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Abstract

Random simplicial complexes are a natural higher dimensional generalisation to the

models of random graphs from Erdős and Rényi of the early 60s. Now any topological

question one may like to ask raises a question in probability - i.e. what is the chance

this topological property occurs? Several models of random simplicial complexes have

been intensely studied since the early 00s. This thesis introduces and studies two gen-

eral models of random simplicial complexes that includes many well-studied models as a

special case. We study their connectivity and Betti numbers, prove a satisfying duality

relation between the two models, and use this to get a range of results for free in the case

where all probability parameters involved are uniformly bounded. We also investigate

what happens when we move to infinite dimensional random complexes and obtain a

simplicial generalisation of the Rado graph, that is we show the surprising result that

(under a large range of parameters) every infinite random simplicial complexes is iso-

morphic to a given countable complex X with probability one. We show that this X is

in fact homeomorphic to the countably infinite ball. Finally, we look at and construct

finite approximations to this complex X, and study their topological properties.
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Chapter 1

Background

In this thesis we investigate and study two general models of large random simplicial

complexes, describe what happens when one moves to infinite random simplicial com-

plexes, and introduce a family of simplicial complexes that can meaningfully be described

as quasirandom.

In more detail, in Chapter 2 we introduce the lower and upper models of random

simplicial complexes, study some of their typical topology and explore the relationship

between them. Chapter 3 further explores the topology of the upper model, in particular

when it is path connected and does so by studying a class of simplicial complexes called

minimal connected covers. Chapter 4 studies both models when all parameters involved

are uniformly bounded. Chapter 5 asks what happens with lower model infinite random

complexes, and proves that “almost all” infinite random simplicial complexes are actually

isomorphic to a given complex X. Chapter 6 looks at finite approximations to this X,

shows that “almost all” random complexes are in fact such approximations, as well as

constructing an explicitly deterministic family of these approximations.

The purpose of this chapter is to introduce all of the basic terminology, notation, and

simple results that will be used for the remainder of this text.

1
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1.1 Combinatorial topology

1.1.1 Simplicial complexes

A hypergraph on a (possible) vertex set V is any subset of the power set 2V . A simplicial

complex Y on a vertex set V is a hypergraph on V that is downward closed, i.e. if S ∈ ∆

and T ⊆ S then T ∈ ∆.

We will let [n] = {1, . . . , n} and ∆n = 2[n] throughout, and call ∆n the complete

simplex on [n]. An element of a simplicial complex σ ∈ Y will be called simplex of

dimension dimσ = |σ| − 1, we will sometimes let F (Y ) denote the set of simplices of Y

and Fk(Y ) those of dimension k. The k-dimensional skeleton of a simplicial complex Y

is the k-dimensional subcomplex Y (k) = {σ ∈ Y : dimσ ≤ k}.

Given two disjoint simplices σ, τ we define their join σ ∗ τ as the complete simplex on

vertex set V (σ) ∪ V (τ) – we may sometimes write just στ to denote the join. We call

the join vσ, with v a vertex not in σ, the cone over σ. Given a simplicial complex Y and

a simplex σ ∈ Y we define the link of σ in Y by

LkY (σ) = {τ ∈ Y : τ ∩ σ = ∅, στ ∈ Y }.

We observe that the vertex set of the link V (LkY (σ)) is a subset of V (Y )− V (σ).

For a simplicial subcomplex Y ⊆ ∆n we denote by E(Y ) the set of external simplices,

i.e. simplices σ ∈ ∆n such that σ 6∈ Y but the boundary ∂σ is contained in Y . M(Y )

denotes the set of maximal simplices of Y , i.e. σ ∈ Y such that for every τ ⊃ σ one has

τ 6∈ Y .

1.1.2 Homology

One of the primary tools of interest throughout this text will be that of homology. Loosely

speaking homology counts the number and type of “holes” in a simplicial complex. We

refer to Section 2 of Hatcher [39] for a proper introduction.

Given a finite simplicial complex Y and an abelian group G we define the chain groups
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of Y

Ck(Y ;G) =

 ∑
σ∈Fk(Y )

gσσ : gσ ∈ G

 .

Informally, Ck(Y ;G) consists of formal sums of k-dimensional simplices of Y and we

call it’s elements k-chains. It is clear that Ck(Y ;G) ∼= Gfk where fk = |Fk(y)| de-

notes the number of k-dimensional simplices in Y . To every k-dimensional simplex

σ = [v0, . . . , vk] ∈ Y we define its boundary as

∂kσ =
k∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vk]

where [v0, . . . , v̂i, . . . , vk] denotes the (k − 1)-dimensional simplex obtained by removing

vertex vi from σ. This gives a map on all chains

∂k : Ck(Y ;G)→ Ck−1(Y ;G)

by extending linearly.

The kernel of the boundary map is denoted Zk(Y ;G) = ker ∂k and called the group

of k-cycles of Y . The image of the boundary map is denoted Bk(Y ;G) = im ∂k+1 and

called the group of k-boundaries of Y . It is a simple exercise to show that ∂k ◦ ∂k+1 = 0,

so one has Bk(Y ) ⊆ Zk(Y ) and we can therefore define the k-th homology group of Y as

cycles modulo boundaries, that is

Hk(Y ;G) =
Zk(Y ;G)

Bk(Y ;G)
.

When G = F is a field it can be shown that each homology group Hk(Y ;F) is in fact

a vector space over the field F – it therefore makes sense to talk of the dimension of

Hk(Y ;F) as an F-vector space. Let bk(Y ) denote the dimension of Hk(Y ;Q) over the

rationals Q, the bk(Y ) are called the Betti numbers of Y .

Computing the typical Betti numbers of various models of random simplicial com-

plexes will be a primary interest explored in both Chapter 2 and 4. These two chapters
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will make use of the following inequality.

Lemma 1.1.1 (Morse inequality.). Let Y be a simplicial complex, the following inequality

holds:

fk(Y )− fk+1(Y )− fk−1(Y ) ≤ bk(Y ) ≤ fk(Y ),

where fk(Y ) denotes the number of k-dimensional simplices in Y .

Proof. We will let Hk(Y ) denote Hk(Y ;Q), similarly for Zk(Y ) and Bk(Y ). Then by

definition

bk(Y ) ≤ dimZk = dim ker ∂k ≤ fk.

As ∂k ◦ ∂k+1 = 0 we have, by the rank-nullity theorem, that fk(Y ) = dim ker ∂k +

dim im ∂k+1, and therefore we have

bk(Y ) = dimZk − dimBk

= (dim ker ∂k − dim im ∂k+1)− dim im ∂k

≥ fk(Y )− fk+1(Y )− fk−1(Y ).

1.2 Basic probability

1.2.1 Notation

Given a sequence of measures Pn and an event E we say that E happens asymptotically

almost surely (a.a.s) if

lim
n→∞

Pn(E) = 1.

Let f, g be two functions taking values in R. We will make use of the following

standard notations throughout this text.

• f = o(g) if limx→∞
|f(x)|
g(x) = 0.
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• f = O(g) if lim supx→∞
|f(x)|
g(x) <∞.

• f = Ω(g) if lim infx→∞
f(x)
g(x) > 0.

Let Ω1 ⊂ Ω2 ⊂ . . . be an increasing collection of related objects (e.g. graphs or

simplicial complexes). Given a model of randomness returning elements of Ωn with a

probability parameter p(n) and a property P that makes sense for elements of Ωn (e.g.

for graphs, is it connected?) then a function f = f(n) is called a coarse threshold for

property P if

p =


o(f) then ¬P happens a.a.s.

Ω(f) then P happens a.a.s.

Let p(n) = α(n)f(n), for some α(n) ≥ 0, we will call f is a threshold for then property

P if 
limn→∞ α(n) < 1 then ¬P happens a.a.s.

limn→∞ α(n) > 1 then P happens a.a.s.

In Chapter 3 we will investigate some connectivity thresholds in the upper model.

1.2.2 Basic inequalities

There are a few elementary general results from probability theory we will make use of

time and again. For the following results we will always let X be a random variable

taking values in {0, 1, 2, . . . }.

Theorem 1.2.1 (Markov’s inequality). For any a ∈ {1, 2, . . . }

P(X ≥ a) ≤ E(X)

a
.
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Proof.

E(X)

a
≥
∞∑
n=a

n

a
· P(X = n)

≥
∞∑
n=a

P(X = n)

= P(X ≥ a)

Corollary 1.2.2 (First moment method). P(X = 0) ≥ 1− E(X).

Theorem 1.2.3 (Chebychev’s inequality). Let a > 0. If both E(X) and Var(X) are

finite then

P (|X − E(X)|) ≥ a ·Var(X)) ≤ 1

a2
.

Proof. Let Y = (X − E(X))2 and apply Markov’s inequality to the random variable

Y .

Corollary 1.2.4 (Second moment method).

P(X > 0) ≥ (EX)2

E(X2)
.

Proof.

P(X > 0) = 1− P(X = 0)

≥ 1− P (|X − E(X)| ≥ E(X))

≥ 1− Var(X)

(E(X))2

=
E
(
X2
)

(E(X))2 .

Heuristically, Chebychev gives a bound on how far a random variable can deviate from

its expectation – lower variance means lower deviation from the mean as one expects.¬¬
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1.3 Random simplicial complexes

1.3.1 Random graphs and first generalisations

The predecessor to all models of random simplicial complexes are Erdős-Rényi random

graphs [31], where one includes independently at random every possible edge from vertex

set [n] with probability p, the resulting random graph is denoted G(n, p). One tends to

care about what happens to such graphs as n grows large and p→ 0, for many interesting

properties there exists a threshold function f(n) such that if p � f(n) some property

doesn’t happen in G(n, p) with probability tending to one and if p � f(n) then that

property does happen with probability tending to one.

Two natural generalisations to more general simplicial complexes emerged in the

2000s. The first by Linial, Meshulam [58] and Meshulam, Wallach [62] where one begins

with the (k − 1)-dimensional skeleton of the full simplex on n vertices, ∆
(k−1)
n , and

includes k-dimensional simplexes independently at random with probability p to obtain

a random complex Y ∈ Yk(n, p). The second is random clique complexes introduced

by Kahle [46], where one constructs the Erdős-Rényi random graph G(n, p) and obtains

a simplicial complex X(n, p) by filling in all cliques with simplexes, i.e. every induced

subgraph isomorphic to the complete graph Kr forms an (r − 1)-dimensional simplex.

1.3.2 Multiparameter random simplicial complexes

The models mentioned in the above both have just a single parameter of randomness, p.

It’s a natural idea that a simplicial complex may have independent randomness in every

dimension given it’s inherent downward closed structure. The multiparameter model

of random simplicial complexes of Costa and Farber [27] was the first to study this in

detail. It should also be mentioned that concurrent to the work of Costa and Farber,

Fowler [35] also began the study of multiparameter random simplicial complexes looking

at higher dimensional threhsolds for the vanishing of cohomology. Their model builds

random simplicial complexes from the bottom up, beginning with a set {1, . . . , n} one

includes every possible vertex with probability p0, from this selection of vertices one
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adds every edge independently at random with probability p1, now from this random

graph there will be some triangles which we can now fill in with a 2-dimensional simplex

with probability p2, etc. up to the top dimensional simplexes. This gives a random

simplicial complex Y ∈ Y (n, (p0, p1, p2, . . . )), in the notation of [27]. It is this idea of

multiparameter random simplicial complexes that will be studied and generalised in this

thesis.

This multiparameter model has been well studied [26–29] with similar types of thresh-

old results known as for Yk(n, p) and X(n, p). Of course now any threshold type result

will be rather more complex as the probability parameter is higher dimensional.

In [29] the authors introduced the critical dimension, k∗, of Y ∈ Y (n, (p0, p1, p2, . . . ))

to study their typical Betti numbers and give conditions under which they vanish. A

similar independent study was carried out in [35] by Fowler.

More precisely, the critical dimension k∗ satisfies the following properties asymptoti-

cally almost surely:

1. The Betti number bk∗(Y ) in the critical dimension is large,

bk∗(Y ) ∼ C · nak∗ ,

where ak∗ > 0, C > 0 are constants.

2. The reduced Betti numbers b̃j(Y ) in all dimensions below the critical dimension

j < k∗ vanish.

3. The Betti numbers bj(Y ) in dimensions above the critical dimension j > k∗ are

“significantly smaller” than bk∗(Y ). That is,
bj(Y )
bk∗ (Y ) → 0 a.a.s.

4. If the critical dimension is positive then the random complex Y is connected.

5. If the critical dimension is greater than 2 then Y is simply connected.

6. The critical dimension k∗ and the exponents ak∗ can be explicitly calculated through

the probability parameters pi.

By the final point above we note that the pi determine the value of the critical dimension

k∗. The transition from k∗ = k to k∗ = k + 1 corresponds to the probability parameter
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(p0, p1, . . . ) crossing a higher dimensional threshold.



Chapter 2

Lower and upper models of

random simplicial complexes

2.1 Introduction

In this section we introduce and study two very general probabilistic models of random

simplicial complexes which we call the lower and upper models.

Lower model random complexes are constructed in fundamentally the same manner

as in the case of multiparameter random simplicial complexes (see Section 1.3.2) with the

added complexity of every simplex having its own probability parameter (not necessarily

dependent on dimension). In more detail, one builds the random simplicial complex

inductively, step by step, selecting each vertex v independently at random with prob-

ability pv, then adding each edge e between the selected vertices at random each with

probability pe, and on the following step adding randomly 2-simplices σ with probability

pσ to the random graph obtained on the previous stage, and so on. We will see that

upon restricting each pσ to depend only on its dimension (i.e. pσ = pi where i = dimσ)

we will recover the multiparameter random simplicial complexes studied in [26–29].

In the upper model one selects every simplex σ at random and includes it and every

face τ ⊂ σ with probability pσ to obtain a simplicial complex. Simultaneous to the

results presented here, the upper model has been studied in the papers of Cooley, Kang

10
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et al. [22–25].

In this thesis we show that the lower and upper models are Alexander dual to each

other, see Theorem 2.9.9. More precisely, the upper random simplicial complex is ho-

motopy equivalent to the complement of the lower random simplicial complex in the

(n− 1)-dimensional simplicial sphere ∂∆n. Under the duality correspondence the prob-

ability parameters pσ should be replaced by qσ̂ = 1− pσ̂ where σ̂ is the simplex spanned

by the complement of the set of vertices of σ. We see that the duality matches a sparse

lower model (when pσ → 0) with a dense upper model (when pσ → 1) and vice versa.

In the recent paper [29] (see also Section 1.3.2) Costa and Farber established an

interesting pattern of behaviour of the Betti numbers of random simplicial complexes in

the lower model. As discussed in Section 1.3.2, there exists a specific dimension k∗ called

critical dimension such that the Betti number bk∗(Y ) dominates and the Betti numbers

bj(Y ) vanish for 0 < j < k.

One of our goals was to investigate the Betti numbers of random simplicial complexes

in the upper model. In Section 2.10 we define the notion of the critical dimension k∗

and the spread s and show that the exponential growth rate of the face numbers f`(Y )

is maximal and constant in dimensions ` satisfying k∗ ≤ ` ≤ k∗ + s. We investigate

the Betti numbers of upper model random complexes in Section 2.11. We show that in

the case when the spread is zero s = 0 we show that the critical dimension k∗ behaves

similarly to the lower model: the Betti number bk∗(Y ) is large and maximal, the Betti

numbers bj(Y ) vanish for 0 < j < k∗ and bj(Y ) is significantly smaller than bk∗(Y ) for

j > k∗. We remark that the following recent papers [22–25] explore the Betti number

behaviour of the upper model.

2.2 Random hypergraphs

We shall consider hypergraphs X with vertex sets contained in [n] = {1, . . . , n}; each

such hypergraph X is a collection of non-empty subsets σ ⊆ [n]. We let Ωn denote the

set of all such hypergraphs.
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We will define a probability measure on Ωn. Let

pσ ∈ [0, 1]

be a probability parameter associated with each non-empty subset σ ⊆ [n]. Using these

parameters pσ we may define a probability function Pn on Ωn via the formula

Pn(X) =
∏
σ∈X

pσ ·
∏
σ 6∈X

qσ. (2.1)

Here qσ = 1 − pσ. Formula (2.1) can be described by saying that each simplex σ ⊆ [n]

is included into a random hypergraph X with probability pσ independently of all other

simplices. Pn is essentially a Bernouilli measure on the set of all non-empty subsets of

[n].

2.3 Lower and upper random simplicial complexes

Let Ω∗n ⊆ Ωn denote the set of all simplicial complexes on the vertex set [n]. Recall that

a hypergraph X is a simplicial complex if it is closed with respect to taking faces, i.e. if

σ ∈ X and τ ⊆ σ imply that τ ∈ X. The set Ω∗n is the set of all subcomplexes of ∆n.

There are two natural surjective maps which are the identity on Ω∗n

ρ, ρ : Ωn → Ω∗n (2.2)

which are constructed as follows. Given a hypergraph X ∈ Ωn we define

ρ(X) = X = max
Y⊆∆n

{Y ⊆ X : Y ∈ Ω∗n}

to be the largest (with respect to subset inclusion) simplicial complex in Ω∗n contained

in X. A simplex τ ⊆ [n] belongs to X if and only if every simplex σ ⊆ τ belongs to X.
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We say that X is the downward closure of X. Similarly, we define

ρ(X) = X = min
Y⊆∆n

{Y ⊇ X : Y ∈ Ω∗n}

to be the smallest (with respect to subset inclusion) simplicial complex in Ω∗n containing

X. A simplex τ ∈ ∆n belongs to X if and only if for some σ ∈ X one has σ ⊇ τ . We

say that X is the upward closure of X

X

→ →

µ µ

1 2 1 2

4

X X

3

{{1}, {2}, {3}, {1, 2}, {1, 2, 4}}

3

Figure 2.1: A hypergraph supported on {1, 2, 3, 4} mapped to different simplicial com-
plexes under ρ and ρ.

It’s clear from their definition that one has the following inclusion of sets

X ⊆ X ⊆ X. (2.3)

We shall denote by

Pn = ρ∗(Pn) and Pn = ρ∗(Pn) (2.4)

the two probability measures on the space of simplicial complexes Ω∗n obtained as the

push-forwards of the measure (2.1) with respect to the maps (2.2). We call Pn the lower
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measure and Pn the upper measure. Explicitly, for a simplicial complex Y ⊆ ∆n one has

Pn(Y ) =
∑

X∈Ωn, X=Y

Pn(X) and Pn(Y ) =
∑

X∈Ωn, X=Y

Pn(X).

Remark 2.3.1. If pσ = 0 for some σ then a random hypergraph X contains σ with

probability 0, hence we see that σ 6∈ X with probability 1. Thus, if pσ = 0, the lower

measure Pn is supported on the set of simplicial subcomplexes Y ⊆ ∆n−St(σ). Moreover,

if pτ = 0 for every simplex τ ⊇ σ then σ 6∈ X with probability one and the measure Pn

is supported on the set of simplicial subcomplexes Y ⊆ ∆n − St(σ). The symbol St(σ)

denotes the star of the simplex σ, i.e. the set of all simplices containing σ.

Remark 2.3.2. Consider now the opposite extreme, pσ = 1. Then a random hypergraph

X contains σ with probability 1. This implies that σ ∈ X with probability 1. Moreover,

if pτ = 1 for every τ ⊆ σ then σ ∈ X with probability 1 and the measure Pn is supported

on the set of simplicial complexes Y ⊆ ∆n containing σ.

Later in Corollary 2.5.7 we shall establish the following explicit formulae. For a

simplicial subcomplex Y ⊆ ∆n one has

Pn(Y ) =
∏
σ∈Y

pσ ·
∏

σ∈E(Y )

qσ, and Pn(Y ) =
∏

σ∈M(Y )

pσ ·
∏
σ 6∈Y

qσ, (2.5)

where the symbols E(Y ) and M(Y ) denote the set of external and maximal simplices

respectively (see Section 1.1.1).

2.4 Duality between the lower and upper models

In this section we present a duality relation between the lower and upper models; this

theme will continue in Section 2.9 where we shall show that the simplicial complexes

produced by the lower and upper models are Alexander dual to each other.

Recall that ∂∆n is the simplicial complex with vertex set [n] = {1, . . . , n} in which

simplices are all nonempty subsets V ⊂ [n], except V = [n]. For a set σ ∈ ∂∆n we define

σ̂ = [n] − σ. For a hypergraph X ⊆ ∂∆n we denote by i(X) the image of X under the
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map σ 7→ σ̂, i.e. i(X) = {σ̂ : σ ∈ X}. Since σ 7→ σ̂ is an involution, i : Ωn → Ωn is also

an involution. We have

i(X ∩ Y ) = i(X) ∩ i(Y ), i(X ∪ Y ) = i(X) ∪ i(Y ),

and X ⊆ Y if and only if i(X) ⊆ i(Y ).

Since σ ⊆ τ if and only if σ̂ ⊇ τ̂ , we have that a hypergraph X is a simplicial complex

if and only if i(X) is an “anti-complex”, by which we mean that if σ ∈ i(X), and τ ⊇ σ

then τ ∈ i(X).

A second involution on the set of hypergraphs is the map j : Ωn → Ωn defined by

j(X) = Xc = {σ ∈ ∂∆n : σ 6∈ X}.

We have X ⊆ Y if and only if j(X) ⊇ j(Y ), and by De Morgan’s rules we have

j(X ∩ Y ) = j(X) ∪ j(Y ), j(X ∪ Y ) = j(X) ∩ j(Y ).

Again, we have that X is a simplicial complex if and only if j(X) is an anti-complex.

Since σ 7→ σ̂ is a bijection we have i(Xc) = (i(X))c which means i◦j = j◦i, and so i◦j is

again an involution. Finally, for a hypergraph X ⊂ ∂∆n we define the dual hypergraph

c(X) = i ◦ j(X).

Combining the properties of i and j mentioned above we get the following properties

of c : Ωn → Ωn.

Lemma 2.4.1. For hypergraphs X,Y ⊆ ∂∆n we have:

1. σ ∈ X if and only if σ̂ 6∈ c(X).

2. c(c(X)) = X.

3. X ⊆ Y if and only if c(X) ⊇ c(Y ).

4. c(X ∩ Y ) = c(X) ∪ c(Y ) and c(X ∪ Y ) = c(X) ∩ c(Y ).
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5. X is a simplicial complex if and only if c(X) is a simplicial complex.

When X is a simplicial complex c(X) is sometimes known as its Björner–Tanner dual,

see [7] and Section 2.9.

Lemma 2.4.2. If Y ⊆ ∂∆n is a simplicial complex then a simplex σ is an external

simplex of Y if and only if σ̂ is a maximal simplex of c(Y ), and vice versa.

Proof. An external simplex of Y is by definition a minimal simplex not in Y . Thus the

statement follows from Lemma 2.4.1(1) and the fact that σ ⊆ τ if and only if σ̂ ⊇ τ̂ .

The following results describe how the dual map c : Ωn → Ωn interacts with our

other maps of interest. In particular, Lemma 2.4.3 describes the interaction with the

downward and upward closures to a simplicial complex, and Proposition 2.4.4 details

how c beahves with our probability measures Pn, Pn, Pn described in (2.1) and (2.4).

Lemma 2.4.3. For every hypergraph X ⊆ ∂∆n we have c(X) = c(X) and similarly

c(X) = c(X).

Proof. Since X ⊆ X ⊆ X we have c(X) ⊆ c(X) ⊆ c(X) and hence

c(X) ⊆ c(X) ⊆ c(X) ⊆ c(X) ⊆ c(X), (2.6)

using properties (3) and (5). Applying the operator c to the inclusion c(X) ⊆ c(X) and

replacing X by c(X) we get c(X) ⊇ c(X) which is the inverse to the right inclusion in

(2.6). Thus, c(X) = c(X). Replacing here X by c(X) and applying the operator c to

both sides we obtain c(X) = c(X).

Proposition 2.4.4. Given Pn defined on Ωn by probabilities {pσ}σ∈∂∆n, define a new

probability measure P′n on Ωn by probabilities {p′σ}σ∈∂∆n where

p′σ = qσ̂ = 1− pσ̂.

Then
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1. For every hypergraph X ⊆ ∂∆n,

Pn(c(X)) = P′n(X).

2. For every simplicial complex Y ⊆ ∂∆n,

Pn(c(Y )) = P′n(Y ) and Pn(c(Y )) = P′n(Y ).

Proof. (1) By definition of Pn and by Lemma 2.4.1(1) we have

Pn(c(X)) =
∏

σ∈c(X)

pσ ·
∏

σ 6∈c(X)

qσ =
∏
σ̂ 6∈X

pσ ·
∏
σ̂∈X

qσ =
∏
σ 6∈X

pσ̂ ·
∏
σ∈X

qσ̂

=
∏
σ 6∈X

q′σ ·
∏
σ∈X

p′σ = P′n(X).

(2) By (1) and by Lemma 2.4.3, for every simplicial complex Y ,

Pn(c(Y )) =
∑

X=c(Y )

Pn(X) =
∑

c(X)=Y

P′n(c(X)) =
∑

c(X)=Y

P′n(c(X)) = P′n(Y ).

2.5 The sandwich formulae

Let A ⊆ B ⊆ ∂∆n be two simplicial complexes. In both the lower and upper probability

measures Pn and Pn, we ask what is the probability that a random simplicial complex

Y satisfies A ⊆ Y ⊆ B. That is, we are interested in finding the probability

Pn(A ⊆ Y ⊆ B) =
∑

A⊆Y⊆B
Pn(Y ) =

∑
A⊆X⊆B

Pn(X). (2.7)
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Here Y denotes a simplicial subcomplex Y ∈ Ω∗n and X denotes a hypergraph X ∈ Ωn.

Similarly, we want to calculate explicitly the quantities

Pn(A ⊆ Y ⊆ B) =
∑

A⊆Y⊆B
Pn(Y ) =

∑
A⊆X⊆B

Pn(X). (2.8)

Note that for hypergraphs the answer to the analogous question is simple:

Pn(A ⊆ X ⊆ B) =
∏
σ∈A

pσ ·
∏
σ 6∈B

qσ,

where A, B are fixed hypergraphs and X is a random hypergraph.

Recall that for a simplicial complex B, the symbol E(B) denotes the set of all external

simplices of B, i.e. simplices σ ∈ ∂∆n such that σ 6∈ B but ∂σ ⊆ B.

Proposition 2.5.1 (Sandwich formula for the lower model). Let A ⊆ B ⊆ ∂∆n be two

simplicial complexes. For every subset S ⊆ E(B) let AS be the set of all simplices τ 6∈ A

such that τ ⊆ σ for some σ ∈ S. Let

PS =
∏
τ∈AS

pτ

and

P̃ =
∏
τ∈A

pτ .

Then

Pn(A ⊆ Y ⊆ B) = P̃ ·
∑

S⊆E(B)

(−1)|S|PS , (2.9)

where by definition P∅ = 1.

Proof. Since A and B are simplicial complexes, a hypergraph X satisfies A ⊆ X ⊆ B if
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and only if X ⊇ A and X 6⊇ A{σ} for all σ ∈ E(B). So we have

{X : A ⊆ X ⊆ B} = {X : X ⊇ A} ∩
⋂

σ∈E(B)

{X : X 6⊇ A{σ}}

=
⋂

σ∈E(B)

{X : X ⊇ A,X 6⊇ A{σ}}.

To evaluate the probability of this event we use the inclusion-exclusion formula with

ambient set {X : X ⊇ A}, so the event {X : X ⊇ A,X 6⊇ A{σ}} is the complement of

the event {X : X ⊇ A,X ⊇ A{σ}} = {X : X ⊇ A ∪A{σ}}. We thus get

Pn(A ⊆ X ⊆ B) =
∑

S⊆E(B)

(−1)|S|Pn
( ⋂
σ∈S
{X : X ⊇ A ∪A{σ}}

)
=

∑
S⊆E(B)

(−1)|S|Pn
(
X ⊇ A ∪AS

)
=

∑
S⊆E(B)

(−1)|S|
∏

τ∈A∪AS

pτ =
∑

S⊆E(B)

(−1)|S|P̃PS .

The second equality holds since AS =
⋃
σ∈S A{σ}.

Using the duality results of Section 2.4, we obtain the following dual result for Pn.

Proposition 2.5.2 (Sandwich formula for the upper model). Let A ⊆ B ⊆ ∂∆n be two

simplicial complexes. For every S ⊆M(A) let BS be the set of all simplices τ ∈ B such

that τ ⊇ σ for some σ ∈ S. Let

QS =
∏
τ∈BS

qτ

and

Q̃ =
∏
τ 6∈B

qτ .

