an object and is visually based on single cues or in multiple

cues. Certain features are optical flow [12], covariance matrix [148], feature points [35], gradient

based features [44], depth [129] or colour [135]. Statistical measuring is needed after the object

has been visually represented via features. It can be defined as the computation of similarity (or

dissimilarity) among different objects.
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2.4.2 Interaction model

Interaction model, also known as mutual motion model, analyses the relation of an object to other

spatially close objects. The speed and direction of an object is influenced by its neighbours. For

example, a car moving on a road will be influenced by other cars on the road, known as social

force model [68]. The systematic temporal changes of the preferred velocity of an object are

described by a vectorial quantity that can be interpreted as a social force that represents the effect

of the environment on the behaviour of the object. When a crowd of objects moves in a scene,

each of them unconsciously follows others’ patterns and guides others at the same time in order

to avoid collisions, known as crowd motion pattern model [69]. A motion pattern is defined as

a group of flow vectors that are part of the same physical process of motion pattern. This is

accomplished by first detecting the representative modes (sinks) of the motion patterns, followed

by construction of super tracks, which are the collective representation of the discovered motion

patterns.

2.4.3 Exclusion model

Exclusion model is a component for the MOT problem that can be considered as two independent

constraints: detection-level exclusion and trajectory-level exclusion. Detection-level exclusion

claims that two detections in the same time step cannot correspond to the same trajectory [127].

The detection-level exclusion can be modelled by defining a cost term that penalises if two si-

multaneous detections at time t are assigned to the same trajectory with a cost if they are distant.

Another way is to construct an exclusion graph [91] to capture the constraint that detections at the

same time should have different labels and then calculate the Laplacian matrix to this graph and

maximise the label error regarding the exclusion [111]. Trajectory-level exclusion claims that

two trajectories cannot be observed by a single detection [127]. The trajectory-level exclusion

modelling can be defined as an energy function that considerably generates large costs when two

detections are spatially close [15].

2.4.4 Occlusion handling

Occlusion handling is one of the most challenging tasks present in MOT. Occlusions can lead

to identity switches or trajectory fragmentation. Next, we discuss several approaches that have

been proposed to tackle this problem. Part-to-whole techniques are commonly used and they

are based on the assumption that part of the object is still visible during occlusions. Part based
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models allow to understand which parts of the object are occluded and to estimate the state of the

whole object by only observing the visible parts [210]. A double-person detector with different

levels of occlusions is trained in [176, 177]. Buffer-and-recover techniques accumulate observa-

tions when occlusion happens. When occlusion ends, object states are recovered based on the

stored observations and states [129]. These approaches might produce delays on the decisions as

they require to wait certain frames to take a decision, thus they are not suitable for online track-

ing. More recently, other solutions have been proposed to solve occlusions. For example, [149]

proposes to only rely on geometric information to efficiently overcome detection failures and

short-term occlusions. A collaborative tracking approach for addressing inter-occlusions is pro-

posed in [206]. Moreover, performing 3D tracking within multi-part detectors to tackle this MOT

challenge is proposed in [200]. This type of approaches can potentially better cope with chal-

lenging occlusions as objects can be spatially more distant in the 3D world system than as they

appear in the 2D (i.e. image plane) re-projection.

2.4.5 Multi-object trackers

In this section, we show and critically analyse some related works to MOT and specially MOT

with moving cameras. Possegger [149] proposed an online approach that assumes that the obser-

vation that object detectors primarily fail if objects are significantly occluded. Maintaining the

identities of the objects is one of the principal purposes in MOT. This is very challenging in pres-

ence of multiple occlusions, illumination variations and moving cameras. The spatio-temporal

evolution of occluded regions, detector reliability, and object motion prediction are exploited to

robustly handle miss-detections trough occlusions. No appearance information is used just rely-

ing on spatial distances. This is an interesting work that obtains promising results with respect

to state-of-the-art MOT methods. However, this approach is only applicable to the static camera

scenario. Yu [217] proposed a high-performance detection and deep-learning-based appearance

features showing a significant improvement in MOT results in both online and offline settings.

The tremendous popularisation of Neural Networks in the Computer Vision community in the

last years contributed to the creation of more accurate object detections and appearance repre-

sentations that are two important pillars in the MOT problem. The appearance representation is

based on a similar network to GoogLeNet [173] trained with nearly 119 K from 19,835 identi-

ties. The online tracking version is implemented with a KF [81] and Hungarian algorithm [90]

whereas the offline version is based on K-Dense Neighbours [106]. Despite remarkable results
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in benchmarks such as MOT2016 [125], the approach cannot cope with occlusions in an online

way.

An uncalibrated monocular camera is used in [40] by Choi to jointly estimate object trajec-

tories, corresponding 2D/3D temporal trajectories in the camera reference system as well as the

camera parameters (pose, focal length, etc) in a probabilistic formulation. An interaction (at-

traction and repulsion) model is presented to model multiple 2D/3D trajectories in space-time

and handle situations where objects are occluded. Camera extrinsic parameters (location and ori-

entation) are estimated using sparse feature points as additional observations inspired in Visual

Simultaneous Localisation and Mapping procedures such as [45, 171] or direct methods such as

Direct Sparse Odometry [50]. This allows to better estimate the motion model of the objects and

better predict the estimation of the object locations. To this end, multiple assumptions are set in

order to reduce the required number of camera parameters for allowing a 3D re-projection. For

example, all objects rest on the ground plane and the camera only moves forwards.

From moving cameras, specifically from aerial views, different features in the videos can be

observed: (i) size of the objects is considerably smaller, thus common appearance features are not

reliable, (ii) frame rate is usually lower and (iii) object density is likely to be higher w.r.t the non-

aerial scenario. Therefore, solutions are also different than the usual MOT scenario. Most works

in the literature rely on DF approaches that rely on motion-based detection after background

modelling. Aerial Tracking Learning Detection is presented in [118] introducing compensation

in the camera motion and algorithmic modifications for combining appearance and motion cues

for detection and tracking. TLD [80] considers both appearance and motion features for SOT

handling short-term occlusions and maintaining the object in long sequences. However, TLD

cannot cope with the problems present in aerial images such as frequent pose changes, scale and

illumination variations and the low resolution images, noise and jitter introduced by the camera

motion [118]. TLD is extended to multiple objects using multi-thread processing but limited to

a maximum of three objects due to complexity issues and for not compromising the real time

performance. Lankton [93] proposed a similar work focusing their contributions on decoupling

the camera and object motion. In cases where the camera is not fixed due to pans and tilts

in pan-tilt-zoom cameras or due to moving platforms as in the unmanned aerial vehicle (UAV)

scenario they claim that camera motion must be taken into account. A tracking system estimates

the camera motion by performing frame registration [84] and the resulting signal is used into
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Table 2.4: Literature review on MOT methods with a single camera comparing sensor types, ini-
tialisation mode, processing mode, filtering and association, reference system, the use of appear-
ance and camera calibration and whether the methods are robust to moving cameras (i.e. motion
model robust to camera motion, MMRCM) and occlusions. Key: TLD, Tracking-Learning-
Detection; KF, Kalman Filter; UKF, Unscented Kalman Filter; PF, Particle Filter; PHD-PF,
Probability Hypothesis Density Particle Filter; KDN, K-Dense Neighbours; HDNS, Hierarchical
dense neighbourhoods searching; MHT, Multi Hypothesis Tracking; DGM, Dynamic Graphical
Model; EM, Energy Minimisation; IMU, Inertial measurement unit; and GNN, Global Nearest
Neighbour. Methods with * indicate that perform SOT.

Ref
Sensor

type

Initialisation Tracking Reference system Observation model

TBD DF Online Filtering Association Image World
Appearance
modelling

MMRCM
Occlusion
handling

[118] RGB X X TLD - X X X

[93] Gray X X KF Mean-shift X X X

[217] RGB X KDN X X

[199] RGB X HDNS X X X X

[30] RGB X MHT X X

[38] RGB X DGM X X

[15] RGB X EM X X

[217] RGB X X KF Hungarian X X

[22] RGB-D X X UKF GNN X X

[149] RGB X X Hungarian X X

[40] RGB X X PF Hungarian X X X X X

[142, 143] * RGB + IMU X X TLD - X X X

Sec. 4.2 RGB X X PHD-PF Hungarian X X X X

the KF [81] for the estimation of the object states. Detections are generated from a mean-shift

localisation scheme [42]. Pestana [142, 143] proposes to perform visual tracking of a single

object with a DF approach from an UAV. Their architecture allows the user to specify a target

object in the image that the UAV has to follow from an approximate constant distance. Inertial

measurement unit and ultrasound altitude sensor data are used to update the control algorithm.

Table 2.4 summaries the related work in MOT with a single sensor according to the previously

described classification. We introduce and discuss the Probability hypothesis density particle

filter (PHD-PF) [115, 116, 181] in the next section as it is the framework where we base the

tracking contributions in this thesis.

2.5 The Probability Hypothesis Density Particle Filter

The PHD-PF framework is an effective filter for online state estimation, which can cope with

clutter, spatial noise and miss-detections [115, 116]. The PHD filter estimates the state of mul-

tiple objects by building a positive and integrable function over a multi-dimensional state whose

integral approximates the expected number of objects [116, 181]. The posterior distribution can
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Table 2.5: Literature review on multi-object tracking methods based on Probability Hypothesis
Density comparing the filtering and data association approaches and whether detection classifi-
cation and perspective dependency is used.

Ref
Filtering Data Association Other characteristics

PHD PF Clustering Hungarian
Detection

classification
Perspective
dependency

[116] X

[117] X

[181] X X

[138] X X X X

[115] X X X X

Sec. 4.2 X X X X X

be computed based on a Bayesian recursion that leverages the set of (noisy) detections and it is

approximated using Sequential Monte Carlo for computational efficiency via a set of weighted

random samples (particles) [181]. This approximation is known as the PHD Particle Filter (PHD-

PF) and involves four main steps [115]: the prediction of particles over time; the update of the

weights of the particles based on new detections; the resampling step to avoid that only few

particles monopolising the whole mass; and state estimation. However, no information about the

identity of the objects is present but to perform MOT, consistent identification of the objects is re-

quired. PHD filters need an additional mechanism to provide object identity information (i.e. data

association). Aiming to address the lack of identities, various approaches have been published:

(i) clustering after resampling the particles [115], (ii) keeping a separate tracker for each object

and then perform “peak-to-track” association [104], (iii) combining clustering techniques with

the introduction of hidden identifiers to the samples of the PHD [138, 139, 181]. Table 2.5 sum-

maries the related PHD-based trackers where the different approaches are compared according to

filtering, data association and other characteristics such as detection classification and perspec-

tive dependency. Note that [116, 117, 181] do not perform any type of data association, therefore

no identities are provided with the estimated states.

Let us consider a Bayesian framework where the posterior probability distribution, p(Xk|Z1:k),

can be recursively estimated as [116]:

p(Xk|Z1:k)︸ ︷︷ ︸
Posterior

∝ p(Zk|Xk)︸ ︷︷ ︸
Observation Model

∫
p(Xk|Xk−1)︸ ︷︷ ︸

Prediction Model

p(Xk−1|Z1:k−1)︸ ︷︷ ︸
Previous Posterior

dXk−1,

where p(Xk|Xk−1) is the prediction model that defines the evolution of the state over time and
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the observation model and p(Zk|Xk) is the observation model that quantifies the likelihood of the

states to generate the detections.

This Bayesian inference can be solved using the PHD-PF that approximates the posterior

probability distribution with Lk particles (i.e. samples) where each of them has an associated

weight π i
k describing its importance towards the estimation of the states. Specifically, the PHD-

PF distribution is approximated as

p(xk−1|Z1:k−1)≈
Lk

∑
i=1

π
i
k−1δ

(
xk−1− ẋi

k−1
)
, (2.3)

where δ (·) is the Kronecker’s delta function and ẋi
k−1 is the i-th particle. As a filtering method,

the PHD-PF does provide no information about the identity of the objects [117]. To perform

as a (multi-object) tracker, the PHD-PF requires the use of additional mechanisms such as data

association to introduce the concept of object identity.

We base our contributions described in this chapter in the PHD-PF proposed in [115]. The

PHD-PF involves four main steps: the prediction of particles over time; the update of the weights

of the particles based on new detections; the resampling to avoid that only few particles monop-

olising the whole estimation; and state estimation.

2.5.1 Prediction model

The prediction model models the motion of the objects over time and can be modelled as

xi
k = fp(xi

k−1)+Nk, (2.4)

where fp(·) is the object motion function that describes the temporal evolution of the object and

Nk is the noise matrix that accounts for unmodelled factors.

2.5.2 Observation model

The observation model estimates the importance of each particle towards the estimation of the

state as

π
i
k = fo(π

i
k−1,Zk) (2.5)

where fo(·) is the observation function (also known as likelihood function).
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2.5.3 Resampling and state estimation

The resampling step modifies the particle weights so that particles with larger weights are main-

tained and replicated, whereas those with lower weights are removed. Specifically, we use the

multi-stage resampling [115], which uses multiple stages depending on the frame where the par-

ticles were created. This ensures that particles recently created for newly appearing targets, and

likely to have a lower weight than older ones, are not removed. Finally, the states at time k is

estimated as in Eq. 2.3. For further details in the PHD-PF baseline, please refer to [115].

Various works have been published aiming to address the lack of identities in the PHD-PF: (i)

clustering after resampling the particles [115], (ii) keeping a separate tracker for each object and

then performing ‘peak-to-track’ association [104], (iii) combining clustering techniques with the

introduction of hidden identifiers to the samples of the PHD [138, 139, 181]. Clustering methods

might introduce estimation errors and might require to know a priori the number of objects.

Initialising a separate tracker for each object might be computationally expensive. We present in

Sec. 4.2 how we perform MOT, keeping identity information, within the PHD-PF framework.

2.6 Performance measures

We refer as ground truth (GT) to the set of manual annotations for a given dataset defined as

X̃ = {x̃k,λ : λ ∈ Λk;k = 0, ...,Kλ − 1} composed of |Λk| objects that exist during Kλ frames

length each. Let an annotated object x̃k,λ be defined as

x̃k,λ = (ũk,λ , ṽk,λ , w̃k,λ , h̃k,λ ), (2.6)

where ũk,λ , ṽk,λ are the horizontal and vertical coordinates of the object (e.g. object centre) and

w̃k,λ and h̃k,λ are the width and height of object λ at frame k.

As mentioned earlier, for simplicity in the notation, we avoid writing the sub-scripts of the

components of the states in the remaining parts of the thesis.

2.6.1 Object localisation

The localisation performance considers true positive (TP), false positive (FP) and false negative

(FN). These measures quantify the discrepancy between the tracking estimate and the GT. To
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specify each of them, we first define the intersection over union (IOU) as:

IOU =
overlap(estimation, GT)
union(estimation, GT)

, (2.7)

where overlap(·) is a function that computes the overlapped area, in the image plane, between an

estimation and GT; and union(·) is a function that computes the union area, in the image plane,

between an estimation and GT. We define a TP as a correct detection (IOU ≥ 0.5), a FP as a

wrong detection (IOU < 0.5) and a FN as an annotation not detected. Upon these measures, we

calculate the precision as

P =
TP

TP+FP
=

TP
# detections

, (2.8)

the recall as

R =
TP

TP+FN
=

TP
# annotations

, (2.9)

and F1-Score as

F1-score = 2 · P ·R
P+R

, (2.10)

where # indicates number of.

2.6.2 Dimensions estimation

For computing the performance in estimating the dimensions of an object, we compute the abso-

lute error between the estimated and annotated width and height for a given object as

λ
w
k = |w̃k−wk| (2.11)

and

λ
h
k = |h̃k−hk|. (2.12)
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2.6.3 Object motion prediction

The prediction accuracy is computed as the squared error between the predicted object locations

and the manually annotated ones for the λ -th object at time k as

µk,λ = |(ũk,λ , ṽk,λ )− (uk,λ ,vk,λ )|22, (2.13)

where (ũk,λ , ṽk,λ ) and (uk,λ ,vk,λ ) are the point-wise annotation and estimation of the centre of

the object and | · |2 indicates the l2-norm.

2.6.4 Tracking

We use the CLEAR metrics [26, 83] for the evaluation of the tracking results since these are

the standard in the MOT community. The measures are Multiple Object Tracking Accuracy

(MOTA), Multiple Object Tracking Precision (MOTP), False Alarm per Frame (FAF), Mostly

Tracked objects (MT), Mostly Lost objects (ML) [102], Fragmented trajectories (Frag), False

Positives (FP), False Negatives (FN) and Identity Switches (IDS). The measures quantify the

discrepancy between the tracking results and the GT. MOTA is defined as

MOTA = 1−
K

∑
k=1

(FNk +FPk + IDSk), (2.14)

where FNk, FPk and IDSk are the number of false negatives, false positives and identity switches

for all objects at frame k, respectively. We consider the same definitions of FN and FP as in

Sec. 2.6.1. And IDS is defined as the change in identity of a trajectory as defined by [94]. MOTP

is defined as:

MOTP =
1

∑
K
k=1 ck

∑
λ∈Λk

Kλ

∑
k=1

dk,λ , (2.15)

where ck is the number of matches between the estimated state and the GT and dk,λ is the IOU

between the estimated state, xk,λ , and its associated GT annotation, x̃k,λ , at time k. For further

details of the tracking metrics, we refer to the reader to [26, 83, 94].

2.7 Discussion

This chapter overviewed existing works in the topic of object localisation and dimensions estima-

tion, and object tracking from images and videos. Also, we presented the performance measures
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that are commonly used to evaluate these tasks.

Regarding object localisation and dimensions estimation, we found out that the majority

of existing algorithms use either markers and a motion capture system or a full knowledge of

the object (e.g. a 3D model) for performing these tasks. Existing solutions obtain accurate and

efficient localisation when objects that are previously seen by the algorithms are used. However,

the localisation of unseen objects, for which its prior knowledge is null or limited, remains a

challenging and open research problem.

Regarding the tracking literature review, we showed the divisions in which tracking can be

classified, focusing on the principal components of MOT and presenting some of the most rel-

evant related works. MOT methods usually work in the image plane and have recently focused

their efforts in improving the discriminative power of the appearance features. The performance

of these methods would be seriously compromised in scenarios where the appearance of the ob-

jects is less reliable such as small resolution objects (e.g. objects from a high-altitude UAV) or

very similar-looking objects (e.g. a group of ants or people with the same clothes). Occlusion

handling is still a very challenging issue, that is even more difficult in online methods, and after

numerous published works is still an open research problem. Besides, the motion of the cam-

era is commonly obviated in tracking-by-detection approaches even though it is a very important

feature to consider for robustly modelling the motion of the objects, specially in moving cameras.

We focused on object motion prediction, which is an important component of trackers, that aim

to estimate the future location of objects only by observing their previous location. We focused

on existing algorithms that predict the motion of moving objects from both static and moving

cameras. We showed that a large amount of predictors do not consider the camera motion which

make them inaccurate when the camera is mounted on a moving platform such as a robot. This

can potentially produce tracking drifts. Existing prediction models that consider the motion of

the camera often rely on strong assumptions on the objects (e.g. objects lie on the same common

plane), on the scene (e.g. scene planarity), or use additional sensors (e.g. depth cameras).
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Detection

In this chapter, we first describe a standard vision calibration procedure and we introduce an

audio-visual calibration to enable the use of vision and audio signals in the same reference system

(Sec. 3.1); then, we describe a novel method for object localisation and dimensions estimation

(Sec. 3.2); next, we describe a multi-modal algorithm for human-to-robot handover of unseen

objects (Sec. 3.3); besides, we introduce the CORSMAL containers dataset (Sec. 3.4); then, we

show the experimental validation of the proposed methods (Sec. 3.5). Finally, we draw some

conclusions (Sec. 3.6).

3.1 Calibration

Calibration is the procedure of preparing a device for its correct (or advanced) use. This section

is divided in vision calibration (Sec. 3.1.1) and audio-visual calibration (Sec. 3.1.2).

3.1.1 Vision calibration

Vision calibration (also known as camera calibration) can be used to compensate for the deforma-

tion produced by the camera lens and to infer the real-world location of objects from the camera,

Vision calibration is composed of two steps: intrinsic and extrinsic calibration. Intrinsic calibra-

tion refers to the estimation of a camera lens parameters (also known as intrinsic parameters or

resectioning). We will employ these parameters for correcting the camera lens distortion and to

determining the location of the camera in 3D.

To do so, we use an existing and standard camera calibration named pinhole camera model to

45



Chapter 3: Detection 46

(a) (b)

Figure 3.1: Image captured by the camera mounted on the drone (a) before and (b) after image
undistortion.

estimate the intrinsic and distortion parameters of the camera [67, 222]. We record a calibration

video of a calibration board (e.g. checkerboard) at different locations and poses with respect to

the camera and then estimate the camera parameters with standard libraries such as OpenCV

or MATLAB. The radial and tangential lens distortion parameters are represented by ξ and the

intrinsic matrix parameters are defined as

K =


F s u0

0 F v0

0 0 1

 , (3.1)

where F is the camera focal length (assuming squared pixels) measured in pixels, u0 and v0

indicate the location of the principal point (optical centre) in the image, and s is the skew axis

coefficient.

The parameter ξ is used to undistort an image as

Ĩk = B(Ik,ξ ), (3.2)

where B(·) represents the undistortion procedure [67], Ik and Ĩk denote an image frame before

and after undistortion, respectively. An example is given in Fig. 3.1 illustrating an image before

and after the undistortion procedure. In the distorted image (Fig. 3.1a) we can observe a large dis-

tortion that is more clear on the corners on the image. It can be seen that in the undistorted image

(Fig. 3.1b) the real-world lines maintain their linearity on the image thanks to the undistortion

procedure.

The extrinsic calibration consists of estimating the 3D pose of the camera with respect to a

reference system (e.g. the calibration board). The extrinsic parameters are composed of a rotation
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matrix and a translation vector that encodes the pose of the camera with respect to the reference.

This can be used for 3D-2D projections as well as advanced multi-view applications. We obtain

the extrinsic parameters, E, using standard methods [64]. To do so, we record a calibration image

I of the scene where a calibration board is visible. Then, we estimate the rotation and translation

of the camera with respect to the the calibration board using standard libraries such as OpenCV

or MATLAB.

3.1.2 Audio-visual calibration

The audio-visual calibration procedure consists of two steps: audio-visual temporal alignment

to synchronise audio visual signals and audio-visual geometrical alignment that will align the

estimations of both modalities. This allows to leverage both signals concurrently.

Let’s have a sensing platform composed of a microphone array and a camera at the centre of

the microphone array. The audio and video acquisition systems that work independently, where

each one has its own processing unit, feature representation and coordinate system. We thus need

to calibrate the microphone array and the camera so that the features from the audio and video

streams can be jointly exploited.

The audio and video acquisition systems might work independently and start recording at

different times. To jointly exploit audio and vision modalities it is needed to temporally align

the signals. Assuming that the camera has an integrated microphone, we estimate the unknown

time offset, δav, between the microphone array and the audio signal from the camera by manually

matching (maximising the correlation between both signals) the signals with a calibration sound

(e.g. clapping). This procedure can be also done using automatic methods [20].

Once both streams are temporally aligned, the geometrical alignment associates audio and

video events in a unified coordinate system (Fig. 3.2). The 3D position P of a real-world object

is projected on the image plane, where it is denoted as p. Let θa and θv be the angles, on a 2D

horizontal plane, of the object with respect to the microphone array and the camera. When an

object emits a sound, its direction of arrival (DoA) can be estimated either from the microphone-

array signals, θa, or from the visual signal, θv. Since the microphone array and the video camera

have their own coordinate systems, to infer the DoA of the sound from the corresponding object

in the image we need to know the relationship between θa and θv. In practice the centers of the

microphone array OM and the camera OC are not perfectly aligned in Fig. 3.2.
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Figure 3.2: The 3D coordinate systems for the microphone array, (X ,Y,ZM), and the camera,
(X ,Y,ZC). The centers of the microphone array and camera are OM and OC, respectively; OI =
(u0,v0) is the principal point (centre) of the image; and F is the focal length of the camera. The
sound source P is projected onto the image plane as p with visual angle θv. The audio angle from
the sound source P to the array is θa.

We thus represent the relationship between θa and θv as

θa = a1θv +a2, (3.3)

where a = [a1,a2]
T are unknown constants. Note that we assume here that the sound source is co-

located when perceived by visual and audio means (e.g. the voice of a person comes from their

mouth), and that the environment generates negligible reverberations. To estimate a1 and a2, we

do an audio-visual calibration recording where a speaker produces a sound at L different locations

with both the microphone array and the camera while the drone is muted. As an example, let us

use the sound from the location Q. For the audio, the DoA of the sound, θ
Q
a , can be estimated

from the microphone signal with the SRP-PHAT algorithm [192]. For the video, we manually

label the sound emitting point (i.e. the mouth of the speaker) in the image, pQ = (uQ,vQ), and

then estimate its DoA as

θ
Q
v = arctan

uQ

F
. (3.4)

We thus estimate a set of DoAs of the speaker from the audio as θa = [θ 1
a , . . . ,θ

L
a ]

T and from

the video as θv = [θ 1
v , . . . ,θ

L
v ]

T. The vector of parameters a is then estimated from θa and θv

using least-square fitting.
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Given the parameters ξ , K and a, we can calibrate the audio and video signals, allowing

their combined use. In this thesis, we use the described audio-visual calibration to allow the

ground-truth annotation of the AVQ dataset (Sec. 4.4) and, therefore, to enable the evaluation of

sound source tracking (Sec. 4.6.4). Furthermore, we use this calibration procedure for performing

multi-modal localisation and speech enhancement of multiple sound sources from an unmanned

aerial vehicle [152]. However, as this work has a strong component of audio processing, which

lies outside the scope of this thesis, it is not described within the thesis. Please check the reference

for further details on this work.

3.2 Multi-view object localisation and dimensions estimation

The 3D localisation of an object and the estimation of its properties, such as shape and di-

mensions, are challenging under varying degrees of transparency and lighting conditions of the

objects. In this section, we propose LoDE (Localisation and Object Dimensions Estimator) a

method for jointly localising container-like objects and estimating the dimensions of objects

with transparent materials using two calibrated RGB cameras whose poses are known. Under

the assumption of vertical circular symmetry, we estimate the dimensions of an object by sam-

pling at different heights a set of sparse circumferences with iterative shape fitting and image

re-projection to verify the sampling hypotheses in each camera using semantic segmentation

masks.

3.2.1 Object localisation

LoDE localises the 3D centroid of the object from 2D centroids estimated from semantic seg-

mentation masks. As many containers such as cups, drinking glasses and bottles have a circular

symmetry along their vertical axis, LoDE is initialised with a set of circumferences sampled

around the 3D centroid at different heights. Then, the algorithm iteratively fits to the object by

reducing the radius of the circumferences until each circumference is verified within the object

mask in each camera.

We propose an iterative algorithm to estimate the shape of an object and, as by-product, its

dimensions, assuming the object to be circular symmetric with respect to its vertical axis. As also

the location in 3D of the object is unknown, we combine multi-view projective geometry [64]

with an iterative 3D-2D shape fitting to achieve the objective (see Fig. 3.3).
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tabletop

camera 1
camera 2

Figure 3.3: Two cameras capture an object from different viewpoints. Given only RGB images
and camera poses, we estimate the width w and height h of the object without relying on 3D
object models, depth information, or markers. The proposed method, LoDE, localises the object
centroid in 3D, X from the 2D centroids, x1 and x2, estimated on the segmented images, m1

and m2, and then samples a set of sparse 3D points, Q(0), belonging to circumferences centred
at the centroid location and at different heights, to fit the object shape with an iterative 3D-2D
algorithm.

Let Ic, c ∈ {1,2}, represent the images (defined as in Eq, 1.2) from two calibrated cameras

(see Sec. 3.1.1) that observe the object from different viewpoints. In this section we omit the

time index k from the notation as the detection happens for a single image in a specific k. Let

Ec be the 3D pose of each camera whose calibration is modelled by the intrinsic parameters Kc,

consisting of focal length and principal point.

We first detect the object in Ic with semantic segmentation,

D : NW×H×C→{0,1}W×H , (3.5)

where mc =D(Ic) ∈ {0,1}W,H a binary feature map representing the segmented object.

We estimate the 2D centroid cc of the segmented object with the intensity centroid method [160]

through the definition of the moments within a local image area. Then, the centroid in 3D is com-

puted by triangulating the two 2D centroids:

C = τ(c1,c2,E1,E2,K1,K2), (3.6)

where τ(·) is the triangulation operation [64].
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3.2.2 Object dimensions estimation

To estimate the shape of the object, we initialise the algorithm with a cylindrical shape around

its estimated 3D centroid that iteratively fits the object shape as observed by the cameras. Each

iteration i creates L circumferences of radius r(i), centred at the estimated object 3D location C

and with varying height zl , l = 1, . . . ,L. We represent the set of circumferences as

C(i) = {(ri
l,zl,νl)}L

l=1, (3.7)

where νl ∈ {0,1} indicates whether a circumference lies within the object mask of both cameras.

For each circumference l, we also sample a set of N sparse 3D points,

Q(i)
l = {Q(i)

n,l = (xn,l,yn,l,zl)}N
n=1, (3.8)

and the set of all 3D points is Q(i) = {Q(i)
l }l=1:L. We project the 3D points onto the image of

both cameras as

uc
n,l = ψ(Q(i)

n,l,E
c,Kc), (3.9)

where ψ(·) : R3→R2 is the projection function [64]. Then, we verify if all the points belonging

to circumference l, Q(i)
l , lie within the object mask of both cameras,

η =
N

∑
n=1

m1(u1
n,l)+m2(u2

n,l), (3.10)

and if the condition is satisfied (i.e. η = 2N), we set the corresponding flag as converged, i.e. νl =

1.

For iteration i+ 1, we decrease the radius r(i+1)
l and re-create the 3D circumference points,

Q(i+1). Points with νl = 1, are not re-sampled. This iterative 3D-2D shape fitting terminates

when either all νl = 1 or ri+1
l < ρ , where ρ is the minimum radius that circumferences are

created. Fig. 3.4 shows as example three iterations of the shape fitting for a transparent drinking

glass. Additional visual results are available online1.

When the shape fitting is finalised, we can estimate the dimensions of the object. We select

1Visual results of LoDE: https://corsmal.eecs.qmul.ac.uk/CORSMAL_Containers_LoDE.
html
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i = 0 i = 207 i = 295

r = 150.00 mm r = 46.15 mm r = 2.00 mm

Figure 3.4: Initialisation, sampled iteration and convergence of the 3D-2D shape fitting of a
drinking glass (top: left camera, bottom: right camera). Legend: i iteration number, r radius
of the circumference, projected points lying outside the segmentation mask, projected points
lying inside the segmentation mask and projected points whose circumference fits the shape of
the object (inside the segmentation mask of both cameras).

among the valid circumferences V = {(rl,zl,νl)|νl = 1} ⊂ C, the one with the largest radius r∗

and the ones with maximum and minimum heights, ź and z̀, respectively. The estimated object

width is w̃ = 2r∗ and the object height is h̃ = ź− z̀.

Note that while our method may resemble fitting approaches using Active Contour Models

for segmenting images or surfaces in 3D via energy minimisation [37, 82, 175], LoDE fits the

shape of an object in 3D exploiting already segmented images with a resampling-verification

strategy.

3.3 Multi-modal human-to-robot handover of unseen objects

In this section, we propose a multi-modal baseline, based on the object localisation and dimen-

sions estimation algorithm proposed in Sec. 3.2, to perform human-to-robot handovers of unseen

objects with a real robotic arm.

The real-time estimation through vision of the physical properties of objects manipulated by

humans is important to inform the control of robots for performing accurate and safe grasps of

objects handed over by humans. However, estimating the 3D pose and dimensions of previously

unseen objects using only RGB cameras is challenging due to illumination variations, reflective

surfaces, transparencies, and occlusions caused both by the human and the robot. In this paper
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Figure 3.5: The main phases of the human-to-robot handover of a cup.

we present a benchmark for dynamic human-to-robot handovers that do not rely on a motion

capture system, markers, or prior knowledge of specific objects.

Humans manipulate daily objects made of a wide variety of materials, thus making safe and

accurate handover to robots a challenging task, especially for previously unseen objects whose

dimensions, stiffness, and weight are unknown. When humans are about to receive previously

unseen objects from others, they first estimate the properties of the objects through vision and

then use tactile and force feedback to improve this estimation. Even though the manipulation

capabilities of robots exceed those of humans in terms of accuracy, their capabilities in terms of

perception and dexterity still fall way behind those of humans. Open challenges include accu-

rately estimating the object pose while the human moves the object, selecting the most appropri-

ate grasping regions that will not harm the human, and predicting the filling of containers, such

as boxes and cups, to estimate their mass and stiffness.

A fluid and efficient human-to-robot handover is the result of the combination of perception

and control [119]. To this end, the pose of the object to hand over has to be tracked through vision

to facilitate the planning and reaching of the predicted handover location, and the subsequent

grasping and delivering of the object to a desired location.

Next we introduce a multi-modal baseline that observe the manipulation of an object by a

human and infers how to safely perform human-to-robot handovers of unseen objects (Fig. 3.5).

Note that the baseline has no prior information about the specific object used for the task.

We localise and estimate the dimensions of the object as described in Sec. 3.5.

Also, to deal with changes in appearance and to produce a smooth trajectory of the centroid
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(a) (b) (c)

Figure 3.6: Sample segmentation and tracking result: (a) input frames (top: Camera 1, bottom:
Camera 2); (b) 2D tracking result (green mask) and re-projected centroid (blue point); (c) visu-
alisation of the 3D location and dimensions of the cup (green) estimated through vision.

for the control of the robotic subsystem, we track the cup over time [193] with a state-of-the-

art SOT, T (·), that operates in each camera independently and is automatically initialised with

the smallest up-right rectangle containing all pixels of the mask mc
0, generated by the semantic

segmentation used in Sec. 3.5. We remind that c indicates the camera index. Similarly to the

semantic segmentation, the tracker produces for each frame a binary mask for the object, mc
k =

T (mc
k−1,I

c
k), which we use to estimate the centroid of the cup in 3D with the intensity centroid

method [160] and triangulation (Eq. 3.6). Fig. 3.6b shows two sample masks produced by the

tracker for Camera 1 and Camera 2 in S2 and the projected 2D centroids.

The baseline is instantiated in two different setups, S1 and S2, in different laboratories. The

vision baseline is the same in both setups. Regarding the robotic control, in S1, we employ a

task-space control of the robotic manipulator, and prediction/inference of the human intention,

and in S2 we use a simpler robotic control with standard motion planning libraries2. Please refer

to [J1] for further description on the robotic control.

3.4 The CORSMAL containers dataset

We collect a dataset3 composed of images using 23 containers for liquids: 5 cups, 9 drinking

glasses and 9 bottles (see Fig. 3.7). These objects are made of plastic, glass or paper, with

different degrees of transparency and arbitrary shapes. The dataset contains 3 objects that do not

have circular symmetry, e.g. object 6 (diamond glass), object 16 (amaretto bottle) and object 20

2MoveIt: https://moveit.ros.org/
3The CORSMAL containers dataset: https://corsmal.eecs.qmul.ac.uk/CORSMAL_

Containers.html
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Figure 3.7: Objects in the CORSMAL container dataset. Objects 1 to 13 (transparent); 14 to 18
(translucent); 19 to 23 (opaque). Note that crops are taken from images acquired with the same
camera view.

(deformed water-bottle).

We placed each object on a table and we acquired RGB, depth and stereo infrared (IR) images

(1280×720 pixels) with two Intel RealSense D435i cameras, located approximately 40 cm from

the object. RGB and depth images are spatially aligned. The cameras are calibrated and localised

with respect to a calibration board. We acquired the images in two room setups to vary the

lighting and background conditions. The first setup is an office with natural light from a window

and objects placed on a table of size 160x80 cm and height 82 cm. The second setup is a studio-

like room with no windows, where we used either ceiling lights or artificial studio-like lights to

illuminate a table of size 60x60 cm and height 82 cm.

To acquire multiple images of the same object under different backgrounds, we capture data

with the tabletop uncovered and then covered with two different tablecloths. We collected in total

207 configurations that are combinations of objects (23), backgrounds (3) and lighting conditions

(3), resulting in 414 RGB images, 414 depth images and 828 IR images. We manually annotated

the maximum width and height of each object with a digital calliper (0-150 mm, ±0.01 mm) and

a measuring tape (0-10 m, ±0.001 m).
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3.5 Experimental validation

In this section, we first evaluate multi-view object detection and dimensions estimation (Sec. 3.5.1)

and then we show the validation of the multi-modal human-to-robot handover of unseen objects

method (Sec. 3.5.2).

3.5.1 Multi-view object localisation and dimensions estimation

We validate the approach in the CORSMAL containers dataset that contains objects with dif-

ferent shapes and degrees of transparency, under varying lighting conditions and backgrounds

(Sec. 3.4). The objects contained in the dataset are shown in Fig. 3.7. To quantify the success in

localising the objects we employ the recall metric (Eq. 2.9) and for the accuracy of the estima-

tions we compute the absolute error when estimating the largest width of the object (Eq. 2.11)

and its height (Eq. 2.12).

We compare LoDE with a state-of-the-art method and two baselines, which do not require

3D object models and can estimate object dimensions: NOCS [187], a DNN-based approach that

uses RGB-D data; a baseline that uses segmentation on RGB-D data (SegDD) and our approach

applied to a stereo infrared camera with narrow-baseline on a single device (LoDE-IR). SegDD

partially replicates the initial part of several existing DNN-based approaches, by using semantic

segmentation and then back-projecting in 3D the pixels belonging to the object of interest, using

the distance estimation of the depth image. The dimensions of the object are estimated from the

most external points along the x-axis and y-axis, respectively (camera coordinate system). Note

that while LoDE is multi-view, NOCS, SegDD and LoDE-IR are single-view. Thus, we report

the results of single-view methods as the concatenation of the results from the two cameras used

in the setup. We do not compare with other approaches for 6 DoF pose estimation, (e.g. Dense-

Fusion [185]), or 3D Object Detection, (e.g. FrustumNet [150]), as they require the exact 3D

model of each object which is not the case of study of this work.

Regarding the implementation details. For the semantic segmentation, SegDD, LoDE-IR

and LoDE adopts Mask-RCNN [65] trained on the Common Objects in Context dataset [105] of

which we consider the classes cup, wine glass, bottle and vase. For both LoDE-IR and LoDE,

we set L = 500 circumferences, separated by 1 mm on height and composed of N = 20 points

each (18◦ between point pairs) and we sample the radius of the circumferences, r, across itera-

tions with the following schedule: 150.0,149.5, . . . ,1.5,ρ (mm), with a minimum circumference
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Figure 3.8: Detection recall (R) of all methods and errors for each dimension using LoDE for
each object of the CORSMAL container dataset, across all backgrounds and lighting conditions.
Note the different scale of the y-axis. Legend: NOCS [187] , SegDD , LoDE-IR and LoDE .

radius of ρ = 1.0 mm to fit the shape of objects that have a thin stem, (e.g. object 12, margarita

glass, or object 8, plastic wine glass).

Fig. 3.8 shows the statistics (median, min, max, 25 percentile and 75 percentile) of the di-

mensions error of our approach for each object across all the background and lighting variations.

LoDE accurately estimates the width of most of the objects with an error less than 20 mm and

with small variations across the configurations. Objects 5 (juice glass), 7 (beer cup), 13 (cham-

pagne flute) and 18 (small white cup) are the least accurate cases, where the median error is

larger than 10 mm. LoDE is less accurate in estimating the object height with the errors varying

between ∼10 mm and ∼40 mm. This larger inaccuracy is due to the perspective on the image

plane, as circumferences at lower/higher height than the real one are re-sampled with smaller

radius to fit within the object masks. Objects 1 (bottle of water), 8 (plastic wine glass), 11 (rum

glass) and 13 (champagne flute) show larger variations across configurations than other objects.

As width and height are estimated independently, there is no correlation between the two dimen-

sions. While LoDE localises most of the objects across all the configurations (100% Recall),

there are some challenging cases, such as objects 5 (juice glass), 7 (beer cup) and 13 (champagne

flute), where the Recall is below 60%. Note that the champagne flute is not localised by NOCS

and LoDE-IR. As expected, the most challenging case for all methods is object 6 (diamond glass)

that is never detected through the semantic segmentation due to the high level of transparency
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Figure 3.9: Estimation error of height and width for opaque, translucent and transparent objects.

and the unusual shape. Moreover, NOCS and LoDE-IR have lower Recall than LoDE for most

of the transparent glasses/cups (e.g. objects 5 to 13) and the small cups (objects 18 and 22).

Fig. 3.9 compares the methods under varying degrees of transparency, such as opaque, translu-

cent and transparent. The error is computed only for the cases where the object is successfully

localised. As previously observed for LoDE, we can observe even here that all methods estimate

the width more accurately than the height. The top-down perspective of the cameras makes the

segmentation treat different parts of the object as one and consequently affects the height estima-

tion when back-projecting in 3D via depth map or triangulation, or projecting for circumference

verification. SegDD is more inaccurate for both translucent and transparent objects, with large

variations especially in the height, due to the inaccuracies of the depth maps, while NOCS is

mostly sensitive to transparent objects when localised. LoDE-IR and LoDE, instead, estimate

the dimensions with a median error less than 30 mm despite the object transparency. However,

NOCS and SegDD are more accurate in estimating the height for opaque objects.

Fig. 3.10 shows the Recall in localising the objects and the error in estimating the height

and width dimensions, across all the configurations. As previously observed, LoDE outper-

forms NOCS and SegDD obtaining 2.6 mm and 10.6 mm more accurate height estimations, and

11.2 mm and 22.9 mm more accurate width estimations comparing their medians, respectively,

with a smaller standard deviation. LoDE also outperforms LoDE-IR in both height and width

estimations; furthermore, LoDE has a 25% detection recall higher than LoDE-IR at similar di-

mension error. Although both LoDE and SegDD uses Mask-RCNN, the detection recall of LoDE

is slightly lower than SegDD, as LoDE considers the two views simultaneously, while SegDD

works on each view individually.

Fig. 3.5.1 compares the results for one opaque and one transparent cup, one opaque and one
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Figure 3.10: Detection recall and dimension estimation error. Legend: NOCS [187] , SegDD ,
LoDE-IR and LoDE .

translucent bottle, and two transparent drinking glasses under different backgrounds and lighting

conditions. All methods accurately estimate the dimensions of the opaque cup (object 22). While

SegDD, LoDE-IR and LoDE fails to localise object 5 (juice glass) under natural lighting, NOCS

estimates an inaccurate bounding box. However, NOCS fails to localise two transparent objects

(objects 7 and 12). SegDD shows large inaccuracies for object 12 (margarita glass), object 7

(beer cup), and object 20 (deformed bottle), while LoDE-IR fails for object 20 and object 15

(translucent bottle). LoDE obtains less accurate results with non-symmetric objects (e.g. object

20) and under challenging lighting (last three columns), but successfully estimates transparent

objects such as object 12 (margarita glass).

3.5.2 Multi-modal human-to-robot handover of unseen objects

We validate the baseline by performing a set of handovers with different objects, fillings, subjects,

grasp types and handover types.

The setup consists of a robotic arm with a gripper, a table, cups and filling, and two cameras.

The setup in S1 uses a KUKA LBR iiwa 7-DOF manipulator (14kg payload)4 and a task-space

control of the robotic manipulator, and prediction/inference of the human intention. The setup in

4https://www.kuka.com/en-ch/products/robotics-systems/industrial-robots/
lbr-iiwa
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Figure 3.11: Sample results for objects with varying transparency, backgrounds and lighting.
Fourth and fifth columns correspond to the same object and background but different lighting
(artificial and natural, respectively).

S2 uses a UR5 6-DOF manipulator (5kg payload)5 and a simpler robotic control with standard

motion planning libraries6. Both robots are equipped with a Robotiq 2F-85 2-finger gripper7.

Both setups use two cameras (Intel RealSense D435), located at 40 cm from the arm. The

cameras view the centre of the table and record RGB sequences at 30Hz with a resolution of

1280×720. The cameras are synchronised, calibrated and localised with respect to a calibration

board. Fig. 3.6a shows an example of the RGB images captured from setup S2. The baseline

estimates the centroid and the dimensions of the cup in 3D at 18 Hz on an Intel i7-7700 CPU @

3.60GHz, 16GB RAM, and a GeForce GTX 1060 6GB GPU.

Subjects are instructed to handover the cup naturally, standing opposite to the robot across

the table, which should be covered with a white tablecloth. The subject grasps the cup from a

pre-defined location at the centre of the table and carries the cup to one of the three approximate

5https://www.universal-robots.com/products/ur5-robot/
6MoveIt https://moveit.ros.org/
7https://robotiq.com/products/2f85-140-adaptive-robot-gripper
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Figure 3.12: The setup for the benchmark and the three handover locations (left, L; centre, C;
right, R), which are defined to be reachable by the robotic arm and comfortable for the subjects.

handover locations above the table: left, centre, and right with respect to the robot (Fig. 3.12).

As one cannot explicitly set these locations, assuming the subjects are executing the handover

naturally (i.e. with no intention to help or make it difficult for the robot), these locations can be

roughly constrained by the reachability of the arm (i.e. 40%−50%), such that they are reachable

by the robotic arm, but also comfortable for the subjects to perform the handover naturally. After

the handover, the robot places the object on the table at a pre-defined location.