Then

Pn(A ⊆ Y ⊆ B) = Q̃ ·
∑

S⊆M(A)

(−1)|S|QS , (2.10)

where by definition Q∅ = 1.
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Proof. This follows from Proposition 2.5.1 via the dual measure P′n using Proposition

2.4.4 and Lemma 2.4.2.

As a corollary to the proof of Proposition 2.5.1, we get the following characterization

of the probability measures Pn and Pn.

Corollary 2.5.3 (Intrinsic characterisation of the upper and lower measures). Let λ be

a probability measure on the set of simplicial complexes Y ⊆ ∂∆n. Let {pσ}σ∈∂∆n be a

fixed assignment of numbers 0 ≤ pσ ≤ 1, and denote qσ = 1− pσ.

1. We have λ = Pn if and only if for every simplicial complex K, λ(Y ⊇ K) =∏
σ∈K pσ.

2. We have λ = Pn if and only if for every simplicial complex K, λ(Y ⊆ K) =∏
σ 6∈K qσ,

Proof. The “only if” direction follows immediately from the definition of the lower and

upper models, and is also a special case of Propositions 2.5.1, 2.5.2. We show the “if”

direction of (1) and (2) as follows.

(1) The only place in the proof of Proposition 2.5.1 where the probability measure

was used was in the equality Pn
(
X ⊇ A ∪ AS

)
=
∏
σ∈A∪AS pσ. We note however

that K = A ∪ AS is a simplicial complex, and so X ⊇ K if and only if X ⊇ K, so

Pn(X ⊇ K) = Pn(X ⊇ K) = Pn(Y ⊇ K). So in fact we only needed to know that

Pn(Y ⊇ K) =
∏
σ∈K pσ.

(2) Define another probability measure λ′ on simplicial complexes by λ′(Y ) = λ(c(Y )).

Then for every simplicial complex K, λ′(Y ⊇ K) = λ(Y ⊆ c(K)) =
∏
σ 6∈c(K) qσ =∏

σ̂∈K qσ =
∏
σ∈K qσ̂ =

∏
σ∈K p

′
σ, where as in Proposition 2.4.4 we define p′σ = qσ̂ and

the corresponding P′n. By (1) applied to {p′σ}σ∈∂∆n we get λ′ = P′n and so by Proposition

2.4.4, λ = Pn.

Next we consider a few special cases where simplified versions of the sandwich formulae

hold.

Corollary 2.5.4. Let A ⊆ B ⊆ ∂∆n be two simplicial complexes.

1. In the notation of Proposition 2.5.1, if the sets A{σ} for σ ∈ E(B) are disjoint,
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then

Pn(A ⊆ Y ⊆ B) = P̃ ·
∏

σ∈E(B)

(1− P{σ}).

2. In the notation of Proposition 2.5.2, if the sets B{σ} for σ ∈ M(A) are disjoint,

then

Pn(A ⊆ Y ⊆ B) = Q̃ ·
∏

σ∈M(A)

(1−Q{σ}).

Proof. (1) Since the sets A{σ} are disjoint, for every S ⊆ E(B) we have PS =
∏
σ∈S P{σ}.

Thus ∏
σ∈E(B)

(1− P{σ}) =
∑

S⊆E(B)

(−1)|S|
∏
σ∈S

P{σ} =
∑

S⊆E(B)

(−1)|S|PS .

(2) is shown almost identically, we include it here for completeness. As the sets B{σ} are

disjoint, for each S ⊆M(A) we have QS =
∏
σ∈S Q{σ}. Thus

∏
σ∈M(A)

(1−Q{σ}) =
∑

S⊆M(A)

(−1)|S|
∏
σ∈S

Q{σ} =
∑

S⊆M(A)

(−1)|S|QS .

Example 2.5.5. For a simplex σ we have

Pn(σ ∈ Y ) = 1−Q{σ} = 1−
∏
τ⊇σ

qτ .

This may be seen from Corollary 2.5.4(2) taking A = {τ : τ ⊆ σ}, and noting that

M(A) = {σ}.

It also follows immediately from the definition of the upper model that

Pn(σ 6∈ Y ) =
∏
τ⊇σ

qτ .

Corollary 2.5.6. Let A ⊆ B ⊆ ∂∆n be two simplicial complexes.

1. If E(B) ⊆ E(A) then Pn(A ⊆ Y ⊆ B) =
∏
σ∈A pσ ·

∏
σ∈E(B) qσ.

2. If M(A) ⊆M(B) then Pn(A ⊆ Y ⊆ B) =
∏
σ 6∈B qσ ·

∏
σ∈M(A) pσ.
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Proof. (1) Since E(B) ⊆ E(A) we have for every σ ∈ E(B), A{σ} = {σ}. Thus P{σ} =

pσ, and so the factors 1−P{σ} of Corollary 2.5.4 reduce to 1−pσ = qσ. (2) is similar.

Finally we also obtain an explicit formula for Pn and Pn themselves:

Corollary 2.5.7. Let Y ⊆ ∂∆n be a simplicial complex. Then

1. Pn(Y ) =
∏
σ∈Y pσ ·

∏
σ∈E(Y ) qσ.

2. Pn(Y ) =
∏
σ 6∈Y qσ ·

∏
τ∈M(Y ) pσ.

Proof. Apply Corollary 2.5.6 with A = B = Y .

2.6 Links as random complexes

Consider random simplicial complexes Y containing a fixed simplex σ ⊂ [n]. The link of

σ in Y ,

LkY (σ) = L ⊆ ∆n−σ,

is a random simplicial subcomplex of the simplex ∆n−σ, where ∆n−σ denotes the simplex

spanned by the vertices [n]− σ. Recall that by the definition a simplex τ ∈ ∆n−σ lies in

the link LkY (σ) if and only if the simplex στ belongs to Y . Here στ denotes the simplex

σ ∪ τ which geometrically is represented by the join στ = σ ∗ τ .

In this section we shall consider the probability measures on the set of simplicial

subcomplexes of ∆n−σ which arise as the push-forwards of the conditional probability

measures

λ :=
Pn(Y )

Pn(σ ∈ Y )
and λ :=

Pn(Y )

Pn(σ ∈ Y )
(2.11)

under the map Y 7→ LkY (σ).

One is motivated to study links in random simplicial complexes primarily with the

view of being able to apply Garland’s method, see [4] for details, which uses the structure

of the links to find when homology vanishes.
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2.6.1 Links in the lower model

Theorem 2.6.1. The measure λ is the lower probability measure on the subcomplexes

of ∆n−σ with parameters

p′τ = pτ ·
∏
ν⊆σ

pντ . (2.12)

where τ ∈ ∆n−σ.

Proof. We wish to compute probability that the link L contains a given subcomplex

A ⊆ ∆n−σ, i.e.

λ(A ⊆ L) =
∑
A⊆L

λ(A).

Using Corollary 2.5.3(1), we find

λ(A ⊆ L) = Pn(σ ∈ Y )−1 · Pn(σ ∗A ⊆ Y )

=

∏
ν⊆σ

pν

−1

·

∏
ν⊆σ

pν ·
∏
τ⊆A

pτ ·
∏

ν⊆σ,τ⊆A
pντ


=

∏
τ⊆A

pτ ·∏
ν⊆σ

pντ

 =
∏
τ⊆A

p′τ .

Our statement now follows from the intrinsic characterisation of the lower measure, see

Corollary 2.5.3(1).

We may also extend this slightly to the case where we consider the link of a vertex

set. That is, suppose V (Y ) is a fixed vertex set and LkY (V ) is the simplicial complex

defined to be the union of all σ disjoint from V such that the join vσ is contained in Y

for every v ∈ V . Clearly LkY (V ) ⊆ ∆n−V where ∆n−V denotes the complete simplex on

[n]−V . The following Lemma 2.6.2 will be used in Section 4.5.2 to study the intersection

of links of lower model random complexes in an application of the Nerve Lemma.

Lemma 2.6.2. Let Y be a random simplicial complex with respect to the lower measure

with probability parameters {pσ} containing the set of vertices V and consider the link
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LkY (V ) as a random simplicial subcomplex of ∆n−V . Then LkY (V ) is a random simpli-

cial subcomplex with respect to the lower probability measure with the set of probability

parameters

p′τ = pτ ·
∏
v∈V

pvτ ,

where τ ∈ ∆n−V .

Proof. Our proof follows almost identically to the above. Define the following probability

function on the set of all subcomplexes L ⊂ ∆′

λ(L) = Pn(V ⊂ Y )−1 ·
∑

V⊂Y&LkY (V )=L

Pn(Y ).

Here Pn(V ⊂ Y )−1 =
(∏

v∈V pv
)−1

is a normalising factor. We want to compute proba-

bility that LkY (V ) contains a given subcomplex L ⊂ ∆′, i.e.

λ(LkY (V ) ⊃ L) = Pn(V ⊂ Y )−1 ·
∑

V⊂Y&LkY (V )⊃L

Pn(Y )

= Pn (V ⊆ Y )−1 · Pn (V ∗ L ⊂ Y )

=

(∏
v∈V

pv

)−1

·
∏

σ∈V ∗L
pσ

=

(∏
v∈V

pv

)−1

·

∏
v∈V

pv ·
∏
τ∈L

pτ ·
∏

v∈V,τ∈L
pvτ


=
∏
τ∈L

[
pτ ·

∏
v∈V

pvτ

]
=
∏
τ∈L

p′τ .

The statement of Lemma 2.6.2 now follows again from the intrinsic characterisation of

the lower probability measure of Corollary 2.5.3(1).

Example 2.6.3. Consider the special case when the probability parameters pτ = pi

depends only in the dimension i = dim τ . Since

dim(ντ) = dim ν + dim τ + 1,
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and there are
(
k+1
j+1

)
simplices ν ⊆ σ of dimension j = dim ν, where k = dimσ, we see

that formula (2.12) can be rewritten as follows

p′i = pi ·
k∏
j=0

p
(k+1
j+1)
i+j+1, (2.13)

This is consistent with Lemma 3.2 from [26] that details the model of links in the multi-

parameter random complex.

2.6.2 Links in the upper model

Next we describe the measure λ as defined in Equation (2.11). It is the push-forward of

the conditional probability measure on the set of simplicial complexes Y ⊂ ∆n containing

a given simplex σ with respect to the map Y 7→ LkY (σ).

Theorem 2.6.4. Let Y ⊆ ∆n be a random simplicial complex distributed with respect to

the upper measure Pn with the set of probability parameters pσ. Assume that Y contains

a fixed simplex σ ∈ ∆n. Then λ equals

cσ · P′ + (1− cσ) · λ∅, (2.14)

where P′ denotes the upper probability measure on subcomplexes of ∆n−σ with the set of

probability parameters p′τ = pστ , λ∅ is the measure supported on the empty complex, and

cσ =
(

1−∏τ⊇σ qτ

)−1
is a constant.

Proof. We have

λ(L) =
Pn(σ ∈ Y & LkY (σ) = L)

Pn(σ ∈ Y )
=

Pn(σ ∗ L ⊆ Y ⊆ σ ∗ L ∪ (∂σ ∗∆n−σ))

Pn(σ ∈ Y )

Assuming that L 6= ∅ we see that the maximal simplices of σ∗L are of the form σ∗τ = στ

where τ is a maximal simplex of L. These are also maximal simplices of σ∗L∪∂σ∗∆n−σ.
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Hence applying Corollary 2.5.6(2) we find (assuming that L 6= ∅)

λ(L) = cσ ·
∏

τ∈M(L)

pστ ·
∏

τ∈∆n−σ−L
qστ = cσ ·

∏
τ∈M(L)

p′τ ·
∏

τ∈∆n−σ−L
q′τ = cσ · P′(L),

where cσ = Pn(σ ∈ Y )−1. Besides, for L = ∅ we have

λ(∅) =
Pn(σ ⊆ Y ⊆ σ ∪ (∂σ ∗∆n−σ))

Pn(σ ∈ Y )
= cσpσ

∏
τ∈∆n−σ

qστ = cσpσP
′
n(∅).

Thus, noting cσ = (1− qσP′n(∅))−1, we obtain (2.14).

Note that λ is an upper type probability measure with anomaly at ∅.

2.7 Combining random simplicial complexes

2.7.1 Intersections in the lower model

The following Lemma generalises Lemma 4.1 from [26].

Lemma 2.7.1. Consider two sets of probability parameters pσ, p
′
σ ∈ [0, 1] associated to

each simplex σ ⊆ ∆n. Let P and P′ denote the lower probability measures determined

by the probability parameters pσ and p′σ. Suppose that Y, Y ′ ⊆ ∆n are two independent

random simplicial complexes where Y is described according to the probability P and Y ′

is sampled according to P′. Then the intersection Y ∩ Y ′ ⊆ ∆n is a random simplical

complex which is described by the lower probability measure with respect to the set of

probability parameters pσ · p′σ.

Proof. Let A ⊆ ∆n be a simplicial complex. Clearly A ⊆ Y ∩ Y ′ is equivalent to A ⊆ Y

and A ⊆ Y ′. Since Y and Y ′ are independent we see that the probability that the

intersection Y ∩ Y ′ contains A equals the product

P(A ⊆ Y ) · P′(A ⊆ Y ′) =
∏
σ∈A

pσ ·
∏
σ∈A

p′σ =
∏
σ∈A

(
pσ · p′σ

)
. (2.15)

Our statement now follows from Corollary 2.5.3(1).
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2.7.2 Unions in the upper model

Lemma 2.7.2. Consider the union Y ∪ Y ′ of two independent random simplicial com-

plexes Y, Y ′ ⊆ ∆n where Y is sampled according to the upper probability measure P with

respect to a set of probability parameters qσ and Y ′ is sampled according to the upper

probability measure P with respect to a set of probability parameters q′σ. Then the union

Y ∪ Y ′ ⊆ ∆n is a random simplical complex which is described by the upper probability

measure with respect to the set of probability parameters qσ ·q′σ. In other words, the union

Y ∪ Y ′ is an upper random simplicial complex with the set of probability parameters

σ 7→ pσ + p′σ − pσ · p′σ.

where pσ = 1− qσ and p′σ = 1− q′σ.

Proof. Let B ⊆ ∆n be a simplicial complex. Clearly Y ∪ Y ′ ⊆ B is equivalent to Y ⊆ B

and Y ′ ⊆ B. Since Y and Y ′ are independent, the probability that the union Y ∪ Y ′ is

contained in B equals the product

P(Y ⊆ B) · P′(Y ′ ⊆ B) =
∏
σ 6∈B

qσ ·
∏
σ 6∈B

q′i =
∏
σ 6∈B

(
qσ · q′σ

)
. (2.16)

Our statement now follows from Corollary 2.5.3(2).

2.8 Pure random complexes

In this section we consider an interesting example of a random simplicial complex; the

result of this section will be used in the proof of Theorem 2.11.3.

We fix a positive integer k > 0 and consider an upper random simplicial complex with

probability parameters

pσ =


p if dimσ = k,

0 otherwise.

(2.17)

Here p ∈ (0, 1) is a positive parameter, which typically depends on n. A random complex
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in this model is built by randomly selecting k-dimensional simplices σ ∈ ∆n indepen-

dently at random with probability p, and adding all faces of the selected simplices.

Lemma 2.8.1 gives the conditions on the probability parameter p that the random pure

k-dimensional complex contains the full l-dimensional skeleton ∆
(`)
n , where 0 ≤ ` < k.

The proof follows via a standard application of the first and second moments.

Lemma 2.8.1. The threshold probability for a k-dimensional pure random simplicial

complex to contain the complete `-skeleton is

p =
(`+ 1) log n(

n−`
k−`
) . (2.18)

Proof. For σ ∈ ∆n, dimσ = `, let Xσ be a random variable which equals 1 if σ 6∈ Y and

0 if σ ∈ Y . Then X =
∑
Xσ is the random variable counting the number of `-simplices

not in Y . We have E(Xσ) = q(
n−`−1
k−` ) (where, as usual, q = 1− p) and

E(X) =

(
n

`+ 1

)
· q(

n−`−1
k−` ).

We will show that under the assumption

p =
(`+ 1) log n+ ω(

n−`−1
k−`

) (2.19)

we have E(X)→ 0. Indeed,

E(X) ≤
(

n

`+ 1

)
e−p(

n−`−1
k−` ) ≤ exp

(
(`+ 1) log n− p

(
n− `− 1

k − `

))
∼ e−ω → 0.

It now follows via the first moment method (see Corollary 1.2.2) that under (2.19) one

has ∆`
n ⊂ Y a.a.s.

We now wish to show conversely that under the assumption

p =
(`+ 1) log n− ω(

n−`−1
k−`

) , (2.20)
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then Y does not contain the `-skeleton ∆
(`)
n , a.a.s.

To do this we will apply the inequality of the second moment method, see Corol-

lary 1.2.4. We will show that under (2.20)
E(X)2

E(X2)
→ 1. We have

X2 =
∑
(σ,τ)

XσXτ ,

where (σ, τ) runs over all pairs of `-dimensional simplices of ∆n, and

E(XσXτ ) =


q2(n−`−1

k−` )−(n−x−1
k−x ) if x ≤ k,

q2(n−`−1
k−` ) if x > k.

(2.21)

where x = dim(σ∪τ). Both cases in this formula can be written as in the upper row since(
r
s

)
= 0 for s < 0. To explain formula (2.21) we note that E(XσXτ ) equals probability

that neither of the simplices σ, τ are included in Y . There are
(
n−`−1
k−`

)
simplices of

dimension k containing σ and the same number of k-simplices contain τ . However in

this count we include the k-simplices containing both σ and τ twice, and this fact is

reflected in the term
(
n−x−1
k−x

)
.

Denoting

d = dim(σ ∩ τ) = 2`− x

we obtain

E(X2) =
∑̀
d=−1

(
n

`+ 1

)
·
(
`+ 1

d+ 1

)
·
(
n− `− 1

`− d

)
· q2(n−`−1

k−` )−(n−x−1
k−x )

and hence

E(X2)

E(X)2
=
∑̀
d=−1

(
`+1
d+1

)(
n−`−1
`−d

)(
n
`+1

) · q−(n−x−1
k−x ). (2.22)

Here x = 2`− d.
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The term of the sum (2.22) with d = ` and x = ` is

(
n

`+ 1

)−1

q−(n−`−1
k−` ) = E(X)−1.

We show below that assumption (2.20) implies that E(X)→∞ and hence this term tends

to 0. There exists C > 0 and N > 0 such that for any n > N one has
(
n
`+1

)
> Cn`+1.

Hence

logE(X) > (`+ 1) log n+

(
n− `− 1

k − `

)
log(1− p) + C ′

> (`+ 1) log n−
(
n− `− 1

k − `

)
p(1 + p) + C ′

> ω(1 + p)− (`+ 1) · p · log n+ C ′.

It is easy to see that our assumption (2.20) and also ` < k imply that p log n→ 0. Hence,

we see that the summand of (2.22) with d = ` tends to zero.

Consider now the term of (2.22) with d = −1 and x = 2`+ 1; it equals

(
n−`−1
`+1

)(
n
`+1

) q−(n−2`−2
k−2`−1).

We show below that this term tends to 1 as n→∞. For k ≤ 2`+ 1 our claim is obvious

since the coefficient
(n−`−1
`+1 )

( n
`+1)

tends to 1. We shall assume that k > 2` + 1, and observe

that (2.20) implies that

p

(
n− 2`− 1

k − 2`− 1

)
∼ pnk−2`−1 → 0

and therefore we obtain

q(
n−2`−2
k−2`−1) = 1− p

(
n− 2`− 2

k − 2`− 1

)
+O

(
p2

(
n− 2`− 2

k − 2`− 1

)2
)

which converges to 1.

It remains to show that any summand of (2.22) with −1 < d < ` tends to zero. If the
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symbol Sd represents this summand, then

S−1
d =

(
n
`+1

)(
`+1
d+1

)(
n−`−1
`−d

) · q(n−x−1
k−x )

and we show that S−1
d →∞. Using the inequalities

(
n
`+1

)
> n`+1

(`+1)`+1 and
(
n−`−1
`−d

)
< n`−d

we obtain

log(S−1
d ) > (`+ 1) log n− (`− d) log n+

(
n− x− 1

k − x

)
log(1− p) + C

> (d+ 1) log n− 2

(
n− x− 1

k − x

)
p+ C,

where C = −(`+1) · log (`+ 1)− log
(
`+1
d+1

)
is a constant. As d ≥ 0 we have (d+1) log n→

∞. On the other hand, since x > ` we have
(
n−x−1
k−x

)
p ∼ pnk−x → 0. This completes the

proof.

We get the following immediate special cases as corollaries.

Corollary 2.8.2. p =
log n(
n
k

) is the threshold probability for a k-dimensional pure random

simplicial complex to contain the complete vertex set [n].

Corollary 2.8.3. For any ω = ω(n) → ∞ if p =
2 · log n+ ω(

n
k−1

) then the k-dimensional

pure random simplicial complex is connected a.a.s.

We will see in Theorem 3.5.2 that the probability parameter in Corollary 2.8.3 is far

from being the threshold probability for connectivity in pure random simplicial com-

plexes.

Remark 2.8.4. Equation (2.18) can equivalently be written as

p =
(`+ 1) · (k − `)! · log n

nk−`
. (2.23)

2.9 Alexander duality

In this section we continue the study of Section 2.4 by showing that random simplicial

complexes in lower and upper model are dual to each other in the sense of Spanier and
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Whitehead [70]. This will imply that homology and cohomology of the lower and upper

complexes satisfy an Alexander duality relation,

Theorem 2.9.1. [39, Corollary 3.45] Let X be a compact, locally contractible, non-

empty, proper subspace of the sphere Sn, then

H̃i(S
n −X) ∼= H̃n−i−1(X).

2.9.1 The dual simplicial complex

In this section we describe a combinatorial duality construction for simplicial complexes.

More precisely, for a simplicial subcomplex X ⊆ ∂∆n we construct a simplicial complex

X ′ ⊆ ∆n which is homotopy equivalent to the complement of the geometric realisation

of X in the geometric realisation of the combinatorial sphere ∂∆n.

Let X ⊆ ∂∆n be a simplicial subcomplex. Define the dual complex X ′ as an abstract

simplicial complex with the vertex set E(X) (the set of all external faces of X) and a

set of external faces σ1, . . . , σk ∈ E(X) of X forms a (k − 1)-simplex of X ′ if the union

of their vertex sets is a proper subset of [n], i.e.

∪ki=1V (σi) 6= [n].

Proposition 2.9.2. The geometric realisation of the simplicial complex X ′ is homotopy

equivalent to the complement ∂∆n −X.

Proof. For any σ ∈ E(X) let St(σ) denote St(σ) = St∂∆n(σ) – the star of σ viewed as

a subcomplex of ∂∆n. Recall that St(σ) = St∂∆n(σ) is defined as the union of all open

simplices τ ⊆ ∂∆n whose closure contains σ.

The family of stars U = {St(σ)}σ∈E(X) forms a contractible open cover of the com-

plement ∂∆n −X. Indeed, for σ ∈ E (X) we obviously have St(σ) ∩X = ∅ which gives

the inclusion ⋃
σ∈E(X)

St(σ) ⊆ ∂∆n −X.
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This is in fact an equality, i.e. for any open simplex τ ⊆ ∂∆n with τ 6⊆ X there is a face

σ ∈ E (X) such that τ ⊆ St(σ). Indeed, given τ 6∈ X let σ ⊆ τ be a minimal face of τ

not in X. Then σ ∈ E(X) and τ ⊆ St(σ).

Note that the cover U has the property that each intersection

St(σ1) ∩ · · · ∩ St(σk) = St(σ)

is a star of a simplex σ, where σ has the vertex set V (σ) = ∪ki=1V (σk). Thus, every such

intersection is either contractible or empty, and it is empty precisely when ∪ki=1V (σk) =

[n]. The result now follows by noting that the nerve of U is exactly the simplcial complex

X ′ and then applying the Nerve Theorem, see [39], Corollary 4G.3.

Example 2.9.3. For n = 3 let X ⊆ ∂∆3 be its vertex set, i.e. X = {1, 2, 3}. It is a

0-dimensional subcomplex whose complement ∂∆3 − X is a circle with 3 punctures; it

has 3 connected components, each of which is contaractible. The set of external simplices

E(X) consists of all edges,

E(X) = {(ij); i < j, i, j ∈ [3]}, |E(X)| = 3.

The dual complex X ′ has no edges, i.e. X ′ is a 3 point set.

Application of Theorem 2.9.1 combined with Proposition 2.9.2 and the fact that ∂∆n

is a simplicial (n− 2)-dimensional sphere we obtain:

Proposition 2.9.4. For any proper simplicial subcomplex X ⊆ ∂∆n and for any abelian

group G one has

Hj(X ′;G) ∼= Hn−3−j(X;G), where j = 0, 1, . . . , n− 3.

2.9.2 The dual complex c(X) of Björner and Tancer

Recall that in Section 2.4 we defined its combinatorial dual c(X) for any simplicial

subcomplex X ⊆ ∂∆n. The maximal simplices of c(X) are in bijective correspondence
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with the external faces of X, E (X). More precisely, we have the following:

Lemma 2.9.5. Let Y ⊆ ∂∆n be a simplicial subcomplex. Then

fi(Y ) + fn−1−i(c(Y )) =

(
n

i+ 1

)
, i = 0, 1, . . . , n− 1. (2.24)

Here fi(Y ) denotes the number of i-dimensional simplices in Y . A simplex σ ⊆ ∆n is

an external simplex for Y if and only if the dual simplex σ̂ is a maximal simplex of the

complex c(Y ). In particular we have

ei(Y ) = mn−i−1(c(Y )), i = 0, . . . , n− 1, (2.25)

where ei(Y ) denotes the number of external i-dimensional faces of Y and mj(Y ) denotes

the number of j-dimensional maximal simplices of Y .

Proof. The map σ 7→ σ̂ is a bijection between the set of i-dimensional non-simplices of

Y and the set of (n − i − 1)-dimensional simplices of the dual c(Y ); this proves (2.24).

By Lemma 2.4.2 this map is a bijection between the set Ei(Y ) the set of i-dimensional

external simplices of Y and the set of maximal simplices of c(Y ) of dimension n− i− 1;

this proves (2.25).

Lemma 2.9.6. The nerve of the cover of c(X) by its maximal simplices is isomorphic

to the simplicial complex X ′ (as defined in Section 2.9.1).

Proof. LetM denote the cover of c(X) by maximal simplices. Consider a set of maximal

simplices {σ1, . . . , σk}, where σi ∈ M. Each dual simplex σ̂i is external for X. The

intersection ∩ki=1σi is a simplex with the vertex set ∩ki=1V (σi) and the intersection ∩ki=1σi

is non-empty if and only if ∩ki=1V (σi) 6= ∅. We see that any nonempty intersection is

contractible. Since V (σ̂i) is the complement of V (σi), we obtain that ∩ki=1V (σi) = ∅ if

and only if ∪ki=1V (σ̂i) = [n]. Therefore, we see that the nerve of M can be described as

the simplicial complex with the vertex set E(X) where a set of external simplices forms

a simplex if and only if the union of their vertex sets is not equal [n]. This complex

coincides with X ′ as defined in Section 2.9.1.
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Corollary 2.9.7. For a simplicial subcomplex X ⊆ ∂∆n, the geometric realisation of the

simplicial complex c(X) is homotopy equivalent to X ′ and to the complement ∂∆n −X.

Proof. The cover M by maximal simplices satisfies the conditions of the Nerve Lemma,

see [39], Corollary 4G.3. The first claim follows from the previous Lemma. The second

claim follows from Proposition 2.9.2.

Corollary 2.9.8. For any simplicial subcomplex X ⊆ ∂∆n and for any abelian group G

one has

Hj(c(X);G) ' Hn−3−j(X;G), where j = 0, 1, . . . , n− 3.

Taking here G = Q we obtain equality for the Betti numbers:

bj(c(X)) = bn−3−j(X), j = 0, 1, . . . , n− 3.

Next we restate Proposition 2.4.4 as follows:

Theorem 2.9.9. For a fixed n consider two probability spaces (Ω∗n,Pn) and (Ω∗n,P′n)

where the probability measure Pn is defined with respect to a set of probability parameters

pσ and the probability measure P′n is defined with respect to a set of probability parameters

p′σ satisfying

p′σ = qσ̂ = 1− pσ̂.

The map c : (Ω∗n,Pn) → (Ω∗n,P′n), where X 7→ c(X), is an isomorphism of probability

spaces. For an integer j ∈ [n], consider the j-dimensional Betti number

bj : Ω∗ → Z

and its distribution functions F Pn
j (x) and F

P′n
j (x) with respect to the measures Pn and

P′n correspondingly. Then

F Pn
j (x) ≡ F

P′n
n−3−j(x). (2.26)
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Proof. This follows by combining Corollary 2.9.8 and Propositon 2.4.4.