We select four objects that are challenging for both perception and robotics due to the high

variability of their physical properties (e.g. material, shape, texture and mass). Specifically, we

select four drinking cups (see Fig. 3.13): Cup 1 with high deformability and medium trans-

parency; Cup 2 with average deformability and low transparency; Cup 3 with average deforma-

bility and high transparency; and Cup 4, the plastic wine glass from the YCB object database [36],

which is not deformable and has high transparency. Moreover, we vary the mass and stiffness of

each cup by filling it with rice, which is easy to purchase and - unlike liquids - harmless for the

hardware in case of spilling. Table 3.1 summarises the properties of the cups and their filling.

Each subject shall perform the handover with three different grasps in random order: Grasp

1 from the bottom of the cup, Grasp 2 from the top, and Grasp 3 naturally. While Grasps 1 and 2

make it easier for the robot to grasp the cup, in Grasp 3 the hand of the subject may cover most

of the surface of the cup, considerably reducing the candidate grasping regions (see Fig. 3.13).

In summary, in the experiments presented in this chapter, we account for 192 configurations
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Figure 3.13: The cup and human-grasp types for the benchmark.

Table 3.1: The properties of the four cup types and the filling amount for the benchmark.
Properties Unit Cup 1 Cup 2 Cup 3 Cup 4
Deformability - High Medium Medium None
Transparency - Medium Low High High
Width at the top cm 7.2 9.7 9.9 8.0
Width at the bottom cm 4.3 6.1 6.5 6.5
Height cm 8.2 12.1 13.6 13.5
Weight g 2.0 10.0 9.0 134.0
Volume ml 179.0 497.0 605.0 354.0
Filling amount ml 125.0 400.0 450.0 300.0

in S1 and 48 in S2, that are decomposed as: 4 cup types, 2 filling amounts, 4 subjects (S1) and

1 subject (S2), 2 grasp types (grasp 3 is discarded as our baseline cannot deal with such a case),

and 3 handover locations.

We quantify the performance of the vision subsystem as the AE of the estimation of the

physical properties of the object that include object width at top and bottom and object height.

We consider the distance between the position of the centre of the base of the cup at the end of the



Chapter 3: Detection 63

Table 3.2: Vision subsystem results. Values indicate mean and standard deviation of the abso-
lute error across 192 configurations in Setup 1 (S1) and 48 different configurations in Setup 2
(S2). Results for delivery accuracy are only computed when the handover has been successfully
completed.

Measure Units Setup
S1 S2

Width at top mm 9.12 ± 6.25 4.54 ± 5.20
Width at bottom mm 9.60 ± 9.49 4.42 ± 5.73
Height mm 20.53 ± 24.05 15.44 ± 1.95
Delivery cm 2.88 ± 1.51 2.88 ± 1.30

task with respect to the initial position, to evaluate the detection accuracy as well as the overall

completion of the task. We propose further measures to further evaluate the vision and robotic

subsystems, and the completion of the overall task. However, we do not report them here as they

lie outside of the scope of this thesis. For further details, please check [J1].

The results of the vision subsystem are shown in Table 3.2. We observe an estimation of the

widths below 9.6 mm. For the cups’ height the mean error is of 20.5 mm (in S1) and 15.44 mm

(in S2).

Regarding the whole human-to-robot handover task, the proposed multi-modal system ob-

tains a success rate of 75.0% in S1 and 72.9% in S2, where the success rate is defined as the ratio

between successful handovers and the total number of configurations. A successful handover

is considered when the cup is grasp by the robot and delivered back to the table in an upright

position.

Fig. 3.14 shows aggregated scores8 by cup, filling, and grasp type as well as handover loca-

tion. Unlike Grasp 1 and Grasp 2, the baseline does not allow the performance of safe handovers

when the subject holds the cup with a natural grasp (Grasp 3). This is due to the large size of the

gripper we use: advanced perception algorithms should estimate the pose of the cup and human

hand to detect suitable grasp regions to inform grasp planning. Note also that the performance is

similar for the three handover locations, but varies for different cups, with the plastic wine glass

(Cup 4) being the most challenging. Overall, the scores suggest that there is substantial room

for improvement in developing perception and control algorithms to perform seamless human-

to-robot handovers.

Fig. 3.15 shows two successful and one unsuccessful handovers with different grasp types

8The definition of the scores is available in [J1]
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Figure 3.14: Scores averaged by cup, fillings, and grasp type; handover location; and subsystem
for setup S1 ( ) and setup S2 ( ).

(a) (b) (c)

Figure 3.15: Sample handovers from setup S1, viewed from Camera 1, for Cup 2, full with Grasp
1 (first row), with Grasp 2 (second row), and with Grasp 1 (third row). (a) Human manipulation.
(b) Handover. (c) Robot manipulation (third row: a failed handover).

and handover locations. Visual results of handovers9 and the multi-modal baseline code10 are

available available.
9Handover visual results: http://corsmal.eecs.qmul.ac.uk/benchmark.html#baseline

10Baseline code: https://github.com/CORSMAL/Benchmark
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3.6 Summary

This chapter presented an audio-visual calibration procedure and a method for localising and

estimating the dimensions of unseen objects. First, we introduced an audio-visual calibration

procedure that enables the combined use of audio and visual clues for different tasks such as

ground-truth annotation of sound sources (from video) or the concurrent use of audio-visual sig-

nals for performing tasks such as localisation of sound sources or audio enhancement [152].

Also, we proposed LoDE, a method for localising and estimating the dimensions of container-

like objects with circular symmetric shape, without relying on depth information, markers, or

3D models. LoDE uses an iterative multi-view 3D-2D shape fitting algorithm, verifying the

model on the object image masks of two wide-baseline cameras. We also collected a dataset of

containers-like objects with different degrees of transparency, and under varying lighting condi-

tions and backgrounds. Experiments showed that LoDE has an object localisation success ratio

of 86.96% and an average error less than 2 cm when measuring object height and under 0.5 cm

when measuring the width of an object. However, this method is not suitable for objects that are

not symmetric with respect to their vertical axis.

In addition to that, we presented a multi-modal baseline composed of a vision and a robotic

subsystem for performing human-to-robot handover of unseen objects. Specifically, we com-

bined semantic segmentation with object tracking in a two-stage algorithm that first estimates the

3D object location using multi-view projective geometry and, then, it estimates the height and

width of the object with an iterative algorithm. Moreover, we proposed a benchmark9 in [J1] to

evaluate dynamic human-to-robot handovers in scenarios without motion capture systems, mark-

ers, or prior object models. We considered previously unseen objects (drinking cups), whose

physical properties are subject to transformations, such as deformability due to the grasp, or

different stiffness and filling amounts. We hope that the release of the benchmark, as well as

the baseline code will encourage the community to participate in this benchmarking effort for

creating advanced multi-modal algorithms for this task.

The work presented in this Chapter has been conducted in collaboration with multiple researchers: Sections 3.2,
3.4, and 3.5.1 with A. Xompero, and A. Modas; and Sections 3.3, and 3.5.2 with K. Chatzilygeroudis, A. Modas,
N. Ferreira Duarte, and A. Xompero. I acknowledge that I am the principal contributor of the work presented in this
Chapter and that is not present in any prior thesis.
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Tracking

In this chapter, we first propose a method to perform single-object tracking from sound sources

(Sec. 4.1); next, we introduce a method to perform multi-object tracking from a static camera

(Sec. 4.2) where we include a perspective-dependent approach to perform object motion predic-

tion; then, we present a multi-object tracker for moving cameras (Sec. 4.3) where we introduce

a global-motion aware object motion prediction. Besides, we introduce a novel self-collected

dataset for evaluation of SOT from audio signals (Sec. 4.4); then, we experimentally validate

the proposed methods (Sec. 4.6); and, finally, we draw some conclusion (Sec. 4.7). Note that the

tracking methodologies described in this chapter are based on the PHD-PF introduced in Sec. 2.5.

4.1 Single-object tracking

In this section, we perform single-object tracking of a sound source from a UAV equipped with

a microphone array and a camera (see Fig. 4.1) using only audio signals. Note that the camera is

only used to annotate the ground truth source location.

We employ existing audio processing techniques [190] to generate estimations (i.e. detec-

tions) of the DoA of the sound source. The audio processing generates a spatial confidence

function, ρk(θ), that contains multiple noisy peaks corresponding to the sound source as well as

a strong ego-noise produce by the UAV. Selecting the location with the highest intensity, as done

in [189], may lead to erroneous results. We solve this problem with two steps: peak detection

and tracking.

The ego-noise mainly consists of the sound emitted from the motors and the propellers. The

66
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Figure 4.1: The multi-rotor drone with an 8-microphone circular array and, for tracking perfor-
mance evaluation, a camera mounted at the centre of the array. (a) Front view and (b) top view.
The noiseless sector is indicated with a red shadowed area.
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Figure 4.2: Localisation results using ego-noise only. (a) SRP-PHAT functions at two random
frames. (b) Histogram of the DoA estimates at individual time-frequency bins for a 30-second
ego-noise segment. The noiseless sector [-45◦, 45◦] is indicated with red lines.

motor sound can be interpreted as point sources whose directions are static with respect to the

position of the microphones. The ego-noise is generated by the motor, as well as the rotating

blades. When the microphone array is placed at the front of the body of the drone (see Fig. 4.1a),

the ego-noise tends to arrive from the side closer to the motors (the back of the array) thus

creating a sector with lower ego-noise (the front of the array). Fig. 4.2a shows the SRP-PHAT

functions computed at two random frames (each 2048-sample long) [192], where four peaks,

corresponding to the four motors, can be observed. Fig. 4.2b shows the histogram of the local

DoA estimation at individual time-frequency bins [189]. The histogram has lower values in the

sector [−45◦,45◦]. We name this sector, where we presume that an object sound can be more

easily detected, as the noiseless sector [190].
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The sound source direction is considered to be the peak with highest confidence in the noise-

less sector and it is calculated as

θk = argmax
θ∈[-45◦ ,45◦]

ρk(θ), (4.1)

where ρk(θ) is the spatial confidence function of time block k. To track θk while filtering out the

noisy spatial confidence function received at each block k, we use a particle filter [17, 181]. Note

that we consider in this section single object tracking, therefore no data association is needed for

retrieving the object identities. As in Eq 1.4, the i-th particle state is defined as

θ̇
i
k = (θ , θ̄)T , (4.2)

where θ is the estimated sound direction and θ̄ is the angular velocity at block k. Unlike in

multiple-object tracking, we do not write in the notation the identity as only one identity is

considered. Each particle has an associated weight, π i
k, that informs how well a particle represents

the actual location of the object. As previously discussed, the particle filter typically consists of

four steps: prediction, update, state estimation and resampling.

We define the prediction model as

θ̇
i
k = Gkθ̇

i
k−1 +Nk, (4.3)

where Gk is an affine transformation defined as

Gk =

1 ∆k

0 1

 , (4.4)

where ∆k is the time difference between audio blocks; and, Nb is a noise process defined as

Nk =

N (0;σ)

N (0; σ̄)

 , (4.5)

where N (0;σ) and N (0; σ̄) are Gaussian functions with mean 0 and standard deviation σ and

σ̄ , respectively.

Given the observed sound source direction (Eq. 4.1), the update step calculates the weights
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of the particles as

π
i
k =

1√
2πσu

e
−(

θk−θ̇
i
k)

2

2σ2
u , (4.6)

where σu is the standard deviation that accounts for the sensing noise. Next, the state estimation

step calculates the DoA of the sound as

θk =
L

∑
i=1

π
i
k · θ̇ i

k, (4.7)

where L is the number of particles.

Finally, a resampling step discards particles with very low weight and duplicates particles

with higher weight [115]. Therefore, the tracker outputs the estimated DoA for each of K time

blocks, giving (θ1, . . . ,θk, . . . ,θK).

4.2 Multi-object tracking from a static camera

As discussed in Sec. 2.5, PHD-PF does not assign identity information to the estimated states.

Therefore, to work with multiple objects simultaneously we introduce in this section the Early

Association Probability Hypothesis Density Particle Filter (EA-PHD-PF) that based on the PHD-

PF introduces a mechanism, named Early association (EA), to perform tracking of a time-varying

and unknown number of multiple objects within the PHD-PF framework without relying in clus-

tering techniques.

4.2.1 Multi-detector fusion

Let’s consider an over-detection process in which a (large) set of detections Z∗k is generated at

each time step k. This set of detections can be generated by running multiple detectors in parallel,

by changing the operational parameters of a detector, or by a combination of these approaches.

The set of detections is likely to generate multiple overlapping detections for a single object,

potentially contain false positives, and likely to not contain false negatives (Fig. 4.3a). In order

to manipulate detections generated by different detectors, whose confidences might be defined

in different ranges, we normalise the confidences to [0,1] range in a pre-processing step. We

divide the confidence of each detection by the 99th percentile of the confidences of all detections

generated by the considered detector in a training dataset and, then, truncate the confidences to 1.
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(a) (b)

Figure 4.3: Example of multi-detector fusion at frame 43 (crop) in PETS09-S2L1. (a) Initial
object detections Z∗k ; (b) fused detections Zk. Source images from [94].

Algorithm 1 Non-maximum suppression [44, 54]. Magenta indicates differences with respect to
Algorithm 2.
Require: (Z∗k ,S∗k) . Input tuple of detections and associated confidences sets

Zk⇐∅ . Initialise output set of detections as an empty set
Sk⇐∅ . Initialise output set of associated confidences as an empty set
if |Z∗k |> 0 then

(zi∗
k ,s

i∗
k )
|Z∗k |
i=1 ⇐ o((Z∗k ,S∗k)) . Sort detections by decreasing confidence

I⇐{1, . . . , |Z∗k |} . Initialise set of detection indexes
while |I|> 0 do . Iterate while I contains indices

i⇐min(I) . Select the smallest available index (i.e., the index of the non-used
detection with highest confidence)

for j ∈ I do . Iterate for all remaining indices in I
if IOU(zi∗

k ,z
j∗
k )> τ f then . If detections i and j has an IOU larger than τ f ,

I⇐ I\{ j} . the index j is removed from I, the cardinality of the set
decreases. The detection j is suppressed. Note that when j = i, IOU=1, the index is removed
and the detection is always used as output (see next line)

end if
end for
Zk⇐ Zk

⋃
{zi∗

k } . Add detection i to the set of output detections
Sk⇐ Sk

⋃
{si∗

k } . Add confidence i to the set of output confidences
end while

end if
return (Zk,Sk)

KEY –
o(·): function that sorts detections and confidences by decreasing confidence;
IOU(·, ·): function that computes the intersection over union between two detections;
τ f : overlap threshold to suppress detections.

Prior to use detections as input by tracking algorithms, detections are commonly filtered

out in a pre-processing step. A common pre-processing step is the Non-Maximum Suppression

(NMS) [44, 54], which maintains the most confident detections while removing the overlapping

and less confident ones. NMS, described in Algorithm 1, receives as input the (large) set of detec-

tions Z∗k , their corresponding normalised confidences S∗k , and an overlap threshold τ f . NMS order
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the detections by decreasing confidence, and then, iteratively removes detections with lower con-

fidences and with intersection over union (IOU) larger than τ f . As output, NMS generates a set

of filtered detections Zk, which is a subset of the input ones, and their corresponding confidences

Sk. NMS is effective at removing overlapping detections; however, NMS discards information

that might be valuable for the tracking process when multiple detectors are used. For instance,

when detections Z∗k are generated by multiple independent detectors, an object detected by a

larger number of detectors might indicate a higher likelihood to be a true positive detection, than

an object detected by a smaller number of detectors. This information is not leveraged by NMS.

Algorithm 2 Proposed detection fusion. Magenta indicates differences with respect to Algo-
rithm 1.
Require: (Z∗k ,S∗k) . Input tuple of detections and associated confidences sets

Zk⇐∅ . Initialise output set of detections as an empty set
Sk⇐∅ . Initialise output set of corresponding confidences as an empty set
if |Z∗k |> 0 then

(zi∗
k ,s

i∗
k )
|Z∗k |
i=1 ⇐ o((Z∗k ,S∗k)) . Sort detections by decreasing confidence

I⇐{1, . . . , |Z∗k |} . Initialise set of detection indexes
while |I|> 0 do . Iterate while I contains indices

Z̆k⇐∅ . Initialise set of detections to fuse as an empty set
S̆k⇐∅ . Initialise set of confidences to fuse as an empty set
i⇐min(I) . Select the smallest available index (i.e., the index of the non-used

detection with highest confidence)
for j ∈ I do . Iterate for all remaining indices in I

if IOU(zi∗
k ,z

j∗
k )> τ f then . If detections i and j has an IOU larger than τ f ,

I⇐ I\{ j} . the index j is removed from I, the cardinality of the
set decreases, and the detection j is considered for fusion. Note that when j = i, IOU=1, the
index is removed and the detection is always considered for fusion (see next line)

Z̆k⇐ Z̆k
⋃
{z j∗

k } . Add detection j to the set of detections to fuse
S̆k⇐ S̆k

⋃
{s j∗

k } . Add confidence i to the set of confidences to fuse
end if

end for
U ⇐ f (Z̆k) . Compute number of detectors contributing to the detection to fuse

Zk⇐ Zk
⋃
{ 1

∑
|Z̆k|
n=1 s̆n

k

∑
|Z̆k|
n=1 s̆n

k z̆n
k} . Fuse detection as the linear combination of detections

with confidences as weights, and add to the set of output detections
Sk⇐ Sk

⋃
{U

D
1
|Z̆k|

∑
|Z̆k|
n=1 s̆n

k} . Compute the confidence of the fused detection as an
average, and add to the set of output confidences

end while
end if
return (Zk,Sk)

KEY –
o(·): function that sorts detections and confidences by decreasing confidence;
IOU(·, ·): function that computes the intersection over union between two detections;
τ f : overlap threshold to suppress detections;
f (·): function that computes the number of detectors that contributed towards creating a fused detection;
D: total number of detectors.
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To use this information, we propose a fusion algorithm that, unlike NMS, fuses overlapping

detections instead of filtering them out, and uses the information of the number of detectors

detecting each single object to produce enhanced confidence scores. The proposed fusion algo-

rithm, described in Algorithm 2, receives the same input that NMS algorithm does, the (large) set

of detections and their associated normalised confidences. Unlike NMS, the proposed fusion al-

gorithm iteratively fuses high-confidence detections with lower-confidence ones when their IOU

is larger than τ f . New fused detections are generated as a weighted linear combination of the set

of overlapping detections, Z̆k, where the weights are the detections confidence. The detection

confidence of a new fused detection is calculated as the average of the confidences of the detec-

tions to be fused normalised by U
D , where U is the number of detectors contributing to the new

fused detection, and D is a constant equal to the total number of detectors. This normalisation re-

wards fused detections detected by a larger number of detectors, which we consider more likely

to be true positives, and penalises fused detections detected by a smaller number of detectors,

which we consider more likely to be false positives. Note that as U ≤ D, the confidence of fused

detections remains in the [0,1] range. We experimentally set τ f =
1
3 . Fig. 4.3b shows a sample

result of the fused detections.

We validate the multi-detector fusion approach in Sec. 4.6.2.

4.2.2 Data association

Traditionally, data association links previous tracking states with the current ones [181]. This

results in the need for a clustering method for determining the identity of each of the particles

at each time [115], specially for new particles. Differently, we propose an early association

(EA) that links detections to previous predicted tracking states. The main benefits of the early

association is that the clustering method is not needed, as newly generated particles are straight

away associated with a trajectory, thus they have an associated identity since they are born; and

an important speed up in the computation as clustering is commonly computational expensive.

We refer to this association as early as it is performed before the update and resampling stages,

unlike [115, 181] that is performed after the clustering and resampling stages.

Considering the set of fused detections Zk, we classify the set into two subsets based on the

detections confidence as: strong and weak detections. Strong detections Z+
k = {zi

k : si
k ≥ τs} are

confident detections and more likely to be true positives. Weak detections Z−k = {zi
k : si

k < τs}

are less confident detections and potential false positives. The ratio between the number of
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(a) (b)

Figure 4.4: Example of strong and weak detections at frame 43 (crop) in PETS09-S2L1. (a)
Fused detections Zk; (b) strong (green) Z+

k and weak (red) Z−k detections after classification.
Source images from [94].

false negatives and false positives can be varied accordingly to the problem’s needs by tuning the

confidence threshold τs. Fig. 4.4 shows a sample result of strong and weak detections. We use the

concept of strong and weak detections to improve tracking performance. The idea is that strong

detections can be highly trusted and, therefore, they can be used for critical tracking steps such as

trajectory initialisation. However, weak detections are less reliable than the strong ones but can

be still useful for maintaining the tracking of existing objects. Discarding weak detections will

make the tracker to only rely on a limited number of strong detections and predictions, which

can potentially produce drifts and, therefore, lost the track. Also, weak detections are useful to

shorten the prediction time, maintaining a lower tracking uncertainty. Specifically, we associate

the elements of the strong Z+
k and weak Z−k set of detections to the predicted states using the

Hungarian algorithm [90]. The association cost, ω
j

k,λ , between a detection z j
k and the predicted

state, xk|k−1,λ , is

ω
j

k,λ = dl(z
j
k,xk|k−1,λ ) ·ds(z j

k,xk|k−1,λ ), (4.8)

where dl(·) and ds(·) are the Euclidean distances between the position and bounding box size

elements, respectively. Note that we multiply the normalised distances instead of averaging

them, to penalise when they are dissimilar (e.g., when two objects are far from each other in the

scene but appear close to each other on the image plane).

When a trajectory is not associated to any (strong or weak) detection, the state is estimated

using existing particles only. When the trajectory is not associated to any detections for half a

second, the state will be discarded before the EA and,therefore, the weight of its particles will
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gradually decrease toward zero.

EA enables the tracker to generate newborn particles that inherit the properties of its associ-

ated state (inheritance) or that produce a new identity (initialisation).

Inheritance. Strong detections Z+
k generate Jk newborn particles to repopulate the area

around existing states. The newborn particles are added to the Lk−1 existing particles. In [115,

181], the newborn particles are created from a newborn importance function pk(·) [115], which

can be independently modelled from the estimated states as a Gaussian process:

ẋi
k,λ ∼ pk(ẋi

k,λ |z
+
k ) =

1
|Z+

k |
∑

z+k ∈Z
+
k

N (ẋi
k,λ ;z+k ,σ

n
λ
), (4.9)

where | · | is the cardinality of a set, N (·) is a Gaussian distribution and σn
λ

is a constant covari-

ance matrix. The covariance matrix can be dynamically updated based on parameters, such as

detection size or video frame rate. Each newborn particle has an associated weight defined as

π
i
k =

1
Jk

γk(ẋi
k,λ )

pk(ẋi
k,λ |z

+
k )

, i = Lk−1 +1, ...,Lk−1 + Jk, (4.10)

where γk(·) is the birth intensity, which is assumed to be constant when no prior knowledge about

the scene is available [115]. Typically, Jk is chosen to have, on average, ρ particles per newborn

object [181]. The process described in Eq. 4.9 could create newborn particles that are dissimilar

from the corresponding state, as they are independently created.

Let Ẑ+
k and Ẑ−k be the sets that contain, respectively, strong and weak detections that are

associated to one of the predicted states, i.e. to an existing trajectory. Let Ẑk = Ẑ+
k ∪ Ẑ

−
k be the

set of detections that inherit the identity of the corresponding trajectories. We create newborn

particles from Ẑk and inherit properties from their associated predicted states: the position and

bounding box size are created from detections, whereas velocity and identity are inherited from

the associated states.

We use a Gaussian mixture as an importance function to sample position and bounding box

size elements from the detections as

ẋi
k,λ ∼ pk(ẋi

k,λ |ẑk) =
1
|Ẑk|

∑
ẑk∈Ẑk

N (Cẋi
k,λ ;Cẑk,C Σk,λ ), (4.11)
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where

C =

 D 04×2

02×4 I2×2

 , D =



1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0


, (4.12)

and

Σk,λ = (nk,λ )
T , (4.13)

where nk,λ ∈ Xk is a noise variable that varies for different times and identities generated from

a Gaussian distribution as nk,λ ∼Nk,λ (0;σk,λ ), with null mean and standard deviation σk,λ . The

perspective distortion during the generation of newborn particles is modelled by Σk,λ . The stan-

dard deviations are modelled as a function of the dimensions of the bounding box detection. The

values could be also learned.

The new particles inherit the velocity and the identity from the trajectory that they are asso-

ciated to as

ūi
k,λ = ūk−1,λ +nu

k,λ ,

v̄i
k,λ = v̄k−1,λ +nv

k,λ , (4.14)

λk = λk−1,

where (ūk−1,λ , v̄k−1,λ ) are the horizontal and vertical components of the estimated velocity of

λ -th object. The weight of the newborn particles is calculated as in Eq. 4.10.

Initialisation While un-associated weak detections are discarded after EA, un-associated

strong detections, Žk = Z+
k \Ẑ+, initialise new trajectories. Newborn particles associated to a

new object are generated in a limited volume of the state space around the un-associated strong

detections. All particles generated from a given un-associated strong detection are created with

the same new identity.

We do not consider re-identification, therefore, objects that exit and re-enter in the field of

view of the camera are treated as new objects. The newborn importance function pk(·) in Eq. 4.9

could be used to regulate where objects are more likely to enter in the scene [114]. Then, each
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(a) (b)

Figure 4.5: Example of newborn particles initialising a new trajectory from an un-associated
strong detection on the bottom right corner of the image at frame 43 (crop) in PETS09-S2L1
sequence. (a) Strong and weak detections indicated with green and red bounding boxes respec-
tively; and existing and newborn particles indicated with green and red dots, respectively. (b)
Tracking results where the identity of the objects is colour coded and the lines indicate previous
estimated locations. Source images from [94].

detection in Žk initialises a new trajectory and generates newborn particles using a Gaussian

mixture as

ẋi
k,λ ∼ pk(ẋi

k,λ |žk) =
1
|Žk|

∑
žk∈Žk

N (ẋi
k,λ ; žk,Σk,λ ), (4.15)

where Σk,λ it is defined as in Eq. 4.13 but the standard deviations are a function of the un-

associated strong detection instead of the associated trajectory. The weights of the particles are

calculated as in Eq. 4.10.

Fig. 4.5 shows a sample of (a) strong and weak detections, and new and existing particles; and

(b) tracking results. The person entering on the field of view on the right is initialised because of

the presence of an un-associated strong detection. The person with identity number 2 is detected

by a weak detection which will be used in the update step. However, the weak detection that

is a false positive is discarded because it is not associated to any predicted states. In Fig. 4.5b,

green/red dots indicate existing/newborn particles.

4.2.3 Perspective-dependent object motion prediction

Let Xk be the set of all estimated states at time k whose elements are xk,λ ∈ Xk (Eq. 1.2). The

elements of this set are obtained at each time step from the set of all existing particles Ẋk whose

elements are ẋi
k,λ ∈ Ẋk, where ẋi

k,λ is the i-th particle.

Assuming that the motion of an object is independent from that of other objects, we propose
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a prediction model that propagates each particle ẋi
k−1,λ as

ẋi
k,λ = Gk,λ ẋi

k−1,λ +Nk,λ , (4.16)

where Gk,λ is an affine transformation defined as

Gk,λ =


Ak,λ 02×2 02×2

02×2 Bk,λ 02×2

02×2 02×2 I2×2

 , (4.17)

where 02×2 and I2×2 are the zero and identity matrices of dimensions 2×2, respectively; Nk,λ ∈

Xk is a noise variable, where each component nl
k,λ ∼Nk,λ (0; ·) is sampled from an independent

Gaussian variable of zero mean and standard deviation proportional to the bounding box di-

mensions of the state in the previous frame. As an object moving at constant velocity produces a

smaller apparent displacement on the image plane when it is farther from the camera, we propose

to improve the model by considering the effect of foreshortening. To this end, we model Nk,λ as

a function of the distance from the camera, which is inversely proportional to the bounding box

dimensions. We assume here that every object has the same dimensions than all the others in the

real world. Specifically, we set the standard deviation of the noise for the horizontal and vertical

components to be proportional to the width and height of the estimated state xk,λ .

In addition to the above, object acceleration variations, noisy detections and camera motion

may generate erroneous predictions. To account for this, instead of relying only on the previous

time step [115], we average the past M states over a longer time interval k ∈ [k−M,k− 1].

Therefore, the proposed object motion prediction dynamically updates the position and velocity

via the average velocity in the previous M frames, where Ak and Bk are defined as:

Ak,λ =

1
uk−M|k−1,λ

uk,λ

0
uk−M|k−1,λ

ūk,λ

 , Bk,λ =

1
vk−M|k−1,λ

vk,λ

0
vk−M|k−1,λ

v̄k,λ

 , (4.18)

where uk−M|k−1,λ ,vk−M|k−1,λ are the average horizontal and vertical velocities of the estimated

state xk,λ , respectively, whose values are computed as

(
uk−M|k−1,λ ,vk−M|k−1,λ

)
=

1
M ∑

k∈[k−M,k−1]

(
uk,λ ,vk,λ

)
, (4.19)
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where M = min
(
Mk,λ ,Mmax

)
, Mk,λ is the number of time steps since the object xk,λ was ini-

tialised and Mmax the maximum number of considered time steps.

The weights of the particles, π i
k, are not modified during the prediction step, therefore

π
i
k|k−1 = π

i
k−1, i = 1, ...,Lk−1, (4.20)

where Lk−1 is the number of existing particles at k−1.

4.2.4 Perspective-dependent update, resampling and state estimation

Let the set of particles that share the same identity be Ẋk,λ = {ẋi
k,λ : λ = λ j}. After new detections

are generated, the particles are re-weighted using the new detections at time k [115, 117, 182].

The particle weights are updated as

π
i
k = π

i
k−1 p(z j

k|ẋ
i
k,λ ), (4.21)

where p(z j
k|ẋi

k,λ ) is the likelihood of each particle component defined as

p(z j
k|ẋ

i
k,λ )∝ e

−
|z j

k−ẋi
k,λ |

2
2

2(σk,λ )2 , (4.22)

where e(·) indicates the exponential function. Note that as detections do not have velocity com-

ponents, they are discarded from this calculation. The standard deviations for the object size,

σw
k,λ and σh

k,λ , are constant, whereas the standard deviations for the object location, σu
k,λ and

σ v
k,λ , are a function of the detection width to account for the foreshortening and a function of the

video frame rate to account for frame rate variations. Unlike [115, 138] where the components

of σk,λ are defined as constant values, we define them as a time-variant variable that regulates

the score based on the similarity between the components of the particles and detections (i.e. the

particles of an object far from the camera will be less spread than those of a closer object due

to the perspective). Fig. 4.6 shows examples of the use of the proposed perspective-dependent

approach.

After the update step, resampling helps on avoiding the degeneracy problem [17]. The stan-

dard multinomial resampling [17, 181] splits particles proportionally to their weights, frame-by-

frame independently. Because newborn particles have in general a lower weight than existing
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(a) (b)

(c) (d)

Figure 4.6: Examples of tracking under perspective changes at frames 32 and 102 (crops) in
ETH-Bahnhof, and at frames 178 and 375 (crops) in ADL-Rundle-8. Objects 5 and 6 (see (a),
(b)) and objects 33 and 35 (see (c), (d)) are correctly tracked despite considerable perspective
changes. Source images from [94].

particles, new objects may not be initialised due to repetitive deletion of their particles during

resampling. To allow newborn particles to grow over time and reach a comparable weight to

that of existing particles, newborn particles are resampled independently from existing particles

using a multi-stage multi-nomial resampling step [115]. Finally, each state xk,λ is estimated as

the average of all resampled particles sharing the same identity:

xk,λ =
1
|Ẋk,λ |

∑
ẋi

k,λ∈Ẋk,λ

ẋi
k,λ , (4.23)

where Ẋk,λ is the set of particles sharing the same identity λ .

4.3 Multi-object tracking from a moving camera

Tracking multiple independently-moving objects with a camera mounted on moving agents such

as robots or worn by people is becoming increasingly common. However, most online trackers

rely on simple motion models that may be inaccurate in these scenarios as they solely consider
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the motion of the objects but disregard that of the camera. This is broadly discussed in Sec. 2.3.

To address this problem, we present a real-time multi-object tracker based on the EA-PHD-PF

(introduced in Sec. 4.2) with a prediction model that disentangles the motion of objects from that

of the camera.

While offline trackers can use future observations to solve the association problem, online

trackers rely on past observations only. To predict the likely location of objects in future frames,

online trackers use motion models [16, 39, 93, 120]. However, the motion of an object can be

masked by the global motion of the camera, thus making the prediction task very challenging.

Moreover, miss-detections increase the difficulty in accurately predicting future object locations.

Predictors can model the motion of an object with random noise (Brownian model) [131]

or with linear predictions based on its past motion [34, 115, 165, 218]. With static cameras,

the linearity assumption may hold and linear predictors perform accurately; when objects and

camera move independently, drifts often happen. Higher frame rates can alleviate this problem

within short temporal windows [62], but require a higher energy budget, which is undesirable for

robotic and wearable cameras.

With static cameras, prediction models can use deep learning [8, 19, 144]. The location and

scale can be predicted with a LSTM [19], by modelling person-to-person interactions [8] and

person-to-person interactions considering static objects present in the environment [144]. With

moving cameras, methods require additional information, such as camera parameters [16, 39]

and additional sensors (e.g. depth sensor) [39], or strong constraints on the type of application

scenario, such as using high-altitude drones recording a top-down view [16] or having all objects

sharing a common plane [16, 93, 101, 120]. A desirable prediction model for moving cameras

should instead be agnostic to the type and location of objects as well as of the scene type.

In this section, we propose an online multi-object tracker with a novel model that accurately

predicts the motion of objects despite the motion of the camera (see Fig. 4.7). The model is

informed by global motion estimation and separates the object motion from that of the camera.

We use as a base tracker for the model the Early Association Probability Hypothesis Density

Particle Filter [C7].

4.3.1 Global motion estimation

Predicting the motion of objects captured by a moving camera is important for vision tasks. In

this section, we present an accurate model to forecast the position of moving objects by disentan-
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Figure 4.7: Sample multi-object tracking result (bounding boxes) using the proposed prediction
model that facilitates maintaining object identities when camera and objects move independently,
and without using any appearance information. Note that C is the camera and Ik is the frame at
time k.

gling global and object motion without the need of camera calibration or planarity assumptions.

Our predictor uses past observations to model the motion of objects online by selectively track-

ing a spatially balanced set of keypoints and estimating scene transformations between pairs of

frames.

Cameras can move with 6 degrees of freedom, three translation-wise and three rotation-wise,

as shown in Fig. 4.8. Let’s consider a camera installed on a moving platform looking to an

object placed straight in front of the camera 10 meters away from it. Considering a real robot,

let’s consider that it can translate up to 30 km/h and rotate up to 180 degrees/s [1] and let’s

assume that the objects remains static. For instance, if a camera records at 30 fps while the

robot moves, the camera can translate up to 0.28 meters and rotate up to 6 degrees on the ground

plane (i.e. along the y axis) within a frame interval. Let’s consider that the camera translates at

maximum translation speed towards the object during the time of a frame; which will produce a

null pixel displacement on the image plane. Now, let’s consider that the camera yaws (i.e. rotates

along the Z axis at maximum rotational speed on during the time of a frame, which will produce

a displacement of 157 pixels on the image plane. Fig. 4.9 shows examples on how the translation

and rotation of the camera affects to the observed image plane location of a static object located

at 10 meters straight in front of the camera. As can intuitively be imagined, it can be seen that

rotations produce larger image plane displacements than translations in the mentioned scenario.

A real example of this effect is shown in Fig. 4.10 where, as expected, the apparent displacement

of a person in a translation-dominant video produces smaller displacement on the image plane
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Figure 4.8: The six degrees of freedom of a camera: forward/back, up/down, left/right, yaw,
pitch and roll. Image from [2].
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Figure 4.9: The effect of translation and rotation of the camera on the observed image plane
location of a static object. In these scenarios, where the object is located 10 meters away from
the camera on its y axis and with common camera settings, camera rotation has a greater effect
than translation. KEY: IPD, image plane displacement.

than in a rotation-dominant video. Therefore, we assume that in our object scenario, translation

between consecutive frames can be neglected and consider camera motions as purely rotational.

Without loss of generality, a projective transformation, usually known as homography [174],

Hk|k−1, relates points in frame Ik−1 with their correspondences in the frame Ik (i.e. the same

world point but imaged in another frame) in three different scenarios: (i) pure rotation, (ii) pure

zoom and (iii) any motion in the 6 DoF with planar surfaces.

As discussed previously, we assume that the camera translation effect between consecutive

frame is negligible. Therefore, in this work we make use of the first homography use case, where

any pixel in frame k−1 is related by an homography transformation with its corresponding pixel

in frame k. Note that no planar assumption is needed and no camera parameters are required.
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Frame k Frame k+5 Frame k Frame k+5

- -

Translation Rotation
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254 px

Frame k Frame k+5 Frame k Frame k+5

- -

Translation Rotation

22 px
254 px

(a) (b)

Figure 4.10: Samples from MOT17-13 showing the effect on the image plane when the camera
undergoes a dominant (a) translation motion and (b) rotation motion. Note that the person in
red in (a) moves 22 pixels as the camera just perform a translation while the person in black
in (b) moves 254 pixels, more than an order of magnitude of difference for the same temporal
difference and similar depth to the object. Frames k and k+5 are chosen for the sake of clarity
in the example. Source images from [125].

Frame k-1

pn
k

pn
k�1

p̃n

Figure 4.11: Two consecutive frames of a video sequence, where a pure camera rotation occur. A
static real-world point p̃n is visible in both images and imaged as pn

k−1 and pn
k . These two points

(and the rest of the points visible in the two views) are related by an homography transformation
Hk|k−1.

Fig. 4.11 shows two consecutive frames whose camera undergoes a pure rotation. Points between

both frames are related as pn
k = Hk|k−1pn

k−1 where pn
k = (u,v) is a generic point n in the image

plane at time k. Homogeneous coordinates are considered and Hk|k−1 is a 3 by 3 homography

matrix between frames at time k−1 and k.

Let’s consider to have a set of detections Zk as defined in Eq. 1.1 in the form of points

(i.e. discarding the dimension components) that represent potential objects of interest on the
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image plane.

Let Ik be a frame at time k and xk = (u,v,1) be the position, in homogeneous coordinates, of

an object on the image plane, where u and v are the horizontal and vertical position of the centre

of the object, respectively. Our goal is to determine the future TF ≥ 1 states xk:k+TF , given the

TP ≥ 2 past observations.

To facilitate the prediction of the object location, we decompose the motion observed on

the image plane seen from a moving camera into two components: the global and the object

motion. A graphical representation of this decomposition is depicted in Fig. 4.12. The global

motion can be inferred from the coherent motion of the background [101]. The proposed ob-

ject motion predictor models the global background motion between two frames, Ik−2 and Ik−1,

with a homography, Hk−1|k−2, assuming that, in ground-level vision, the global motion between

consecutive frames can be approximated with a camera rotation (i.e. translation effects are neg-

ligible). For the prediction, we assume that the global motion between k− 1 and k is similar to

that between k− 2 and k− 1, and thus Hk|k−1 ≈ Hk−1|k−2. Therefore, given xk−1, the position

of an object in Ik−1, if the camera moves and the object is static in the real world, the predicted

position of the same object in Ik is

xk =
1

αk
Hk−1|k−2 xk−1, (4.24)

where αk = 〈h3,xk,λ 〉 is a normalisation factor; h3 is the third row of Hk−1|k−2 and 〈·, ·〉 is the

dot product. To estimate Hk−1|k−2, we selectively detect and track keypoints on the background

across frames. Fig. 4.13 summarises the proposed homography estimation procedure.

Let the set of keypoints detected in Ik−2 be

Pk−2 = {pn
k−2 = (u,v)}, (4.25)

where u and v are the horizontal and vertical coordinates of keypoint n on the image plane. As

implementation decision, we use good features to track [166] as keypoint detector, as it provides

a good trade-off between speed and accuracy, and discard keypoints on moving objects based on a

mask defined by the results of a people detector, extended by a margin to account for imprecisions

on the detections.

We then track keypoints in Ik−1 using a sparse iterative version of the Lucas-Kanade optical



Chapter 4: Tracking 85

Image plane

k-3 k-1k-2 k

OOM

CM
OM

Frame k-3 k-1k-2 k

Figure 4.12: Sample representation to depict the observed object motion (OOM), camera motion
(CM) and object motion (OM) concepts used in this section. In the first row, we show four
consecutive frames from time k−3 to k captured from a moving camera that is rotating towards
the left while a person is moving up and to the left with respect to the camera pose. In the
second row, we show the motion decomposition. Points indicate location of the person and
arrows indicate the displacement (motion) of the person between consecutive frames on the image
plane. Black points indicate the position of the person on the image plane. Blue points indicate
where the person would be if the person wouldn’t have moved. The dashed black point indicates
the estimated location of the person in the frame k. Black arrows are the OOM, blue arrows
correspond to the CM and red arrows are the OM. In our model, we propose to decompose the
OOM into CM and OM which allows us to learn the OM and then predict the location of the
person in future frames. Note that the person is actually moving up and to the left with respect to
the camera, as red arrows show, but the OOM is clearly to the right, as black arrows show)
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Figure 4.13: The proposed homography estimation pipeline.

flow in pyramids [32]. Tracking generates two sets of matched keypoints: P′k−2 and P′k−1, with

|P′k−2|= |P′k−1| where | · | is the cardinality of a set. Note that keypoints lost during tracking are

removed from both sets. The filtered sets of matched keypoint pairs, P′′k−2 and P′′k−1, are obtained

after masking the keypoints that lie on potentially moving objects (see Fig. 4.14).
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As the number of tracked keypoints decreases over time due to occlusions, tracking errors

and corresponding 3D points exiting the field of view of the camera, we maintain a balanced

spatial distribution of keypoints [186] by dividing the frame into Nu×Nv equally-sized cells and

triggering a keypoint detection process in cells with fewer than Nm keypoints. When a keypoint

detection process is triggered, new keypoints are detected, P(i, j)
k−1, only outside the filtering mask;

where i ∈ [1,Nu] and j ∈ [1,Nv] are the horizontal and vertical indices of the cells. The new set

of detected keypoints is P∗k−1 =
⋃

i, j P
(i, j)
k−1, where

⋃
is the union operator.

We then compute the homography, Hk−1|k−2, with the filtered and matched keypoints, P′′k−2

and P′′k−1, by calculating the transformation that relates the position of the keypoints in these

sets using random sample consensus (RANSAC) [56, 174]. RANSAC generates the set of inlier

keypoints, P′′′k−1, by discarding matched keypoints that follow a different (homographic) transfor-

mation (see Fig. 4.14). Finally, the newly detected keypoints, P∗k−1, are added to the set of inlier

keypoints as Pk−1 = P′′′k−1∪P∗k−1, which will be used for the next frame.

We show a visual representation of a estimated Hk−1|k−2 in Fig. 4.15.

4.3.2 Global-motion aware object motion prediction

When the global motion produced by the camera motion has been estimated (e.g. as described in

Sec. 4.3.1), we estimate the object motion (velocity) over the past TP observed positions as

x̄k−1|k−TP =
1

TP−1

TP−2

∑
i=0

(xk−i−1−Hk−i−1|k−i−2xk−i−2). (4.26)

Assuming that the motion in the 3D world of the object and the one of the camera are similar

in the near future, we iteratively predict the object position as

xk =
1

αk
Hk−1|k−2xk−1 + x̄k|k−TP . (4.27)

Next, we integrate the proposed object motion prediction in the probabilistic tracking frame-

work presented in Sec. 4.2. The proposed prediction model decomposes the observed motion of

an object in two independent components, global and object motion, for each particle as

ẋi
k,λ = Gk−1|k−2,λ xi

k−1,λ︸ ︷︷ ︸
Global Motion

+Tk|k−1 xi
k−1,λ︸ ︷︷ ︸

Object Motion

+Nk,λ , (4.28)
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(a) (b)

(c) (d)

(e) (f)

Figure 4.14: Visualisation of the main steps towards the proposed camera motion estimation for
MOT17-11 sequence. (a-b) Input frames, (c-d) generated object mask and (e-f) tracked key-
points. Key-point colour coded for inliners (green) and outliers (red) in the RANSAC scheme.
Homography between frames is calculated on the inlier points drawn in sub-figures e and f.
Note that the matching between keypoints is not represented in the figure. Images (a) and (b)
from [125].

where Nk,λ is the noise matrix and xi
k,λ is the i-th particle [17, C7].

The global motion matrix, Gk−1|k−2,λ , describes the temporal evolution of the object on the

image plane when the object is stationary in the 3D world and is defined as:

Gk−1|k−2,λ =


1

αk−1,λ
Hk−1|k−2 03×2 03×2

02×3 I2×2 02×2

02×3 02×2 I2×2

 , (4.29)

where Hk−1|k−2 ∈ R3×3 is a homography transformation that approximates the global motion

between k−1 and k with that between k−2 and k−1; αk−1,λ = 〈h3,(u,v,1)〉 is a normalisation

factor (h3 is the third row of Hk−1|k−2 and 〈·〉 is the dot product); and 0 and I are the zero and

identity matrices whose dimensions are indicated in the subscript. We estimate the homography
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Figure 4.15: Qualitative homography quality assessment. Two consecutive frames at time k−1
and k are in the middle of the figure. On the top, the direct difference between the frames shows
motions. On the bottom, the frame at k−1 is wrapped (i.e. rectified using the homography) and
the difference between the wrapped version of the frame at k−1 and the frame at k show mostly
no motions. Source images from [125].

transformation by detecting and tracking keypoints on the background as described earlier in this

section.

The object motion matrix, Tk|k−1, describes the temporal evolution of the object on the image

plane when the camera is stationary and is defined as:

Tk|k−1 =


I3×3 A 03×2

02×3 I2×2 02×2

02×3 02×2 I2×2

 , (4.30)

where

A =


∆k 0

0 ∆k

0 0

 , (4.31)

and ∆k is the time interval between two consecutive frames.