Note that the distribution function F Pn
j is defined by the equality

F Pn
j (x) = Pn(bj(Y ) ≤ x)

and similarly,

F
P′n
j (x) = P′n(bj(Y ) ≤ x).

Summarising, we see that for a fixed n, studying Betti numbers in the upper model

reduces to studying Betti numbers in the lower model and vice versa. However, in the

limit when n→∞ one needs to deal with the dimension shift i→ n−2− i which creates

an additional technical difficulty.

2.10 Critical dimension and spread in the upper model

In this section we introduce the notion of a critical dimension and of a spread for the

upper model and explore its relevance to the face numbers of such a random simplicial

complex. This generalises the notion of the critical dimension for multiparameter random

complexes discussed in Section 1.3.2. We shall consider the upper probability measure

Pn on Ω∗n under the following assumptions on the probability parameters pσ:

(a) all probability parameters pσ = 0 vanish for dimσ > r where r ≥ 0 is a fixed

integer.

(b) For i ≤ r one has pσ = n−αi where i = dimσ and αi > 0 is a fixed positive real

number.

(c) The exponents αi are not integers, αi /∈ Z, where i = 0, 1, . . . , r.

(d) All the differences αi − αj /∈ Z are not integers, where i 6= j, i, j = 0, 1, . . . , r.

We note that (b) in particular requires that pσ depends only on the dimension of

simplex σ. The assumptions (c) and (d) are satisfied for a ”generic” set of exponents

α0, . . . , αr.

By Remark 2.3.2 we know that the measure Pn is supported on the set of all r-



Chapter 2. Lower and upper models of random simplicial complexes 37

dimensional simplicial complexes Y ⊆ ∆n.

Next we introduce some notation. Let

βi = i+ 1− αi

and

β∗ = max{β0, β1, . . . , βr}, i = 0, 1, . . . , r. (2.27)

We set

k∗ = bβ∗c. (2.28)

Note that k∗ = k∗(α) is an integer depending on the initial vector of exponents α =

(α0, . . . , αr). We remark that,

k∗ < β∗ < k∗ + 1,

with the strict inequalities holding due to our assumption (c).

Definition 2.10.1. The integer k∗ = k∗(α) will be called the critical dimension of the

random simplicial complex Y in the upper model.

Due to our assumption (d) there exists a single index i∗ ∈ {0, . . . , r} such that βi∗ =

β∗.

The following observation will be useful:

Lemma 2.10.2. One has k∗ ≤ i∗.

Proof. This follows from the inequalities

k∗ = bβ∗c < β∗ = βi∗ < i∗ + 1.

Example 2.10.3. Let us show that the condition k∗(α) < 0 is equivalent to the property
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that Pn(∅) = 1, a.a.s. Indeed,

Pn(∅) =
∏
σ∈∆n

qσ =
r∏
i=0

q
( n
i+1)
i =

r∏
i=0

(1− n−αi)(
n
i+1).

One has k∗ < 0 if and only if βi < 0 for any i = 0, 1, . . . , r. Since
(
n
i+1

)
n−αi =

nβi ·
(

1

(i+ 1)!
+ o(1)

)
we may apply Remark 2.10.4 to obtain

Pn(∅) = 1−
r∑
i=0

nβi

(i+ 1)!
+ o(1) = 1 + o(1).

On the other hand, suppose that Pn(∅)→ 1. Since

Pn(∅) =
r∏
i=0

(1− n−αi)(
n
i+1)

we see (since each term in this product is smaller than 1) that for each i = 0, . . . , r one

must have (1− n−αi)(
n
i+1) → 1 which implies

(
n
i+1

)
n−αi → 0, i.e. βi < 0.

Remark 2.10.4. We have used the following fact: If N →∞ and Nx→ 0, x > 0 then

(1− x)N = 1−Nx+ (xN)2(1/2 + o(1)). (2.29)

For any ` = 0, 1, . . . , r consider the function

f` : Ω∗n → Z

which assigns the number of `-dimensional faces f`(Y ) to a random subcomplex Y ⊆ ∆n.

Using Example 2.5.5 we see that

E(f`) =
∑

dimσ=`

1−
∏
τ⊇σ

qτ

 =

(
n

`+ 1

)
·
(

1−
r∏
i=`

q
(n−`i−`)
i

)
, (2.30)

where

qi = 1− n−αi , i = 0, 1, . . . , r.
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Lemma 2.10.5. Let k∗ denote the critical dimension as defined in Definition 2.10.1.

Then for any ` < k∗ a random complex Y contains the full `-dimensional skeleton of

∆n, a.a.s. More precisely, one has

f`(Y ) =

(
n

`+ 1

)

with probability at least

1− nc exp
(
−n{β∗}

)
, (2.31)

where {β∗} > 0 denotes the fractional part of β∗, i.e. {β∗} = β∗ − k∗ and c > 0 is a

positive constant.

Proof. Since ` < k∗ = bβ∗c we see that there exists k such that βk > `+1, i.e. k−αk > `.

We may assume (without loss of generality) that βk = β∗. Consider a pure random

k-dimensional simplicial complex Z with probability parameter p = n−αk as defined in

Section 2.8. Applying Lemma 2.8.1 we see that Z contains the full `-dimensional skeleton

∆
(`)
n with probability at least 1− e−ω = 1−nc exp(−nk−`−αk). Obviously Z is contained

in Y , and k − `− αk ≥ β∗ − k∗ = {β∗}; thus we see that f`(Y ) =
(
n
`+1

)
with probability

at least (2.31).

Next we examine the expectation E(fk) for k ≥ k∗.

Lemma 2.10.6. For any k ≥ k∗ one has

E(fk) =
1

(k + 1)!
·
(

r∑
i=k

nβi

(i− k)!

)
· (1 + o(1)). (2.32)

Proof. Note that for k ≥ k∗ one has k + 1 ≥ k∗ + 1 > β∗ and hence for any i = 0, . . . , r

we have βi < k+ 1 which means that i+ 1−αi < k+ 1, i.e. i−αi < k. Next we observe

that

q
(n−ki−k)
i = 1− ni−k−αi

(i− k)!
· (1 + o(1)), i = k, . . . , r,

since, as we mentioned above, all the exponents i − k − αi are negative. Substituting
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this into (2.30) we obtain (2.32).

Corollary 2.10.7. For any k ≥ k∗ one has

E(fk) =
1

(k + 1)!(i∗k − k)!
· nβ∗k · (1 + o(1)), (2.33)

where

β∗k = max{βk, βk+1, . . . , βr}

and i∗k is the unique integer k ≤ i∗k ≤ r such that βi∗k = β∗k.

Proof. This follows automatically from Lemma 2.10.6. Here we also use our assumption

(d) (saying that αi − αj /∈ Z) which guarantees uniqueness of the maximum.

Note that β∗k∗ = β∗ since k∗ ≤ i∗. Besides, k∗ < β∗ < k∗ + 1 and for k > i∗ one has

β∗k < β∗.

Theorem 2.10.8. Denoting the rate of exponential growth

γk := lim
n→∞

logE(fk)

log n

we have

γk = γk(α) =


k + 1, for k < k∗,

β∗, for k∗ ≤ k ≤ i∗,

β∗k for k > i∗.

In particular, the value of γk is constant, maximal and is equal to β∗ for all k satisfying

k∗ ≤ k ≤ i∗.

Proof. This follows from Lemma 2.10.6 (for k ≥ k∗). Besides, for k < k∗ we know that

fk =
(
n
k+1

)
, a.a.s.

Definition 2.10.9. We shall call the non-negative integer i∗−k∗ = s = s(α) the spread.

The spread s = s(α) is the length of the flat maximum of the graph of the function
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k 7→ γk. We have

γ0 < γ1 < · · · < γk∗ = · · · = γi∗ > γk∗+1 ≥ · · · ≥ γr. (2.34)

Note that in the case when the spread is zero, k∗ = i∗ and the sequence of exponents

in (2.34) is unimodal.

Example 2.10.10. Consider the case when r = 1 (random graphs with respect to the

upper probability measure). In this case we have two exponents α0 and α1. Recall that

β0 = 1 − α0, β1 = 2 − α1, β∗ = max{β0, β1} and k∗ = bβ∗c. We see that k∗ < 0 when

both α0 > 1 and α1 > 2. We will additionally consider following three cases:

(a) k∗ = 0 and i∗ = 0,

(b) k∗ = 0 and i∗ = 1,

(c) k∗ = 1 and i∗ = 1.

(a) occurs when 1− α0 > 2− α1 and 1− α0 > 0. This can be summarised by α0 < 1

and α1 > 1 + α0.

(b) can be characterised by the inequalities 0 < β0 < β1 < 1 which can be rewritten as

α0 < 1 and 1 < α1 < 1 + α0.

In the case of (c) we have the inequalities: 1 − α0 < 2 − α1 and 1 < 2 − α1. These

inequalities reduce to the condition 0 < α1 < 1.

Note that in cases (a) and (c) the spread is 0 and in case (b) the spread is 1.

Example 2.10.11. One can characterise the vectors α = (α0, α1, . . . , αr) with zero

spread s(α) = 0 as follows. The index i∗ ∈ {0, 1, . . . , r} of the critical dimension satisfies

βi∗ = max{β0, . . . , βr}, bβi∗c = i∗.

In view of the definition βi = i+ 1− αi we see that s(α) = 0 is equivalent to

αi∗ < 1, and αi∗+k > αi∗ + k, (2.35)

for all k = 1, . . . , r − i∗.
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From (2.35) we see that i∗ is the largest index satisfying αi∗ < 1. However this con-

dition alone is not sufficient.

Example 2.10.12. Consider the case r = 2 (two dimensional random simplicial com-

plexes in the upper model). Using Example 2.10.11 we find that the vectors of exponents

α = (α0, α1, α2) with zero spread are as follows:

1. If k∗ = 0 then s = 0 is equivalent to α0 < 1 and α1 > 1 + α0 and α2 > 2 + α0.

2. If k∗ = 1 then s = 0 is equivalent to α1 < 1 and α2 > 1 + α1.

3. If k∗ = 2 then s = 0 is equivalent to α2 < 1.

2.11 Betti numbers in the upper model

We begin this section by showing that the number of faces in all dimensions concentrates

around its expectation for large n.

Theorem 2.11.1. Consider a random simplicial complex Y ∈ Ω∗n with respect to the

upper probability measure Pn. We shall assume that the probability parameters pσ vanish

for dimσ > r and for dimσ ≤ r they have the form pσ = n−αi, where i = dimσ, and the

exponents αi > 0 satisfy the genericity assumptions (a) - (d), see Section 2.10. We shall

also assume that the critical dimension k∗ ≥ 0 is non-negative. Let fk : Ω∗n → Z denote

the random variable counting the number of k-dimensional faces of a random complex,

where k = 0, 1, . . . , r. Then there exists a sequence of real numbers tn → 0 such that for

any k ≥ k∗ one has

(1− tn) · nγk(α)

(k + 1)! · (i∗k − k)!
≤ fk ≤ (1 + tn) · nγk(α)

(k + 1)! · (i∗k − k)!
, (2.36)

a.a.s. The exponent γk(α) is as defined in Theorem 2.10.8 and the integer i∗k ∈ {k, k +

1, . . . , r} is the index satisfying βi∗k = max{βk, βk+1, . . . , βr}.
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Proof. Consider a random hypergraph X ∈ Ωn with probability parameters

pσ =


n−αi if dimσ = i ≤ r,

0 if dimσ > r.

For k = 0, 1, . . . , r we will let gk : Ωn → Z denote the random variable counting the num-

ber of k-dimensional faces. Note that gk is a binomial random variable Bi
((

n
k+1

)
, n−αk

)
,

hence we obviously have

E(gk) =

(
n

k + 1

)
· n−αk ∼ nβk

(k + 1)!
, k ≤ r. (2.37)

Thus, by the first moment method of Corollary 1.2.2, we see that for βk < 0 one has

gk ≡ 0, a.a.s.

Note that the assumptions (a)-(d) described in Section 2.10 exclude the possibility

βk = 0.

Below we shall assume that βk > 0. We may use the Chernoff bound, see Theorem

2.1 of [45], which states that for any τ ≥ 0,

P(gk ≥ E(gk) + τ) ≤ exp

(
− τ2

2(E(gk) + τ/3)

)
,

and

P(gk ≤ E(gk)− τ) ≤ exp

(
− τ2

2E(gk)

)
,

We will apply the Chernoff bound with τ = E(gk)
2/3 = tnE(gk) where tn = E(gk)

−1/3 =

o(1). This gives us

P(gk ≥ (1 + tn) · E(gk)) ≤ exp

(
− τ2

2(E(gk) + τ/3)

)
≤ exp

(
−E(gk)

1/3

4

)
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and

P(gk ≤ (1− tn) · E(gk)) ≤ exp

(
−E(gk)

1/3

2

)
.

Since E(gk)
1/3 →∞ we obtain that

(1− tn) · E(gk) ≤ gk ≤ (1 + tn) · E(gk), (2.38)

a.a.s. By combining with (2.37) we see that

(1− tn) · nβk

(k + 1)!
≤ gk ≤ (1 + tn) · nβk

(k + 1)!
, (2.39)

a.a.s., where tn → 0.

Let Ωn,r denote the set of hypergraphs X ⊂ ∆n of dimension at most r (i.e. where

hyperedges are of cardinality at most r + 1). Similarly, let Ω∗n,r denote the set of all

simplicial subcomplexes Y ⊂ ∆n of dimension at most r. We have the map

ρr : Ωn,r → Ω∗n,r

which is the restriction of the map which appears in (2.2). Recall that for X ∈ Ωn,r

the simplicial complex ρ(X) is the minimal simplicial complex Y containing X. In other

words, Y is obtained from X by adding all faces of all simplices of X.

Since we assume that pσ = 0 for all simplices σ of dimension > r we obtain that the

measure Pn (given by (2.1)) is supported on Ω∗n,r ⊂ Ω∗n. Hence, we obtain that the upper

measure Pn on Ω∗n,r coincides with the direct image (ρr)∗(Pn).

For any k = 0, 1, . . . , r we have two random variables gk : Ωn,r → Z and f ′k = fk ◦ ρr :

Ω∗n,r → Z. As ρr(X) includes every hyperedge of X (together will its subsets) as a

simplex into X we obtain

max
i=k,...,r

{(
i+ 1

k + 1

)
gi

}
≤ f ′k ≤

r∑
i=k

(
i+ 1

k + 1

)
gi (2.40)
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Combining with (2.39) we find

(1− o(1)) · nγk

(k + 1)! · (i∗k − k)!
≤ f ′k ≤ (1 + o(1)) · nγk

(k + 1)! · (i∗k − k)!
,

a.a.s. By the definition, Pn = ρr∗(Pn), and hence the above inequality implies (2.36).

Using the face estimate of Theorem 2.11.1 together with the Morse inequalities de-

scribed in Lemma 1.1.1 we obtain the following estimate on Betti numbers.

Theorem 2.11.2. Consider a random simplicial complex Y ∈ Ω∗n with respect to the

upper probability measure Pn. Assume that the probability parameters pσ vanish for

dimσ > r and for dimσ ≤ r they have the form pσ = n−αi, where i = dimσ, and the

exponents αi > 0 satisfy the genericity assumptions (a) - (d), see Section 2.10. We shall

also assume that the critical dimension k∗ ≥ 0 is non-negative and the spread vanishes,

s(α) = 0.

Then the Betti number in the critical dimension bk∗(Y ) dominates all other Betti num-

bers, a.a.s. More precisely, for a sequence tn → 0 one has

(1− tn) · n
γk∗ (α)

(k∗ + 1)!
≤ bk∗(Y ) ≤ (1 + tn) · n

γk∗ (α)

(k∗ + 1)!
, (2.41)

a.a.s. Besides, for any k > k∗ there exists εk > 0 such that

bk(Y ) < n−εk · bk∗(Y ), (2.42)

a.a.s.

We prove below that under the assumptions of Theorem 2.11.2 the reduced Betti

numbers b̃k(Y ) in dimensions below the critical dimension k < k∗ vanish, a.a.s.

Proof. First we apply the Morse inequality bk∗(Y ) ≤ fk∗(Y ) and use the right hand side

of (2.36); this gives the right inequality (2.41). To prove the left inequality (2.41) we
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note that

bk∗(Y ) ≥ fk∗(Y )− fk∗+1(Y )− fk∗−1(Y ),

which combined with (2.36) gives

bk∗(Y ) ≥ (1− t′n) · n
γk∗ (α)

(k∗ + 1)!
, t′n → 0.

If k > k∗ then

bk(Y ) ≤ fk(Y ) ≤ (1 + o(1)) · nγk

(k + 1)!

and we see that (2.42) holds with any εk satisfying γk∗ − γk > εk > 0.

By Lemma 2.8.1 we are able to relate our upper model random complexes to those

studied by Linial, Meshulam, and Wallach [58, 62] and use their classical results to

understand when homology vanishes. We remark again that the following recent papers

[22–25] explore the Betti number behaviour of the upper model in some detail.

Theorem 2.11.3. Under the assumptions of Theorem 2.11.2 the reduced Betti numbers

of the random complex Y below the critical dimension k∗ vanish,

b̃j(Y ) = 0

for all j < k∗, a.a.s.

Proof. Consider a random hypergraph X of dimension ≤ r with probability parameters

pi = n−αi where i = 0, . . . , r. We can view X as the disjoint union of pure (uniform)

hypergraphs X = tri=0Xi where Xi has dimension i if not empty. Denote by Yi = Xi the

smallest simplicial complex containing Xi; it is a pure simplicial complex of dimension

i if Yi 6= ∅. Clearly, the random complex in the upper model Y can be represented as

Y = Y0 ∪ Y1 ∪ · · · ∪ Yr.

Denote Zi = Y0∪· · ·∪Yi, obviously, Zi is a simplicial complex of dimension ≤ i. Note

that the complex Zk∗ contains the full (k∗− 1)-dimensional skeleton. It follows that the

reduced Betti numbers b̃j(Zk∗) = 0 vanish for j < k∗ − 1.
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Next we show that the Betti number bk∗−1(Zk∗) = 0 vanishes a.a.s. Note that Zk∗

is a Linial-Meshulam random simplicial complex with probability parameter p = n−αk∗

and αk∗ < 1, see Example 2.10.11, where we use our assumption that the spread is zero.

Here we also use Lemma 2.8.1 which implies that the pure upper random complex Zk∗

contains the full (k∗ − 1)-dimensional skeleton. It is well known (see [62]) that in this

situation the rational homology in dimension k∗ − 1 vanishes, i.e. bk∗−1(Zk∗) = 0.

The complex Y contains Zk∗ as a subcomplex. Since Zk∗ contains the full (k∗ −

1)-skeleton, we see that Y is obtained from Zk∗ by adding subsequently simplices of

dimension k∗, k∗ + 1, . . . , r. Hence b̃j(Y ) = 0 for j < k∗ − 1, a.a.s. In general, adding

simplices of dimension k∗ may either reduce by 1 the Betti number in dimension k∗ − 1

or to increase by 1 the Betti number in dimension k∗. However in our case, since

bk∗−1(Zk∗) = 0, the result may only increase the k∗-dimensional Betti number. Further,

adding simplices of dimension > k∗ may not affect the (k∗ − 1)-dimensional homology.

Hence we obtain bk∗−1(Y ) = 0, a.a.s.

Remark 2.11.4. As one has X ⊂ X a possible research direction of interest, suggested

by Vidit Nanda, was to study the relative homology Hk(X,X) in both the random case

and for general hypergraphs X as a measure of the difference between the maps ρ and

ρ.



Chapter 3

Minimal connected covers and

connectivity of pure random

complexes

3.1 Introduction

The motivation behind this chapter was to find the threshold probability for a pure

r-dimensional random simplicial complex, described in (2.17), to be path connected.

This is a topic that has been studied to great success by Cooley, Kang et al. [22–24]

in the last few years. These texts go far beyond anything that we try to achieve here,

studying thresholds for the vanishing of cohomology in different dimensions as well as

what precisely happens within the phase transition itself. Here we will emulate the

classical proof of Erdős and Rényi [33] for computing the threshold for connectivity of a

random graph that utilises in a fundamental way Cayley’s formula. In order to complete

this emulation we introduce a minimally connected higher dimensional analogue to a

tree with bounds on its labelled enumeration playing a similarly crucial role to Cayley’s

formula – see Theorem 3.5.2.

Trees have a rich history of study dating back to the 1860s with their simple enumer-

48
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ation first given by Borchardt [13] that is now commonly referred to as Cayley’s formula

[18].

Cayley’s formula. The number of trees on n labelled vertices is nn−2.

A tree may be uniquely characterised as being a connected and acyclic graph, both of

these are topological properties that generalise naturally to higher dimensions and so it

made sense to do so using the language of higher dimensional combinatorial structures

– i.e. simplicial complexes. This was done so in the groundbreaking paper of Kalai [48]

where he introduced Q-acyclic simplicial complexes.

Definition. T is an r-dimensional Q-acyclic simplicial complex if T is a simplicial

complex with full (r−1)-dimensional skeleton with both Hr−1(T ;Q) = 0 and Hr(T ;Q) =

0.

We let Tr(n) denote the class of all such simplicial complexes on a labelled vertex set

[n] = {1, . . . , n}. By the definition of Q-acyclic complexes it is clear, by an application

of the universal coefficient theorem [39], that Hr−1(T ;Z) is a finite group. Kalai found

the following beautiful enumeration for this class of higher dimensional acyclic simplicial

complexes that generalises Cayley’s formula.

Theorem (Kalai [48]). Let d < n be integers, then

∑
T∈Tr(n)

|Hr−1(T ;Z)|2 = n(n−2
r )

where |G| denotes the cardnality of the group G.

One need not generalise trees to higher dimensions in such a way however. A tree can

also be characterised as a connected graph such that the removal of any edge disconnects

it. This is a property that is certainly not generalised via the work the of Kalai. Gener-

alising this notion of being minimally path connected in the sense of removing something

and becoming disconnected was introduced by Schmidt-Pruzan and Shamir [44] where

they used the language of hypergraphs.
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Definition. A hypertree (or h-tree) is a hypergraph H = (V,E) that is connected and

the removal of any hyperedge from E will disconnect V .

It is this flavour of generalisation that we will study in this chapter. We reformulate

the definition of h-trees using the language of simplicial complexes – the primary reason

for this is that we will also be concerned with both the geometric and homological

connectivity of these objects, making simplicial complexes the natural combinatorial

framework to work with.

We call a simplicial complex an r-dimensional minimal connected cover if it is con-

nected and the removal of any r-dimensional simplex (and all of its dependent subfaces)

is either disconnected or covers a smaller vertex set (see Definition 3.2.3).

Let Mr(n) denote the class of all such simplicial complexes on a labelled vertex set

[n] = {1, . . . , n}. A primary goal is to estimate the quantity Mr(n) := |Mr(n)|. To this

end we show the following (see Proposition 3.3.4 and Corollary 3.4.4):

Main Theorem. Fix r ≥ 1 any integer. There exists constants A,B > 0 such that

An · nn ≤Mr(n) ≤ Bn · nn.

With the lower bound computed using the original work of [44] and the upper bound

computed by relating minimal connected covers to a combinatorial object that have a

known enumeration [54]. It is with this estimation that we will compute the threhsold

probability for a pure random simplicial complex to be path connected.

It’s clear that Q-acyclic simplicial complexes of Kalai are homologically connected

up to dimension r − 2 by the condition upon having full (r − 1)-skeleton included, i.e.

if i ≤ r − 2 then Hi(T ;Z) = 0 for all T ∈ Tr(n). The same is not necessarily true of

minimal connected covers, in fact we show that any finite abelian group can be realised

as a homology group of some minimal connected cover – see Corollary 3.2.9.
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3.2 Structure of minimal connected covers

3.2.1 Basic definition

Definition 3.2.1. Let X be a simplicial complex. We say that a simplex σ ∈ X is a

maximal simplex (or a facet) if for every τ ⊇ σ then τ ∈ X if and only if τ = σ. That

is, no larger simplices in X contain σ.

For the purposes of this chapter whenever we talk of maximal simplices we will always

assume they are of dimension at least 1, i.e. we never consider isolated vertices to be

maximal simplices. We say that a simplicial complex X is pure if all maximal simplices

have the same dimension.

Definition 3.2.2. Let X be a simplicial complex on vertex set V = V (X). Let M =

M(X) be the set of maximal simplices. We say that X ′ is obtained from X by removing

a maximal simplex σ ∈M if V (X ′) = V and M(X ′) = M − {σ}.

Definition 3.2.3. Let Y be a pure r-dimensional simplicial complex on [n]. We call Y a

minimal connected cover if Y is path connected and the removal of any facet disconnects

Y .

Let Mr(n) denote the set of r-dimensional minimal connected covers on [n] and let

Mr(n) = |Mr(n)|.

X X ′

σ 7→τ

Figure 3.1: A maximal simplex σ is removed from a simplicial complex X. Observe that
though removing σ disconnects X it is not true that X a minimal connected cover as
there exists a facet, τ , that we could remove without disconnecting X.

3.2.2 Homology of minimal connected covers

By construction we know that every minimal connected cover is path connected, phrased

in the language of homology this can expressed as H0(Y ) = Z for every minimal con-
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nected cover Y ∈Mr(n). In this section we show that it is a different story for homology

in higher dimensions, with almost any combination of homology possible.

Proposition 3.2.4. For any Y ∈Mr(n) one has

Hr−1(Y ;Z)T = 0 and Hr(Y ;Z) = 0.

Where given an abelian group G, the notation GT refers to the torsion subgroup. That

is, GT is the subgroup of G containing all elements of finite order.

Proof. Every r-dimensional simplex σ ∈ Y contains at least one free (r− 1)-dimensional

face, if this were not the case when one could remove such a σ from Y without affecting

the path connectivity so Y certainly could not have been minimally connected. We may

therefore simplicially collapse every maximal r-simplex along this free face to obtain a

new complex Y ′ of dimension r−1 that is homotopy equivalent to Y , the statement then

follows as Y has homotopy dimension1 at most r − 1.

Notice the difference in homological behaviour of minimal connected covers compared

with Q-acyclic simplicial complexes of Kalai. Both require that the top dimensional

homology Hr vanishes, but the conditions upon Hr−1 are quite contrasting coinciding

only when it is the trivial group. As we shall see, in lower dimensions their differences

increase even further.

Proposition 3.2.5. For any path connected k-dimensional topological space X with a

finite triangulation there exists a minimal connected cover Y ∈ Mr(n) for any r > k

and some n such that Y is homotopy equivalent to X

Proof. Let T be a triangulation of X. To every maximal simplex in T of dimension ` we

may simplicially join it to a new uniquely labelled simplex of dimension r − ` − 1, call

this new simplicial complex Y . Clearly Y simplicially collapses onto T , in particular Y

is homotopy equivalent to T as required.

1The homotopy dimension of a topological space X is the minimal dimension realisable up to homo-
topy. That is, it equals min{dimY : Y ' X}.
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Figure 3.2: Shows the process described in the proof of Proposition 3.2.5. A triangulation
of RP2 is turned into a 3-dimensional minimal connected cover.

Corollary 3.2.6. For any integer r ≥ 3, any m ≥ 2 and all 1 ≤ k ≤ r − 2 there exists

an n such that there is a Y ∈Mr(n) with Hk(Y ) = Zm.

Proof. Consider the Moore space M = M(Zm, k), that is a finite CW complex of di-

mension k + 1 such that Hk(M) = Zm and Hi(M) = 0 for all i 6= k.2 One may then

cover M by open sets sufficiently finely so that the conditions of the Nerve Lemma (see

Corollary 4G.3 of [39]) are satisfied, the obtained nerve complex of this cover N has the

same homotopy type as our Moore space M , in particular Hk(N) = Zm and we may

conclude by application of Proposition 3.2.5 to this N .

In the proof of Corollary 3.2.6 one could alternatively consider the vertex minimal

construction of a simplicial complex X with prescribed torsion Hk−1(X) = Zm as con-

structed in the paper Newman [47]. Perhaps with some work this same construction

could be shown to give rise to the vertex minimal minimal connected cover with pre-

scribed torsion.

Corollary 3.2.7. For all r ≥ 2, any 1 ≤ i ≤ r− 1 there exists an n such that there is a

Y ∈Mr(n) with Hi(Y ) = Z.

Proof. Apply Proposition 3.2.5 to a triangulation of the i-sphere Si.

We make note of the following obvious but useful observation.

2M is obtained from the sphere Sk by attaching one (k + 1)-cell by a map Sk → Sk of degree m.