We account for unmodelled factors with the noise matrix, Nk,λ , where each of its component
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is a value sampled from a Gaussian noise with zero mean and standard deviation σ∗. These

parameters are commonly selected by estimating the uncertainties of each state component in a

training dataset but can also be fixed [165], a function of the video frame rate [115], a function

to the object size [C7] or online learned. We set the standard deviations for the dimensions of

the object state, σw and σh, as constants, and the standard deviations for the object location and

its velocity, σu, σ v, σ ū and σ v̄, as function of the object size on the image plane to account for

the foreshortening, as discussed previously in Sec. 4.2, (i.e. an object closer to the camera has

higher uncertainty on its location compared than another object that is farther from it) and as a

function of the video frame rate to account for frame rate variations [115] (i.e. an object seen by a

lower frame-rate video has higher uncertainty on its location compared to when seen by a higher

frame-rate video).

The posterior can be approximated as a weighted average of the particles describing the

object λ , with weights π i
k [17] (Eq. 4.23). The observation model estimates the importance of

each particle towards the estimation of the state. This importance is encoded in the particle

weight that, assuming that the state components are independent from each other, we update as

in Eq. 4.21. We then resample the particles so that those with larger weights are maintained and

replicated, whereas those with lower weights are removed. Specifically, we perform multi-stage

resampling [115], which uses multiple stages depending on the frame where the particles were

created. This ensures that particles recently created for newly appearing objects, and likely to

have a lower weight than older ones, are not removed.

4.4 The audio-visual quadcopter dataset

We present an audio-visual dataset recorded outdoors from a UAV quadcopter. The dataset in-

cludes a scenario that is suitable for the evaluation of sound source localisation and sound en-

hancement with up to two static sources, and a scenario for source localisation and tracking with a

moving sound source. These sensing tasks are made challenging by the strong and time-varying

ego-noise generated by the rotating motors and propellers. The dataset was collected using a

small circular array with 8 microphones and a camera mounted on the quadcopter. The camera

view was used to facilitate the annotation of the sound-source positions and can also be used for

multi-modal sensing tasks. For the annotation of the dataset, we used the audio-visual calibration
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proposed in Sec. 3.1.2. We made the dataset available to the research community1.

Audio-visual sensing from a quadcopter is of interest for applications such as search and

rescue, human-drone interaction and multimedia broadcasting [21, 72, 73, 79, 215]. However,

the quality of sounds recorded from a quadcopter is poor due to the strong and time-varying ego-

noise generated by the rotating motors and propellers, which cause extremely low signal-to-noise

ratios, e.g. smaller than -15 dB [168, 190]. Moreover, the movement of the quadcopter itself and

natural wind further complicate the analysis of sounds emitted by sources in the environment.

A number of microphone-array algorithms have been proposed to address these challenges

for sound source localisation [43, 78, 79, 134, 136, 137] and enhancement to extract object

sounds masked by the strong ego-noise [18, 43, 71, 152, 188, 190, 215]. As quadcopters are

generally equipped with an onboard camera, audio-visual processing methods can use the visual

information to facilitate the localisation of the sound source and the enhancement of the sound

of object sources [152, C6].

Indoor datasets with multi-channel sound recordings captured from a UAV platform are be-

coming available for sound source localisation [113] and sound enhancement [133]. DREGON

was captured with an 8-channel cube-shape microphone array mounted on a Mikrokopter drone [113].

AIRA-UAS was captured with an 8-channel circular microphone array mounted on three types

of drones, a DJI Matrice 100, a 3DR Solo and a Parrot Bebop 2 [133]. These two datasets were

collected indoors to facilitate the annotation using external positioning systems.

In this section we present AVQ, the first annotated outdoor Audio-Visual dataset from a Quad-

copter drone. The dataset can be used for audio-visual and audio-only tasks such as sound

enhancement, sound source localisation and tracking. We use an 8-element microphone array

mounted on a quadcopter to record sounds in the environment as well as a camera to allow multi-

modal tasks. The dataset consists of two subsets that capture up to two static sound sources

emitting sound in front of the drone; and a moving sound source (see Fig. 4.16).

We placed the recording prototype on a tripod at a height of 1.8 m in a park to record speech

as sound played by a loudspeaker carried by a person walking in front of the UAV (Fig. 4.17).

The dataset consists of the S1 and S2 subsets, with natural and composite scenarios (see Ta-

ble 4.1). S1 includes up to two sound sources at fixed locations, whereas S2 includes a moving

sound source. In the natural scenario, the object sound and the ego-noise are recorded simultane-

1http://cis.eecs.qmul.ac.uk/projects/avq/
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Figure 4.16: The AVQ recording setup. (a) Side and top view of the audio-visual sensing plat-
form; and 2D-coordinate system. OM and OC denote the centres of the microphone array and of
the camera in the 2D plane, respectively. (b) Recording environment for Subset S1: two people
talk from nine locations. (c) Recording environment for Subset S2: a loudspeaker is carried by
a person walking in front of the drone. The left and right panels of (b) and (c) show the overall
scene and the view from the onboard camera, respectively.

Figure 4.17: Experimental setup. A loudspeaker is carried by a person who walks in front of
the drone that is placed on a tripod. The noiseless sector is indicated with yellow marks on the
ground.

ously. In the composite scenario, the object sound and the ego-noise are recorded separately, thus

allowing one to evaluate the performance at different input signal-to-noise ratios (SNRs) and to
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Table 4.1: AVQ dataset: specifications. KEY: Sub, Subset; Seq, Sequence; Mod., Modality; Dur,
Duration; VG, Video ground-truth; VAD, voice activity detection; A, Audio-only; AV, Audio-
visual; EO, ego-noise only; SO, speech only; MIX, mixture; cons, constrained area; uncons,
unconstrained area; and misc, miscellaneous.

Sub Seq Mod Dur VG VAD Type Drone Source

S1

seq1 A 120s EO constant (50%) /
seq2 A 120s EO constant (100%) /
seq3 A 40 s EO constant (150%) /

seq4 AV 797s 3 3 SO muted
2 sources
9 locations

misc microphone location, AV calibration parameters

S2

seq1 A 210s EO constant (100%) /
seq2 A 214s EO dynamic /
seq3 AV 215s 3 3 SO muted cons.
seq4 AV 217s 3 3 SO muted uncons.
seq5 AV 303s 3 3 MIX constant (100%) cons.
seq6 AV 271s 3 3 MIX constant (100%) uncons.
seq7 AV 258s 3 3 MIX dynamic cons.
seq8 AV 249s 3 3 MIX dynamic uncons.
misc microphone location, AV calibration parameters

compute the output SNR after processing [191].

In S1, two people (the sound sources) talk at nine predefined locations in front of the drone

(Fig. 4.16 b). The distance between these locations and the drone varies between 2 m and 6 m. We

record only composite scenarios, i.e. the clean speech and the ego-noise are recorded separately.

When recording the ego-noise, the quadcopter operates at 50%, 100% or 150% of the power

level of the hovering state. When recording speech, the two people talk in turns for about 40 s

each and then move to the next location. Video frame samples are shown in Fig. 4.18a. In S2, a

loudspeaker (the sound source) playing speech is carried by a person (Fig. 4.16 c). As the relative

location of the microphone array and the motors and propellers is fixed, the ego-noise tends to

arrive from the side closer to the motors (back side of the array), thus creating a sector with lower

ego-noise (the front of the array). This allows us to identify a noiseless sector [−45◦,45◦] where

an object sound can be more easily detected [190]. We record natural and composite scenarios.

The drone operates either with a constant hovering power or with a time-varying power between

50% and 150% of the hovering state. The loudspeaker moves either in a constrained area (inside

the noiseless sector) or in an unconstrained area (in front of the drone). The distance between the

loudspeaker and the drone varies between 2 m and 6 m. Each sequence lasts for about 3 minutes.

Video frame samples of the sound source in the noiseless sector (Fig. 4.18b) and outside the

noiseless sector (Fig. 4.18c).

Table 4.1 summarises the specifications of the AVQ dataset. The audio is in WAV format
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(a)

(b)

(c)

Figure 4.18: Sample frames of (a) S1-seq4, with two alternatively-talking sound sources; (b)
S2-seq5 with the sound source moving in a constrained manner; and (c) S1-seq6 with the sound
source moving in an unconstrained manner.

𝑰
Resectioning

Visual object 

detection
Geometrical 

alignment

 𝑰 𝜃𝑣 𝜃𝑎

𝝃 𝒂𝑲

Figure 4.19: Audio-visual calibration. We undistort the original image I using the lens distortion
parameter ξ (Eq. 3.2) and detect visual objects in the undistorted image Ĩ. From the location of
the visual object we compute the visual angle θv using the camera intrinsic parameter K (Eq. 3.4)
and convert to the audio angle θa using the calibration parameter a (Eq. 3.3).

with sampling rate 44.1 kHz. The video is in MP4 format with frame rate 30 fps, resolution

1920×1080 for S1 and 1280×720 for S2, and wide field of view (i.e. 70 vertical degrees and

120 horizontal degrees before undistortion). The total duration of the recordings is about 50

minutes.

To obtain the ground-truth locations of the sound source, we make use of the onboard cam-

era. The video ground truth of the sound source locations makes it possible to evaluate source

localisation and tracking performance in both natural and composite scenarios. We calibrate the

audio and vision streams as described in Sec. 3.1. Fig. 4.19 illustrates the calibration steps.

When the multi-modal streams are calibrated, for S1 we use a person detector [154] and for

S2 we use a visual marker to assist the loudspeaker detection (see the example in the right panels

of Fig. 4.16b and c). Fig. 4.20a and b depict the video ground-truth locations, θv, and the voice
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Figure 4.20: AVQ dataset: video ground-truth trajectory of the sound sources. Green thick lines:
voice activity periods; circled numbers: sound source locations shown in Fig. 4.16b. (a) Subset
S1. (b) Subset S2.

activity detector (VAD) information of the sound source for S1 and S2, respectively.

Fig. 4.21 illustrates the input SNR of some composite sequences generated by mixing clean

speech with the ego-noise (when the drone is operating at hovering state). The SNR over a

segment is defined as the power ratio between the clean speech and the ego-noise [191].

We use this dataset in Sec. 4.6.4 to evaluate the proposed SOT. Also, we use this dataset to

perform localisation and enhancement of multiple sound sources in [152].
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Figure 4.21: The SNR of composite sequences generated by mixing a clean speech with the ego-
noise (drone operating at hovering state). (a) S1: seq4 + seq2. (b) S2: seq3 + seq1. (c) S2: seq4
+ seq1.

4.5 Confidence intervals for tracking performance scores

In this section, we first describe existing procedures for annotating the ground truth of a dataset

(Sec. 4.5.1); then, we introduce a novel idea for estimating the confidence intervals of the annota-

tions for a given evaluation metric and dataset (Sec. 4.5.2); besides, we show how the uncertainty

in the annotations impacts on tracking benchmarks (Sec. 4.5.3).

4.5.1 Ground-truth annotations

As discussed in Sec. 2.6, tracking performance is commonly evaluated using discrepancy mea-

sures (e.g. CLEAR metrics [26]) that compare the tracking results with respect to a set of manual

annotations, known as ground truth (GT), generated by for example selecting the coordinates and

size of a rectangle to define an object on the image plane.

The generation of GT for MOT is needed per each object of interest in each frame of the

video sequence. Ideally all frames should be annotated (Full Ground Truth) by multiple raters

and a consolidated GT should be generated after analysis of their annotation results [183]. This

become a tedious and time-consuming task when the volume of data to be annotate increases.
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Table 4.2: Datasets for Multiple target tracking, their annotation tool and rules (including key-
frame based annotation and linear interpolation). KEY: NA, not available. *, ADL-Rundle-xxx
and Venice-xxx annotation generated with VATIC [183].

Ref Dataset Annotation tool Key-frame based Linear Interpolation
[94] MOTB15* VATIC NA X

[125] MOTB16 private NA X

[5] MOTB17 private NA X

[55] PETS2009** NA X X

[3] CAVIAR CaviarGui
[60] KITTI Mechanical Truck NA NA
[4] i-LIDS VIPER X X

[52] ETH** NA X X

[13, 14] TUD** NA X X

For example, the MOTB16 has almost 300k annotated objects. This task can become infeasible

in some large scale datasets where millions of trajectories need to be annotated [10]. To speed-

up the annotation process, only a set of key frames is generally manually annotated, while the

annotation of the remaining frames is derived by interpolation (Interpolated Ground Truth).

Most of state-of-the-art datasets have been annotated and linearly interpolated for reducing

the human workload. Table 4.2 shows MOT datasets and how their GT have been annotated.

MOTB15 [94] uses already existing GT for part of the videos and they annotated using VATIC

annotation tool 6 new videos from ADL-Rundle and Venice datasets. They manually annotate

certain key frames and the intra-key frames are automatically annotated using a interpolation

technique not unveil in the publication. MOTB16 [125] and MOTB17 uses a private annotation

tool and do not provide any further information about their annotation policy. The GT for other

well-known datasets such as PETS2009 [55], ETH [52] and TUD [13, 14] is available in [124].

Their GT uses linear interpolation to estimate the annotations between manually annotated key

frames. CAVIAR dataset [3] has been manually annotated frame by frame with CaviarGui and

therefore it is assumed that no interpolation has been applied. Lastly, i-LIDS dataset [4] has been

manually annotated with ViPER [123] at certain key frames and the rest of annotations have been

linearly interpolated as well.

Dataset annotation for MOT is a very time consuming and tedious task. State-of-the-art

datasets have commonly hundred of thousands of annotations and the requirement of large-scale

annotated data for deep neural network algorithms make essential the use of annotation tools.

Several works have been implemented to improve the annotation efficiency while maintaining
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Table 4.3: State-of-the-art annotation schemes classified on base to the annotation shape options,
interpolation techniques available and robustness to camera motions. Key: P, point; R, rectangle;
OR, oriented rectangle; PO, polygon; C, circle; E, ellipse; RCM, robust to camera motion; and
KTRA, keyframe-based tracking for rotoscoping and animation.

Ref Name
Object shape Interpolation

RCM
P R OR PO C E 2D Lin. 3D Lin. Track. Lear. Optimis.

[123] ViPER X X X X X X X

[6] KATRA X X

[219] LabelMe X X X

[11] FlowBoost X X

[183] VATIC X X X X X

[28] iVAT X X X X X

[29] ViTBAT X X X X

the accuracy of the annotations. These works can be classified regarding the required human-

interaction as manual, semi-automatic and automatic. Manual approaches require the annotation

of all object at all frames one by one. Semi-automatic methods allow to the annotator (human

who do the manual annotations) to decrease the number of required annotation by using multiple

interpolation methods such as linear interpolation, tracking, learning or optimisation learning

methods [28, 29, 123, 183, 219]. Automatic annotation approaches require the annotation of

each object on one/multiple frame(s) and relies on automatic methods, as previously mentioned,

to complete the rest of annotations [28]. Existing annotation tools are summarised in Table 4.3.

Next, we briefly discuss their features focusing on their interpolation approach.

The most common approach is the semi-automatic annotation using 2D linear interpolation.

These approaches require to manually annotate some key frames that can be selected in base to

certain patterns such as arbitrary annotator decisions or equally-spaced key frames [183]. Intra-

keyframe annotations are then generated by linearly interpolating the manual annotations [28,

29, 123, 183]. These approaches are extremely useful as they enormously relief the workload for

the annotator while maintaining a good accuracy in most of the cases [183]. This make feasible

the annotation of large-scale datasets. Moreover, these approaches are very convenient for some

special cases such as occlusions, where the objects need to be annotated but the direct annotation

is unfeasible to be annotated as the object is not visible (or fully visible). Most of the state-of-

the-art annotation tools use this idea due to its simplicity and low computational complexity.

VIPER [123] can be considered as the first annotation system optimised for spatial labelling
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that uses linear interpolation on a key-frame-basis approach. This tool has been widely used in

the literature due to its simplicity and flexibility as it allows to annotate several object shapes

including point, rectangle, oriented rectangles, polygon, circle and ellipse. Similar works have

been proposed focusing on particularities on the annotation such as ViTBAT [29], that focuses on

the efficient individual and group state annotation whilst annotating their behaviour, or iVAT [28],

that proposes key-frame semi-automatic annotation as well as a completely automatic mode that

requires the annotation of each object on a frame that will be used as a template to estimate the

object location in the remaining frames using a cascade of boosted classifiers. The non-linear

projective transformation from 3D world to the 2D image plane produces that the simplification

made on these works cannot cope with some object motions. Yuen et al [219] model the linear

interpolation in the 3D world instead of on the image plane. This novel interpolation method

allows to achieve more accurate object annotation compared with 2D linear interpolation for

objects that can be considered to move linearly in 3D world (e.g. person or car moving on a

straight line). Moreover, this work performs an image stabilisation process to better compensate

the motion of moving cameras.

To cope with object motions that exhibit non-linear motions such as turning cars or flying

basketballs, other methods have been proposed to fill the intra-keyframe annotations based on

tracking, learning or optimisation. VATIC annotation tool proposed in [183] to annotate equally-

spaced key frames and to generate missing annotations via linear interpolation, learning object

templates, constrained tracking or efficient optimisation. Agarwala et al [6] propose a semi-

automatic annotation technique by joining automatic tracking annotation with user interaction

for rectification. Ali et al [11] presented a tool that can annotate videos from a sparse set of

keyframe annotations by alternatively training an appearance-based detector and a convex time-

based regularisation. As a drawback, these methods are computationally more expensive than

performing linear interpolation and are prone to typical computer vision challenges such as oc-

clusions, camera motion, motion blur or similar appearance of objects.

Most of the available MOT datasets provide the annotation for all objects in the dataset [55,

94, 125]. The annotation task is done using private [94, 125] or public annotation tools [28, 29,

183].

Concepts discussed in this section such as linear interpolation for semi-automatic annota-

tion of MOT datasets are further discussed in the next section where we propose a method for



Chapter 4: Tracking 99

automatically quantifying the inaccuracies in annotation.

4.5.2 Confidence intervals estimation

The objective evaluation of trackers quantifies the discrepancy between tracking results and a

manually annotated ground truth. As generating ground truth for a video dataset is tedious and

time-consuming, often only keyframes are manually annotated. The annotation between these

keyframes is then obtained semi-automatically, for example with linear interpolation. This ap-

proximation has two main undesirable consequences: first, interpolated annotations may drift

from the actual object, especially with moving cameras; second, trackers that use linear pre-

diction or regularise trajectories with linear interpolation unfairly gain a higher tracking evalua-

tion score. This problem may become even more important when semi-automatically annotated

datasets are used to train machine learning models. To account for these annotation inaccura-

cies for a given dataset, we identify objects whose annotations are interpolated and propose a

simple method that analyses existing annotations and produces a confidence interval to comple-

ment tracking scores. These confidence intervals quantify the uncertainty in the annotation and

allow us to appropriately interpret the ranking of trackers with respect to the chosen tracking

performance score.

Let X̃ be the GT annotation for a generic dataset defined as in Eq. 2.6. X̃ may contain man-

ual and interpolated annotations, and can be decomposed as X̃ = X̃∪ X̂, with X̃∩ X̂ = ∅, where

X̃ = {x̃k,λ} contains manually annotated objects and X̂ = {x̂k,λ} contains automatically gener-

ated annotations, created for example through interpolation. If all the annotations are produced

manually, then X̂ = ∅ and X̃ = X̃. We term X̃ manual ground truth (MGT) and X̂ interpolated

ground truth.

Let us assume that linear interpolation was used to generate X̃ for a dataset. Our aim is to

identify the elements of X̃=
⋃

λ∈Λk
X̃λ . These elements are likely to have non-zero acceleration

for all the components of the state:

X̃λ =
{

x̃k,λ : zuu,zvv,zww,zhh 6= 0 : k = 0 . . . K̃λ −1
}
, (4.32)

where zii is the second partial derivative (i.e. acceleration) of component i, and K̃λ = |X̃λ | ≤ Kλ

is the cardinality of X̃λ .

From the identified X̃λ we generate interpolated versions, Xβ

λ
, with different decimation
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factors, β ≥ 2, through a decimation-interpolation procedure:

Xβ

λ
=
{

xβ

k,λ = x̃iβ ,λ + j∆i,λ : k = 0 . . . K̃λ −1; i = 0, . . . ,
⌊

K̃λ

β
−1
⌋

; j = 0 . . .β −1
}
, (4.33)

where ∆i,λ =
z̃(i+1)β ,λ−z̃iβ ,λ

β
and λ ∈ Λk. Note that Xβ

λ
is composed of manual annotations (when

j = 0) and linearly interpolated annotations (when j 6= 0); its cardinality is equal to that of X̃λ ,

i.e. |Xβ

λ
|= |X̃λ |= K̃λ ; and bc; is the floor operator that rounds a number to the smaller integer.

To empirically estimate the uncertainty introduced by Xβ

λ
when evaluating tracking results,

we consider a generic tracking performance measure, s(·, ·), which allows us to compare Xβ

λ

against its corresponding X̃λ as:

αs,β =
1
|Λk| ∑

λ∈Λk

s(X̃λ ,X
β

λ
). (4.34)

The value of αs,β allows us to define the confidence interval for s(·, ·): a tracker with the same

tracking results as a Xβ

λ
should subtract (up to) αs,β to the final score; whereas a tracker with the

same tracking results as a given MGT should add (up to) αs,β to the final score, if it is assessed

using Xβ

λ
.

To apply the confidence interval on the performance scores for a specific dataset, we map

αs,β to the amount of interpolation detected in the dataset.

As an example, let us quantify the amount of linearly interpolated annotations in MOTB15 [94]

and MOTB16 [125]. Using the definition in Eq. 4.32, the MOTB16 training dataset results in hav-

ing 39.7% of linearly interpolation annotations (Table 4.4). This approximately corresponds to a

decimation factor of β = 3. We assume that the test dataset and the training dataset have a simi-

lar amount of linearly interpolated annotations, as the same annotation policy was used for both

datasets [125]. MOTB16 uses three times more interpolation than MOTB15. In MOTB16, static-

camera videos have a higher percentage of interpolated annotations than moving-camera videos.

Surprisingly, in MOTB15 moving-camera videos have a higher percentage of interpolated GT

annotation than static-camera videos.

To visualise the GT drifts caused by interpolation, we annotated frame-by-frame object 32

in MOTB16-02 (static camera) and object 4 in MOTB16-10 (moving camera), totalling 685

annotations. We refer to these annotations as ideal GT. Fig. 4.22 shows object 32 of MOTB16-02

(top) and object 4 of MOTB16-10 (bottom), and compares the MGT (red) against its decimated
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Table 4.4: Percentage of linearly interpolated annotations detected in the MOTB15 and MOTB16
datasets using Eq. 4.32.

Camera motion MOTB15 MOTB16
Static 6.2 52.7

Moving 17.0 12.7
Overall 11.0 39.7

(a) (b) (c)

(d) (e) (f)

Figure 4.22: Comparison of manually annotated GT (red rectangle), interpolated generated GT
with β = 15 (blue), and MOTB GT (green) for object 32 of MOTB16-02 (static camera) at frames
331, 338 and 352 (a-c) and for object 4 of MOTB16-10 (moving camera) at frames 1, 8 and 12
(d-f). Source images from [125].

version, Xβ

λ
, with decimation factor β = 15 (blue) and the GT provided with the dataset (green),

MOTB GT. The more noticeable drift occurs when the camera moves (Fig. 4.22e-f).

We quantify the overlap that the ideal GT produces against its interpolated versions and

MOTB GT. We calculate the overlap between a manual annotation, x̃k,λ , and xβ

k,λ , as: ωλ
k =

x̃k,λ∩xβ

k,λ

x̃k,λ∪xβ

k,λ

.

The effect of different interpolated GT versions on tracking evaluation scores is shown in

Fig. 4.23. In the static-camera example (Fig. 4.23a-b), the overlap decreases moderately up to

0.5 (i.e. 50%). In the moving-camera example (Fig. 4.23c-d), the overlap decreases up to having

frames with no overlap between interpolated GT versions and the ideal GT.



Chapter 4: Tracking 102

0 10 20 30 40 50 60 70 80 90

Frames

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
v
e

rl
a

p

0 10 20 30 40 50 60 70 80 90

Frames

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
v
e

rl
a

p

(a) (b)

0 100 200 300 400 500 600

Frames

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
v
e

rl
a

p

0 100 200 300 400 500 600

Frames

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
v
e

rl
a

p

(c) (d)

Figure 4.23: Comparison of overlaps between GTs for MOTB16-02 static-camera video (top
row) and for MOTB16-10 moving-camera video (bottom row). Left column: overlap between
ideal GT and MOTB GT. Right column: overlap between MGT and its interpolated generated
version (β = 15).

4.5.3 Impact on ranking trackers

In this section, we analyse the impact of the interpolated GT on the ranking of trackers in a

specific benchmark, MOTB16 [125]. In order to account for the uncertainty introduced by the

interpolated annotation for a given dataset, we define confidence intervals to complement perfor-

mance scores.

We first identify frames and objects for which no interpolation is used in the publicly available

GT, X̃, thus generating X̃. Then, we generate multiple interpolated versions, X̂β =
⋃

λ∈Λk
X̂λ

β
,

with different decimation factors, β ∈ {3,6,9,12}. Finally, we compare each Xβ

λ
against the

MGT, X̃, using the specific performance scores to define the confidence intervals to be applied to

each score (Eq. 4.34).

As discussed in Sec. 2.6.4, we use Multiple Object Tracking Accuracy (MOTA) and Multiple

Object Tracking Precision (MOTP) as performance scores. MOTA and MOPT are defined in

Eq. 2.14 and 2.15.

For MOTA we define: s(·, ·) = 100−MOTA. Likewise for MOTP. Table 4.5 shows that

in the static-camera example (object 32 in MOTB16-02) both interpolated versions obtain full

MOTA, whereas MOTP considerably decreases due to interpolation, due to its direct relation
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Table 4.5: Evaluation tracking score with a GT annotated frame-by-frame (ideal GT) against its
interpolated generated GT, Xβ

λ
, with decimation factor (β = 15), and the MOTB GT annotation.

Camera motion Sequence GT MOTA MOTP

Static MOTB16-02-id32
Zλ=32

β=15 100 85.70
MOTB 100 76.91

Moving MOTB16-10-id4
Zλ=4

β=15 72.00 69.23
MOTB 97.33 70.36

Table 4.6: Uncertainties in MOTA and MOTP for MOTB16 produced by different decimation
factors (β ).

β MOTA confidence MOTP confidence
3 0.22 3.14
6 0.56 8.68
9 3.74 13.41
12 11.27 17.05

with the overlap. In the moving-camera example (object 4 of MOTB16-10) MOTA and MOTP

differ from the ideal result. For example, when object 4 of MOTB16-10 is evaluated with the

ideal GT obtains a MOTA of 72 (penultimate row in Table 4.5). This means that no tracker with

MOTA results closer than 28 = 100−72 to another tracker can be confidently said to outperform

the other based on MOTA.

Table 4.6 shows how the confidence on the performance score varies with different decima-

tion factors, β . In order to characterise MOTA and MOTP through the overlap only, we assume

for simplicity that the number of IDS for all trackers is null.

To conclude, let us consider the TOP-15 trackers sorted by MOTA that use public detections

on the MOTB16 test dataset. For this dataset, the estimated MOTA uncertainty is 0.22 and MOTP

uncertainty is 3.14 (first row Table 4.6). These values of αs,β for the two scores allow us to

analyse the impact of the public GT annotation of MOTB16.

Fig. 4.24a-b shows MOTA and MOTP results obtained for each tracker2, whereas Fig. 4.24c-

d shows the ranking of trackers based on MOTA and MOTP. The estimated MOTA and MOTP

confidence intervals are shown as bars. Note that MOTP is very sensitive to GT interpolation as

small overlap variations influence the measure (Eq. 2.15). MOTA is instead less sensitive as it

depends on the number of false positives and false negatives, which vary only when the overlap

becomes smaller than 50%.

In summary, no TOP-15 tracker can be confidently assigned to a specific rank in the MOTB16

2https://motchallenge.net/results/MOT16/ Last accessed on 27th June 2020.
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Figure 4.24: TOP-15 performing trackers using public detections in MOTB16 according to
MOTA measure. Red crosses indicate the MOTB Challenge measure (top row) and rank (bottom
row). Blue bars translate the confidence interval (top row) into the ranking uncertainty (bottom
row).

benchmark, as neighbouring trackers are within their MOTA uncertainty ranges. Moreover, there

is no significant difference among any of the TOP-15 trackers in terms of MOTP, i.e. even the

first and fifteenth tracker cannot be confidently ranked relative to each other in terms of MOTP.

4.6 Experimental validation

4.6.1 Experimental setup

For the evaluation of this chapter, we use two datasets named multiple object tracking benchmark

(MOTB) dataset and the self-collected audio-visual quadcopter (AVQ) dataset. The former one is

used for the experimental validation of multi-detector fusion (Sec. 4.6.2), object motion predic-

tion described in (Sec. 4.6.3) and multi-object tracking from both static (Sec. 4.6.5) and moving

(Sec. 4.6.6) cameras The latter one is used for the experimental validation of single-object track-

ing (Sec. 4.6.4). Next, we introduce both datasets.

The multiple object tracking benchmark datasets

The release of the MOTB15 [94], MOTB16 [125] and MOTB17 [5] have facilitated the improve-

ment of the state of the art in MOT in the recent years. These datasets include several frame rates,
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Table 4.7: Statistics for MOTB15 [94], MOTB16 [125] and MOTB17 [5] datasets.
Dataset Characteristics MOTB15 MOTB16 MOTB17

Training

Length (frames) 5,503 5,316 5,316
Identities 500 517 546
Annotations 39,905 110,407 112,297
Average density 7.3 20.8 21.1

Test

Length (frames) 5,783 5,919 5,919
Identities 721 759 785
Annotations 61,440 182,326 188,076
Average density 10.6 30.8 31.8

pedestrian densities, illuminations and point of views creating a challenging dataset to push up

the state of the art toward a more general trackers.

The datasets include videos, annotations in the form of bounding boxes of objects (persons)

and set of detections. Also, a leaderboard exists where all trackers are ranked for comparison.

All this allows the fair comparison of different trackers as the same videos, detections and met-

rics are used. Table 4.7 shows some characteristics of the training and test datasets. MOTB15

contains 22 challenging video sequences (11 training, 11 test) in unconstrained environments,

filmed with both static and moving cameras. MOTB16 contains 14 challenging video sequences

(7 training, 7 test) in unconstrained environments filmed with both static and moving cameras.

Each dataset provides a set of public detections and the authors encourage users of the bench-

mark to use the set of public detections, so that different trackers can be fairly compared to each

other. MOTB17 contains the same videos as MOTB16 but MOTB17 includes three new set of

detections. Tracking and evaluation are done in image coordinates. All sequences have been

annotated with high accuracy, strictly following a well-defined protocol. Fig. 4.25 shows some

sample frames of MOTB15 and MOTB16-17 datasets.

The MOTB datasets are suitable for evaluating object detection and object tracking. They

are suitable for this thesis since they are composed of heterogeneous sequences with static and

moving cameras in different environments.

4.6.2 Multi-detector fusion

In the specific implementation presented here, we use 4 different detectors: Aggregate Channel

Features (ACF) [47] trained on INRIA (ACFI) and Caltech (ACFC) datasets, Discriminatively

Trained Deformable Part Models (DTDPM) [54] and Scale dependant Pooling (SDP) [211]. The
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(a) (b) (c)

(d) (e) (f)

Figure 4.25: Examples of the first frame of two sequences of MOTB15 [94] and four sequences
of MOTB16 [125] training dataset. (a) ETH-Bahnhof, (b) MOTB16-04, (c) MOTB16-10, (d)
PETS09-S2L1, (e) MOTB16-11 and (f) MOTB16-13.

combined detection has position and bounding box size equal to the weighted average of the

position and bounding box size of the detections that contributed to the combination. We com-

pare the performance of the proposed multi-detector fusion against the individual detections,

the public detections available in MOTB15 challenge (ACF-MOT) [47], the fusion using an open

framework for Combined Pedestrian Detection (CPD) [170] and a baseline where Non-Maximum

Suppression is used to fuse the detections. We refer to the results of the proposed method as multi

detector fusion (MDF). This experiment is performed in the MOTB15 training dataset.

Fig. 4.26 presents precision-recall curves generated by varying detection confidence thresh-

olds. Results show that MDF outperforms all the individual detectors and fusion frameworks.

MDF detects a larger number of correct objects while maintaining a low-rate of false positives.

This motivates our choice of having a weighted fusion method that spatially fuses detections

based on their confidence score as opposed to non-maximum suppression that selects existing

detections without accounting for spatial occurrences.

Using the results shown in Fig. 4.26, we set the threshold in the detection confidence that

provides the best F-Score for each method and show their performance in Table 4.8. In this table

we can observe that our fusion method largely outperforms non-maximum suppression and CPD

in terms of F-Score. MDF achieves competitive results for all videos. This provides us a good

means for the generation of reliable trajectories as the tracker will help filter out additional false

positives and further increase the recall by recovering weak detections during tracking.
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Figure 4.26: Detection results on MOTB15. Precision and Recall curves obtained with each
individual detector (DTDPM [54], ACF-C [47], ACF-I [47], SDP [211] and ACF-MOT [47]),
and fusion methods non-maximum suppression, CPD [170] and MDF on MOTB15 training se-
quences.

4.6.3 Object motion prediction

In this section we present the experimental validation of the global-motion aware object motion

prediction presented in Sec. 4.3.2. The evaluation in this section is performed as a standalone

module, i.e. only prediction is evaluated and no tracking is involved. As performance measure,

we employ the mean squared error as described in Sec. 2.6.3.

We compare the proposed method, GM, with six predictors; we quantify robustness to noisy

observations and to frame rate reduction; and we discuss the benefits of GM for multiple object

tracking. We compare GM against a predictor based on a Long Short-Term Memory (LSTM) [19];

two state-of-the-art predictors based on xk+1 = xk + x̄k|k−TP+1, namely a linear motion predictor

(LP) [165] where

x̄k|k−TP+1 =
1

TP−1

TP−2

∑
i=0

(xk−i−xk−i−1), (4.35)

and an exponentially weighted motion predictor (EM) [7] where

x̄k|k−TP+1 =
1

∑
TP−2
i=0 (ε)i

TP−2

∑
i=0

(ε)i(xk−i−xk−i−1), (4.36)

with ε = 0.95; a linear regressor (LR) where xk+1 = mxk +b, with m and b learned online for

each object from its past positions; a homography-based (SH) method [101] and, as reference, a
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Table 4.8: Detection results obtained with individual detectors DTDPM [54], ACF-C [47], ACF-
I [47], SDP [211] and ACF-MOT [47]), and fusion methods CPD [170], non-maximum sup-
pression (NMS) and our MDF on the MOTB15 training dataset. Colour-coded cells indicate the
best (darker gray) and the second best (lighter gray) scores for the F-Score. KEY: M, metric; P,
Precision; R, Recall; and F, F-Score.

Sequence
Individual Fusion

M
DTDPM ACF-C ACF-I SDP ACF-MOT CPD NMS MDF

P 81.63 79.57 71.30 96.44 63.41 65.60 96.44 93.94
R 52.25 50.55 60.65 67.12 54.18 56.92 67.12 64.66ADL-Rundle-6

F 63.71 61.82 65.54 79.15 58.43 60.95 79.15 76.60

P 84.49 63.06 70.64 65.63 49.31 70.39 65.64 76.69
R 57.91 42.65 54.92 80.52 43.99 64.20 80.55 71.93ADL-Rundle-8

F 68.72 50.88 61.79 72.32 46.50 67.15 72.34 74.23

P 83.46 82.99 84.61 93.48 72.80 88.16 93.48 90.78
R 66.14 52.16 73.91 69.50 57.08 50.10 69.50 78.79ETH-Bahnhof

F 73.80 64.06 78.90 79.73 63.99 63.90 79.73 84.36

P 83.86 91.47 95.93 97.36 73.14 91.35 97.36 97.90
R 42.22 11.59 24.45 64.46 12.21 33.74 64.46 46.83ETH-Pedcross2

F 56.16 20.57 38.96 77.56 20.92 49.28 77.56 63.36

P 80.43 80.94 86.31 93.41 84.50 89.94 93.41 91.01
R 75.91 19.88 71.96 76.85 40.72 66.33 76.85 87.38ETH-Sunnyday

F 78.11 31.93 78.49 84.33 54.95 76.35 84.33 89.16

P 65.13 35.43 49.85 69.81 50.29 69.30 69.81 60.12
R 60.71 64.37 71.91 66.95 46.61 50.05 66.95 78.04KITTI-13

F 62.84 45.70 58.88 68.35 48.38 58.13 68.35 67.92

P 92.52 58.46 81.86 94.90 82.12 90.24 94.90 84.75
R 56.91 68.03 69.82 73.79 54.60 56.78 73.79 76.73KITTI-17

F 70.47 62.88 75.36 83.02 65.59 69.70 83.02 80.54

P 92.24 86.65 93.17 94.98 79.59 86.00 95.05 97.07
R 88.67 84.62 92.99 86.24 91.14 71.59 86.32 91.91PETS09-S2L1

F 90.42 85.63 93.08 90.40 84.97 78.14 90.48 94.42

P 89.81 77.64 88.48 99.26 75.51 94.07 99.26 99.24
R 54.04 69.64 66.30 74.65 61.84 66.30 74.65 72.70TUD-Campus

F 67.48 73.42 75.80 85.21 67.99 77.78 85.21 83.92

P 96.33 66.12 96.08 98.69 77.90 97.05 98.69 99.67
R 74.83 59.26 78.46 78.11 72.58 73.88 78.11 79.41TUD-Stadtmitte

F 84.23 62.50 86.38 87.20 75.15 83.89 87.20 88.40

P 86.53 56.01 80.30 42.92 57.04 75.18 42.92 71.67
R 40.13 51.65 51.02 77.66 51.94 51.63 77.66 65.71Venice-2

F 54.84 53.74 62.39 55.29 54.37 61.22 55.29 68.56

P 85.02 69.92 80.71 73.54 65.34 79.06 73.55 85.62
R 57.89 47.00 59.76 73.94 49.94 54.72 73.96 70.60Overall

F 68.88 56.21 68.67 73.74 56.61 64.68 73.75 77.39



Chapter 4: Tracking 109

static-object prior-knowledge method (SP) with xk+1 = xk. Moreover, we compare with GMG, a

variation of GM that assumes that all objects lie on that common ground plane, similarly to [101],

by masking pixels that are in the estimated ground plane that is defined as the convex hull between

the bottom corners of the detections and the bottom corners of the frame.

To compare the methods on the accuracy of their prediction, we use the past TP ground-truth

positions of an object to predict its future TF positions. If λ is the object index, the ground truth

annotations, X̂ =
{

x̃k,λ |∀λ ,k
}

, of the training dataset includes both static and moving objects.

We quantify the prediction error as described in Eq. 2.6.3.

For the good-features-to-track detector [166] and for the sparse tracker [32] we use the default

parameters of the OpenCV implementation (version 3.4.1): 50 as maximum number of corners,

0.01 as quality level and 10 pixels as minimum distance for the detector; and 21×21 as window

size, three maximum levels of the pyramid and 0.001 as minimum eigenvalue threshold for the

tracker. We calculate the homography from the set of correspondent keypoints with the OpenCV

implementation and default parameters. The margin in the masking is c = 0.05. The minimum

number of keypoints per cell is Nm = 20. The mask is defined by people detected with SDP [211].

We use three publicly available datasets: MOTB15 [94], MOTB16 [125] and MOTB17 [5].

These datasets are composed of sequences recorded from moving and static cameras. For the first

three experiments, we build a training, validation and testing dataset from the MOTB training

sequences aiming to balance the number of annotations between static and moving cameras and

do not use the same video in different subsets. The training dataset accounts for 44% of the

dataset and it is composed of ADL-Rundle-8, ETH-Bahnhof, ETH-Sunnyday, KITTI-13, KITTI-

17, PETS09-S2L1, TUD-Campus, TUD-Stadtmitte, MOTB16-04, MOTB16-10, MOTB17-04

and MOTB17-10. The validation dataset accounts for 16% of the dataset and it is composed

of MOTB16-05, MOTB16-09, MOTB17-05 and MOTB17-09. The testing dataset accounts for

40% of the dataset and it is composed of Venice-2, MOTB16-02, MOTB16-11, MOTB16-13,

MOTB17-02, MOTB17-11, MOTB17-13.

Table 4.9 compares the prediction accuracy of GM against that of the other algorithms.

LP, EM, LR and LSTM accumulate prediction errors when the prediction time is long (TF =

{10,20,30}) for any TP, except for TP = 2 where they obtain competitive results. These methods

respectively obtain an average prediction error of 55.4, 52.0, 67.2 and 65.1 pixels when predict-

ing over 30 frames and having observed 30 past frames. GM obtains consistently the best result
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Table 4.9: Prediction error on moving-camera sequences (average and its standard deviation on
the testing dataset). KEY: TP, number of past observed positions; TF , number of future po-
sitions to predict; SP, static object prior knowledge; LP, linear prediction; EM, exponentially-
weighted prediction; LR, linear regressor; SH, simple homography-based predictor; GMG, pro-
posed global motion with ground masking; GM, proposed global motion prediction; and *, at
least an order of magnitude larger (and therefore not reported). The lower the number the better
the performance. Best and second best performing methods are shown with dark and light grey,
respectively. Values indicate the mean squared error in pixels.
TP TF SP LP EM LR LSTM SH GMG GM

2

1 7.3 (8.2) 2.1 (4.2) 2.1 (4.2) 2.1 (4.2) 6.1 (7.0) 2.8 * 2.2 (4.2) 2.2 (4.2)
10 35.0 (47.4) 13.7 (19.6) 13.7 (19.6) 13.7 (19.6) 27.3 (36.9) 69.9 * 16.0 (26.4) 13.0 (16.8)
20 60.3 (81.2) 31.2 (40.5) 31.2 (40.5) 31.2 (40.5) 47.4 (62.9) 194.6 * 31.0 (42.6) 25.1 (31.9)
30 80.5 (106.1) 50.7 (62.2) 50.7 (62.2) 50.7 (62.2) 64.8 (82.7) 292.7 * 46.1 (61.3) 37.5 (46.0)

10

1 7.2 (8.2) 2.8 (3.4) 2.7 (3.4) 5.2 (5.8) 5.3 (6.5) 10.9 * 3.5 (5.2) 2.9 (3.7)
10 35.0 (46.8) 15.4 (18.7) 14.9 (18.3) 17.6 (20.2) 25.0 (35.5) 55.4 * 11.5 (18.8) 9.5 (14.2)
20 59.9 (79.4) 32.0 (38.0) 31.3 (37.5) 34.1 (39.2) 44.0 (60.5) 140.3 * 19.2 (30.4) 16.0 (24.2)
30 79.4 (101.8) 49.7 (57.6) 49.0 (57.0) 51.9 (58.8) 59.9 (78.2) 199.8 * 26.7 (39.8) 22.3 (33.0)

20

1 7.2 (8.2) 3.6 (3.8) 3.3 (3.7) 12.1 (11.5) 5.6 (6.5) 11.1 * 3.6 (5.6) 3.0 (3.9)
10 34.9 (46.2) 18.4 (21.7) 17.1 (20.4) 26.1 (26.8) 27.1 (35.9) 63.4 * 11.1 (18.6) 9.4 (15.1)
20 59.3 (76.8) 35.7 (41.5) 33.8 (39.7) 42.8 (45.5) 49.6 (57.2) 145.4 * 17.8 (28.8) 15.2 (24.8)
30 78.8 (99.3) 52.9 (60.7) 50.8 (58.7) 59.8 (64.2) 68.6 (76.3) 200.5 * 24.5 (37.5) 20.6 (32.3)

30

1 7.2 (8.2) 4.0 (4.3) 3.5 (3.9) 19.7 (18.5) 5.9 (6.4) 11.7 * 3.6 (5.3) 3.1 (4.2)
10 34.6 (45.3) 20.3 (23.7) 18.1 (21.5) 34.2 (33.4) 28.2 (34.8) 53.6 * 11.3 (18.6) 9.7 (16.2)
20 59.2 (76.0) 38.0 (44.3) 35.1 (41.1) 50.8 (51.7) 49.4 (59.1) 193.3 * 18.0 (29.1) 15.5 (25.9)
30 78.8 (99.1) 55.4 (65.0) 52.0 (60.8) 67.2 (71.1) 65.1 (81.4) 247.5 * 24.6 (37.9) 20.8 (33.3)

followed by GMG except for (TP = {2,10},TF = 1) where they are slightly outperformed by LP

and EM. In general, the larger TP (the more past frames are observed), the lower the prediction

error, with a reduction of the improvement with TP = {20,30}. SH has large prediction errors

due to the lack of a constraint for maintaining a spatial distribution of keypoints and of a masking

procedure to eliminate outlier local motions.

Fig. 4.27 shows the object prediction accuracy in the presence of Gaussian noise of varying

standard deviation in the past TP observed object positions. While SP, LR and LSTM are more

robust to noise in relative terms, GMG and GM outperform the rest in absolute values when the

standard deviation of the noise is lower than 20.