Chapter 3. Minimal connected covers and connectivity of pure random complexes 54

Lemma 3.2.8. Let Y1 ∈ Mr(n1) and Y2 ∈ Mr(n2) then their wedge along any two

vertices is also a minimal connected cover, in particular Y1 ∨ Y2 ∈Mr(n1 + n2 − 1).

Corollary 3.2.9. Fix r ≥ 2 and let G be any finitely presented abelian group. Then for

any 1 ≤ k ≤ r − 2 there exists an n such that there is a Y ∈Mr(n) with Hk(Y ) = G.

Proof. We may write G = Zζ⊕Zm1⊕· · ·⊕Zmβ by the Fundamental Theorem of Abelian

Groups. The result then follows by applications of Corollary 3.2.6, Corollary 3.2.7, and

Lemma 3.2.8.

3.2.3 Geometry of minimal connected covers

Here we explore the geometry of minimal connected covers; describing their size and

internal structure.

Lemma 3.2.10. If Y ∈Mr(n) then

⌈
n− 1

r

⌉
≤ fr(Y ) ≤ n− r.

Proof. Let Fr(Y ) = {σ1, . . . , σfr(Y )} denote the set of r-dimensional simplices such that

σi∩σi+1 6= ∅. Say that σi first covers a set of vertices V if V ⊂ V (σi) and V (σj)∩V = ∅

for all j < i. Let Vi be the maximal set of first covered vertices for simplex σi.

Clearly,
fr(Y )⊔
i=1

Vi = [n],

as every vertex must be covered. |V1| = r+ 1 as the “first” simplex must cover all of its

vertices. Each subsequent simplex σi must first cover at least one new vertex otherwise

it would not be necessary for connectivity and thus not in the minimal connected cover,

similarly each subsequent simplex can first cover at most r vertices as it connects to the

one before. That is, we have shown 1 ≤ |Vi| ≤ r for all i ≥ 2. Combining all of this
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together we see that

n =

fr(Y )∑
i=1

|Vi|

= r + 1 +

fr(Y )∑
i=2

|Vi|

∈ [fr(Y ) + r, rfr(Y ) + 1]

which upon rearranging gives the inequalities in the statement.

Definition 3.2.11. Let Y ∈ Mr(n) and let v ∈ V (Y ) be a vertex. We say that v is a

leaf if it is contained in a unique r-simplex that we call the branch. We say that v is an

external leaf if removing its branch from Y leaves a unique connected component and

isolated vertices.

Figure 3.3: An example of Y ∈M2(7) with external leaves indicated in red and internal
leaf in green.

Lemma 3.2.12. Every Y ∈Mr(n) contains an external leaf.

Proof. Suppose there are no external leaves. We will show by strong induction that this

implies the existence of paths of r-simplices of arbitrary length.

There certainly exists a path of length 1, choose any facet in Y . Suppose there is a

path of r-simplices of length k in Y , i.e. there exists σ1, σ2, . . . , σk such that σi∩σi+1 6= ∅

and σi ∩ σj = ∅ for all j 6= i, i + 1. If σk had no neighbours except for σk−1 then Y

certainly contains an external leaf with branch σk. If all of the neighbours of σk connect

to some σis then either σk is not required for path connectivity or σk is again a branch.

This is a contradiction since Y is a minimal connected cover, i.e. we are able to extend

to a path of facets of length k+ 1. This holds true for k > n− r which is a contradiction

by Lemma 3.2.10, so Y must contain an external leaf.
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Lemma 3.2.13. The 1-skeleton of a minimal connected cover determines it uniquely,

i.e. if Y,Z ∈Mr(n) with Y (1) = Z(1) then Y = Z.

Proof. Let Y,Z ∈ Mr(n) and suppose Y (1) = Z(1) but Y 6= Z, then there exists a facet

σ which is in Z but is not in Y . Suppose σ is a branch in Z but is not a branch in Y .

If this is the case then there exists a vertex v which is a leaf in Z but is not a leaf in

Y , in particular v is in one (r + 1)-clique of Z but at least two in Y . This contradicts

Y (1) = Z(1) so the facet σ cannot be a branch of Z.

Therefore σ must be necessary for the connectivity of Z. That is, removing σ from

Z must disconnect it and leave no isolated vertices. This can only occur if σ contains

at least one edge which is not contained within any other facet. This cannot happen by

the assumption that our 1-skeletons are the same and σ 6∈ Y .

3.3 Lower bound on Mr(n)

Definition 3.3.1. We call a minimal connected cover Y ∈ Mr(n) treelike if it is con-

tractible and for every pair of distinct facets σ, τ one has |σ ∩ τ | ≤ 1.

The following is a restatement of Lemma 3.11 from Schmidt-Pruzan and Shamir [44].

Lemma 3.3.2. Suppose n = kr+ 1 for some integer k. Then the number of Y ∈Mr(n)

such that Y is treelike equals

(n− 1)! · nk−1

k! · r!k .

This result together with the following Lemma stating that Mr(n) is a non-decreasing

function of n will give our lower bound.

Lemma 3.3.3. Mr(n) ≤Mr(n+ 1).

Proof. Let Y ∈ Mr(n), there exists an external leaf in Y by Lemma 3.2.12. Let v be

the smallest leaf in Y with branch σ with vertices {v, v1, . . . , vr}. Let σ′ denote a new

r-simplex on vertex set {v1, . . . , vr, n+1} and define a new simplicial complex Y ′ = Y ∪σ′.

It’s clear that Y ′ ∈Mr(n+ 1). Moreover one sees that Y ′ = Z ′ if and only if Y = Z.

We have therefore constructed an injective map Mr(n)→Mr(n+ 1) which proves the
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lemma.

Proposition 3.3.4. For any A < 1
2er!

Mr(n) ≥ An · nn.

Proof. Let n = kr + c for c = 0, 1, . . . , r − 1. Then by Lemma 3.3.3 and Lemma 3.3.2

Mr(n) ≥ · · · ≥Mr(n− c+ 1) ≥ (n− c)! · (n− c+ 1)k−2

(k − 1)! · r!k−1

≥ (n− c)!
r!n−c

· (k · r)k−2

(k − 1)!

≥
(
n− c
e · r!

)n−c
· k

k−2 · rk−2

(k − 1)!

≥
(
n− c
e · r!

)n−c
≥ An · nn,

Where in the final inequality we may take A to be any constant less than 1
2er! . In the

above chain of inequalities we have used the known bound for factorials
nn

en
≤ n!.

3.4 Upper bound on Mr(n)

Definition 3.4.1. Given an integer r ≥ 1 an r-tree is a graph which is defined inductively

as follows:

• The complete graph on r vertices Kr is an r-tree.

• Let G be an r-tree on n vertices, one may construct a new r-tree G′ on n + 1

vertices by connecting a new vertex to any r vertices that form a clique in G.

Any spanning subgraph of an r-tree is called a partial r-tree.

The following is a result of Beineke and Pippert [54] for the enumeration of r-trees.

Theorem 3.4.2. There are
(
n
r

)
· [r(n− r) + 1]n−r−2 labelled r-trees on n vertices.

Proposition 3.4.3. If Y ∈Mr(n) then Y (1) is a partial r-tree.

Proof. We want to show that there exists an r-tree G on [n] such that Y (1) ⊂ G.
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We will prove this by strong induction on the number of vertices. If Y ∈ Mr(r + 1)

then Y (1) = Kr+1 the complete graph, which is an r-tree.

Now suppose that the 1-skeleton of every minimal connected cover on less than n

vertices is a partial r-tree. Let Y ∈Mr(n), by Lemma 3.2.12 there exists some external

leaf with branch σ. When we remove σ from Y we are left with some Y ′ ∈ Mr(n − k)

and k isolated vertices for some k = 1, . . . , r the number of leaves in the branch σ. Let

τ = Y ′ ∩ σ be the simplex of dimension r − k and note that there exists an (r − 1)-

dimensional simplex τ ′ ∈ Y ′ with τ ⊂ τ ′.

By our inductive hypothesis there exists an r-tree, G, on n − k vertices such that

Y ′(1) ⊂ G. If k = 1 then G1 = G ∪ σ(1) is an r-tree such that Y (1) ⊂ G1. If k > 1 let

{v1, . . . , vk} be the set of leaves and construct a new graph from G as follows:

• Connect v1 to all of the vertices in τ ′.

• Connect v2 to v1 and any r − 1 vertices in τ ′.

• ...

• Connect vj to all vertices v1, v2, . . . , vj−1 and any r − j + 1 vertices in τ ′.

Note that at each stage the new edges that are added ensure the graph is an r-tree.

Moreover, the graph constructed at the kth step certainly contains Y ′(1) ∪ σ(1) and thus

it contains Y (1).

Corollary 3.4.4. For any B > 2(r+1
2 ) · r

Mr(n) < Bn · nn.

Proof. Combining Lemma 3.2.13 and Proposition 3.4.3 gives an injective map from

Mr(n) to the set of partial r-trees on n vertices, so we just need a bound on the size of

this set and we are done.

It’s clear that an r-tree on n vertices has
(
r
2

)
+ r(n − r) edges. Therefore by Theo-
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v1 v2

v3 v4
v5

v6 v7

1 2

3 4

Figure 3.4: Shows the process described in the proof of Proposition 3.4.3. It shows that
the 1-skeleton of some Y ∈ M3(7) (shown on the top) is a partial 3-tree by removing
the branch σ = [v4, v5, v6, v7] and doing the described process with τ = [v4] and τ ′ =
[v1, v2, v4].

rem 3.4.2 we know that the number of partial r-trees on n vertices equals

2(r2)+r(n−r) ·
(
n

r

)
· [r(n− r) + 1]n−r−2 ≤ 2(r2) · (2r · r · n)n−2

< Bn · nn.

Where in the final inequality we may take B to be any constant greater than 2(r+1
2 ) ·r.

3.5 Path connectivity of upper model random simplicial

complexes

In this section we consider an extended example that utilises the bound for the number

of minimal connected covers found in Corollary 3.4.4. The following is a classical result



Chapter 3. Minimal connected covers and connectivity of pure random complexes 60

of Erdős and Rényi [31] about connectivity in random graphs.

Theorem 3.5.1. If G = G(n, p) is an Erdős-Rényi random graph then

p =
1
2 log n

n

is the threshold probability for G to contain a connected isolated subgraph on at least two

vertices.

Alternatively, one can view this as the threshold for G to have a unique connected

component on at least two vertices.

This theorem in particular tells us that as soon as there are no isolated vertices the

random graph will almost surely be connected. The goal of this section is of course to

generalise this result for random simplicial complexes.

We begin by returning to the study of pure random simplicial complexes initiated in

Section 2.8. Throughout Y will be an upper model random complex defined on possible

vertex set [n] = {1, . . . , n} with each r-dimensional simplex and all of its subsimplices

included independently at random with probability p, see defining equation (2.17). One

may equivalently view this as a model for random (r + 1)-uniform hypergraphs.

In contrast with classical random simplicial complexes of Linial, Meshulam, Wallach

[58, 62] we observe that such a Y has no condition requiring it to contain the full skeleton

of dimension (r−1) so questions about path connectivity cannot be automatically taken

as given. The recent paper of Cooley, Del Giudice, Kang, Sprüssel [22] meticulously

studies thresholds for homological connectivity of such a random simplicial complex Y

and goes far beyond the results presented in this section – this section is not intended to

provide any new results but to provide a proof of a result analogous to Theorem 3.5.1

using techniques similar to that of Erdős and Rényi.

Theorem 3.5.2. Let Y be the pure random simplicial complex on vertex set [n] with

each r-dimensional simplex included independently at random with probability p. Then

p =
r!
r+1 log n

nr
is the threshold probability for Y to have a unique connected component.

To show this we will first compute an upper bound for the expected number of con-
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nected components on k vertices using our bound on the number of minimal connected

covers (Lemma 3.5.3), then we will compute the threshold probability for such a ran-

dom complex Y to have isolated r-simplices (Lemma 3.5.4) before showing that this is

precisely the threshold for the connectivity of Y (Lemma 3.5.5).

Lemma 3.5.3. The expected number of connected components on k vertices in the ran-

dom complex Y is bounded above by

Ck ·
(
n

k

)
kkpd k−1

r e(1− p)Q(n,k)

where Q(n, k) =
∑r

i=1

(
k
i

)(
n−k
r−i+1

)
and C is some fixed finite constant.

Proof. The probability that a given k vertices form a connected component is the product

of two probabilities: the probability that they are connected and the probability that

they do not connect to anything outside. A given set of k vertices V is connected if and

only if some minimal covering is present, which occurs with probability bounded above

by Ckkkpd k−1
r e by Corollary 3.4.4 and Lemma 3.2.10.

Such a V is disconnected from the rest of the complex if and only if no simplex with

1, 2, . . . , r vertices in V are selected. Therefore there must be

Q(n, k) =

r∑
i=1

(
k

i

)(
n− k

r − i+ 1

)

r-simplices with are not selected, which occurs with probability (1− p)Q(n,k). Thus the

probability of one particular set of k vertices defining a connected component is bounded

above by Ckkkpd k−1
r e(1−p)Q(n,k). Therefore, the expected number of all such connected

components on k vertices is at most Ck ·
(
n
k

)
kkpd k−1

r e(1− p)Q(n,k).

Lemma 3.5.4. p =
r!
r+1 · log n

nr
is the threshold probability for the existence of isolated

r-dimensional simplices in the random pure complex Y .

Proof. Let N be the random variable which counts the number of isolated simplices in

Y . A simplex is isolated precisely when it is selected and no other simplices with vertices
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in common are. Thus we must have

Q(n, r + 1) =

(
r + 1

1

)(
n− r − 1

r

)
+ · · ·+

(
r + 1

r

)(
n− r − 1

1

)
=
r + 1

r!
nr(1−O(1/n))

simplices that are not selected. So the probability of some simplex being isolated is

p(1−p)Q(n,r+1) = p(1−p) r+1
r!
nr(1−O(1/n)). The expected number of such isolated simplices

with p = ζ logn
nr is therefore given by

En(N) =

(
n

r + 1

)
· p(1− p) r+1

r!
nr(1−O(1/n))

∼ nr+1

(r + 1)!
· ζ log n

nr
· exp

(
−r + 1

r!
· nr · ζ log n

nr
· (1−O(1/n))

)
=
ζn log n

(r + 1)!
· n
−ζ(r+1)

r! · nO(1/n)

∼ ζ log n

(r + 1)!
· n1− ζ(r+1)

r! .

If ζ >
r!

r + 1
then this expectation equals o(1), so by Markov’s inequality, Theorem 1.2.1,

we see that such a random simplicial complex Y has no isolated simplices asymptotically

almost surely.

Now suppose that ζ <
r!

r + 1
. The probability that two disjoint r-simplices σ and τ

are both selected is

p2(1− p)2Q(n,r+1)−R(n,r)

where R(n, r) =
∑

1≤i,j≤r
(
r+1
i

)(
r+1
j

)(
n−2r−2
r+1−i−j

)
= O(nr−1). This counts all those sim-

plices which intersect both σ and τ that we do not want to double count. Now

(1− p)R(n,r) > 1− pR(n, r)

= 1− ζ log n

nr
O(nr−1)

= 1−O(log n/n)→ 1.
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Therefore (1− p)−R(n,r) = 1 + o(1) and so

En(N2) ≤ En(N) + 2
∑
σ∩τ=∅

p2(1− p)2Q(n,r+1)−R(n,r)

≤ En(N) + 2 ·
(( n

r+1

)
2

)
· p2(1− p)2Q(n,r+1)−R(n,r)

≤ En(N) +

(
n

r + 1

)2

· p2(1− p)2Q(n,r+1)(1 + o(1))

= (1 + o(1)) · En(N)2

Where the last equality follows by using the fact that

En(N) ∼ ζ log n

(r + 1)!
· n1− ζ(r+1)

r! →∞

for ζ <
r!

r + 1
. Therefore by using Chebychev’s inequality in the form

Pn(N > 0) ≥ En(N)2

En(N2)

we conclude that Y has isolated simplices with probability converging to one.

In particular, Lemma 3.5.4 tells us that if ζ < r+1
r! then the random simplicial com-

plex in the description of Theorem 3.5.2 is disconnected. To complete the proof of

Theorem 3.5.2 we will show the following,

Lemma 3.5.5. If p =
ζ log n

nr
with ζ > r!

r+1 then Y has a unique connected component

asymptotically almost surely.

Proof. We will prove this statement by showing that there are no connected components

on k vertices for all r + 1 ≤ k ≤ n/2, i.e. if this were true since there are no isolated

r-dimensional simplices there is a unique connected component supported by at least

n/2 vertices and potentially isolated vertices proving the statement.

Let Xk be the random variable which counts the number of connected components

on k vertices. We will show that for p =
ζ log n

nr
that the expected number of connected
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components of size r + 1 ≤ k ≤ n/2 is less than O (n−ε · log n) for some positive ε.

We use Lemma 3.5.3 to get the following upper bound

En(Xk) ≤ Ck
(
n

k

)
kkp

k−1
r (1− p)Q(n,k),

where we have used the trivial fact that p
k−1
r ≥ pd k−1

r e.

We will further simplify this bound by using the inequalities
(
n
k

)
≤
(
en
k

)k
, and 1 −

p ≤ e−p. To complete the argument we need a better understanding of Q(n, k) =∑r
i=1

(
k
i

)(
n−k
r−i+1

)
. For this we cite the result of Lemma A.1.1 found in Appendix A.1

which tells us that

r

x
− ζ · r ·Q(n, x)

nr · x

is maximised by x = r + 1 or x = n/2 in the domain [r + 1, n/2] for sufficiently large n

and that if ζ >
r!

r + 1
then this maximal value is at most −ε+O(1/n) for some positive

constant ε dependent on r and ζ.

Putting this all together we get the following when we substitute p = ζ logn
nr ,

En(Xk) ≤ Ck ·
(en
k

)k
· kk ·

(
ζ log n

nr

) k−1
r

· exp

(−ζQ(n, k) log n

nr

)
≤ ζ kr · Ck · ek · n1− ζQ(n,k)

nr · log
k−1
r n

≤
(

const · nr/k−
ζrQ(n,k)
nrk · log n

)k/r
= O

(
n−ε+O(1/n) · log n

)k/r
= O

(
n−ε · log n

)k/r
.

Where the final line follows from the fact that nO(1/n) converges to a constant.

Since En(Xk) decreases geometrically we see by linearity that En
(∑n/2

k=r+1Xk

)
=

O (n−ε · log n) = o(1). The result follows by application of Markov’s inequality.

Theorem 3.5.2 is then proven by application of Lemma 3.5.4 and Lemma 3.5.5.

Consider now the general r-dimensional upper model random simplicial complex Z
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now with complete vertex set [n]. That is, Z = Z(n, (p1, . . . , pr)) is an upper model

random simplicial complex, see Section 2.3, with parameters

pσ =


1 if dimσ = 0,

pi if dimσ = i,

0 if dimσ > r.

(3.1)

Lemma 3.5.6. Let the probability parameters satisfy pi =
ζi log n

ni
for some ζi. If∑r

i=1

ζi
i!
> 1 then the random simplicial complex Z contains an isolated vertex asymp-

totically almost surely.

Coversely, if
∑r

i=1

ζi
i!
< 1 then Z contains no isolated vertices asymptotically almost

surely.

Proof. A vertex in Z is isolated with probability

r∏
i=1

q
(n−1

i )
i ∼ exp

(
−

r∑
i=1

pi

(
n

i

))

∼ exp

(
−

r∑
i=1

ζi
i!
· log n

)

= n−
∑r
i=1

ζi
i! .

Let N be the random variable denoting the number of isolated vertices in Z. By the

above we see that

En(N) ∼ n1−
∑r
i=1

ζi
i! .

We see that if
∑r

i=1
ζi
i! > 1 then En(N)→ 0, and so by Markov’s inequality we see that

under this assumption there are no isolated vertices asymptotically almost surely.

For the converse case, when
∑r

i=1
ζi
i! < 1 we will use a second moment method ar-

gument, see Corllary 1.2.4. We first remark that clearly under this assumption, by the

above considerations, that En(N)→∞. We also note that two distinct vertices are both

isolated with probability
∏r
i=1 q

2(n−1
i )−(n−2

i−1)
i . Therefore
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En(N2) =
∑
i,j

Pn(i, j are isolated)

= En(N) +
∑
i 6=j

r∏
i=1

q
2(n−1

i )−(n−2
i−1)

i

= n · q(
n−1
i )

i + n(n− 1) ·
r∏
i=1

q
2(n−1

i )−(n−2
i−1)

i .

It then follows via application of the inequality Pn(N > 0) ≥ En(N)2

En(N2)
that the probability

N > 0 is bounded below by

n · q(
n−1
i )

i ·∏r
i=1 q

(n−2
i−1)

i∏r
i=1 q

(n−2
i−1)

i + (n− 1) · q(
n−1
i )

i

→ 1.

It follows that the above quantity converges to 1 since n · q(
n−1
i )

i = En(N) → ∞ and∏r
i=1 q

(n−2
i−1)

i = exp
(
−∑r

i=1
ζi

(i−1)! ·
logn
n

)
→ 1.

This gives the immediate corollary for a general upper model random simplicial com-

plex to be connected with high probability.

Corollary 3.5.7. Let the probability parameters satisfy pi =
ζi log n

ni
for some ζi. If at

least one ζi > i! then Z is connected asymptotically almost surely.

Proof. By Lemma 2.7.2 we see that we may decompose Z = [n] ∪ Z1 ∪ · · · ∪ Zr where

each Zi is a pure random simplicial complex with probability parameters satisfying

pσ =


pi if dimσ = i,

0 otherwise.

As some zetai > (i+ 1)! we see that
∑r

i=1
ζi
i! > 1 so by Lemma 3.5.6 Zi contains the full

vertex set [n] a.a.s. Similarly, by Theorem 3.5.2 we see that Zi is connected a.a.s. It’s

clear that if some Zi is connected and contains the full vertex set [n] then Z must be

connected.
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In the pure case we get the stronger result with a threshold for connectivity trivially.

Corollary 3.5.8. Let Y ′ = Y ∪ [n] be the upper model random simplicial complex with

probability parameters

pσ =


1 if dimσ = 0,

p if dimσ = r,

0 otherwise.

Then p = r! logn
nr is the threshold probability for Y ′ to be connected.



Chapter 4

Random simplicial complexes in

the medial regime

4.1 Introduction

In this chapter we continue the study of lower and upper model random simplicial com-

plexes introduced in Chapter 2. There we studied properties of the complexes when the

parameters pσ → 0. Here we study the opposite situation: that is we assume that the

probability parameters satisfy

p ≤ pσ ≤ P (4.1)

for all simplices σ where the numbers p, P ∈ (0, 1) are independent of n. We call this the

medial regime. In the medial regime the probability parameters pσ can approach neither

0 nor 1.

We show that a lower model random simplicial complex Y in the medial regime has

dimension

dimY ∼ log2 lnn+ log2 log2 lnn,

it is simply connected, and may have nontrivial Betti numbers bj(Y ) only for

j ∈
[
log2 lnn+ c, log2 lnn+ log2 log2 lnn+ c′

]
, (4.2)

68
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where c, c′ are constants. A more precise statement is given below as Theorem 4.2.2.

The proof uses the Garland method relating the spectral gap of links with the vanishing

of the Betti numbers, see [4].

We also describe the topology of a typical random simplicial complex Y with respect

to the upper model in the medial regime. We show that it has a rather different behaviour:

its dimension equals n− 2, it contains the skeleton ∆
(n−d)
n where

d ∼ log2 lnn+ log2 log2 lnn,

and the Betti numbers bn−j(Y ) vanish except for a range of dimensions of width approx-

imately log2 log2 lnn. A precise statement is given below as Theorem 4.2.3.

We employ the Alexander duality relation of Theorem 2.9.9, which allows us to deduce

the results concerning the upper model from the lower model.

4.2 Definitions and statements of the main results

We shall say that the system of probability parameters {pσ} is in the medial regime if

there exist constants p, P ∈ (0, 1) such that for any simplex σ ∈ ∆n one has

0 < p ≤ pσ ≤ P < 1. (4.3)

We emphasise that the numbers p, P are independent of n. In other words, in the medial

regime the probability parameters pσ are allowed to approach neither 0 nor 1, as n→∞.

It will be convenient to write

p = e−a, P = e−A (4.4)

where the 0 < A ≤ a are constants.

Definition 4.2.1. We call the system of probability parameters {pσ} homogeneous when

they depend only upon their dimension. That is, pσ = pτ if dimσ = dim τ .
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Next we state two main results of this Chapter:

Theorem 4.2.2. Let Y ∈ Ω∗n be a random simplicial complex in the medial regime with

respect to the lower measure. Then:

1. The dimension of Y satisfies

bβ(n, a)c − 1 ≤ dimY ≤ β(n,A)− 1 + ε0,

a.a.s. Here ε0 > 0 is an arbitrary positive constant and we use the notation

β(n, y) = log2 lnn+ log2 log2 lnn− log2(y);

2. Y is connected and simply connected, a.a.s;

3. If the system of probability parameters pσ is homogeneous (see Definition 4.2.1)

then with probability tending to 1 as n→∞ the Betti numbers bj(Y ) vanish for all

0 < j ≤ log2 lnn− log2 a− 1− δ,

where δ > 0 is an arbitrary constant.

Thus, under the assumptions of Theorem 4.2.2 a random complex Y may potentially

have nontrivial reduced Betti numbers only in dimensions j satisfying

log2 lnn− log2 a− 1− δ < j ≤ log2 lnn+ log2 log2 lnn− log2A− 1 + ε0,

a.a.s.

To illustrate Theorem 4.2.2, let us assume that the integer n is written in the form

n = e2k . Then the dimension of the random complex Y satisfies

dimY ∼ k + log2 k,
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and the range of potentially nontrivial Betti numbers is roughly

k ≤ j ≤ k + log2 k.

We see that a lower model random simplicial complex in the medial regime is homo-

logically highly connected with nontrivial Betti numbers concentrated in a thin layer of

dimensions near the dimension of the complex.

In the following Theorem we shall describe the properties of the random simplicial

complexes in the upper model. If the initial system of probability parameters pσ is in a

medial regime (4.3) then the dual system p′σ = 1−pσ̂ (where σ̂ is as defined in Section 2.4)

will also be in the medial regime since

0 < 1− P ≤ p′σ ≤ 1− p < 1.

We shall need the dual numbers

0 < a′ ≤ A′

defined by the equations

e−a + e−a
′

= 1 = e−A + e−A
′
. (4.5)

One has e−A
′ ≤ p′σ ≤ e−a

′
.

Theorem 4.2.3. Let Y ∈ Ω∗n be a random simplicial complex with respect to the upper

probability measure associated to a system of probability parameters pσ. Assume that pσ

satisfies

0 < p ≤ pσ ≤ P < 1,

where p = e−a and P = e−A are constant, i.e. the system of probability parameters is in

the medial regime. Then, with probability tending to 1, one has:

1. The dimension dimY equals n− 2;

2. The maximal dimension d such that Y contains the (n − d)-dimensional skeleton
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∆
(n−d)
n of the simplex ∆n satisfies

bβ(n,A′)c+ 1 ≤ d ≤ β(n, a′) + 1 + ε0.

Here ε0 > 0 is an arbitratry positive constant.

3. If the system of probability parameters pσ is homogeneous then the reduced Betti

numbers bj(Y ) vanish for all dimensions j except possibly

log2 lnn− log2A
′ + 1− δ < n− j ≤ β(n, a′) + 1 + ε0.

We see that the topology of a typical random simplicial complex Y in the upper model

in the medial regime is totally different from one in the lower model. If n is written in

the form n = e2k then Y contains the skeleton ∆
(n−d)
n , where

d ∼ k + log2 k

and the nontrivial Betti numbers of Y are concentrated in an interval of dimensions of

width ∼ log2 k above the dimension n− d ∼ n− k − log2 k.

Remark 4.2.4. An argument using Morse inequalities suggests that under the assump-

tions of Theorem 4.2.2 the expected Betti number in one of the dimensions ∼ log2 lnn

is nonzero and goes to infinity with n.

The proofs of Theorems 4.2.2 and 4.2.3 are given in the following sections. Theorem

4.2.2 is the summary of Proposition 4.4.1, Corollary 4.5.2, Proposition 4.5.4 and Theorem

4.6.1. The proof of Theorem 4.2.3 is given in section §4.7.

4.3 Coupling

In this section we compare the properties of random simplicial complexes Y and Y ′ in

the two models having different probability parameters pσ and p′σ. We show that for

pσ ≤ p′σ one may “realise” Y as a subcomplex of Y ′. This leads to the conclusion that
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for any monotone property P of random simplicial complexes the probability of the event

Y ∈ P is dominated by the probability of the event Y ′ ∈ P.