Fig. 4.28 shows the prediction errors when the frame rate is reduced. To constrain the tem-

poral observation when the video frame rate decreases, we select TP and TF as TP = dT ′Pκ

γ
e and

TF = dT ′F κ

γ
e where d·e is the ceiling function that rounds a number up to the nearest larger integer,

T ′P and T ′F are the past/future number of seconds to observe/predict and κ is the original frame

rate of the video. When γ = 1 (50% frame rate reduction), GM has the lowest absolute predic-

tion error with an error reduction of 41% with respect to the next best-performing methods (LP

and EM), and 58% with respect to the subsequent next best-performing methods (LR and SH).

When γ = 4 the error reduction is of 10% with respect to the next best-performing methods (LP
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Figure 4.27: Average prediction error in all moving-camera videos of the testing dataset for the
next TF = 30 frames when the observations over the past TP = 30 frames are contaminated by
Gaussian noise of varying standard deviation. For better visualisation, not showing SH as its
error is at least an order of magnitude larger. Values indicate the mean squared error. KEY – px:
pixels; SP , LP , EM , LR , LSTM , GMG and GM .
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Figure 4.28: Prediction errors (average and its standard deviation) in all moving-camera videos
of the testing dataset for the next 0.5 s when observing their positions in the past 0.5 s. For better
visualisation, not showing SH as its error is at least an order of magnitude larger. Values indicate
the mean squared error. KEY – px: pixels, SP , LP , EM , LR , LSTM , GMG and
GM .

and EM), and 47% with respect to the subsequent next best-performing methods (LR and SH).

EM and LP perform similarly (3% and 5% larger prediction error) to GM when γ = 5 as GM

accumulate global motion estimations errors over time. Using only 25% of the original frame

rate (γ = 3), GM obtains comparable prediction accuracy than LP, EM, LR and LSTM at the

original frame rate (γ = 0). These results indicate that the proposed method allows one to re-

duce the camera acquisition rate while still obtaining a lower prediction error compared to other

algorithms.

Next, we compare the processing speed of the methods under comparison and the proposed

method with no code optimisation in the testing dataset. All experiments are executed with an

Intel i7 microprocessor and 16GB of RAM. The proposed method achieves average processing



Chapter 4: Tracking 112

speed faster than 28 frames per second. Methods that do not use image processing (SP, LP, EM,

LR and LSTM) compute the predictions in less than 1 millisecond per frame. SH works at an

average of 44 frames per second.

4.6.4 Single-object tracking

We evaluate the tracking performance by comparing the trajectory estimated by the sound source

tracker, which is updated every half-block interval (W/2), with the ground-truth trajectory gen-

erated from the video of the on-board camera. We measure the tracking error, bounded at 180◦,

at the video frame rate (30 Hz), and calculate the mean and standard deviation across the whole

trajectory.

We compare particle filtering (PF) with, as baseline methods, median filtering (MF) and no

filtering (NF) on the localisation at individual blocks. MF updates the localisation at the b-th

block as the median value, M(·), of the localisation results across a sequence of Wp blocks:

θ̂MF,b =M
(
θ̃b−Wp+1, · · · , θ̃b

)
, (4.37)

where Wp is predefined constant. NF uses the localisation at the b-th block without any process-

ing:

θ̂NF,b = θ̃b. (4.38)

We use four block sizes, W ∈ {0.5,1,2,3} s, and in each block we use a STFT of size 1024

and 50% overlap. We set the search area as [−180◦,180◦] with an interval of 1◦, i.e. D = 361.

We set the noiseless sector as [−45◦,45◦]. For the particle filter we set N = 1000, and we use

a grid-search approach in a training dataset to select a different set of parameters for each block

size: for W = 0.5 s, σp = 3.5◦, σu = 10◦, and Wp = 8; for W = 1 s, σp = 5.5◦, σu = 4.5◦, and

Wp = 4; for W = 2 s, σp = 7.5◦, σu = 3.5◦, and Wp = 2; for W = 3 s, σp = 9.5◦, σu = 3◦ and

Wp = 1. σp̄ = 0.05 for all setups. Unless otherwise specified, W = 2 s in the comparisons.

For audio localisation, we compare the performance of two out-of-the-box audio process-

ing approaches. We compare the localisation results obtained by the time-frequency (TF) and

the steered response power (SRP) approaches [189], with W = 1 s, in the composite sequence

recorded in S1. In the presence of noise, SRP is only able to detect the ego-noise only (i.e.,
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Figure 4.29: Tracking results on the composite sequence in S1, with W = 1 s. (a) Original
peak detection result. (b) Proposed peak detection result. (c) Trajectories generated by different
trackers. (d) Tracking errors obtained by different trackers.

noise produced by the propellers), while TF is able to detect those plus the speech. Therefore,

we employ the TF approach for the rest of the experiments.

Fig. 4.29 shows intermediate tracking results based on the confidence map. Fig. 4.29a depicts

the original peak detection results, where we retain 10 peaks per processing block in the whole

circular area [-180◦,180◦]. The confidence map contains considerable noise but the trajectory of

the speech can still be observed. Fig. 4.29b depicts the proposed peak detection results, where

only one peak is detected in the noiseless sector [-45◦,45◦]. The proposed method can remove

the spurious peaks in Fig. 4.29a effectively. Fig. 4.29c depicts the ground-truth trajectory of the

sound source, the trajectory of the clean speech, the trajectory from detection without filtering

(i.e. Fig. 4.29b, the tracking results with MF and PF. All the three trackers (NF, MF, and PF) can

capture the trajectory of the moving sound source well. Fig. 4.29d depicts the tracking errors;

PF has the smallest variations. The mean (standard deviation) localisation errors by NF, MF, and

PF are 5.8◦(9.0◦), 5.5◦(5.5◦) and 4.5◦(4.3◦), respectively. The proposed peak detection method

can produce good localisation results, with large errors only in a few blocks. The tracker further

improves the localisation accuracy, with PF slightly outperforming MF.
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Table 4.10: Localisation errors on the composite sequence in S1 with different block sizes. Each
cell shows the mean (standard deviation) error in degrees. The best result is indicated in grey.

W (s) No filtering Median filtering Particle filtering

0.5 10.6 (15.4) 7.1 (8.9) 6.0 (5.4)
1 5.8 (9.0) 5.5 (5.5) 4.3 (4.5)
2 4.7 (4.7) 5.8 (4.7) 4.7 (3.9)
3 6.2 (4.9) 6.2 (4.9) 6.5 (5.0)

Figure 4.30: Tracking results on the composite sequence in S1 with different block sizes W ∈
{0.5,1,2,3} s.

Table 4.10 shows the localisation error for each tracker with different block sizes. For all

trackers, the accuracy improves with the block size until W = 1 s, slightly changes with W = 2 s,

and then drops with W = 3 s. Fig. 4.30 compares tracking results for different block sizes.

The larger the block size, the less noisy the localisation results and the smoother the trajectory.

However, the larger the block size, the longer the tracking delay, which increases the localisation

error (see Fig. 4.30a and Fig. 4.30d for W = 0.5 s and 3 s, respectively).

Table 4.11 shows the localisation errors on the four scenarios in the composite and the natural

datasets. Fig. 4.31a and Fig. 4.31b depict the tracking results for these two datasets. As expected,

the trackers perform better in S1 and S2 (loudspeaker moves inside the noiseless sector) than in
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(a) (b)

Figure 4.31: Tracking results for the four scenarios in the (a) composite and (b) natural dataset.

Table 4.11: Localisation errors in the four scenarios of the composite (C) and natural (N) dataset.
Each cell shows the mean (standard deviation) error in degrees. The best result is indicated in
grey.

Dataset Scenario No filtering Median filtering Particle filtering

C

S1 3.5 (4.7) 4.6 (4.5) 3.8 (3.9)
S2 4.3 (7.8) 4.9 (5.7) 4.4 (4.5)
S3 7.4 (9.0) 9.3 (9.0) 8.2 (7.8)
S4 8.0 (17.6) 10.9 (13.8) 8.4 (21.2)

N

S1 8.7 (7.5) 9.9 (7.8) 9.1 (7.4)
S2 8.8 (8.4) 8.7 (6.5) 8.3 (6.5)
S3 14.7 (18.9) 15.4 (16.0) 10.3 (8.8)
S4 16.4 (19.5) 16.4 (16.7) 11.5 (9.3)

S3 and S4 (loudspeaker moves freely in front of the drone), because the source localisation per-

formance degrades when the speaker moves outside the noiseless sector. The hovering power of

the drone does not greatly affect the tracking performance, as shown by the similar performance

in S1 and S2, and in S3 and S4. The composite dataset and natural dataset do not show large

differences in localisation error. Video tracking results available online3.

4.6.5 Multi-object tracking from a static camera

We validate the proposed Early Association Probability Hypothesis Density Particle Filter (EA-

PHD-PF) and compare it against state-of-the-art online tracking methods on the MOTB15 and

MOTB16 benchmark datasets [94, 125].
3Video tracking results available at https://www.youtube.com/watch?v=zJapzQllr_M
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We use the public detections provided by the MOT benchmark and our private detections pro-

duced by combining detections from state-of-the-art person detectors (description in Sec. 4.2.1).

We refer to the tracker using the public detections from MOT benchmark as EA-PHD-PF(Pub)

and to the tracker using the private detections as EA-PHD-PF(Priv).

We allow associations to be made between detections and predicted states only if their inter-

section over union is larger than τa = 1/3. The parameter that controls when a trajectory will not

seek for more detections is V = d f e/1s, where f is the frame-rate of the video sequence. The

parameter that controls the maximum possible number of frames to consider in the prediction

model is Mmax = d f/2e/1s.

We select the parameters of our method on the MOTB15 and MOTB16 training datasets via

parameter search and then use these parameters in MOTB15 and MOTB16 testing sequences,

respectively. For the set of public detections τs = 0.39 in MOTB15 and τs = 0.20 in MOTB16.

For the set of private detections τs = 0.35 in both datasets4. The number of particles per object,

ρ , is set to 500. We set the standard deviation values used for the prediction, update and newborn

particle generation as a function of the bounding box size. Using the annotations of the MOTB15

and MOTB16 training dataset, the standard deviation for the λ -th tracking state at time k is

σk,λ = xk,λ std

{d2x̃k,λ

dk2

}
∀k,λ

 , (4.39)

where std(·) is the standard deviation, d2(·)
dk2 is the second derivative that quantifies the noise in

the variation of the annotation x̃k,λ . We use the bounding box size at time k, w and h, in order to

adapt the noise to the scale of the bounding box.

For tracking evaluation we use the performance metrics discussed in Sec. 2.6. Table 4.12

compares the tracking results of our proposed method using both public and private detections

with the TOP-6 online trackers submitted to the MOTB15 and MOTB16 benchmark5. The upper

part of the table (MOTB15) shows that EA-PHD-PF(Priv) outperforms the following submissions

FOMT, LKDAT CNN, MOT DL, AMPL, GM 2015 and MDP SubCNN, in terms of MOTA and

MOTP. The number of FN and the ML percentage are overall lower than the other trackers. This

is due to the ability of EA-PHD-PF(Priv) to robustly perform state estimation, exploiting weak

4Larger values of τs reduce the number of false positives and lead to a more conservative initialisation of the
trajectories.

5Last accessed on 27th June 2020.
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Table 4.12: Online tracking results on the MOTB15 (TOP-6 trackers) and on the MOTB16 (TOP-
6 trackers) test datasets. Non-referenced results correspond to anonymous submissions. Colour-
coded cells indicate the best (darker grey) and the second best (lighter grey) scores for the F-
Score. Trackers can employ detections (Det) public (Pub) or private (Priv). Public detections are
released by the challenge and are common to all trackers. Private detections are generated by
each participant and are different to each tracker. KEY: P, Precision; R, Recall; and F, F-Score.

Dataset Tracker Det MOTA MOTP FAF MT (%) ML (%) FP FN IDS Frag Hz

FOMT Priv 53.0 74.8 1.2 32.7 14.6 6,974 20,776 1,143 2,043 16.0
LKDAT CNN6 Priv 49.3 74.5 1.0 20.8 28.4 6,009 24,550 563 1,155 1.2
MOT DL Priv 49.1 73.9 1.5 35.4 25.0 8,488 22,281 511 1,390 3.9
AMPL Priv 48.9 75.3 1.8 28.3 24.3 10,676 20,292 401 1,072 5.1
GM 2015 Priv 48.2 74.0 1.6 33.6 20.0 9,385 21,318 1,110 1,841 19.3
MDP SubCNN [204] Priv 47.5 74.2 1.5 30.0 18.6 8,631 22,969 628 1,370 2.1
EA-PHD-PF [C7] Pub 22.3 70.8 1.4 5.4 52.7 7,924 38,982 833 1,485 12.2

MOTB15

EA-PHD-PF [C7] Priv 53.0 75.3 1.3 35.9 19.6 7,538 20,590 776 1,269 11.5

POI [217] Priv 66.1 79.5 0.9 34.0 20.8 5,061 55,914 805 3,093 9.9
AMPL Priv 63.7 78.4 1.7 36.1 21.6 10,171 55,322 714 1,538 4.5
MHTWG Priv 61.2 79.2 1.3 30.2 22.4 7,897 61,289 1,570 2,683 30.0
KFILDAwSDP Priv 57.3 77.5 2.6 24.6 25.3 15,682 60,252 1,873 2,664 2.2
MDPNN16 Pub 43.8 75.5 0.6 12.4 40.7 3,501 98,193 723 2,036 1.0
olCF [87] Pub 43.2 74.3 1.1 11.3 48.5 6.651 96.515 381 1.404 0.4
EA-PHD-PF [C7] Pub 38.8 75.1 1.4 7.9 49.1 8,114 102,452 965 1,657 11.8

MOTB16

EA-PHD-PF [C7] Priv 52.5 78.8 0.7 19.0 34.9 4,407 81,223 910 1,321 12.2

detections without relying on the prediction only when (strong) detections are missing. The

relatively higher number of IDS compared to the other methods is due to the fact that we rely

only on the position and size of the bounding box inferred from the detections and we are not

using any appearance models to discriminate nearby objects in this evaluation. Spawning objects

are not considered. Identity switches are more likely in crowded scenes where occlusions often

happen, as shown in Fig. 4.32. The bottom part of Table 4.12 (MOTB16) shows that EA-PHD-

PF(Priv) currently is at half-rank in terms of MOTA achieving competitive results in MOTP, FP

and fragmentations metrics. This behaviour is mostly due to the unbalance on the detectors used

in each algorithm. The number of IDS is higher than AMPL and olCF, because the features they

use are better able to discriminate objects. The results using public detections rank our tracker

EA-PHD-PF(Pub) at the end of the TOP-6 online trackers along with olCF since the detection

performance of the public detections are not comparable with the private detections provoking a

big amount of FN and then a relatively low MOTA.

Fig. 4.33 compares sample tracking results using public (a-d) and private (e-h) detections. We

can observe along the first row how the object firstly initialised as 115 is then reinitialised, lost

and reinitialised again due to the high number of FN in the public dataset. However, the (same)
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(a) (b) (c)

Figure 4.32: Examples of tracking under multiple occlusions at frames 22, 97 and 261 (crops)
in Venice-1/MOTB16-01 using EA-PHD-PF(Priv). (a) Object 6 is correctly tracked while it
occludes another object. (b) The occluded object becomes visible and trajectory 6 drifts towards
it; object 6 is reinitialised as object 19 at frame 22. (c) Intermittent detections cause object 6 to
be reinitialised as object 29 at frame 97.

object firstly initialised as 41 in the second row is correctly tracked along the whole sequence. We

can observe the presence of false-positive trajectories (i.e. green, purple and red bounding boxes

in Fig. 4.33b). These false-positive trajectories are difficult to remove because they are caused

by persistent false-positive detections appearing for a few consecutive frames and the confidence

scores of those detections are as high as those of true positive detections. With EA-PHD-PF(Priv)

these detections are filtered out without adding any false-negative trajectories.

Visual tracking results can be found online athttps://motchallenge.net.

In order to evaluate the effect of each contribution, we compare the tracking performance of

the proposed method with respect to versions where each contribution is independently omitted.

In particular, four different evaluations have been tried. The results are shown in Table 4.13.

The first row shows the tracking results of our method (EA-PHD-PF) in the MOTB15 training

dataset [94] where our three main contributions are present. Strong and weak detections are used

as described in Section 4.2.1, Early Association is used as explained in Sec. 4.1 and perspective

dependency is applied as explained in Sec. 4.2.3. Weak detections are discarded, second row,

and all used as strong detections, third row. In the forth row, clustering followed by association is

performed instead of using the Early Association approach, similarly to [115]. Lastly in the last

row, fixed noises are applied to the prediction, update and sampling processes instead of using

the proposed perspective dependency approach.

The proposed method, first row in Table 4.13, achieves the best MOTA and IDS results, which

are the most relevant metrics in MOT, and at the same time that gets very competitive results in
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.33: Examples of tracking at frames 240, 461, 645 and 717 (crops) in MOTB16-03
using public (first row) and private (second row) detections. (a-d) The object identified as 115
is reinitialised multiple times due to occlusions and lack of detections. (e-h) The (same) object,
identified as 41, is correctly tracked. Source images from [125].

Table 4.13: Ablation studies comparing the tracking performance with and without strong and
weak detections, Early Association and prediction dependency in MOTB15 training dataset. The
best result for each metric indicated in grey. Key: EA, Early Association; and PD, prediction
dependent. * indicates that all detections are considered to be strong.

Detections
EA PD MOTA MOTP FAF MT (%) ML (%) FP FN IDS Frag Hz

Strong Weak

X X X X 56.11 78.53 0.92 42.40 27.20 5,042 12,266 205 444 11.5
X X X 45.33 78.64 0.58 27.40 36.20 3,192 18,000 625 785 12.1

* X X 19.81 77.67 4.65 68.60 7.00 25,577 5,914 510 790 8.3
X X X 48.60 74.80 0.50 22.40 32.40 2,597 17,083 848 955 6.6
X X X 55.59 78.08 1.01 44.40 27.40 5,534 11,954 232 479 11.8

the rest of metrics. As expected, when weak detections are not used (second row), challenging

detections are missed and then FN and IDS drastically increases. However, if weak detections

are treated as strong detections (i.e. there is not classification of detections and all are used as

strong detections), third row, a large number of trajectories are initialised, provoking a small

number of FN but with a large number of FP and IDS. Using clustering instead of the proposed

EA obtain about 8 less MOTA points and the processing speed is almost double. Lastly, in the

last row, removing the perspective dependency achieves similar results to the proposed method

but slightly decreases the MOTA and MOTP results since objects at different distances to the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.34: Examples of tracking at frames 178, 193 and 240 (crops) in PETS09-S2L1 (not)
using weak detections. (a-c) Strong (green) and weak (red) detections. (d-f) Without using weak
detections object 5 is lost and a new trajectory is later initialised with identity 20. (g-i) Using
weak detections object 5 is correctly tracked. Source images from [125].

camera cannot cope with the same fixed noise.

Fig. 4.34 shows the benefit of weak detections. Without weak detections, miss-detections

produce false negative trajectories and identity switches (Fig. 4.34, second row). When weak

detections are used, the objects are correctly tracked (Fig. 4.34, third row).

We have presented a variation of the PHD-PF framework, named EA-PF-PF, that effectively

uses strong (high-confidence) and weak (low-confidence) detections for performing online multi-

object tracking. The states are labelled via an efficient early association strategy that allows the

avoidance of the often required clustering stage. Perspective information is used in the EA-

PHD-PF framework within the prediction, update and generation of newborn particles enabling

the tracker for scale variations of the objects. The proposed object motion model named as
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perspective-dependent linear motion prediction is a variation of a traditional linear motion pre-

diction object motion model that can be used to accurately predict the location of a given tracked

object when certain linear assumptions are meet. In our object application with videos similar

to MOTB, the motion of objects can be considered as linear when recorded by static cameras.

However, when the objects of interest are observed from moving cameras, the proposed motion

model is not appropriate and the tracking prediction may drift. An example of tracking drift due

to linear motion prediction in moving cameras can be seen in the first row of Fig. 4.36.

4.6.6 Multi-object tracking from a moving camera

We perform the evaluation in the Multiple Object Tracking Benchmark 2017 (MOTB17) [5]

dataset which provides three sets of object detections generated by: DTDPM [54], FRCNN [157]

and SDP [211]. We use these detections as input for the tracker. As evaluation score, we

use Multiple Object Tracking Accuracy (MOTA) [26] and Multiple Object Tracking Precision

(MOTP) [26]. As discussed in Sec. 4.5, the ground-truth annotations in this dataset are generated

using semi-automatic techniques, therefore, the evaluation metrics contain uncertainties that are

estimated to be 0.225 for MOTA and 5.678 for MOTP [C5]. In other words, one tracker cannot

be guaranteed to outperform another on a certain metric when their metrics do not differ more

than twice the confidence interval value. We run the tracker five times and report the average and

standard deviation results.

The parameters of the global motion estimators are set as in the reference papers. The

MOTB17 dataset is divided in training and testing sets. We select the tracking parameters

that achieve the most accurate results in the training dataset by brute force and we fix them

for all experiments. The standard deviation for the prediction and observation models are set

to: σu
p = σ v

p = ∆k·w
18 , σ ū

p = σ v̄
p = ∆k·w

36 , σw
p = σh

p = 5, σu
o = σ

y
o = ∆k·w

12 and, σw
o = σh

o = 10. The

time interval between frames is considered constant and, therefore, we set ∆k = 1. As for the

strong/weak detection threshold, τs [C7], we use τs = 0.2 for DTDPM, τs = 0.95 for FRCNN

and τs = 0.8 for SDP. The number of particles per object is ρ = 200.

We compare our tracker against eight state-of-the-art online trackers, which can be clustered

in three groups regarding their focus: appearance, dynamics, or others. Trackers that focus on

improving the appearance modelling are: MOTDT [108], HAM-SADF [216], AM-ADM [96],

FPSN [95], and GM-PHD-KCF [92]. These trackers propose different deep-learning-based ap-

proaches to learn an appearance representation to be able to discriminate objects to each other
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Figure 4.35: Comparison of online trackers in MOTB17 test dataset. (a) MOTA rank and
its confidence interval [C5] and (b) comparison between MOTA and execution speed. KEY
– fps: frames per second, MOTDT [108] , HAM-SADF [216] , DMAN [223] , AM-
ADM [96] , PHD-GSDL [57] , FPSN [95] , EA-PHD-PF [C7] , GM-PHD-KCF [92] ,
GM-PHD [49] , proposed with linear prediction (LP) [165] and proposed with global motion
(GM) (Sec. 4.3.1) .

with the aim of improving tracking performance in challenging situations such as occlusions or

crowded scenes. Trackers that focus on improving the dynamic modelling, e.g. DMAN [223],

propose another deep-learning-based model that focuses on hard negative distractors using both

spatial and temporal attention mechanisms. The last group is formed by PHD-GSDL [57] and

GM-PHD [49], which are based in the PHD filter framework. The former focuses on improving

the modelling of the target birth with a novel gating mechanism; and the latter one is a used as

PHD-based tracker baseline.