Next we introduce some notations. We denote by Pn and P′n the lower probability

measures on the set Ωn of random simplicial complexes Y ⊂ ∆n associated to the systems

of probability parameters pσ and p′σ correspondingly. We shall denote by Pn and P′n the

corresponding upper measures on Ωn. Consider also the set PΩn of all pairs (X,Y )

consisting of a simplicial complex X ⊂ ∆n and one of its subcomplexes Y ⊂ X. There

are two projections

π1, π2 : PΩn → Ωn

where π1(X,Y ) = X and π2(X,Y ) = Y .

Theorem 4.3.1. (A) Suppose that two systems of probability parameters pσ ≤ p′σ are

given. Then there exists a probability measure µ on PΩn such that its direct images

under the projections π1, π2 are

(π1)∗(µ) = P′n and (π2)∗(µ) = Pn. (4.6)

Similarly, there exists a probability measure µ on PΩn such that its direct images under

the projections π1, π2 are

(π1)∗(µ) = P′n, (π2)∗(µ) = Pn. (4.7)

(B) Suppose additionally that pσ = p′σ for any simplex σ of dimension ≤ k, where k ≥ 0

is an integer. Then the measure µ on PΩn is supported on the sets of pairs (X,Y ) of

simplicial complexes having identical k-dimensional skeleta, i.e. X(k) = Y (k).

(C) If pσ = p′σ for all simplices σ of dimension > k where k is fixed integer then

the measure µ is supported on the sets of pairs (X,Y ) of simplicial complexes satisfying

X −X(k) = Y − Y (k).

Let P be a property of a simplicial complex which is monotone, i.e. Y ∈ P implies

X ∈ P for a simplicial subcomplex Y ⊂ X.
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Corollary 4.3.2. Under the assumption pσ ≤ p′σ, for any monotone property P one has

Pn(Y ∈ P) ≤ P′n(Y ∈ P) and Pn(Y ∈ P) ≤ P′n(Y ∈ P). (4.8)

Proof. Applying Theorem 4.3.1 one has

Pn(Y ∈ P) = µ({(X,Y );Y ∈ P}) ≤ µ({(X,Y );X ∈ P}) = P′n(X ∈ P).

The case of the upper measure µ is similar.

As an example we consider the property dimY ≥ d where d is an integer. Since it is

monotone we obtain:

Corollary 4.3.3. Under the assumption that pσ ≤ p′σ for every simplex σ ⊂ [n], one

has

Pn(dimY ≥ d) ≤ P′n(dimY ≥ d) and Pn(dimY ≥ d) ≤ P′n(dimY ≥ d)

for any integer d ≥ 0. Here Pn and P′n are lower probability measures on Ωn associated

to the systems of probability parameters pσ and p′σ, correspondingly.

The following arguments will be used in the proof of Theorem 4.3.1.

Let S be a finite set and suppose that for each element s ∈ S we are given a probability

parameter ps ∈ [0, 1]. The Bernoulli measure ν on the set 2S of all subsets of S is

characterised by the property that for A ⊂ S one has

ν(A) =
∏
s∈A

ps ·
∏
s/∈A

(1− ps). (4.9)

Consider now another set of probability parameters p′s ∈ [0, 1] with the property

ps ≤ p′s
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for any s ∈ S; let ν ′ be the corresponding Bernoulli measure on 2S , i.e.

ν ′(A) =
∏
s∈A

p′s ·
∏
s/∈A

(1− p′s). (4.10)

Lemma 4.3.4. Let PΩS denote the set of all pairs (X,Y ) where Y ⊂ X ⊂ S. Consider

the projections π1, π2 : PΩS → 2S where π1(X,Y ) = X and π2(X,Y ) = Y . There exists

a probability measure µ on PΩS such that

(π1)∗(µ) = ν ′ and (π2)∗(µ) = ν. (4.11)

If ps = p′s for all elements s in a subset T ⊂ S then the measure µ is supported on the

set of pairs (X,Y ) of subsets of S satisfying X ∩ T = Y ∩ T .

Proof. We define a probability measure µ on PΩS by the formula:

µ(X,Y ) =
∏
s∈X

p′s ·
∏

s∈S−X
(1− p′s) ·

∏
s∈Y

ps
p′s
·
∏

s∈X−Y

(
1− ps

p′s

)
. (4.12)

The equalities (4.11) are verified directly by computation, we give this in Appendix A.2.

The assumption ps ≤ p′s is used to ensure non-negativity of µ. If there exists an

element s ∈ X − Y which lies in T , then ps = p′s and µ(X,Y ) = 0 since the last factor

in (4.12) vanishes.

Proof of Theorem 4.3.1. We apply Lemma 4.3.4 with S = 2[n], the set of subsets of the

set of vertices [n]. The subsets X ⊂ S can be identified with hypergraphs and we see

that the set ΩS = 2S is the set of all hypergraphs with vertices in [n] which in Section

2.3 was denoted Ωn. The two systems of probability parameters pσ and p′σ (where σ ∈ S

is a simplex) define two Bernoulli probability measures on 2S = ΩS = Ωn which we shall

denote by ν and ν ′ correspondingly, see formulae (4.9) and (4.10).

The set of pairs PΩS which appears in Lemma 4.3.4 can be viewed as the set of pairs

of hypergraphs (X,Y ) where Y is a subhypergraph of X. Since for any simplex σ one has

pσ ≤ p′σ, we may apply Lemma 4.3.4 to obtain a probability measure µ on PΩS = PΩn
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with the property (π1)∗(µ) = ν ′ and (π2)∗(µ) = ν.

Consider the maps ρ, ρ : Ωn → Ω∗n (see (2.2) in §2.3) where Ω∗n denotes the set of all

simplicial subcomplexes of ∆n. These maps obviously define maps of pairs ρ, ρ : PΩn →

PΩ∗n and we define the probability measures µ, µ on PΩ∗n by the formulae

µ = (ρ)∗(µ), µ = (ρ)∗(µ). (4.13)

We have two sets of commutative diagrams

PΩn
πi //

ρ

��

Ωn

ρ

��
PΩ∗n

πi // Ω∗n,

PΩn
πi //

ρ

��

Ωn

ρ

��
PΩ∗n

πi // Ω∗n.

where i = 1, 2. Applying the definitions, we obtain

π1∗(µ) = π1∗(ρ∗(µ)) = ρ∗(π1∗(µ) = ρ∗(ν
′) = P′n.

And similarly

π2∗(µ) = π2∗(ρ∗(µ)) = ρ∗(π2∗(µ) = ρ∗(ν) = Pn.

This proves formulae (4.6). Formulae (4.7) follow similarly. This proves statement (A).

To prove statement (B) we engage the last statement of Lemma 4.3.4 which claims

that the constructed measure µ on PΩn is supported on the set of pairs of hypergraphs

(X,Y ) having identical k-dimensional skeleta. Then obviously the measure µ = (ρ)∗(µ)

is supported on the set of pairs of simplicial complexes having identical k-skeleta.

The proof of (C) is similar. If pσ = p′σ for any simplex of dimension greater than k then

the measure µ is supported on the set of pairs of hypegraphs (X,Y ) ∈ PΩn which are

identical above dimension k. This implies that the direct image measure µ = (ρ)∗(µ) is

supported on the set of pairs of simplicial complexes which are identical above dimension

k.
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4.4 Dimension of a lower random simplicial complex in the

medial regime

In this section we shall consider a random simplicial complex Y ∈ Ω∗n with respect to

the lower model and will impose the medial regime assumptions (4.3). We shall write

p = e−a, P = e−A where 0 < A ≤ a. (4.14)

Let us denote

β = β(n, y) = log2 lnn+ log2 log2 lnn− log2(y). (4.15)

Proposition 4.4.1. Let ε0 > 0 be a fixed constant. Under the above assumptions the

dimension of a random simplicial complex Y satisfies

bβ(n, a)c − 1 ≤ dimY ≤ β(n,A)− 1 + ε0, (4.16)

a.a.s.

Remark 4.4.2. Note that the quantity

β(n,A)− β(n, a) = log2

( a
A

)
= log2

(
ln p

lnP

)
≥ 0 (4.17)

is constant (independent of n). Hence Proposition 4.4.1 determines the dimension of

a random complex Y with finite error (4.17) while the dimension itself dimY tends to

infinity.

In the special case when p = P and a = A we obtain bβ(n, a)c − 1 ≤ dimY ≤

β(n, a)− 1 + ε0, a.a.s. which nearly uniquely determines the dimension dimY .

Proof of Proposition 4.4.1. We start by establishing the upper bound in (4.16). Using

the monotonicity of dimension we may apply Theorem 4.3.1 and Corollary 4.3.3. There-
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fore in the proof of the upper bound we may assume without loss of generality that

pσ = P = e−A

for any simplex σ.

Let f` : Ω∗n → R denote the number of `-dimensional simplices in Y . Note that as a

random variable, f` =
∑
Xσ, where the sum runs over all simplices σ ⊂ [n] of dimension

` and Xσ is a random variable which takes values 0 and 1 depending on whether the

simplex σ is included into the random complex Y . We have

E(Xσ) =
∏
ν⊂σ

pν = P 2`+1−1.

Then

E(f`) =

(
n+ 1

`+ 1

)
· P 2`+1−1.

We may estimate the expectation from above as follows

E(f`) ≤ (n+ 1)`+1 · P 2`+1−1 ≤ e

P
·
(

exp

[
lnn−A · 2`+1

`+ 1

])`+1

.

Since the function x 7→ 2x

x is monotone increasing for x ≥ 2 we obtain that for any

` ≥ β(n,A) + ε0 − 1 = β + ε0 − 1

(where ε0 > 0 is fixed) one has

lnn−A 2`+1

`+ 1
≤ lnn−A 2β+ε0

β + ε0
=

[
1− 2ε0

log2 lnn

β + ε0

]
· lnn ≤ −1

2
(2ε0 − 1) · lnn

(for sufficiently large n) implying

E(f`) ≤
e

P
n−c(`+1), where c =

1

2
· (2ε0 − 1) > 0.
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We obtain

∑
`+1≥β+ε0

E(f`) ≤
e

P

∑
`+1≥β+ε0

n−c(`+1) ≤ e

P
· n
−c(β+ε0)

1− n−c → 0.

Thus, by the first moment method, Y has no simplices in any dimension ` ≥ β+ε0−1

a.a.s., i.e. we obtain the right inequality of (4.16).

Next we prove the left inequality in (4.16), i.e. the lower bound for the dimension.

While doing so we may assume (using Theorem 4.3.1 and the monotonicity of dimension)

that pσ = p = e−a for any simplex σ. We assume below that

` ≤ β(n, a)− 1 (4.18)

and our goal is to show that f` > 0 with probability tending to 1 as n → ∞. We shall

use the following estimates for the binomial coefficient

1

3

(ne
`

)`
· `−1/2 ≤

(
n

`

)
≤
(ne
`

)`
· `−1/2 (4.19)

which are valid for 1 ≤ ` < n/2 and n large enough; it follows from Stirling’s formula,

see page 4 in [10]. Hence we obtain

E(f`) =

(
n+ 1

`+ 1

)
p2`+1−1 ≥

(n
`

)`+1
p2`+1−1 = p−1

[
exp

(
ln
n

`
− a 2`+1

`+ 1

)]`+1

. (4.20)

Using (4.18) we find that

a2`+1

`+ 1
≤ lnn · log2 lnn

log2 lnn+ log2 log2 lnn− log2 a

implying

ln
n

`
− a 2`+1

`+ 1
≥ lnn · log2 log2 lnn

2 · log2 lnn
.

This shows that E(f`)→∞.

We shall apply the second moment inequality, Corollary 1.2.4, with X = f` and show
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that under the assumptions (4.18) the inverse quantity
E(f2` )

E(f`)2
tends to 1 as n→∞. Since

we know apriori that
E(f2` )

E(f`)2
≥ 1, it is enough to show that the ratio

E(f2` )

E(f`)2
is bounded

above by a sequence tending to 1 as n→∞.

As above, f` =
∑
Xσ, where the sum runs over all simplices σ ⊂ [n] of dimension `.

Hence f2
` =

∑
σ,τ XσXτ and E(f2

` ) =
∑

σ,τ E(XσXτ ). We have

E(XσXτ ) = Pn(σ ⊂ Y & τ ⊂ Y ) = p2·2`+1−2i−1

where i denotes the cardinality of intersection σ ∩ τ ⊂ [n]. One therefore obtains

E
(
f2
`

)
=

`+1∑
i=0

(
n+ 1

`+ 1

)
·
(
`+ 1

i

)
·
(

n− `
`+ 1− i

)
· p2·2`+1−2i−1

and since

E(f`) =

(
n+ 1

`+ 1

)
p2`+1−1

we obtain

E(f2
` )

E(f`)2
=

`+1∑
i=0

(
`+1
i

)
·
(
n−`
`+1−i

)(
n+1
`+1

) · p−2i+1.

We shall denote by ri the terms in the last sums where i = 0, 1, . . . , `+ 1. For the term

r0 we have

r0 =

(
n−`
`+1

)(
n+1
`+1

) < 1.

One goal is to show that the sum of all other terms r1 + r2 + · · · + r`+1 tends to zero

with n. For the term r1 we have

r1 =
(`+ 1)

(
n−`
`

)(
n+1
`+1

) · p−1 ≤ (`+ 1) · n`(
n

`+ 1

)`+1
· p−1 =

(`+ 1)`+2

n
· p−1.

Using our assumption (4.18) and (4.15) we see that r1 → 0 as n→∞.

Next we consider the term ri with 2 ≤ i ≤ ` + 1. Since p−1 = ea and taking into
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account that the function
2x

x
is increasing for x ≥ 2 we obtain

ri =

(
`+1
i

)
·
(
n−`
`+1−i

)(
n+1
`+1

) · p−2i+1 ≤ (`+ 1)`+i+1

ni
· p−2i

≤ β2β ·
{

exp

[
a2i

i
− lnn

]}i
≤ β2β ·

{
exp

[
a2β

β
− lnn

]}i
,

where we have used (4.18) and the following standard inequalities for the binomial coef-

ficients

ab

bb
≤
(
a

b

)
≤ ab.

One has

a2β

β
− lnn = − lnn · log2 log2 lnn− log2 a

β
≤ − lnn · log2 log2 lnn

2 · log2 lnn
.

Denoting

γ = γ(n) =
log2 log2 lnn

2 · log2 lnn

we may write, for i ≥ 2,

ri ≤ β2β · {exp(−γ · lnn)}i =
β2β

niγ
.

Clearly, γ → 0. Summing up we obtain

`+1∑
i=2

ri ≤ β2β · n−2γ

1− n−γ .

The lower bound estimate in (4.16) would now follow once we know that nγ → ∞ and

moreover
ββ

nγ
→ 0. This is equivalent to

β · log2 β − γ · lnn→ −∞.
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Since β < 2 log2 lnn it is sufficient to show that

2 log2 lnn · log2(2 log2 lnn)− lnn · log2 log2 lnn

2 log2 lnn
→ −∞.

The above expression can be written in the form

2 log2 lnn ·
[
1 + log2 log2 lnn ·

[
1− lnn

4(log2 lnn)2

]]
(4.21)

since log2(2 log2 lnn) = 1 + log2 log2 lnn. Obviously
lnn

(log2 lnn)2
→∞, and therefore we

see that (4.21) tends to −∞. This completes the proof of Proposition 4.4.1.

4.5 Simple connectivity of lower random simplicial com-

plex in the medial regime

In order to establish connectivity and simple connectivity of a lower model random

simplicial complex in the medial regime we shall consider the cover by closed stars of

vertices and apply the Nerve Lemma.

4.5.1 Common neighbours

Recall that a common neighbour of a set S ⊂ Y of vertices in a simplicial complex

Y is a vertex v ∈ Y − S which is connected by an edge to every vertex of S. The

following Lemma estimates the probability for the existence of common neighbours; this

information will be used below together with the Nerve Lemma to prove the simple

connectivity of a medial regime simplicial complex.

Lemma 4.5.1. Let 0 < ε ≤ 1 be fixed. Let Y ∈ Ω∗n be a random simplicial complex with

respect to the lower measure in the medial regime. Then any set S of

⌊
lnn

(1 + ε)a

⌋

vertices of Y have a common neighbour with probability at least 1−C · exp(−nε/2

2 ). Here



Chapter 4. Random simplicial complexes in the medial regime 83

C > 0 is a constant independent of n (which however depends on the value of p).

The number a which appears in the statement is defined in (4.4).

Proof. Let S ⊂ Y be a set of k vertices. A vertex v 6∈ S is a common neighbour for S

with probability pv ·
∏
u∈S puv. Hence, a set S ⊂ Y has no common neighbours in Y − S

with probability ∏
v/∈S

(
1− pv ·

∏
u∈S

puv

)
≤
(

1− pk+1
)n+1−k

.

Let Xk : Ω∗n → Z be the random variable counting the number of k element subsets

S ⊂ Y having no common neighbours in Y − S. Using the above inequality, we see that

the expectation E(Xk) is bounded above by

(
n+ 1

k

)
·
(

1− pk+1
)n+1−k

≤ nk · exp
(
−(n+ 1− k) · pk+1

)
= exp

(
k lnn− (n+ 1− k) · pk+1

)
≤ C · exp

(
k lnn− n · pk+1

)
.

In the final line we have used the fact that (k − 1)pk is bounded for any k ≥ 2. For n

fixed the function k 7→ k lnn− n · pk+1 is monotone increasing. Using this we find that

for k ≤ lnn
(1+ε)a

E(Xk) ≤ C·exp

(
(lnn)2

(1 + ε)a
− n · e−a

(
lnn

(1+ε)a

))
= C·exp

(
(lnn)2

(1 + ε)a
− n ε

1+ε

)
≤ C exp(−n

ε/2

2
).

Hence we obtain

Pn(Xk > 0) ≤ E(Xk) ≤ C exp(−n
ε/2

2
).

This completes the proof.

Corollary 4.5.2. Let Y ∈ Ω∗n be a random simplicial complex with respect to the lower

measure in the medial regime. Then the complex Y is connected with probability at least

1− C exp

(
−n

1/2

2

)
,



Chapter 4. Random simplicial complexes in the medial regime 84

where C > 0 is a constant depending on p and independent of n.

Proof. Applying Lemma 4.5.1 with ε = 1 we obtain that any two vertices of Y have a

common neighbour in Y with probability at least 1−C exp(−n1/2

2 ). Then obviously any

two vertices can be connected by a path in Y , i.e. Y is path-connected with probability

at least 1− C exp(−n1/2

2 ).

Remark 4.5.3. Clearly, the connectivity depends only on the 1-skeleton and the 1-

skeleton of a medial regime random simplicial complex is a random graph. It is well

known (from the classical work of Erdős - Rényi) that such random graphs are con-

nected with probability tending to 1. Corollary 4.5.2 gives a quantitative bound on the

probability which will be used later to show simple connectivity.

4.5.2 Simple connectivity

Recall that a simplicial complex X is said to be simply connected if it is connected and

its fundamental group π1(X,x0) is trivial. Our goal is to prove the following statement:

Proposition 4.5.4. A random simplicial complex Y ∈ Ω∗n with respect to the lower

probability measure in the medial regime is simply connected, a.a.s.

The proof will consist of applying the Nerve Lemma (see [6], Theorem 10.6) to the

cover U of Y formed by the closed stars of vertices. Recall that for a vertex v ∈ Y

the closed star St(v) ⊂ Y is the union of all closed simplices σ ∈ Y such that v ∈ σ.

The nerve N (U) of this cover is the simplicial complex with vertex set identical to the

vertex set of Y and a set S of vertices of Y forms a simplex in N (U) if and only if the

intersection

∩v∈SSt(v) 6= ∅ (4.22)

is not empty. Note that this intersection (4.22) is not empty if the set of vertices S has

a common neighbour. Rephrasing Lemma 4.5.1 we obtain:

Corollary 4.5.5. Let Y ∈ Ω∗n be a random simplicial complex with respect to the lower
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probability measure in the medial regime. Let U denote the cover of Y formed by the

closed stars of vertices of Y . Then for any constant 0 < α < 1, the nerve complex

N (U) contains the full
⌊
α · log(p−1) n

⌋
-dimensional skeleton of the simplex spanned by

the vertex set of Y . In particular, the nerve complex N (U) is
(⌊
α · log(p−1) n

⌋
− 1
)

-

connected, a.a.s.

Recall that the parameter 0 < p < 1 of Lemma 4.5.5 is the one which appears in the

definition of the medial regime, see (4.3).

Proof of Proposition 4.5.4. First we recall the Nerve Lemma, see [6], Theorem 10.6:

Lemma 4.5.6. If Y is a simplicial complex and {Si}i∈I is a family of subcomplexes

covering Y such that for any t ≥ 1 every non-empty intersection Si1∩· · ·∩Sit is (k−t+1)-

connected. Then Y is k-connected if and only if the nerve complex N ({Si}i∈I) is k-

connected.

To prove Proposition 4.5.4 we shall apply Lemma 4.5.6 with k = 1 to the cover {St(v)}

of Y formed by closed stars of vertices v ∈ Y . Each star St(v) is contractible and the

nerve complex N ({St(v)}) is simply connected (see Corollary 4.5.5), a.a.s. To complete

the proof we need to show that any nonempty intersection St(v) ∩ St(w) is connected,

a.a.s.

Note that

St(v) ∩ St(w) =

 LkY (v) ∩ LkY (w), if (vw) /∈ Y,

(LkY (v) ∩ LkY (w)) ∪ St(vw), if (vw) ∈ Y.
(4.23)

Here (vw) denotes the edge connecting v and w.

We introduce events An, Bn, Cn ⊂ Ω∗n defined as follows. An ⊂ Ω∗n denotes the set

of all simplicial complexes Y such that for any two vertices v, w ∈ Y the intersection

Lky(v)∩LkY (w) is connected. Bn ⊂ Ω∗n is defined to be the set of all simplicial complexes

Y which have no edges e ⊂ Y of degree zero, i.e. every edge e ⊂ Y is incident to a 2-

simplex σ ⊂ Y . And finally, Cn ⊂ Ω∗n will denote the set of all simplicial complexes Y

such that every triple of its vertices has a common neighbour.
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We note that any Y ∈ An ∩ Bn ∩ Cn is simply connected. Indeed, taking the cover

by the closed stars of vertices we see that the intersection St(v) ∩ St(w) is connected;

if (vw) 6⊂ Y then it follows from the definition of An and if (vw) ⊂ Y then St(vw) is

contractible (and hence connected) and has nontrivial intersection with LkY (v)∩LkY (w)

as follows from our assumption Y ∈ Bn; this shows that St(v) ∩ St(w) is connected.

Finally we apply the Nerve Lemma 4.5.6 using our assumption Y ∈ Cn.

To complete the proof we therefore only need to show that Pn(An)→ 1 and Pn(Bn)→

1 as Lemma 4.5.1 tells us that Pn(Cn)→ 1.

Consider two fixed vertices v, w ∈ Y and consider the intersection LkY (v) ∩ LkY (w).

By Lemma 2.6.2 this intersection is a random simplicial complex with respect to the lower

measure with probability parameters p′τ = pτpvτpwτ , i.e. it is also a lower model random

simplicial in the medial regime. By Corollary 4.5.2 the intersection LkY (v) ∩ LkY (w) is

disconnected with probability at most C exp(−n1/2

2 ) and hence the expected number of

pairs of vertices with disconnected LkY (v) ∩ LkY (w) is bounded above by

Cn2 exp(−n
1/2

2
)→ 0.

This proves that Pn(An)→ 1.

The proof of Pn(Bn)→ 1 is similar. By Theorem 2.6.1, the link of an edge e = (vw) ⊂

Y is a random simplicial complex with respect to the lower model with probability

parameters

p′τ = pτpvτpwτpeτ ≥ p4

and hence the probability that an edge e has empty link is bounded above by

(1− p4)n−1 ≤ exp(−p4n)

for n large enough. Thus, the expected number of edges e ⊂ Y with empty links is at

most (
n+ 1

2

)
· e−p4n → 0,
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implying Pn(Bn)→ 1 by the first moment method. This completes the proof of Propo-

sition 4.5.4.

We will show in Corollary 6.5.6 that lower model medial regime random simplicial

complexes are actually 2-connected with probability converging to one. The proof of this

fact is rather more involved and uses results we will prove about ample complexes.

4.6 Vanishing of the Betti numbers

The main result of this section states that homogeneous (see Definition 4.2.1) lower

model random simplicial complexes in the medial regime have trivial rational homology

in every dimension not exceeding

log2 lnn− log2 a− 1− δ,

where p = e−a as in (4.4) and δ > 0 is any constant.

Theorem 4.6.1. Let Y ∈ Ω∗n be a homogeneous random simplicial complex with respect

to the lower probability measure in the medial regime. Then for any constant δ > 0, the

rational homology of Y vanishes,

Hj(Y ;Q) = 0,

for all

0 < j ≤ log2 log(p−1) n− 1− δ,

a.a.s.

The proof of Theorem 4.6.1 given below uses Garland’s method as described in [4].

Given a graph G we denote by L = L(G) the normalised Laplacian of G. We refer the

reader to [4] for the definitions. All eigenvalues of L lie in [0, 2] and the multiplicity of

the eigenvalue 0 equals the number of connected components of G. Let κ(G) > 0 denote

the smallest non-zero eigenvalue of L; the quantity κ(G) is known as the spectral gap of
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G.

Given a simplicial complex X and a simplex σ ∈ X, let Lσ denote the 1-skeleton of

the link LkX(σ) and let κσ = κ(Lσ) denote the spectral gap of the graph Lσ.

The following result is well-known, see [4]:

Theorem 4.6.2. Let ` ≥ 0 be a non-negative integer. If X is a finite pure (` + 2)-

dimensional simplicial complex such that for every `-dimensional simplex σ ∈ X the link

Lσ is a non-empty connected graph with spectral gap satisfying

κ (Lσ) > 1− 1

`+ 2
,

then

H`+1(X;Q) = 0.

Recall that by Corollary 4.5.2 the lower random complex Y in the medial regime is

connected. Thus, Theorem 4.6.1 follows once we have established:

Lemma 4.6.3. Let Y ∈ Ω∗n be a homogeneous random simplicial complex with respect to

the lower probability measure in the medial regime, see (4.3). Then Y has the following

property with probability tending to 1 as n→∞: for every `-dimensional simplex σ ⊂ Y ,

where

0 ≤ ` ≤ log2 log(p−1) n− 2− δ (4.24)

the link Lσ is non-empty, connected and its spectral gap satisfies κσ > 1− 1
`+2 .

Proof. Fix a simplex σ ⊂ ∆n of dimension ` and let ∆n−σ ⊂ ∆n denote the simplex

spanned by those vertices of [n] which are not in σ; clearly dim ∆n−σ = n − ` − 1.

Consider a random simplicial complex Y ∈ Ω∗n containing σ. The 1-skeleton Lσ of the

link LkY (σ) is a random subgraph of ∆n−σ and according to Theorem 2.6.1 the graph

Lσ is a random graph with respect to the lower probability measure with vertex and
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edge probability parameters given by the formulae

p′v = pv ·
∏
τ⊆σ

pvτ and p′e = pe ·
∏
τ⊆σ

peτ . (4.25)

Since p ≤ pτ ≤ P for every simplex τ we obtain the following bounds on the probability

parameters p′v and p′e of the graph Lσ

p2`+1 ≤ p′v ≤ P 2`+1
and p2`+1 ≤ p′e ≤ P 2`+1

. (4.26)

Since by assumption Y is homogeneous it follows that the link Lσ is homogeneous as

well, i.e. p′v = p′v′ and p′e = p′e′ for any vertices v, v′ and edges e, e′ of Lσ.

The function fσ0 counting the number of vertices of Lσ, Y 7→ f0(Lσ), is a random

variable and its expectation E(fσ0 ) satisfies

(n− `)p2`+1 ≤ E(fσ0 ) ≤ (n− `)P 2`+1
.

From now on we shall assume, by (4.24), that

`+ 1 ≤ log2 log(p−1) n− 1− δ

where δ > 0 is a constant. We can write

`+ 1 = log2 log(p−1) n− x

where x = x(`) ≥ 1 + δ. Then

p2`+1
= n−2−x and P 2`+1

= n−λ2−x

where λ = logp P ∈ (0, 1) is a constant. Thus we see that

E(fσ0 ) ≥ (n− `)n−2−x ≥ 1

2
n1−2−x (4.27)
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and similarly,

E(fσ0 ) ≤ n1−λ2−x . (4.28)

Since fσ0 is a binomial random variable we may apply Chernoff’s inequality (see Corol-

lary 2.3 in [45]) which states that for any 0 < ε < 3/2 the probability that fσ0 deviates

from its expectation E(fσ0 ) by more than εE(fσ0 ) is at most 2 exp
(
− ε2

3 E(fσ0 )
)

. Therefore,

the probability that fσ0 is smaller than 1
4n

1−2−x is bounded above by

2 · exp

(
−n

1−2−x

24

)
≤ 2 · exp

(
−n1/2

)
.