Fig. 4.35a shows the MOTA Ranking in MOTB17 test dataset for all available online track-

ers (we do not show tracking precision rankings as MOTP confidence interval indicates that this

metric is not informative to rank these trackers in this dataset - the proposed tracker also achieves

state-of-the-art MOTP rank). Regarding MOTA and the confidence intervals, we can confidently

say that the proposed tracker outperforms all trackers under comparison but MOTDT [108],

which uses a deeply learned appearance representation of the objects, slightly outperforms the

proposed tracker with a MOTA 1.1 higher but 4 fps slower. Fig. 4.35b shows the results when

comparing accuracy and execution speed (the higher, the more accurate; the further to the right,

the faster). Considering both measures, the best performing trackers are MOTDT and the pro-

posed one. The rest of the trackers are slower and less accurate except for GM-PHD (9.2 lower

MOTA but 70% faster) and the proposed method with LP as predictor (2.9 lower MOTA but 30%

faster). Visual tracking results with LP as predictor are available online7.

To examine the contribution of the global motion module, we integrate within the proposed

7https://motchallenge.net/tracker/PHD_LMP
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Table 4.14: The object predictors under comparison. KEY: Ref, reference; TM, considers object
motion; CM, considers camera motion; NS, not scene specific; and FT, no assumptions on the
object location.

Ref Prediction model TM CM NS FT
BM [131] Brownian X X
LP [165] Linear X X X
SH [19] Planar homography X X
GM [C4] Global motion X X X X

tracker four different prediction models, including two global motion estimators: a homography-

based method (SH) [19], a global motion-aware camera motion (GM) [C4], a Brownian model

(BM) [131], a linear predictor (LP) [165] that does not account for camera motion and we refer

to it as EA-PHD-PF (Sec. 4.3). Table 4.14 summarises the prediction models under comparison.

SH and GM estimate the global motion, Hk−1|k−2, and is provided to the tracker in Eq. 4.27.

Prediction methods such as SH and GM outperforms deep-learning-based prediction models in

this scenario [C4], therefore we do not compare against deep-learning-based predictors in our

experiments.

Fig. 4.36 shows tracking results with LP (first row) and GM (second row) in a moving cam-

era sequence (MOTB17-13). The camera heavily jaws producing large object motions in the

image plane. While LP wrongly forecasts the object locations producing multiple false trajec-

tory initialisations and identity switches, GM accurately predicts the motion of the objects and

maintains the correct object identities with no false positive initialisation. Visual tracking results

are available online8.

Table 4.15 shows the results when modifying the input set of detections (DTDPM [54], FR-

CNN [157] or SDP [211]) and the global motion estimators (BM [131], LP [165], SH [19] and

GM [C4]) on the training dataset. The detector is the component that most affects tracking ac-

curacy. GM enables the most accurate and precise tracking obtaining on average an increment

of 9.0 and 3.2 MOTA points, and 3.0 and 0.5 MOTP points, when comparing with BM and LP,

respectively, in moving cameras. Among the alternatives that consider the global motion, SH

performs worse than GM due to a more inaccurate global motion estimation. The image pro-

cessing techniques used to estimate the global motion impacts the execution speed of the tracker.

The fastest tracker is when BM and LP are used (i.e. no global motion is needed to be estimated)

achieving up to 58.0 fps while SH and GM obtain 29.7 and 22.5 fps, respectively (using DTDPM

8Tracking results in MOTB17 dataset with public detections.
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Frame k−22 Frame k

Figure 4.36: Sample tracking results in MOTB17-13 sequence while camera jaws clockwise with
two predictors: linear prediction (top row) and the proposed global motion (bottom row). Colours
and numbers in bounding boxes indicate object identity. Blue line indicates the past locations of
a static object (the rubbish bin) and it is drawn to visualise the camera motion. Note that global
motion predictor allows the tracker to maintain the correct object identities (second row). Source
images from [125].

Table 4.15: Tracking performance (average and standard deviation) comparison for different de-
tectors and prediction models on MOTB17 training dataset. KEY, PM, prediction model; M,
moving-camera sequences only; C, complete dataset; BM, Brownian model [131]; LP, linear
prediction [165]; SH, homography-based global motion [101]; and GM, global motion estima-
tion [C4]. The higher the score, the better the performance. Best and second best performing
methods per detector and type of camera motion are shown in dark and light grey, respectively.

Detector PM MOTA MOTP
M C M C

DTDPM

BM 30.3 (0.1) 34.8 (0.1) 74.2 (0.1) 76.3 (0.1)
LP 33.1 (0.3) 36.1 (0.2) 75.0 (0.1) 76.5 (0.1)
SH 31.8 (0.6) 35.5 (0.2) 74.5 (0.1) 76.3 (0.1)
GM 35.5 (0.1) 37.0 (0.1) 75.3 (0.1) 76.5 (0.1)

FRCNN

BM 42.6 (0.1) 46.8 (0.2) 79.2 (0.1) 84.3 (0.2)
LP 49.5 (0.3) 49.6 (0.2) 83.5 (0.1) 86.5 (0.1)
SH 46.5 (0.2) 48.4 (0.1) 82.2 (0.0) 86.0 (0.2)
GM 52.9 (0.2) 50.9 (0.1) 84.0 (0.1) 86.6 (0.3)

SDP

BM 48.9 (0.3) 59.9 (0.4) 78.7 (0.1) 83.0 (0.1)
LP 56.5 (0.4) 62.6 (0.1) 81.0 (0.0) 83.7 (0.0)
SH 52.6 (0.6) 61.7 (0.2) 80.4 (0.0) 83.3 (0.1)
GM 60.3 (0.3) 64.7 (0.2) 81.6 (0.1) 83.9 (0.1)

as detector).

Fig. 4.37 shows the tracking accuracy when downsampling the video frame rate by keeping
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Figure 4.37: Tracking performance with reduced video frame rate (γ) in (a) static-camera videos,
(b) moving-camera videos, and (c) the complete MOTB17 training dataset (both static- and
moving-camera); for four prediction models: Brownian model (BM) [131] , linear prediction
(LP) [165] , homography-based global motion (SH) [101] and global motion estimation
(GM) [C4] . Standard deviations are less than one point. KEY: #, number of.

one frame and skipping the next γ (e.g. γ = 1 indicates 50% frame rate reduction) for different

prediction models. Fig. 4.37(a) indicates that the tracking performance in static cameras is similar

regardless the prediction model. However, when the camera moves Fig. 4.37(b), GM consistently

obtains the highest tracking accuracy for any γ . For instance, when γ = 3 the propose prediction

method outperforms BM, LP and SH by 26.6, 23.3 and 5.4 MOTA points, respectively. The

proposed prediction formulation, when using SH and GM as global motion estimators, allows

the tracker to reduce the video frame rate by 75% (γ = 3) while maintaining 60% and 66% of its

original tracking accuracies, whereas BM and LP are only able to maintain 25% and 28% of its

original tracking accuracies in moving-camera sequences. Moreover, GM allows the tracker to

drop half of the frames while outperforming BM and SH, and achieving comparable results than

LP.

Fig. 4.38 shows visual tracking results with LP (first column) and GM (second column). In

the first video (first two rows), the camera translates forward and rotates significantly; the LP

cannot cope with this complex motion and most of the object identities are switched. However,

the GM is able to maintain the identity for most objects. In the second video (third and fourth

rows), the camera only translates forward producing small apparent motions in the image plane;

both prediction models are able to accurately track most of the objects. In the third video (last

two rows), the camera undergoes a strong clockwise jawing producing large motions in the image

plane which results in multiple false trajectory initialisations when LP is used but GM can cope

with this challenging scenario.

In summary, experiments show that the proposed tracker outperforms most of the trackers
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Figure 4.38: Comparative tracking results with LP prediction method (first column) and with GM
(second column). Colour code indicates the object identity. GM is able to maintain the object
identities in most of the cases in the three scenarios under strong camera motion. Source images
from [125].

in terms of accuracy and speed (Fig. 4.35). Specially, we showed that the proposed prediction

model excels in the presence of moving cameras (Fig. 4.15). Also, we showed that the proposed

tracker can be used to intentionally decrease the frame rate of videos, with the aim of reducing the

number of operations, and thus consumption power, and still maintain higher levels of accuracy
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than existing alternatives (Fig. 4.37).

4.7 Summary

This chapter presented an audio-based algorithm that tracks a sound source from a UAV, a vision-

based multi-object tracker for static and moving cameras, and an object motion prediction that is

able to forecast the location of moving objects from a moving camera.

We introduced a probabilistic-based tracker that is able to track a moving sound source from

a noisy UAV by combining time-frequency filtering, peak detection, and particle filtering. We

presented a self-collected audio-visual dataset recorded outdoors with an 8-microphone circular

array and a camera mounted on a quadcopter that enable researches for the creation of new

audio-visual sensing problems in the presence of strong ego-noise. We experimentally validated

the effectiveness of the proposed tracker that obtains tracking errors under 11.5 degrees.

We presented EA-PHD-PF, an online multi-object tracker that exploits strong and weak de-

tections in a Probability Hypothesis Density Particle Filter framework. Strong detections are used

for trajectory initialisation and tracking. Weak detections are used for tracking existing objects

only to reduce the number of false negatives without increasing the false positives. Moreover,

we presented a method to perform early association between trajectories and detections, which

eliminates the need for a clustering step for labelling. Also, we exploited perspective informa-

tion in prediction, update and newborn particle generation. Experimental results showed that

our tracker, without using object appearance information, outperforms alternative online trackers

in the Multiple Object Tracking 2015 and 2016 benchmark datasets in terms tracking accuracy,

false negatives and speed. The tracker works at an average speed of 12 fps.

Lastly, we introduced GM, an object motion predictor that is aware of the global camera

motion. The proposed predictor does not require camera calibration or the presence of planar

surfaces. GM considerably reduces the prediction error compared to the state-of-the-art predic-

tors when predicting over 30 frames in the future. Moreover, GM outperforms state-of-the-art

predictors when processing fewer frames, thus allowing one to intentionally reduce the video

frame rate and hence the energy consumption, an important aspect for vision tasks with moving

cameras. Finally, we proposed a formulation that allows the integration of GM in EA-PHD-PF

framework. We validated the proposed tracker on the Multiple Object Tracking Benchmark 2017

dataset and compared against state-of-the-art trackers. Experimental results showed that the use
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of GM improves tracking accuracy by up to 3.8 MOTA points when compared to traditional

linear predictors. Moreover, the proposed tracker obtains comparable tracking results to using

a linear prediction model but by processing only half of the frames, which is a desirable prop-

erty for tracking with resource-constrained platforms. The proposed tracker obtains competitive

results with respect to published trackers in both accuracy and speed.

The work presented in Sections 4.1, and 4.4 has been conducted in collaboration with L. Wang. L. Wang
contributed developing the audio processing techniques, which are not described in this thesis. We use the output of
such as techniques as input of the methods presented in this Chapter. I acknowledge that I am the principal contributor
of the work presented in these sections and that is not present in any prior thesis.
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Conclusion

In this chapter, we first summarise the achievements and limitations of the works of this thesis

(Sec. 5.1) and then, expose future research directions upon the work of this thesis (Sec. 5.2).

5.1 Summary of achievements and limitations

The main achievements of this thesis are related to the problems of object localisation and di-

mensions estimation, and online tracking.

Regarding the first problem, we proposed LoDE, which is able to localise and accurately es-

timate the dimensions of unseen objects without the need for markers or prior information of the

objects such as 3D models or of the object’s appearance. While existing methods, which require

RGB-D sensors, obtain detection recall of 72.2%, the proposed LoDE, which only requires RGB

sensors, achieves a detection rate of 87.0%. In addition to higher detection rates, the proposed

method outperforms state-of-the-art alternatives regarding accuracy in estimating both the height

and width of the objects (Fig. 3.10). Interestingly, LoDE is robust to the object transparency,

whereas the performances of state-of-the-art methods deteriorate when the transparency of the

objects increases (Fig. 3.9). We employed LoDE together with a robotic arm in a multi-modal

system. This enabled the performance of the challenging human-to-robot handover of unseen

drinking cups. To achieve this, the system overcame multiple challenges, mainly the limited

prior knowledge of the objects, high-precision requirements to both localise and estimate the

dimensions of the object in 3D, and a fast computational speed to perform dynamic handovers

(i.e. natural handovers). Regarding limitations, LoDE is not capable of operating with objects

129
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with a different geometry than the assumed one (symmetric with respect to its vertical axis and

with a circular base) as can be seen in Fig. 3.5.1 for Object 20; or when the object is in a different

position than upright. In addition, the method completely relies on the performance of the se-

mantic segmentation module that is used as input. In the case that the success rate on localising

objects by the semantic segmentation module is limited (e.g. 58.94% when images are infrared),

LoDE cannot work and thus is unable to estimate the shape/dimensions of the object at all. Re-

garding the robotic application, LoDE does not provide any information of the location of the

human hand, nor on the available object grasp points, both of which are desirable for advanced

and safer handovers.

Regarding the second problem of online tracking, we proposed a probabilistic method, EA-

PHD-PF, that is versatile as we validated in a variety of settings including single and multiple

objects, with static and moving cameras, and using audio and video signals as input. EA-PHD-

PF obtains state-of-the-art tracking results while not using appearance information of the objects.

This has two main benefits. First, even though the code lacks optimisation, the tracker performs

at high speed (≈ 12 fps) compared with other trackers (see last column of Table 4.12). Second,

when objects are detected, the proposed tracker is invariant to their appearance thus the tracker is

a suitable option for scenarios where the appearance is not informative (e.g. very similar objects

such as a group of bees or people dressing with the same cloths). However, when appearance

information is useful (e.g. well-lit videos containing objects with a distinguishable appearance),

trackers that use appearance information might outperform our tracker in terms of accuracy and

IDS, but at the cost of being slower [204, 217] (Table 4.12). The proposed online tracker is

composed of six main parts that address different problems:

Multi-detector fusion (Sec. 4.2.1) enables the use of over-populated detection sets that are

likely to have no false negatives but multitude of false positive and repeated detections on actual

objects; the confidence-based threshold can then be tuned to vary the ratio between false posi-

tives and false negatives, as is appropriate for the application task. The proposed multi-detector

fusion outperforms independent detectors and other fusion approaches (e.g. NMS) in terms of

higher precision for the same level of recall (Fig. 4.26). This over-populated detection stage can

be the basis for other uses as we will see in the next point. Regarding limitations, the fusion

requires the generation of an over-populated set (e.g. using multiple detectors), which might be

not computationally efficient, unless code parallelisation and optimisation is performed.



Chapter 5: Conclusion 131

Strong and weak detections (Sec. 4.2.1 and 4.2) allow for the use of an over-populated de-

tection set. The confidence-based initialisation and inheritance processes (Sec. 4.2) produce an

important tracking accuracy increment while maintaining a similar tracking precision (Fig. 4.34

and Table 4.13). Specifically, a notable reduction in the number of IDS (≈ 70%) and in the

number of trajectory fragmentations (≈ 56%) with a similar performance speed can be observed.

Regarding limitations, the strong/weak classification might generate non-optimal decisions as it

relies only on the confidence provided by the object detector, which might be inaccurate.

The Early Association (Sec. 4.2.2) allows the PHD-PF framework to include the identity esti-

mation by performing the data association between predicted trajectories and detections, instead

of associating estimated trajectories with previous trajectories. The replacement of the clustering

by the early association produces two main benefits: (i) the tracking accuracy improves by more

than 7.5 points and the tracking precision improves by more than 3.5 points; and (ii) the speed

of the tracker improves by more than 40% as it allows removing the time-consuming clustering

procedure (Table 4.13). Regarding limitations, experimental results show that the EA slightly

increases the number of false positives, mainly caused by the wrong initialisation of new tra-

jectories. This is mostly due to the fact that EA associates detections with trajectories and, as

detections only have location information (i.e. velocity is not available as it is in the trajectories),

the EA module is unable to use velocity information in the association cost function (Eq. 4.8).

The lack of velocity during the association produces that in the presence of objects intersecting

to each other, the discriminability between the objects is very poor as they are very close to each

other in the decision space, which in the absence of speed and appearance is only composed of

location and dimensions of objects.

The perspective-dependent object motion prediction (Sec. 4.2.3) provides more accurate pre-

dictions in static cameras and with changes in scale of the objects. This allows both a reduction

in the number of false positives that, when perspective is not considered, create wrong new tra-

jectory initialisations; and reduces the number of IDS, while maintaining the speed (Table 4.13).

A limitation of this model is the strong assumption of that every object of a specific class has the

same dimensions than all the other objects in the real world, which is often not true (e.g. people

or cars are often of different size).

The global-motion aware object motion prediction, GM (Sec. 4.3.2), enables the prediction

of the location of moving objects when they are observed from a moving camera without the
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need for camera calibration, additional sensors or strong assumptions on the object or on the

scene. GM outperforms all considered alternatives in terms of prediction accuracy when predict-

ing longer than one frame in the future (Table 4.9). In fact, GM obtains an accuracy improvement

larger than 60% when predicting the location of objects 30 frames in the future. Also, GM per-

forms in real-time, can handle noisy observations (Fig. 4.27) and can work accurately in videos

with a reduced frame rate (Fig. 4.28). In addition to this, we showed that the use of linear motion

prediction models in tracking produces large tracking drift when the camera moves (Fig. 4.36

and 4.38, and Table 4.9). Using GM as a prediction module within the EA-PHD-PF shows an

important improvement in both tracking accuracy and precision (Table 4.15). Regarding limita-

tions, GM might not work properly if the camera is mounted in a platform that can move at high

speed (e.g. a drone), as the assumptions of pure rotation might not hold. Also, in this scenario,

the fast speed of the camera is likely to capture images with high motion blur, which will make

our method incapable of tracking keypoints; and, therefore, the estimation of the global motion

produced by the camera motion won’t be estimated accurately or estimated at all.

The confidence intervals for tracking performance scores quantifies the bias that datasets an-

notated using semi-automatically linear-based interpolation techniques causes when evaluating

trackers. We showed that this type of annotations undeservedly benefit trackers that use or learn

to use linear prediction models. This problem is particularly acute with moving cameras (Ta-

ble 4.5). We proposed a protocol to account for this uncertainty that calculates the confidence

interval for a given evaluation score and dataset using only information extracted from the al-

ready existing ground truth annotations. As limitation, the proposed method assumes that when

interpolations are used in the annotation of a dataset, these are done by linear means. When a

dataset is annotated using other type of interpolation (e.g. polynomial), the method won’t be able

to estimate the confidence intervals. However, if one crafts a technique to detect those type of

interpolation, this can be integrated into the formulation in a straight forward manner.

The audio-visual calibration procedure (Sec. 3.1.2) allows algorithms to collaboratively use

audio-visual for advanced applications or to enable the annotation of datasets from video sig-

nals to evaluate audio-based algorithms (Sec. 4.6.4). As limitation, the audio-visual calibra-

tion/inference will only work when the estimate DOA of the sound source is accurate. For

instance, when the environment has strong reverberations (e.g. in an indoors environment) the

estimated DOA might fail, thus making the calibration/inference procedure to fail.
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Finally, we designed, collected and made publicly available two datasets: the CORSMAL

containers dataset that is suitable for evaluating object localisation and dimensions estimation

(Sec. 3.4), and the AVQ dataset that enables the evaluation of sound source localisation and audio

enhancement in very low SNR conditions (Sec. 4.4). Also, we proposed a novel benchmark

to evaluate dynamic human-to-robot handovers in scenarios without motion capture systems,

markers, or prior object models [J1]. These works, besides being useful for the evaluation of

the contributions of this thesis, we expect them to be the basis of other research groups for the

development of more advanced algorithms.

5.2 Future work

Challenges remain open on how to design efficient and accurate algorithms for object localisation

and dimensions estimation, which can be applied to unseen objects; and object tracking that can

work online. We provide future directions for our work to encourage research in this area.

Regarding the problem of object localisation and dimensions estimation, algorithms that use

strong prior information of objects such as 3D models of the objects, which is a common practise

until the date, produce accurate results even with the presence of clutter and strong occlusions

and are fast when a GPU is available. We believe this problem can be considered mostly solved.

Therefore, we would like to encourage researchers to drift their focus towards the novel and

unresolved problem of using unseen object for which prior information is limited or null. Initial

works have been already proposed with this focus [163, 187, 220], also, an interesting research

path of interest can be considering LoDE and relaxing the assumption on the geometry of the

object to make it suitable for objects of any shape. Another interesting possible direction is to

extend the localisation and dimensions estimation to estimate the full 6 DoF pose of the object.

Also, designing algorithms that can work with only one narrow-stereo baseline can be of great

interest, for example for robotic applications, where is desirable to install a limited amount of

sensors and to be embedded within the robot so that the working setup does not require to be

altered by installing additional sensors. We briefly explored this within the thesis (see LoDE-IR

in Sec. 3.5.1) where we use an IR narrow-stereo baseline, however the semantic segmentation

approach reduced its performance with infrared inputs. Therefore, it can be interesting research

to explore the training of semantic segmentation models with IR images and the use of transfer

learning to obtain enhanced semantic segmentation results in this setup. Other related research
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directions related with robotics are the estimation of the grasp points of the objects, estimation of

the location of the human hand during human manipulation of objects. All the above, can produce

a large impact in the robotics field allowing robots, for the first time, to perform advanced human-

robot interactions while providing safer environments.

Regarding the problem of online multiple object tracking, we envision two main research di-

rections. The first one is related to the use of the observations received by detectors. The concept

of strong and weak detections can be extended to propose solutions that learn and/or adaptively

tune the confidence-based threshold according to the needs of the application task such as, for

example, image quality, object’s dimensions or camera resolution. Investigating the integration

of the strong and weak detections concept within the EA-PHD-PF might be of interest. The sec-

ond one relates to one of the main causes of tracking failures in online tracking, the unresolved

challenge of occlusions. One research direction is within the early association strategy, which

can be improved by creating an advanced association cost to enhance the association accuracy

and, specially, to reduce the number of FP initializations in the presence of object occlusions.

The association cost in the EA framework could be improved by leveraging the object estimated

velocity; to do this, it is needed the development of advanced detection algorithms that infer the

velocity or direction of the objects from a single frame. For instance, when objects are people,

this could be attempted by inferring the speed and velocity from the skeleton pose of the person.

Another research direction is the design of advanced object motion predictors that can inform the

tracker with more accurate predictions. This can be used to improve the uncertainty created by

short-term occlusions. As discussed in this thesis, it is of great importance to accurately predict

in moving cameras. To achieve this, existing SLAM algorithms could be used together with on-

line tracking approaches for obtaining enhanced tracking results. However, when cameras move

fast (e.g. mounted in UAV) motion blur happens, making existing methods that use RGB cameras

to drastically reduce their performance or even to fail. In these cases, the use of event cameras

which are not affected by motion blur is an interesting research area [58]. For scenarios where

long-term occlusions or objects exiting and re-entering the field of view happen, a research di-

rection is the use of re-identification mechanisms or the use of multiple sensors. The latter one

allows one to cover a larger visible area and to observe objects under different views, which can

potentially handle occlusions.
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