Similarly, the probability that fσ0 is larger than 2n1−λ2−x is smaller than 2 · exp(−n1/2).

Hence we see that the probability that for some ` satisfying

`+ 1 ≤ log2 log(p−1) n− 1− δ

the inequality

1

4
n1−2−x ≤ fσ0 ≤ 2n1−λ2−x (4.29)

is violated is smaller than

4e−n
1/2 · (n+ 1)

log2 log(p−1) n,

it is easy to see that this quantity tends to zero as n → ∞ (its logarithm converges

to −∞). Thus, asymptotically almost surely, the graph Lσ is an Erdős-Rényi random

graph on a number of vertices N = fσ0 satisfying (4.29). The edge probability ρ of Lσ

satisfies the inequalities

p2`+1 ≤ ρ ≤ P 2`+1
.

We shall use the following result about the spectral gap of the Erdős-Rényi random



Chapter 4. Random simplicial complexes in the medial regime 91

graphs which is a corollary of Theorem 1.1 from [42]. Consider a random Erdős-Rényi

graph G ∈ G(N, ρ) such that

ρ ≥ (1 + δ) logN

N
, (4.30)

for some fixed δ > 0. Then for any c ≥ 1 there exists an integer Nc,δ such that for any

N > Nc,δ the graph G is connected and

κ(G) > 1− 1

c
(4.31)

with probability at least 1−N−δ.

We shall apply this statement with c = `+ 2 and δ = 3`. Using (4.29) we obtain

ρN

logN
≥ p2`+1

fσ0
log fσ0

≥ 1

2

n−2−xn1−2−x

(1− λ2−x) log n+ 1
≥ 1

4

n1−21−x

log n
≥ 1

4

n1−2−δ

log n
≥ 1 + δ = 3`+ 1.

Hence we see that for any n ≥M0 (where M0 is an integer depending only on the value

of δ) the inequality (4.30) will be violated for a given simplex σ with probability at most

n ·N−3` ≤ n ·
(

1

4
n1−2−x

)−3`

≤ n− 3`
2 ,

provided N ≥ 1
4n

1−2−x . Here the factor n takes into account the fact that we are applying

inequality (4.30) a number of times, for each possible value of N , and the range of values

of N is bounded above by 2n1−λ2−x ≤ n according to (4.29).

Therefore the expected number of simplices σ with dimσ ≤ log2 log(p−1) n − 2 − δ,

for which (4.30) is violated is bounded above by

n`+1 ·
(

4e−n
1/2 · (n+ 1)

log2 log(p−1) n + n−
3`
2

)
,

a quantity which obviously tends to zero. Thus, with probability tending to 1, the

spectral gap inequality (4.31) will be satisfied for all simplices σ in the indicated range

of dimensions. This completes the proof of Lemma 4.6.3.
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4.7 Proof of Theorem 4.2.3

The probability that no (n− 2)-dimensional simplices is included into Y is

∏
dimσ=n−2

(1− pσ) ≤ (1− p)n

which converges to 0 since 0 < p < 1 is a constant. This proves statement (1).

The proofs of statements (2) and (3) are based on Theorem 4.2.2 and the duality

relation given by Theorem 2.9.9. Indeed, let Y be a random simplicial complex with

respect to the upper model in the medial regime, i.e. we assume that the probability

parameters pσ satisfy

0 < e−a = p ≤ pσ ≤ P = e−A < 1.

Consider the dual system of probability parameters p′σ = 1− pσ̌ which satisfies

0 < e−A
′

= 1− P ≤ p′σ ≤ 1− p = e−a
′
< 1,

where a′ and A′ are defined in (4.5). Next, we use the isomorphism c of Theorem

2.9.9 and the duality for the Betti numbers Corollary 2.9.8. The complex c(Y ) is a

random simplicial complex in the lower model with respect to the system of probability

parameters p′σ. Hence by Theorem 4.2.2, the dimension of the complex c(Y ) satisfies

bβ(n,A′)c − 1 ≤ dim c(Y ) ≤ β(n, a′)− 1 + ε0, (4.32)

a.a.s. where ε0 > 0 is an arbitrary constant. Since the maximal dimension d such

that c(Y ) contains the skeleton ∆
(d)
n equals n− 2− dimY , the inequality (4.32) implies

statement (2) of Theorem 4.2.3.

To prove the third statement we observe that the reduced Betti numbers of c(Y )

vanish in all dimensions except possibly

log2 lnn− log2A
′ − 1− δ < j ≤ log2 lnn+ log2 log2 lnn− log2 a

′ − 1 + ε0,
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Since bj(Y ) = bn−2−j(c(Y )), Corollary 2.9.8, we obtain that the Betti numbers bj(Y )

vanish except possibly for

log2 lnn− log2A
′ + 1− δ < n− j ≤ log2 lnn+ log2 log2 lnn− log2 a

′ + 1 + ε0.

Which completes the proof.



Chapter 5

The Rado complex and infinite

random simplicial complexes

5.1 Introduction

In the 1920’s, Urysohn constructed a remarkable complete, separable metric space which

is known as the Urysohn space U . The space U is universal in the sense that it contains

an isometric copy of any complete, separable metric space. Additionally, the Urysohn

space U is homogeneous in the sense that any partial isometry between its finite subsets

can be extended to a global isometry. The properties of universality and homogeneity

determine U uniquely up to isometry, see [73] for a detailed exposition.

The Rado graph Γ is another notable mathematical object, which can also be charac-

terised by its universality and homogeneity. The graph Γ has countably many vertices,

it is universal in the sense that any graph with countably many vertices is isomorphic

to an induced subgraph of Γ. Moreover, any isomorphism of between finite induced

subgraphs of Γ can be extended to the whole Γ (homogeneity). The properties of uni-

versality and homogeneity determine Γ uniquely up to isomorphism. One may mention

surprising robustness of Γ: removing any finite set of its vertices and edges produces

a graph isomorphic to Γ. We refer to the comprehensive survey of Cameron [17] for

detailed exposition.

94
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Erdős and Rényi [32] showed that a random graph on countably many vertices has

the following characteristic property with probability one: given finitely many distinct

vertices u1, ..., um, v1, ..., vn there exists a vertex which is adjacent to u1, ..., um and non-

adjacent to v1, ..., vm. It is not difficult to see that the Rado graph Γ is the unique

countable graph possessing the characteristic property and hence a random countable

graph is isomorphic to Γ with probability 1; this result explains why Γ is sometimes

called “the random graph”. In [68] Rado suggested a deterministic construction of Γ in

which the vertices are labelled by integers N and a pair of vertices labelled by m < n

are connected by an edge if and only if the m-th digit in the binary expansion of n is 1.

This same graph construction previously appeared in a paper of W. Ackermann [1] who

studied consistence of the axioms of the set theory.

The Rado graph Γ and the Urysohn space U are related. Any graph determines a

metric on the set of its vertices where the distance between a pair of distinct vertices is

either 1 (if they are connected by an edge) or 2 (otherwise). Thus, the Rado graph Γ

admits an isometric embedding into U ; it can be viewed as a restricted version of the

Urysohn space limited on metric spaces with the metric taking values in the set {0, 1, 2}.

In this chapter we study a high-dimensional generalisation of the Rado graph which

we call the Rado simplicial complex X. X is universal in the sense that any countable

simplicial complex is an induced subcomplex of X. Additionally, X is homogeneous,

i.e. any two isomorphic finite induced subcomplexes are related by an automorphism of

X. Moreover, we prove that X is the unique simplicial complex (up to isomorphism)

which is both universal and homogeneous. The 1-skeleton of X is the Rado graph. We

introduce a characteristic property of the Rado complex which we call ampleness, see

Definition 5.2.2, which generalises the characteristic property of the Rado graph. In

Theorem 5.7.1, we show that a random simplicial complex on countably many vertices

is isomorphic to X with probability 1. We also give explicit deterministic constructions

of the Rado complex in Section 5.3, and show that the geometric realisation of the Rado

complex X is homeomorphic to an infinite dimensional simplex in Theorem 5.5.1.

In Section 5.4 we observe several curious properties of X. Showing that X is “robust”
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to many changes, for example if the set of vertices of X is partitioned into finitely many

parts, the simplicial complex induced on at least one of these parts is isomorphic to X

and that the link of any finite simplex of X is isomorphic to X.

The Rado complex X can be viewed as the limit of a finite random simplicial complex

in the medial regime, introduced in Chapter 4. Informally, we may view finite random

simplicial complexes in the medial regime as subcomplexes of the Rado complex X

induced on the first n vertices. We expand on this idea in Chapter 6.

Next we comment on relations with the previously known results. Theorem 3 of Rado

[68] suggests a construction of a universal simplicial complex but after close examination

one finds that Rado’s construction is correct only when it is restricted to the class of

simplicial complexes of a fixed dimension ` having complete (`− 1)-dimensional skeleta

The 2013 preprint, [14], applies the methods of mathematical logic and model theory

to study the geometry of simplicial complexes; it uses language and methods very differ-

ent from ours. A well-known general construction of model theory is the Fräıssé limit for

a class of relational structures possessing certain amalgamation properties, see [41]. The

Fräıssé limit construction, when applied to the class of all finite simplicial complexes,

produces a simplicial complex F on countably many vertices which is universal and ho-

mogeneous, i.e. it is a Rado complex in the terminology of this chapter. The universality

of the Fräıssé limit F is stated with respect to finite simplicial complexes, but this is

equivalent to the countable version of universality as appears in Definition 5.2.1, justified

in Remark 5.2.10.

In [14], Brooke-Taylor and Testa study the group of automorphisms of F and state

that any direct limit of finite groups and any metrisable profinite group embeds into the

group of automorphisms of F . [14] also contains a proof that the geometric realisation of

F is homeomorphic to an infinite-dimensional simplex, a result which we independently

establish below in Section 5.5. The authors of [14] also consider a probabilistic approach

and claim a 0-1 law for first order theories. We were unable to fully understand the

construction of their measure and the related proofs; we suspect that the measure they

consider in their Section 5 is related to a special case of the measure constructed below



Chapter 5. The Rado complex and infinite random simplicial complexes 97

in Section 5.6.

Although the current text and [14] study the same object, the motivation, language,

and methods used here are totally different compared to [14]. For us the Rado complex

is a stable and interesting simplicial complex; our notion of ampleness is crucial in

illustrating its resilience and for studying its topology.

5.2 The definition of the Rado complex

In this section we introduce the primary definition of interest in this chapter, the Rado

complex, give characterising properties, and prove its uniqueness up to isomorphism.

5.2.1 Basic terminology

Throughout we will let ∆N denote the standard countably infinite simplex, i.e. the

simplicial complex with vertex set N = {1, 2, . . . } and all non-empty finite subsets of N

as simplices.

Two simplicial complexes are isomorphic if there is a bijection between their vertex

sets which induces a bijection between the sets of simplices. That is, simplicial com-

plexes X and Y are isomorphic if there exists a bijection ϕ : V (X) → V (Y ) such that

{x0, . . . , xk} defines a simplex in X if and only if {ϕ(x0), . . . , ϕ(xk)} defines a simplex

in Y .

A simplicial subcomplex Y ⊂ X is said to be induced if any simplex σ ∈ X with all

its vertices contained V (Y ) is a face of Y . The induced subcomplex Y ⊂ X is completely

determined by the set of its vertices, V (Y ) ⊂ V (X). We shall use the notation Y = XU

where U = V (Y ).

5.2.2 Universal, homogeneous, and ample complexes

Definition 5.2.1. (1) A countable simplicial complex X is said to be universal if any

countable simplicial complex is isomorphic to an induced subcomplex of X. (2) We say

that X is homogeneous if for any two finite induced subcomplexes XU , XU ′ ⊂ X and
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for any isomorphism f : XU → XU ′ there exists an isomorphism F : X → X with

F |XU = f . (3) A countable simplicial complex X is a Rado complex if it is universal

and homogeneous.

It is clear that the 1-skeleton of a Rado complex is a Rado graph; the latter can be

defined as a universal and homogeneous graph having countably many vertices, see [17].

The following property is a useful criterion of being a Rado complex:

Definition 5.2.2. We call a countable simplicial complex X ample if for any finite

subset U ⊂ V (X) and for any simplicial subcomplex A ⊂ XU there exists a vertex

v ∈ V (X)− U such that

LkX(v) ∩XU = A. (5.1)

Remark 5.2.3. Condition (5.1) can equivalently be expressed as

XU ′ = XU ∪ (vA), (5.2)

where U ′ = U ∪ {v} and vA denotes the cone with apex v and base A. In literature the

cone vA is also sometimes denoted v ∗ A, the simplicial join of a vertex v and complex

A.

Remark 5.2.4. Suppose that X is a simplicial complex with a countable set of vertices

V (X). One may naturally consider exhaustions U0 ⊂ U1 ⊂ U2 ⊂ · · · ⊂ V (X) consisting

of finite subsets Un satisfying ∪Un = V (X). In order to check that X is ample as defined

in Definition 5.2.2 it is sufficient to verify that for every n ≥ 0 and for any subcomplex

A ⊂ XUn there exists a vertex v ∈ V (X)− Un satisfying LkX(v) ∩XUn = A.

Remark 5.2.5. Suppose that X is an ample simplicial complex. Given finitely many

distinct vertices u1, . . . , um, v1, . . . , vn ∈ V (X), there exists a vertex z ∈ V (X) which is

adjacent to u1, . . . , um and nonadjacent to v1, . . . , vn. To see this we apply Definition

5.2.2 with U = {u1, . . . , um, v1, . . . , vn} and A = {u1, . . . , um}. This shows that the 1-

skeleton of a Rado complex satisfies the defining property of the Rado graph [17]. This



Chapter 5. The Rado complex and infinite random simplicial complexes 99

also shows that ampleness is a high dimensional generalizaton of this graph property.

The following property of ample complexes will be useful in the next section.

Lemma 5.2.6. Let X be an ample complex and let L′ ⊂ L be a pair consisting of a finite

simplical complex L and an induced subcomplex L′. Let f ′ : L′ → XU ′ be an isomorphism

of simplicial complexes, where U ′ ⊂ V (X) is a finite subset. Then there exists a finite

subset U ⊂ V (X) containing U ′ and an isomorphism f : L→ XU with f |L′ = f ′.

Proof. It is enough to prove this statement under an additional assumption that L has

a single extra vertex, i.e. V (L) − V (L′) = 1. In this case L is obtained from L′ by

attaching a cone wA where w ∈ V (L) − V (L′) denotes the new vertex and A ⊂ L′

is a subcomplex (the base of the cone). Applying the defining property of the ample

complex to the subset U ′ ⊂ V (X) and the subcomplex f ′(A) ⊂ XU ′ we find a vertex

v ∈ V (X) − U ′ such that LkX(v) ∩XU ′ = f(A). We can set U = U ′ ∪ {v} and extend

f ′ to the isomorphism f : L→ XU by setting f(w) = v.

Theorem 5.2.7. A simplicial complex is Rado if and only if it is ample.

Proof. Suppose X is a Rado complex, i.e. X is universal and homogeneous. Let U ⊂

V (X) be a finite subset and let A ⊂ XU be a subcomplex of the induced complex.

Consider an abstract simplicial complex L = XU∪wA which obtained from XU by adding

a cone wA with vertex w and base A where XU ∩ wA = A. Clearly, V (L) = U ∪ {w}.

By universality, we may find a subset U ′ ⊂ V (X) and an isomorphism g : L → XU ′ .

Denoting w1 = g(w), A1 = g(A) and U1 = g(U) we have XU ′ = XU1 ∪w1A1. Obviously,

g restricts to an isomorphism g|XU : XU → XU1 . By the homogeneity property we can

find an isomorphism F : X → X with F |XU = g|XU . Denoting v = F−1(w1) we shall

have XU∪{v} = XU ∪ vA as required, see Remark 5.2.3.

Now suppose that X is ample. To show that it is universal consider a simplicial

complex L with at most countable set of vertices V (L). We may find a chain of induced

subcomplexes L1 ⊂ L2 ⊂ . . . with ∪Ln = L and each complex Ln has exactly n vertices.

Then Ln+1 obtained from Ln by adding a cone vn+1An where vn+1 is the new vertex and

An ⊂ Ln is a simplicial subcomplex. We argue by induction that we can find a chain of
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subsets U1 ⊂ U2 ⊂ · · · ⊂ V (X) and isomorphisms fn : Ln → XUn satisfying fn+1|Ln =

fn. If Un and fn are already found then the next set Un+1 and the isomorphism fn+1

exist because X is ample: we apply Definition 5.2.2 with U = Un and A = fn(An) and

we set Un+1 = Un ∪ {v} where v is the vertex given by Definition 5.2.2. The sequence

of maps fn defines an injective map f : V (L) → V (X) and produces an isomorphism

between L and the induced subcomplex Xf(V (L)).

The fact that any ample complex is homogeneous follows from Lemma 5.2.8 below.

We state it in a slightly more general form so that it also implies the uniqueness of Rado

complexes.

Lemma 5.2.8. Let X and X ′ be two ample complexes and let L ⊂ X and L′ ⊂ X ′ be

two induced finite subcomplexes. Then any isomorphism f : L → L′ can be extended to

an isomorphism F : X → X ′.

Proof. We shall construct chains of subsets of the sets of vertices U0 ⊂ U1 ⊂ · · · ⊂ V (X)

and U ′0 ⊂ U ′1 ⊂ · · · ⊂ V (X ′) such that ∪Un = V (X), ∪U ′n = V (X ′), XU0 = L, XU ′0
= L′,

and |Un+1−Un| = 1, |U ′n+1−U ′n| = 1. We shall also construct isomorphisms fn : XUn →

XU ′n satisfying f0 = f and fn+1|XUn = fn. The whole collection {fn} will then define a

required isomorphism F : X → X ′ with F |L = f .

To constructs these objects we shall use the well known back-and-forth procedure.

Enumerate vertices V (X)− V (L) = {v1, v2, . . . } and V (X ′)− V (L′) = {v′1, v′2, . . . } and

start by setting U0 = V (L), U ′0 = L′ and f0 = f . We act by induction and describe Un,

U ′n and fn assuming that the objects Ui, U
′
i and fi : Ui → U ′i have been already defined

for all i < n.

The procedure will depend on the parity of n. For n odd we find the smallest j with

vj /∈ Un−1 and set Un = Un−1 ∪{vj}. Applying Lemma 5.2.6 to the simplicial complexes

L = XUn , L′ = XUn−1 and the isomorphism fn−1 : XUn−1 → X ′U ′n−1
we obtain a subset

U ′n ⊂ V (X ′) containing U ′n−1 and an isomorphism fn : XUn → X ′U ′n extending fn−1.

For n even we proceed in the reverse direction. We find the smallest j with v′j /∈ U ′n−1

and set U ′n = U ′n−1 ∪ {v′j}. Next we applying Lemma 5.2.6 to the simplicial complexes
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L = X ′U ′n , L′ = X ′U ′n−1
and the isomorphism f−1

n−1 : X ′U ′n−1
→ XUn−1 . We obtain a subset

Un ⊂ V (X) containing Un−1 and an isomorphism f−1
n : X ′U ′n → XUn extending f−1

n−1.

Corollary 5.2.9. Any two Rado complexes are isomorphic.

Proof. This follows from Theorem 5.2.7 with subsequent applying Lemma 5.2.8 with

L = L′ = ∅.

Remark 5.2.10. In Definition 5.2.1 we defined universality with respect to arbitrary

countable simplicial subcomplexes. A potentially more restrictive definition dealing only

with finite subcomplexes together with homogeneity is in fact equivalent to Definition

5.2.1; this will follow from the arguments used in the proof of Theorem 5.2.7.

5.3 Deterministic constructions of Rado complexes

In Corollary 5.2.9 we prove that if a Rado complex exists then it is unique up to iso-

morphism. In this section we provide multiple deterministic constructions of the Rado

complex.

5.3.1 An inductive construction

One may construct a Rado simplicial complex X inductively as the union of a chain of

finite induced simplicial subcomplexes

X0 ⊂ X1 ⊂ X2 ⊂ . . . , ∪n≥0Xn = X.

Here X0 is a single point and each complex Xn+1 is obtained from Xn by first adding

a finite set of vertices v(A), labeled by subcomplexes A ⊂ Xn (including the case when

A = ∅); secondly, we construct the cone v(A)∗A with apex v(A) and base A, and thirdly

we attach each such cone v(A) ∗A to Xn along the base A ⊂ Xn. Thus,

Xn+1 = Xn ∪
⋃
A

(v(A) ∗A). (5.3)
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To show that the complex X = ∪n≥0Xn is ample, i.e. a Rado complex, we refer to

Remark 5.2.4 and observe that any subcomplex A ⊂ Xn the vertex v = v(A) ∈ V (Xn+1)

satisfies LkX(v) ∩Xn = A.

5.3.2 An explicit construction

Here we shall give an explicit construction of a Rado complex X. To describe it we shall

use the sequence {p1, p2, . . . } of all primes in increasing order, where p1 = 2, p2 = 3, etc.

The set of vertices V (X) is the set of all positive integers N. Each simplex of X

is uniquely represented by an increasing sequence a0 < a1 < · · · < ak with certain

properties. Subsimplices of a0 < a1 < · · · < ak are obtained by erasing one or more

elements in the sequence.

Definition 5.3.1. (1) A sequence a0 < a1 is a 1-dimensional simplex of X if and only

if pa0-th binary digit of a1 is 1. (2) We shall say that an increasing sequence of positive

integers 0 < a0 < a1 < · · · < ak represents a simplex of X if all its proper subsequences

are in X and additionally the pa0pa1 . . . pak−1
-th binary digit of ak is 1.

Proposition 5.3.2. The obtained simplicial complex X is Rado.

Proof. With any increasing sequence σ of positive integers 0 < a0 < a1 < · · · < ak we

associate the product

Nσ = pa0pa1 . . . pak ,

which is an integer without multiple prime factors. Note that for two such increasing

sequences σ and σ′ one has Nσ = Nσ′ if and only if σ is identical to σ′.

Given a finite subset U ⊂ V (X) and a simplicial subcomplex A ⊂ XU , consider the

vertex

v =
∑
σ∈A

2Nσ + 2KU ∈ V (X) (5.4)

where

KU = 1 +
∏
u∈U

pu.
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The binary expansion of v has ones exactly on positions Nσ where σ ∈ F (A) and it has

zeros on all other positions except an additional 1 at position KU . Note that KU > Nσ

for any simplex σ ⊂ XU . In particular, we see that vertex v defined by (5.4) satisfies

v > w for any w ∈ U .

Consider a simplex σ ⊂ XU . By definition, the simplex vσ with apex v and base σ

lies in X if and only if the Nτ -th binary digit of v is 1 for every τ ⊆ σ. We see from

(5.4) that this happens if and only if σ ∈ A. This means that LkX(v) ∩ XU = A and

hence X is a Rado complex.

5.4 Some simple properties of the Rado complex

Lemma 5.4.1. Let X be a Rado complex, let U ⊂ V (X) be a finite set and let A ⊂ XU

be a subcomplex. Let ZU,A ⊂ V (X) denote the set of vertices v ∈ V (X) − U satisfying

(5.1). Then ZU,A is infinite and the induced complex on ZU,A is also a Rado complex.

Proof. Consider a finite set {v1, . . . , vN} ⊂ ZU,A of such vertices. One may apply Def-

inition 5.2.2 to the set U1 = U ∪ {v1, . . . , vN} and to the subcomplex A ⊂ XU1 to find

another vertex vN+1 satisfying the condition of Definition 5.2.2. This shows that ZU,A

must be infinite.

Let Y ⊂ X denote the subcomplex induced by ZU,A. Consider a finite subset U ′ ⊂

ZU,A = V (Y ) and a subcomplex A′ ⊂ XU ′ = YU ′ . Applying the condition of Definition

5.2.2 to the set W = U ∪ U ′ ⊂ V (X) and to the subcomplex A t A′ we find a vertex

z ∈ V (X)−W such that

LkX(z) ∩XW = A ∪A′. (5.5)

Since XW ⊃ XU ∪ XU ′ , the equation (5.5) implies LkX(z) ∩ XU = A, i.e. z ∈ ZU,A.

Intersection both sides of (5.5) with XU ′ = YU ′ and using LkY (z) = LkX(z) ∩ Y (since

Y is an induced subcomplex) we obtain

LkY (z) ∩ YU ′ = A′
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implying that Y is Rado.

Corollary 5.4.2. Let X be a Rado complex and let Y be obtained from from X by

selecting a finite number of simplices F of X and deleting all simplices σ ∈ X which

contain simplices from F as their faces. Then Y is also a Rado complex.

Proof. Let U ⊂ V (Y ) be a finite subset and let A ⊂ YU be a subcomplex. We may also

view U as a subset of V (X) and then A becomes a subcomplex of XU since YU ⊂ XU .

The set of vertices v ∈ V (X) satisfying LkX(v) ∩XU = A is infinite (by Lemma 5.4.1)

and thus we may find a vertex v ∈ V (X) which is not incident to simplices from the

family F . Then LkY (v) = LkX(v) ∩ Y and we obtain LkY (v) ∩ YU = A.

Corollary 5.4.3. Let X be a Rado complex. If the vertex set V (X) is partitioned into

a finite number of parts then the induced subcomplex on at least one of these parts is a

Rado complex.

Proof. It is enough to prove the statement for partitions into two parts. Let V (X) =

V1 t V2 be a partition; denote by X1 and X2 the subcomplexes induced by X on V1 and

V2 correspondingly. Suppose that none of the subcomplexes X1 and X2 is Rado. Then

for each i = 1, 2 there exists a finite subset Ui ⊂ Vi and a subcomplex Ai ⊂ Xi
Ui

such that

no vertex v ∈ Vi satisfies LkXi(v)∩Xi
Ui

= Ai. Consider the subset U = U1 tU2 ⊂ V (X)

and a subcomplex A = A1 tA2 ⊂ XU . Since X is Rado we may find a vertex v ∈ V (X)

with LkX ∩ XU = A. Then v lies in V1 or V2 and we obtain a contradiction, since

LkXi(v) ∩Xi
Ui

= Ai.

Lemma 5.4.4. In a Rado complex X, the link of every simplex is a Rado complex.

Proof. Let Y = LkX(σ) be the link of a simplex σ ∈ X. To show that Y is Rado,

let U ⊂ V (Y ) be a subset and let A ⊂ YU be a subcomplex. We may apply the

defining property of the Rado complex to the subset U ′ = U ∪ V (σ) ⊂ V (X) and to

the subcomplex A t σ̄ ⊂ XU ′ ; here σ̄ denotes the subcomplex containing the simplex σ

and all its faces. We obtain a vertex w ∈ V (X) − U ′ with LkX(w) ∩ XU ′ = A t σ̄ or

equivalently, XU ′∪w = XU ′ ∪ wA, see Remark 5.2.3. Note that w ∈ Y = LkX(σ) since
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the simplex wσ is in X. Besides, YU∪w = YU ∪wA. Hence we see that the link Y is also

a Rado complex.

5.5 Geometric realisation of the Rado complex

Recall that for a simplicial complex X the geometric realisation |X| is the set of all

functions α : V (X)→ [0, 1] such that the support supp(α) = {v;α(v) 6= 0} is a simplex

of X (and hence finite) and
∑

v∈X α(v) = 1, see [70]. For a simplex σ ∈ F (X) the symbol

|σ| denotes the set of all α ∈ |X| with supp(α) ⊂ σ. The set |σ| has natural topology and

is homeomorphic to the linear simplex lying in an Euclidean space. The weak topology

on the geometric realisation |X| has as open sets the subsets U ⊂ |X| such that U ∩ |σ|

is open in |σ| for any simplex σ.

Theorem 5.5.1. The Rado complex is isomorphic to a triangulation of the simplex ∆N.

In particular, the geometric realisation |X| of the Rado complex is homeomorphic to the

infinite dimensional simplex |∆N|.

The following general statement about subdivisions of simplicial complexes will be

used in the proof of Theorem 5.5.1.

Lemma 5.5.2. Let (K,L) be a pair consisting of a finite simplicial complex K and its

subcomplex L. Then there is a subdivision K0 of K with the following properties:

1. K0 contains L as a subcomplex, i.e. no simplex of L is subdivided;

2. L is an induced subcomplex of K0;

3. The number of new vertices |V (K0)−V (K)| equals the number of external simplices

of L in K of positive dimension.

Proof. Recall that a simplex σ ⊂ K is said to be an external simplex of L if σ 6⊂ L but

all proper faces of σ lie in L. A characteristic property of an induced subcomplex is that

all its external simplices are zero-dimensional. Based on this remark one can prove this

result by an inductive argument as follows.

Suppose the number of external simplices of L in K of positive dimension is N > 0

and let σ be such a simplex, i.e. σ ⊂ K, σ 6⊂ L, ∂σ ⊂ L, and dimσ > 0. We introduce
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a new vertex vσ in the centre of σ and replace the closed star St(σ) by the simplicial

cone vσ ∗ (Lk(σ) ∗ ∂σ). We obtain a subdivision K1 of K having one extra vertex (lying

outside L) such that the number of external simplices of positive dimension of L in K1

is N − 1. Repeating this process N times, we arrive at the desired subdivision. At each

step the number of external simplices of positive dimension is reduced by one.

Lemma 5.5.3. Let X be a Rado complex. Then there exists a sequence of finite subsets

U0 ⊂ U1 ⊂ U2 ⊂ · · · ⊂ V (X) such that ∪Un = V (X) and for any n = 0, 1, 2, . . .

the induced simplicial complex XUn is isomorphic to a triangulation Ln of the standard

simplex ∆n+1 of dimension n. Moreover, for any n the complex Ln is naturally an

induced subcomplex of Ln+1 and the isomorphisms fn : XUn → Ln satisfy fn+1|XUn = fn.

Proof. Let V (X) = {v0, v1, . . . } be a labelling of the vertices of X. One constructs the

subsets Un and complexes Ln by induction stating from U0 = {v0} and L0 = {v0}.

Suppose that the sets Ui and complexes Li with i ≤ n have been constructed. Consider

the subset U ′n+1 = Un ∪ {vi} ⊂ V (X) where i ≥ 0 is the smallest integer satisfying

vi /∈ Un. The induced simplicial complex XU ′n+1
has dimension ≤ n + 1. Clearly, the

complex XU ′n+1
has the form XUn ∪ (vi ∗A) for some subcomplex A ⊂ XUn . By applying

Lemma 5.5.2 to the simplicial pair

(vi ∗XUn , XUn ∪ (vi ∗A)) =
(
vi ∗XUn , XU ′n

)
we obtain a subdivision Ln+1 of the cone vi ∗XUn which contains XU ′n+1

as an induced

subcomplex. The map

id ∗ fn : vi ∗XUn i ∗ Ln

is a simplicial isomorphism. By induction Ln is a subdivison of a simplex of dimension

n and hence the simplicial complex Ln+1 is a subdivison of a simplex of dimension n+ 1

containing Ln as a subdivision of a face of codimension one.

We shall apply Lemma 5.2.6 to the abstract simplicial complexes XU ′n+1
and Ln+1. It
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gives a subset Un+1 ⊂ V (X) containing U ′n+1 and an isomorphism fn+1 : XUn+1 → Ln+1

satisfying fn+1|XUn+1 = fn.

Obviously, ∪Un = V (X). This completes the proof.

Proof. (Theorem 5.5.1) It follows from the previous Lemma.

Corollary 5.5.4. The geometric realisation |X| of the Rado complex is contractible.

Proof. Corollary follows Theorem 5.5.1 as the infinite simplex is contractible. We also

give a short independent proof below.

Let X be a Rado complex. By the Whitehead theorem we need to show that any

continuous map f : Sn → X is homotopic to the constant map. By the Simplicial

Approximation theorem f is homotopic to a simplicial map g : Sn → X. The image

g(Sn) ⊂ X is a finite subcomplex. Applying the property of Definition 5.2.2 to the set

of vertices U of g(Sn) and to the subcomplex A = XU we find a vertex v ∈ V (X) − U

such that the cone vA is a subset of X. Since the cone is contractible, we obtain that g,

which is equal the composition Sn → A→ vA→ X, is null-homotopic.

Remark 5.5.5. The geometric realisation of a simplicial complex carries another natural

topology, the metric topology, see [70]. The geometric realisation of X with the metric

topology is denoted |X|d. While for finite simplicial complexes the spaces |X| and |X|d
are homeomorphic, it is not true for infinite complexes in general. For the Rado complex

X the spaces |X| and |X|d are not homeomorphic. Moreover, in general, the metric

topology is not invariant under subdivisions, see [63], where this issue is discussed in

detail. We do not know if for the Rado complex X the spaces |X|d and |∆N|d are

homeomorphic.

5.6 Infinite random simplicial complexes

We show in Section 5.7 that a random infinite simplicial complex is a Rado complex with

probability 1, in a certain regime. In this section we prepare the grounds and describe

the probability measure on the set of infinite simplicial complexes.
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Let L be a finite simplicial complex. Suppose that with each simplex σ ⊂ L one has

associated a probability parameter pσ ∈ [0, 1]. We shall use the notation qσ = 1 − pσ.

Given a subcomplex A ⊂ L we may consider the set E(A|L) consisting of all simplices

of L which are not in A but such that all their proper faces are in A. The simplices

of E(A|L) are called external for A in L. As an example we mention that any vertex

v ∈ L−A is an external simplex, v ∈ E(A|L).

With a subcomplex A ⊂ L one may associate the following real number

p(A) =
∏

σ∈F (A)

pσ ·
∏

σ∈E(A|L)

qσ ∈ [0, 1]. (5.6)

For example, taking A = ∅ we obtain p(∅) =
∏
v∈V (L) qv, the product is taken with

respect to all vertices v of L.

The following result will be used to show that the measure we will construct for infinite

random simplicial complexes is consistent in the way it projects onto finite simplicial

complexes of different dimensions

Lemma 5.6.1. One has
∑

A⊂L p(A) = 1, where A runs over all subcomplexes of L,

including the empty subcomplex.

Proof. Given in Appendix A.3.

Let ∆ = ∆N denote the simplex spanned by the set N = {1, 2, . . . } of positive integers.

We shall denote by Ω the set of all simplicial subcomplexes X ⊂ ∆. Each simplicial

complex X ∈ Ω has a finite or countable set of vertices V (X) ⊂ N and any finite or

countable simplicial complex is isomorphic to one of the complexes X ∈ Ω.

Let ∆n denote the simplex spanned by the vertices [n] = {1, 2, . . . , n} ⊂ N. Let Ωn

denote the set of all subcomplexes Y ⊂ ∆n. One has the projection

πn : Ω→ Ωn, X 7→ X ∩∆n.

In other words, for X ∈ Ω the complex πn(X) ⊂ ∆n is the subcomplex of X induced on

the vertex set [n] ⊂ N.
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For a subcomplex Y ⊂ ∆n we shall consider the set

Z(Y, n) = π−1
n (Y ) = {X ∈ Ω;X ∩∆n = Y } ⊂ Ω. (5.7)

Note that for n = n′ the sets Z(Y, n) and Z(Y ′, n′) are either identical (if and only if

Y = Y ′) of disjoint; for n > n′ the intersection Z(Y, n) ∩ Z(Y ′, n′) is nonempty if and

only if Y ∩∆n′ = Y ′ and in this case Z(Y, n) ⊂ Z(Y ′, n′). Note also that for n > n′ and

Y ∩∆n′ = Y ′ one has

Z(Y ′, n′) =
⊔
j

Z(Yj , n) (5.8)

where Yj ⊂ ∆n are all subcomplexes with Yj ∩∆n′ = Y ′; one of these subcomplexes Yj

coincides with Y .

Let A denote the set of all subsets Z(Y, n) ⊂ Ω and ∅. The set A is a semi-ring, see

[51], i.e. A is ∩-closed and for any A,B ∈ A the difference B − A is a finite union of

mutually disjoint sets from A. We shall denote by A′ the σ-algebra generated by A.

Example 5.6.2. Let U ⊂ N be a finite subset and let L be a simplicial complex with

vertex set V (L) ⊂ U . Then the set {X ∈ Ω;XU = L} is the union of finitely many

elements of the semi-ring A and in particular, {X ∈ Ω;XU = L} ∈ A′. Indeed, let n be an

integer such that U ⊂ [n] and let Yj ⊂ ∆n, for j ∈ I, be the list of all subcomplexes of ∆n

satisfying (Yj)U = L; in other words, Yj induces L on U . Then the set {X ∈ Ω;XU = L}

is the union tj∈IZ(Yj , n).

Next we define a function µ : A → R as follows. Fix for every simplex σ ⊂ ∆N a

probability parameter pσ ∈ [0, 1]. The function

F (∆N)→ [0, 1], σ 7→ {pσ} (5.9)

will be called the system of probability parameters. Here σ runs over all simplices σ ∈

F (∆N). We shall use the notation qσ = 1− pσ.
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For an integer n ≥ 0 and a subcomplex Y ⊂ ∆n define

µ(Z(Y, n)) =
∏

σ∈F (Y )

pσ ·
∏

σ∈E(Y |∆n)

qσ. (5.10)

Let us show that µ is additive. We know that the set Z(Y, n) equals the disjoint union

Z(Y, n) = tj∈IZ(Yj , n+ 1) (5.11)

where Yj are all subcomplexes of ∆n+1 satisfying Yj∩∆n = Y . One of these subcomplexes

Yj0 equals Y and the others contain the vertex (n+ 1) and have the form

Yj = Y ∪ ((n+ 1) ∗Aj)

where Aj ⊂ Y is a subcomplex. In other words, all complexes Yj with j 6= j0 are

obtained from Y by adding a cone with apex n+ 1 over a subcomplex Aj ⊂ Y . Clearly,

any subcomplex Aj ⊂ Y may occur, including the empty subcomplex Aj = ∅.

Applying the definition (5.10) we have

µ(Z(Y, n+ 1)) = µ(Z(Y, n)) · qn+1,

and for j 6= j0,

µ(Z(Yj , n+ 1) = µ(Z(Y, n)) · pn+1 ·
∏

σ∈F (Aj)

p′σ ·
∏

σ∈E(Aj |Y )

q′σ, (5.12)

where n + 1 denotes the new added vertex and p′σ denotes the probability parameter

p(n+1)σ associated to the simplex (n+ 1) ∗ σ (the cone over σ with apex n+ 1); besides,
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q′σ = 1− p′σ. Hence we obtain, using Lemma 5.6.1:

∑
j∈I

µ(Z(Yj , n+ 1))

= µ(Z(Y, n)) ·

qn+1 + pn+1 ·

 ∑
Aj⊂Y

∏
σ∈F (Aj)

p′σ ·
∏

σ∈E(Aj |Y

q′σ


= µ(Z(Y, n)).

Thus we see that µ is additive with respect to relations of type (5.11). But obviously, by

(5.8), these relations generate all additive relations in A. This implies that µ is additive.

Note that Ω can be naturally viewed as the inverse limit of the finite sets Ωn, i.e.

Ω = lim
←

Ωn. Introducing the discrete topology on each Ωn we obtain the inverse limit

topology on Ω and with this topology Ω is compact and totally disconnected; it is

homeomorphic to the Cantor set. The sets Z(Y, n) ⊂ Ω are open and closed in this

topology, hence they are compact.

Next we apply Theorem 1.53 from [51] to show that µ extends to a probability measure

on the σ-algebra A′ generated by A. This theorem requires for µ to be additive, σ-

subadditive and σ-finite. By Theorem 1.36 from [51], σ-subadditivity is equivalent to σ-

additivity. Recall that σ-additivity means that for A = tiAi (disjoint union of countably

many elements of A) one has µ(A) =
∑

i µ(Ai). In our case, since the sets Ai ⊂ Ω are

open and closed and since Ω is compact, any representation A = tiAi must be finite and

hence σ-additivity of µ follows from additivity.

For fixed n we have Ω = tZ(Y, n) where Y runs over all subcomplexes of ∆n

(including ∅). Using additivity of µ and applying Lemma 5.6.1, we have µ(Ω) =∑
Y⊂∆n

µ(Z(Y, n)) = 1. This shows that µ is σ-finite and hence by Theorem 1.53 from

[51] µ extends to a probability measure on A′. The extended measure on A′ will be

denoted by the same symbol µ.

Example 5.6.3. As in Example 5.6.2, let U ⊂ N be a finite subset and let L be a
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simplicial complex with vertex set V (L) ⊂ U . Then

µ({X ∈ Ω;XU = L}) =
∏

σ∈F (L)

pσ ·
∏

σ∈E(L|∆U )

qσ, (5.13)

where ∆U denotes the simplex spanned by U .

5.7 Every random simplicial complex in the medial regime

is Rado

In this section we prove that an infinite random simplicial complex in the medial regime

is a Rado complex with probability one.

Recall that a system of probability parameters pσ, see (5.9), is in the medial regime

if there exist 0 < p < P < 1 such that the probability parameter pσ satisfies pσ ∈ [p, P ]

for any simplex σ ∈ F (∆N).

Theorem 5.7.1. A random simplicial complex with countably many vertices in the me-

dial regime is a Rado complex, with probability one.

Proof. For a finite subset U ⊂ N and for a simplicial subcomplex A ⊂ ∆U of the simplex

∆U consider the set

ΩU,L = {X ∈ Ω;XU = L}. (5.14)

This set belongs to the σ-algebra A′ and has positive measure, see Example 5.6.3.

Consider also the subset ΩU,L,A,v ⊂ ΩU,L consisting of all subcomplexes X ∈ Ω satis-

fying XU∪v = L ∪ vA. Here A ⊂ L is a subcomplex and v ∈ N− U .

The conditional probability equals

µ(ΩU,L,A,v|ΩU,L) = pv ·
∏

σ∈F (A)

pvσ ·
∏

σ∈E(A|L)

qvσ ≥ p|F (A)|(1− P )|E(A|L)| > 0,

see (5.13). Note that the events ΩU,L,A,v, conditioned on ΩU,L for various v, are inde-
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pendent and the sum of their probabilities is∞. Hence we may apply the Borel-Cantelli

Lemma (see [51], page 51) to conclude that the set of complexes X ∈ ΩU,L such that

XU∪v = L ∪ vA for infinitely many vertices v has full measure in ΩU,L.

By taking a finite intersection with respect to all possible subcomplexes A ⊂ L this

implies that the set ΩU,L
∗ ⊂ ΩU,L of simplicial complexes X ∈ ΩU,L such that for any

subcomplex A ⊂ L there exists infinitely many vertices v with XU∪v = L ∪ vA has full

measure in ΩU,L.

Since Ω = ∩U ∪L⊂∆U
ΩU,L (where U ⊂ N runs over all finites subsets) we obtain that

the set ∩U ∪L⊂∆U
ΩU,L
∗ has measure 1 in Ω. But the latter set ∩U ∪L⊂∆U

ΩU,L
∗ is exactly

the set of all Rado simplicial complexes, see Lemma 5.4.1.



Chapter 6

Ample simplicial complexes

6.1 Introduction

In this chapter we study a special class of (finite) simplicial complexes that are stable and

resilient, in the sense that small alterations have limited impact on its global properties

(such as connectivity and higher connectivity). These stable and resilient complexes can

be viewed as finite approximations to the Rado complex described in Chapter 5.

We will call such complexes r-ample, where r ≥ 1 is an integer characterising the

level of ampleness. The Rado complex is the only simplicial complex on countably

many vertices which is ∞-ample. The finite simplicial complexes which we study here

will have a limited amount of ampleness and thus a limited amount of indestructibility.

The formal definition of r-ampleness requires the existence of all possible extensions of

simplicial subcomplexes of size at most r, details given in Definition 6.2.1.

We will show in Proposition 6.5.1 that the lower model medial regime random simpli-

cial complexes of Chapter 4 are r-ample, with probability tending to one. We compare

this to Theorem 5.7.1, which when translated into our new terminology states that every

infinite medial regime random simplicial complex is ∞-ample.

It was proven in Chapter 4 that the medial regime (lower model) random simplicial

complex is simply connected and has vanishing Betti numbers in dimensions ≤ ln lnn.

For these reasons one expects that any r-ample simplicial complexes is highly connected,

114
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for large r – this question is discussed in detail in Section 6.4.

Analogues of this ampleness property have been studied for graphs, hypergraphs,

tournaments, and other structures, in combinatorics and in mathematical logic. In the

literature a variety of terms have been used: r-existentially completeness, r-existentially

closedness, r-e.c. for short [12, 19], and also the Adjacency Axiom r [8, 9], an extension

property [34], property P (r) [10, 16], as the Alice’s Restaurant Axiom [71, 75], and

sometimes just as random. Here we use the term r-ample, in keeping with Chapter 5.

The plan is as follows. In Section 6.2 we give the main definition and discuss several

examples. In Section 6.3 we discuss the resilience of r-ample complexes; our main result,

Theorem 6.3.1, gives a bound on the number of simplices one can remove so that the

level of ampleness by at most k. A significant role in this estimate plays the Dedekind

number which equals the number of simplicial complexes on k vertices; good asymptotic

approximations for the Dedekind number are known, see Section 6.2.

In Section 6.4 we show that r-ample simplicial complexes are simply connected and 2-

connected, for suitable values of r. Note that the Rado complex is contractible and hence

one expects that any r-ample complex is k-connected for r > r(k), for some r(k) < ∞.

We do not know if this is true in general, however we are able to analyse the cases k = 1

and k = 2.

In Section 6.5 we show that for every r ≥ 5 and for any n ≥ r2r22r , there exists an

r-ample simplicial complex having exactly n vertices via a probabilistic argument, see

Proposition 6.5.4. Finally, in Section 6.6 we construct an explicit family, in the spirit of

Paley graphs[32], of r-ample simplicial complexes on exp(O(r2r)) vertices.

6.2 Definitions and basic properties

6.2.1 r-ampleness

We begin by fixing our notation. If U ⊆ V (X) is a subset we denote by XU the induced

subcomplex on U , i.e., V (XU ) = U and a subset of vertices of U forms a simplex in XU

if and only if it is a simplex in X.
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An embedding of a simplicial complex A into X is an isomorphism between A and an

induced subcomplex of X.

We define the join of two simplicial complexes X and Y , denoted X ∗ Y , as the

simplicial complex with vertex set V (X) t V (Y ) with the simplices of the join being

simplices of the complexes X and Y as well as those of the form σ ∗ τ where σ ∈ X and

τ ∈ Y .

Here is our main definition.

Definition 6.2.1. Let r ≥ 1 be an integer. A nonempty simplicial complex X is said to

be r-ample if for each subset U ⊆ V (X) with |U | ≤ r and for each subcomplex A ⊆ XU

there exists a vertex v ∈ V (X)− U such that

LkX(v) ∩XU = A. (6.1)

We say that X is ample or ∞-ample if it is r-ample for every r ≥ 1.

Recall that this is the same as Definition 5.2.2 with the additional condition that the

vertex set U be of cardinality at most r. It’s clear that r-ampleness depends only on the

r-dimensional skeleton.

The condition (6.1) can equivalently be expressed as

XU∪{v} = XU ∪ (v ∗A). (6.2)

Obviously, no finite simplicial complex can be ∞-ample. In Chapter 5 it was shown

that there exists a unique, up to isomorphism, ∞-ample simplicial complex X on count-

ably many vertices, see Theorem 5.7.1.

To be 1-ample a simplicial complex must have no isolated vertices and no vertices

connected to all other vertices. A 1-ample complex has at least 4 vertices and Figure 6.1

shows two such examples.

A 2-ample complex is connected since for any pair of vertices there must exist a vertex

connected to both, i.e. the complex must have diameter ≤ 2. A 2-ample complex is also
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Figure 6.1: 1-ample complexes.

twin-free in the sense that no two vertices have exactly the same link. The following

example shows that a 2-ample simplicial complex is not necessarily simply connected.

Example 6.2.2. Consider a 2-dimensional simplicial complex X having 13 vertices

labelled by integers 0, 1, 2, . . . , 12. A pair of vertices i and j is connected by an edge if

and only if the difference i− j is a square modulo 13, i.e. when

i− j ≡ ±1,±3,±4 mod 13.

The 1-skeleton of X is a well-known Paley graph of order 13. Next we add 13 triangles

i, i+ 1, i+ 4, where i = 0, 1, . . . , 12.

We claim that the obtained complex X is 2-ample. The verification amounts to the

following: for any two vertices, there exists others adjacent to both, neither, only one, and

only the other. Additionally, any edge lies both on a single filled and unfilled triangles.

Indeed, an edge i, i+ 1 lies in the triangle i, i+ 1, i+ 4 (filled) as well as in the triangle

i− 3, i, i+ 1 (unfilled).

We note that X can be obtained from the triangulated torus with 13 vertices, 39 edges

and 26 triangles (see Figure 6.2) by removing 13 white triangles of type i, i + 3, i + 4.

From this description it is obvious that X collapses onto a graph and calculating the

Euler characteristic we find b0(X) = 1, b1(X) = 14 and b2(X) = 0.

6.2.2 Dimension and size

The following Lemma gives an equivalent criterion for r-ampleness.

Lemma 6.2.3. A simplicial complex X is r-ample if and only if for every pair (A,B)
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Figure 6.2: The simplicial complex of Example 6.2.2 can be obtained from the triangu-
lated torus with 13 vertices, 39 edges and 26 triangles, by removing 13 triangles of type
{i, i+ 3, i+ 4}.

consisting of a simplicial complex A and an induced subcomplex B of A, satisfying

|V (A)| ≤ r + 1, and for every embedding fB of B into X, there exists an embedding fA

of A into X extending fB.

Proof. Clearly the property described in Lemma 6.2.3 implies r-ampleness and we only

need to show the inverse. Suppose that X is r-ample and let (A,B) be a pair consisting

of a simplicial complex A with |V (A)| ≤ r + 1 and its induced subcomplex B. We can

find a chain of subcomplexes

B = B0 ⊂ B1 ⊂ B2 ⊂ · · · ⊂ Bk = A

where each subcomplex Bi+1 is obtained from Bi by adding a vertex vi+1 and attaching

a cone vi+1 ∗Yi where Yi ⊂ Bi is a subcomplex. Here V (Bi) ≤ r for any i. Once B = B0

is identified with an induced subcomplex of X we may apply inductively the definition

to extend this embedding to an embedding of A.

Applying Lemma 6.2.3 in the case when B is a single vertex, we obtain:

Corollary 6.2.4. If X is r-ample then any simplicial complex on at most r+ 1 vertices

can be embedded into X.
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Corollary 6.2.5. The dimension of an r-ample simplicial complex X is at least r.

We shall denote by M ′(n) the number of simplicial complexes with vertices from the

set {1, 2, . . . , n}. The number M ′(n) + 1 = M(n) is known as the Dedekind number,

see [50], it equals the number of monotone Boolean functions of n variables and has

some other combinatorial interpretations, being also equal to the number of antichains

in the set of n elements. A few first values of “the reduced Dedekind number” M ′(n) are

M ′(1) = 2, M ′(2) = 5, M ′(3) = 19. For general n, M ′(n) admits estimates

(
n

bn/2c

)
≤ log2(M ′(n)) ≤

(
n

bn/2c

)(
1 +O

(
log n

n

))
. (6.3)

The lower bound in (6.3) is easy: one counts only the simplicial complexes having the

full bn/2c skeleton; the upper bound in (6.3) is obtained in [50]. We shall also mention

that

(
n

bn/2c

)
∼
√

2

πn
· 2n, (6.4)

as follows from the Stirling formula. Thus,

log2 log2(M ′(n)) = n− 1

2
log2 n+O(1). (6.5)

Corollary 6.2.6. An r-ample simplicial complex contains at least

M ′(r) + r ≥ 2( r
br/2c) + r

vertices.

Proof. Let X be an r-ample complex. Using Lemma 6.2.4 we can embed into X an

(r − 1)-dimensional simplex ∆ having r vertices. Applying Definition 6.2.1, for every

subcomplex A of ∆ we can find a vertex vA in the complement of ∆ having A as its link

intersected with ∆. The number of subcomplexes A is M ′(r) and we also have r vertices

of ∆ which gives the estimate.



Chapter 6. Ample simplicial complexes 120

6.3 Resilience of ample complexes

In this section we present a few results characterising resilience of r-ample simplicial

complexes: small perturbations to the complex reduce its ampleness in a controlled way

and hence many geometric properties remain.

The perturbations that we have in mind are as follows. If X is a simplicial complex

and F is a finite set of simplices of X, one may consider the simplicial complex Y

obtained from X by removing all simplices of F as well as all simplices which have faces

belonging to F . We shall say that Y is obtained from X by removing the set of simplices

F .

We are interested in situations when Y preserves certain properties of X despite the

“damage” caused by removing the family of simplices F . We will characterise the size

of F by two numbers: |F| (the cardinality of F) and dim(F) =
∑

σ∈F dimσ (the total

dimension of F).

Theorem 6.3.1. Let X be an r-ample simplicial complex and let Y be obtained from X

by removing a set F of simplices. Then Y is (r − k)-ample provided that

|F|+ dim(F) < M ′(k) + k. (6.6)

In particular, the complex Y is (r − k)-ample if

|F|+ dim(F) < 2( k
bk/2c) + k. (6.7)

Proof. Without loss of generality we may assume that F forms an anti-chain, i.e. no

simplex of F is a proper face of another simplex of F . Indeed, if σ1 ⊂ σ2, where

σ1, σ2 ∈ F , we can remove σ2 from F without affecting the complex Y .

Consider a vertex v ∈ V (Y ) and its links LkY (v) ⊂ LkX(v) in Y and in X, correspond-

ingly. Let Fv denote the set of simplices σ ⊂ LkX(v) such that either σ ∈ F or vσ ∈ F .

It follows directly from the definitions that LkY (v) is obtained from LkX(v) by removing

the set of simplices Fv. Our goal is to be able to pick v such that Definition 6.2.1 is
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satisfied for any vertex set of cardinality at most r − k.

Let W0 denote the set of 0-dimensional simplices in F , and W1 = {V (σ) : σ ∈

F , dimσ ≥ 1} the vertices of all higher dimensional simplices in F ; by our anti-chain

assumption we have W0 ∩ W1 = ∅. Note that, V (Y ) = V (X) − W0 and therefore

W1 ⊂ V (Y ).

Let U ⊂ V (Y ) be a subset, given v ∈ V (Y ) define the following properties of v:

(a.) v /∈W1,

(b.) LkX(v) ∩XU is a subcomplex of YU .

If v satisfies (a.) and (b.) then

LkY (v) ∩ YU = LkX(v) ∩XU . (6.8)

Indeed, by (a) we have LkX(v) ∩ YU = LkY (v) ∩ YU , and LkX(v) ∩ YU = LkX(v) ∩XU

by (b). Our goal for the rest of this proof is therefore to find such a vertex satisfying

both conditions.

Let k be an integer satisfying (6.6) and U ⊂ V (Y ) a subset with |U | ≤ r− k. Given a

subcomplex A ⊂ YU , we want to show the existence of a vertex v ∈ V (Y )−U such that

LkY (v) ∩ YU = A. (6.9)

This would mean that our complex Y is (r − k)-ample.

Note that the induced subcomplex XU obviously contains A as a subcomplex, and

consider the abstract simplicial complex

K = XU ∪ (A ∗∆k),

where ∆k is an abstract full simplex on k vertices. Note that K has at most r vertices,

XU is an induced subcomplex of K and it is naturally embedded into X by r-ampleness.

Using the assumption that X is r-ample and by application of Lemma 6.2.3, we can find

an embedding of K into X extending the identity map of XU . In other words, we can
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find k vertices U ′ = {v1, . . . , vk} ∈ V (X) − U such that for a simplex τ of XU and for

any subset S ⊂ {v1, . . . , vk} one has ∪u∈Su ∗ τ ∈ X if and only if τ ∈ A, i.e. every vi

satisfies property (b.). If one of the vi lies in V (Y )−W1 then, (6.8) holds so we have,

LkY (vi) ∩ YU = LkX(vi) ∩XU = A

and we are done. Thus, we suppose that U ′ ⊂W0 ∪W1.

Let Z ⊂ ∆k be an arbitrary simplicial subcomplex. We may use the r-ampleness

of X and apply Definition 6.2.1 to the subcomplex A t Z of XU∪U ′ to get a vertex

vZ ∈ V (X)− (U ∪ U ′) satisfying

LkX(vZ) ∩XU∪U ′ = A t Z

and in particular,

LkX(vZ) ∩XU = A. (6.10)

For distinct subcomplexes Z,Z ′ ⊂ ∆ the points vZ and vZ′ are distinct and the car-

dinality of the set {vZ ;Z ⊂ ∆} equals M ′(k). Noting that (6.10) is a subcomplex of

YU ⊂ XU , so vz satisfies (b.) we see that our claim will follow by (6.9) and (6.10) if vZ

satisfies (a.) for at least one subcomplex Z, that is if some vZ ∈ V (Y )−W1.

Let us assume the contrary, i.e. vZ ∈ (W0∪W1)−U ′ for every subcomplex Z ⊂ ∆. The

cardinality of the set {vZ} equals M ′(k) and the cardinality of the set (W0 ∪W1) − U ′

equals |F| + dimF − k and we get a contradiction with our assumption (6.6). This

completes the proof.

(6.7) follows immediately by (6.3).

We finish this section with the following observation.

Proposition 6.3.2. The link of a vertex in an r-ample simplicial complex is (r − 1)-

ample. More generally, the link of every k-dimensional simplex in an r-ample complex

is (r − k − 1)-ample.
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Proof. We consider the case k = 0 first. Let v ∈ V (X) be a vertex and let L denote the

link of v in X. Let (A,B) be a pair consisting of a simplicial complex A and its induced

subcomplex B where |V (A)| ≤ r. Consider the pair (CA,CB) consisting of cones with

apex w. Note that CB is an induced subcomplex of CA and |V (CA)| ≤ r + 1. Since

v∗L ⊆ X, any embedding fB : B → L can be extended to an embedding fCB : CB → X

where w is mapped into v. Since X is r-ample, applying Lemma 6.2.3 we can find an

embedding fCA : CA→ X extending fCB. Then the restriction fCA|A is an embedding

A→ L extending fB.

The case when k > 0 is similar. Let σ be a k-simplex in X and let L denote its

link. Consider a pair (A,B) with |V (A)| ≤ r − k, an induced subcomplex B of A and

an embedding fB : B → L. Consider the joins A′ = A ∗ σ and B′ = B ∗ σ and note

that V (A′) ≤ r + 1 and B′ is an induced subcomplex of A′. By Lemma 6.2.3 the join

embedding fB′ = fB ∗ 1 : B′ = B ∗ σ → L ∗ σ can be extended to an embedding

fA′ : A′ → L ∗ σ which restricts to an embedding fA : A→ L extending fB.

6.4 Higher connectivity of ample complexes

It is natural to ask whether the geometric realisation of an r-ample simplicial complex is

highly connected, i.e. do the homotopy groups below certain dimension all vanish. The

motivation for this question comes from the fact that an r-ample finite simplicial complex

can be viewed as an approximation to the Rado simplicial complex whose geometric

realisation is homeomorphic to an infinite dimensional simplex and is hence contractible,

see Theorem 5.5.1.

Recall that a simplicial complex Y is m-connected if for every triangulation of the

i-dimensional sphere Si with i ≤ m and for every simplicial map α : Si → Y there

exists a triangulation of the disc Di+1 extending the given triangulation of the sphere

Si = ∂Di+1 and a simplicial map β : Di+1 → Y extending α. A 1-connected complex is

also said to be simply connected.

Proposition 6.4.1. For r ≥ 4, any r-ample simplicial complex Y is simply connected.
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Moreover, any simplical loop α : S1 → Y with n vertices in an r-ample complex Y

bounds a simplicial disc β : D2 → Y where D2 is a triangulation of the disc having n

boundary vertices, at most dn−3
r−3 e internal vertices and at most dn−3

r−3 e·(r−1)+1 triangles.

Proof. If n ≤ r we may simply apply the definition of r-ampleness and find an extension

β : D2 → Y with a single internal vertex. If n > r we may apply the definition of

r-ampleness to any arc consisting of r vertices, see Figure 6.3. This reduces the length

of the loop by r − 3 and performing dn−rr−3 e such operations we obtain a loop of length

≤ r which can be filled by a single vertex. The number of internal vertices of the

bounding disc will be dn−rr−3 e + 1 = dn−3
r−3 e. To estimate the number of triangles we note

that on each intermediate step of the process described above we add r − 1 triangles

and on the final step we may add at most r triangles. This leads to the upper bound

dn−rr−3 e · (r − 1) + r = dn−3
r−3 e · (r − 1) + 1.

Figure 6.3: The process of constructing the bounding disc in a 5-ample complex as
detailed in the proof of Proposition 6.4.1

Currently we’re not aware of any examples of a 3-ample complex which is not sim-

ply connected. However, the 2-ample complex of Example 6.2.2 has non-trivial first

fundamental group and is therefore not simply connected.

Theorem 6.4.2. For r ≥ 18, every r-ample simplicial complex is 2-connected.

In the proof of Theorem 6.4.2 we shall use the following property about triangulations

of the 2-sphere.
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Lemma 6.4.3. In any triangulation Σ of the 2-dimensional sphere there exists two

adjacent vertices v and w both having degree at most 11.

Proof. We let dv denote the (edge) degree of a vertex v of a triangulation Σ of S2, i.e.

it is the number of edges incident to v.

Recall that for any triangulation Σ of the 2-sphere one has the following relation

∑
v

(
1− dv

6

)
= 2, (6.11)

where v runs over all vertices of Σ and dv denotes the degree of the vertex v. Formula

(6.11) is well-known, it follows from the Euler’s formula V − E + F = 2 by observing

that E = 1
2

∑
v dv and F = 1

3

∑
v dv. Formula (6.11) can be viewed as a combinatorial

version of the Gauss-Bonnet theorem.

Let A denote the set of vertices v ∈ V (Σ) satisfying dv ≤ 11 and let B denote the

complementary set consisting of vertices with dv ≥ 12. Denote also

CA =
∑
v∈A

(
1− dv

6

)
, CB =

∑
v∈B

(
1− dv

6

)
,

the contributions of both sets into the sum (6.11). Since dv ≥ 3 we have 1− dv
6 ≤ 1

2 and

hence

CA ≤
1

2
|A|.

Moreover, 1− dv
6 ≤ −1 for v ∈ B and therefore

CB ≤ −|B|, CA + CB = 2, |A|+ |B| = V.

From these relations one obtains

|A| ≥ 2

3
(V + 2). (6.12)

Next we claim that there must exist an edge e with both endpoints in A, i.e. having
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degree ≤ 11. Assuming the contrary, every triangle of the triangulation Σ would have

at most one vertex of degree ≤ 11 and since the minimal degree is 3, using (6.12), we

obtain that the number of triangles would be at least

3 · 2

3
(V + 2) = 2V + 4.

However this contradicts the well-known relation F = 2V − 4 for the total number of

triangles.

We shall also need the following simple Lemma:

Lemma 6.4.4. Let D be a triangulated 2-dimensional disk and let L = ∂D be its bound-

ary circle. Assume that the length (i.e. the number of edges) of L is at least 7 and D

has at most one internal vertex. Then there exists a pair of boundary vertices x, y ∈ L

satisfying dL(x, y) ≥ 3 such that they can be connected by a simple simplicial arc α in D

with ∂α = {x, y} = α ∩ ∂D. Here dL(x, y) denotes the distance between x and y along

the boundary L, i.e. the number of edges in the shortest simplicial path in L connecting

x and y.

Proof. Let us first consider the case when D has no internal vertices. Denoting the

length |L| of the boundary by n, we see that there are n−3 internal arcs (as follows from

the Euler’s formula). We want to show that there exists an internal arc such that its end

points x, y satisfy dL(x, y) ≥ 3. Assuming that dL(x, y) = 2 for any internal arc, we may

cut D along an arbitrary internal arc which produces a triangle and a triangulated disk

D′ with |L′| = n− 1 where L′ = ∂D′. If we knew that our statement was true for D′ we

could find vertices x, y ∈ L′ satisfying dL′(x, y) ≥ 3 such that x, y are the endpoints of

an internal arc of D′. Then dL(x, y) ≥ dL′(x, y) ≥ 3. This argument shows that without

loss of generality we may assume that the length of L is exactly 7 but in this case one

can see that our statement holds by examining a few explicit cases; see left part of Figure

6.4.

Consider now the case when D has a single internal vertex, denoted v. The vertex v is

connected to at least 3 other vertices a, b, c ∈ L. Let dL(a, c) be the maximal among the
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three numbers dL(a, b), dL(a, c), dL(b, c). Then either dL(a, b) + dL(b, c) + dL(a, c) = |L|

or dL(a, c) = dL(a, b) + dL(b, c). In the first case one obtains dL(a, c) ≥ 4 (since |L| ≥ 7)

and we are done, as we can take for α the arc av+vc. In the second case we may similarly

treat the case dL(a, b) ≥ 3 and we are left with the possibility dL(a, b) = 2 and hence

dL(a, c) = 1 and dL(c, b) = 1. Cutting along the arc av + vc produces two triangulated

disks, each with no internal vertices, one having 4 vertices and the other, denoted D′,

having |L| vertices. We see that |∂D′| ≥ 7 and hence we may apply the previous case of

the Lemma, i.e. we can find two vertices x, y ∈ ∂D′ = L′ connected by an internal arc

such that dL′(x, y) ≥ 3. We are done if none of the points x, y equal v. However if x = v

we may consider the pair y, b ∈ L since dL(y, b) = dL′(y, v) ≥ 3 and the points y, b are

connected by the arc α = yv + vb. See Figure 6.4, right.

x

 y

 a

 b

 c

 v 

 y

Figure 6.4: Triangulated disks with no internal vertices (left) and one internal vertex
(right) illustrating the proof of Lemma 6.4.4.

The following gives us information about local structure of r-ample complexes and

will be used below in the proof of Theorem 6.4.2.

Lemma 6.4.5. Let X be an r-ample simplicial complex. Then any simplicial map

f : K → X, with |V (K)| ≤ r, is null-homotopic.

Proof. The set U = f(V (k)) ⊂ V (X) has cardinality ≤ r and applying Definition 6.2.1

we can find a vertex v ∈ V (X) − U such that XU∪{v} = v ∗XU (cone over XU ). Thus

we see that f : K → X factorises through a map with values in the cone v ∗XU which

is contractible and hence f is null-homotopic.
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With these results in place we can now prove Theorem 6.4.2.

Proof of Theorem 6.4.2. We shall assume the contrary and arrive to a contradiction. Let

Y be an 18-ample simplicial complex which is not 2-connected. From Proposition 6.4.1 we

know that Y is simply connected. Let M(Y ) denote the smallest number of vertices in a

triangulation Σ of the sphere S2 admitting a simplicial essential (i.e. not null-homotopic)

map f : Σ→ Y . By the well-known Simplicial Approximation Theorem, M(Y ) is finite.

Lemma 6.4.5 implies V (Σ) ≥ 19 for every simplicial essential map f : Σ→ Y and hence

M(Y ) ≥ 19.

Let f : Σ→ Y be an essential simplicial minimal map, i.e. |V (Σ)| = M(Y ). We shall

use the following geometric property of the triangulation Σ of S2, its roundness, which

is described in the next paragraph.

Suppose that L ⊂ Σ is a simple simplicial loop of length |L| ≤ 18, i.e. L contains at

most 18 edges. Clearly, L divides the sphere Σ into two triangulated disks D1 and D2

with each of these disks having |L| boundary vertices and possibly a number of internal

vertices.

Claim. At least one of the disks D1, D2 has at most one internal vertex, i.e. a “small”

loop cannot divide the sphere into two large pieces – we say that Σ is round.

Proof of claim. Suppose that each of the disks D1 and D2 has ≥ 2 internal vertices.

Let D = a∗L be the cone with apex a and base L. We can form two triangulated spheres

Σ1 = D1 ∪D and Σ2 = D2 ∪D and each of these spheres has strictly smaller number of

vertices than Σ (since D has a single internal vertex and each of the disks D1, D2 has

at least 2 internal vertices).

Next we observe that each of the spheres Σ1 and Σ2 can be mapped simplicially into

Y so that at least one of the maps Σ1 → Y or Σ2 → Y is essential. Consider the image

f(L) ⊂ Y of the loop L in Y . It is a subcomplex with at most 18 vertices and by

the 18-ampleness of Y we can find a vertex u ∈ V (Y ) such that u ∗ f(L) ⊂ Y . Now

we may extend the map f : Σ → Y onto the disk D = a ∗ L by mapping a onto u and

extending this map onto the cone by linearity. We obtain a simplicial map g : Σ∪D → Y
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extending f and the restrictions g1 = g|Σ1 : Σ1 → Y and g2 = g|Σ2 : Σ2 → Y are the

desired simplicial maps. Since Σ1 ∪Σ2 = Σ∪D and Σ1 ∩Σ2 = D is contractible, we see

that g is essential (as f = g|Σ is essential) and hence at least one of the maps g1, g2 is

essential. Thus, we arrive at a contradiction with the minimality of f .

Our main idea from here on will be to utilise this claim as follows: we will construct

two loops L,L′ such that at least one of the pairs of discs defined cannot satisfy the

roundness property.

Next we invoke Lemma 6.4.3 which gives us two adjacent vertices v and w of Σ,

each having degree at most 11. Let e be the edge connecting v and w. Consider the

subcomplex U of the surface Σ which is the union of all triangles incident to e. The

boundary ∂U is a closed curve (potentially with some identifications, see below) formed

by dv + dw − 4 ≤ 11 + 11− 4 = 18 edges and the interior of U is the union of dv + dw − 2

triangles. The edge e is incident to two triangles; we shall denote by α and β the vertices

v w

↵
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Figure 6.5: Triangles incident to an edge on the surface.

of these two triangles which are not incident to e, see Figure 6.5.

Let us assume first that the links of the vertices v and w satisfy

LkΣ(v) ∩ LkΣ(w) = {α, β}.

Then U is a triangulated disk with ≤ 18 + 2 = 20 vertices, among them 2 are internal,

as shown on Figure 6.5.

Suppose now that there exists a vertex a ∈ LkΣ(v) ∩ LkΣ(w) which is distinct from

α and β. Then the path L = av + vw + wa is a simplicial loop on Σ which divides the
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Figure 6.6: Disk U with 3 internal vertices.

surface Σ into two disks. By the roundness property of Σ, one of these two disks must

have at most one internal vertex. In fact, the only possibility is that L bounds a disk

with one internal vertex and L cannot be the boundary of a triangle: otherwise the edge

e would belong to 3 different triangles. It is easy to see that this internal vertex must be

either α or β, as there are exactly 2 triangles incident to e, see Figure 6.6. In this case

α becomes an internal vertex of U .

For similar reasons it might happen that both vertices α and β are internal vertices

of U .

The argument above shows that any vertex lying in LkΣ(v)∩LkΣ(w), which is distinct

from α and β, belongs to a triangular simplicial loop surrounding either α or β and

containing the edge vw (similarly the loop av + vw + wa shown on Figure 6.6). This

implies that the intersection LkΣ(v) ∩ LkΣ(w) may contain at most 4 vertices.

Potentially it might happen that U = Σ, i.e. ∂U = ∅. Then all vertices of Σ, other

than v, w, lie in the intersection LkΣ(v) ∩ LkΣ(w). Using the above arguments, we see

that in this case V (Σ) ≤ 6, which contradicts our assumption V (Σ) ≥ 19.

The remaining possibility is that U ⊂ Σ is a subcomplex, it has either 2, 3 or 4

internal vertices and its total number of vertices is at most 20.

The closure of the complement of U in Σ is another disk, U ′, and applying the

roundness property of Σ, we conclude that that U ′ has at most one internal point.
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Thus, we see that the triangulation Σ must have at most 21 vertices in total, and using

Lemma 6.4.5 we obtain that |V (Σ)| must be equal to one of the three numbers: 19, 20

or 21.

Using this observation we conclude that the length ` = |L| of the boundary L = ∂U =

∂U ′ should satisfy 14 ≤ ` ≤ 18.

Finally we show that there must exist a simplicial simple closed curve L′ on Σ dividing

the sphere Σ into two disks, each having more than one internal points, which will violate

the roundness of Σ and gives a contradiction. The curve L′ is the union of two arcs

L′ = A ∪ A′ where A ⊂ U and A′ ⊂ U ′. We first construct the arc A′ ⊂ U ′; we only

must ensure that (∗) the endpoints of A′ divide the boundary L into two arcs, each of

length ≥ 3. The existence of such an arc follows from Lemma 6.4.4 below. Once the arc

A′ ⊂ U ′ satisfying (∗) is constructed we connect its endpoints (lying on the boundary

L = ∂U) by a simple simplicial arc A in U ; it is clear from Figures 6.5 and 6.6 that any

two points on the boundary can be connected by such an arc in U .

The vertices of L distinct from the two vertices in the boundaries ∂A = ∂A′ are

internal vertices of the disks on which the sphere Σ is divided by the circle L′; the

condition (∗) ensures that at least two vertices lie in each connected components of

Σ−L′. This contradicts the roundness property of Σ and completes the proof of Theorem

6.4.2.

We remark here that there is a simpler proof of a weaker1 version of Theorem 6.4.2

that uses the Planar Separator Theorem, the proof via this method is given in the

Appendix A.4.

Question 6.4.6. For every k ≥ 0 does there exist r(k) such that every r-ample simplicial

complex is k-connected provided that r ≥ r(k)?

We know that r(0) = 1, r(1) ≤ 4, and r(2) ≤ 18 by the results of this section but

the further cases remain open. The above proofs do not immediately translate to higher

dimensions as there is no analogue to Lemma 6.4.3 that holds for triangulations of the

1Weaker in the sense that we require our complex to be at least 79-ample before we can guarantee it
is 2-connected
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3-sphere and beyond.

We remark that a recent preprint [5] of Barmak (submitted the initial writing of this

thesis) seems to answer this question in the positive. In particular, they claim that if a

simplicial complex is 6k-ample then it will be k-connected.

Question 6.4.7. A further question of interest is to investigate the homology of ample

complexes. In particular, as the link of a k-simplex in an r-ample complex stays (r− k)-

ample one may hope to apply a Garland technique type argument. For this argument

to prove fruitful however one would need a good understanding of the spectrum in r-e.c.

graphs.

As a corollary of the Proposition 6.4.1 and Theorem 6.4.2, and Theorem 6.3.1 we are

able to state how much destruction one can do to an r-ample complex without breaking

higher connectivity.

Corollary 6.4.8. Let X be an r-ample simplicial complex and let Y be obtained from

X by removing a set F of simplices. Denote by ai the number of i-dimensional simplices

in F where i = 0, 1, . . . .. Then:

(a) If r ≥ 3 and a0 + 2a1 < M ′(r− 2) + r− 2 then Y is path-connected. In particular,

Y is path-connected if

a0 + 2a1 < 2( r−2
br/2c−1) + r − 2.

(b) If r ≥ 5 and a0 + 2a1 + 3a2 < M ′(r − 4) + r − 4 then Y is simply connected. In

particular, Y is simply connected if

a0 + 2a1 + 3a2 < 2( r−4
br/2c−2) + r − 4.

(c) If r ≥ 19 and a0 + 2a1 + 3a2 + 4a3 < M ′(r − 18) + r − 18 then Y is 2-connected.

In particular, Y is 2-connected if

a0 + 2a1 + 3a2 + 4a3 < 2( r−18
br/2c−9) + r − 18.

Proof. Claim (a) follows from Theorem 6.3.1 and from the observation that a 2-ample
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complex is connected; claim (b) follows from Theorem 6.3.1 and Proposition 6.4.1; claim

(c) follows from Theorems 6.3.1 and 6.4.2.

6.5 Large random simplicial complexes are ample

In this section we show that a (medial regime) lower model random simplicial complex

is r-ample with probability tending to one. This result implies the existence of r-ample

finite simplicial complexes, which we use to estimate the minimal number of vertices an

r-ample complex must possess.

Recall, from Chapter 2, that the probability of obtaining a simplicial subcomplex

Y ⊂ ∆n in the lower model is given by

Pn(Y ) =
∏

σ∈F (Y )

pσ ·
∏

σ∈E(Y )

qσ. (6.13)

We shall assume that the parameters pσ are in the medial regime. For our purposes

we will utilise a slightly relaxed condition in place of (4.3) in the following way: if the

parameters pσ are in the medial regime then there exists p ∈ (0, 1/2] that does not

depend on n such that

pσ ∈ [p, 1− p]. (6.14)

Note however that in Remark 6.5.2 we will further relax this assumption.

Proposition 6.5.1. For every integer r ≥ 1, the probability that a medial regime random

simplicial complex is r-ample tends to one, as n→∞.

Proof. We estimate probability that a random complex Y is not r-ample. Let us make

the following choices: a subset U ⊂ [n] of cardinality |U | ≤ r, a subcomplex Z ⊂ ∆n

with V (Z) = U , a subcomplex A ⊂ Z and a vertex v ∈ [n]− U . Consider the following

events

WU = {Y ⊂ ∆n | U ⊂ V (Y )},
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WU,Z = {Y ⊂ ∆n | U ⊂ V (Y ), YU = Z},

and

WU,Z,A,v = {Y ⊂ ∆n; U ∪ {v} ⊂ V (Y ), YU∪{v} = Z ∪ (A ∗ v)}.

Note that

WU = tZWU,Z

is the disjoint union where Z runs over all subcomplexes of ∆n satisfying V (Z) = U .

Consider also the complement W c
U,Z,A,v of WU,Z,A,v in WU,Z , i.e.

W c
U,Z,A,v = WU,Z −WU,Z,A,v.

A simplicial complex Y ⊂ ∆n belongs to W c
U,Z,A,v if and only if U ⊂ V (Y ) and YU = Z

and either v /∈ V (Y ) or v ∈ V (Y ) and LkY (v) ∩ YU 6= A. We see that for |U | ≤ r any

complex Y lying in the intersection

⋂
v∈[n]−U

W c
U,Z,A,v

is not r-ample. Moreover, the set N of all not r-ample simplicial complexes Y ⊂ ∆n,

Y 6= ∅, coincides with

N =
⋃

1≤|U |≤r

⊔
Z

 ⋃
A⊂Z

 ⋂
v∈[n]−U

W c
U,Z,A,v

 .

We denote

NU,Z =
⋃
A⊂Z

 ⋂
v∈[n]−U

W c
U,Z,A,v


and NU = tZNU,Z . Then N = ∪UNU , where |U | ≤ r.

Using definition (6.13) we can compute conditional probability

Pn(WU,Z,A,v |WU,Z) = pv ·
∏

σ∈F (A)

pvσ ·
∏

σ∈E(A|Z)

qvσ.
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Here vσ denotes the join v ∗σ and E(A|Z) denotes the set of simplices σ ∈ F (Z)−F (A)

such that ∂σ ⊂ A. Since |F (A)|+ |E(A|Z)| ≤ 2r − 1 (note that by definition a simplex

is a nonempty subset of the vertex set), using the medial regime assumption (6.14), we

obtain

Pn(WU,Z,A,v | WU,Z) ≥ p2r . (6.15)

Hence the complement W c
U,Z,A,v of WU,Z,A,v in WU,Z satisfies

Pn(W c
U,Z,A,v |WU,Z) ≤ 1− p2r

and since for different vertices v ∈ [n]−U the events W c
U,Z,A,v are conditionally indepen-

dent over WU,Z we obtain

Pn

(⋂
v

W c
U,Z,A,v |WU,Z

)
≤ (1− p2r)n−|U | ≤ (1− p2r)n−r

and therefore

Pn(NU,Z |WU,Z) = Pn

(⋃
A

⋂
v

W c
U,Z,A,v |WU,Z

)
≤ 22r(1− p2r)n−r,

where A runs over subcomplexes of Z (the number of such subcomplexes is clearly

bounded above by 22r).

Since NU = tZNU,Z and WU = tZWU,Z we obtain

Pn(NU ) ≤ max
Z

Pn(NU,Z |WU,Z) ≤ 22r(1− p2r)n−r.

And finally, we obtain the following upper bound for the probability of the setN = ∪UNU
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of all non-empty simplicial subcomplexes of ∆n which are not r-ample:

Pn(N ) ≤
r∑
j=1

(
n

j

)
· 22r

(
1− p2r

)n−r
≤ nr · 22r

(
1− p2r

)n−r
. (6.16)

Clearly, for n → ∞ the expression (6.16) tends to zero. Note also that the probability

of the empty simplicial complex is bounded above by (1 − p)n and tends to 0. This

completes the proof.

Remark 6.5.2. The above arguments prove that the conclusion of Proposition 6.5.1

holds under a slightly weaker assumption, namely pσ ∈ [p, 1 − p] where p = p(n) > 0

satisfies

p2r =
r lnn+ ν

n

with ν = ν(n) an arbitrary sequence tending to ∞. Examples satisfying the above

condition are p = 1/nα with α ∈ (0, 2−r) and p = 1/ lnn, with the latter choice working

for any r.

Remark 6.5.3. The arguments of the proof of Proposition 6.5.1 work without any

change if one alters the medial regime assumption by requiring that pv = 1 for every

vertex v ∈ [n] while pσ ∈ [p, 1−p] for dimσ > 0. Formula (6.13) implies that in this case

the probability measure is supported on the set of simplicial complexes Y ⊂ ∆n with

V (Y ) = [n], i.e. having exactly n vertices. This observation will be used below in the

Proof of Proposition 6.5.4

Proposition 6.5.4. For every r ≥ 5 and for every n ≥ r2r22r , there exists an r-ample

simplicial complex having exactly n vertices.

Proof. The expression (6.16) is an upper bound of the probability that a medial regime

random complex on n vertices is not r-ample. Clearly, if for some n the RHS of (6.16) is

smaller than 1 then an r-ample complex exists. The expression (6.16) is bounded above

by

nr22re−p
2r ·(n−r) = nre−np

2r · 22rerp
2r
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and taking the logarithm we obtain the following inequality

np2r − r lnn > 2r ln 2 + rp2r (6.17)

which guarantees the existence of an r-ample complex on n vertices. Below we shall

set p = 1/2. The function n 7→ np2r − r lnn is monotone increasing for n > r22r and

therefore we only need to show that (6.17) is satisfied for n = r2r22r . The inequality

(6.17) turns into

r2r(1− ln 2)− r2 ln 2− r ln r > 2r ln 2 + r2−2r

which is equivalent to

r(1− ln 2)− ln 2 >
r2 ln 2 + r ln r

2r
+ r2−2r−r. (6.18)

Given that ln 2 ' 0.6931 it is easy to see that (6.18) is satisfied for any r ≥ 5.

Remark 6.5.5. Even though a random simplicial complex with 2Ω(2r) vertices is r-

ample (as Proposition 6.5.4 claims), 2O(2r/
√
r) vertices do not suffice; this follows from

Corollary 6.2.6 and formula (6.5).

As a byproduct, we also obtain the following result about 2-connectivity of random

simplicial complexes in the medial regime.

Corollary 6.5.6. Every medial regime random simplicial complex is 2-connected, asymp-

totically almost surely.

Proof. This follows from Proposition 6.5.1 and Theorem 6.4.2.

Connectivity and simple connectivity of the medial regime random simplicial com-

plexes and vanishing of the Betti numbers was proven in Chapter 4 with arguments

involving the Nerve Lemma and Garland’s method.
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6.6 Explicit constructions of ample complexes

The random construction above shows the existence of r-ample simplicial complexes for

every r. However, it does not tell us how to construct an r-ample complex explicitly.

In this section we define a deterministic family of complexes that are guaranteed to be

r-ample.

6.6.1 Defining iterated Paley complexes

Our construction uses ideas from number theory, and generalises the classical Paley

graph, defined below. In Definitions 6.6.3-6.6.6, we introduce an iterated Paley simplicial

complex Xn,p on n vertices, for every odd prime power n and odd prime p dividing (n−1).

But first, we state the main theorem of the section.

Theorem 6.6.1. Let r ∈ N. Every iterated Paley simplicial complex Xn,p with p >

22r+2r and n > r2p2r is r-ample.

Theorem 6.6.1 is proven in Section 6.6.2, after the definition of Xn,p. After the proof,

we discuss the selection of the prime parameters n and p, so that r-ample complexes can

be constructed for every r. We prove the following corollary:

Corollary 6.6.2. For every sufficiently large r, there exists an r-ample iterated Paley

Complex Xn,p on n = 2(2+o(1))r2r vertices.

To summarize, exp(Ω(r 2r)) vertices are sufficient for constructing an r-ample complex

explicitly, compared to exp(Ω(2r)) vertices probabilistically, by Corollary 6.5.4. We do

not know how many vertices are really needed for these constructions to be r-ample.

However, the lack of r-ample complexes of size exp(O(2r/
√
r)), by Corollary 6.2.6, gives

a lower bound.

The Paley graph and the Paley tournament are long known to satisfy the correspond-

ing r-ampleness property for graphs and tournaments respectively [8, 11, 37]. Their

vertices are the elements of a finite field Fn with an edge from x to y if and only if

(y−x) is a quadratic residue [65]. More generally, these constructions exhibit numerous

important properties typical to their random counterparts, and are accordingly called



Chapter 6. Ample simplicial complexes 139

pseudorandom or quasirandom [2, 60]. However, these provably r-ample graphs and

tournaments are nearly square the size of those probabilistically shown to be r-ample.

Understanding such gaps between randomized and explicit solutions is a recurring theme

in the study of combinatorial structures and computational complexity.

The most straightforward extension of Paley’s graph to higher dimensions is by in-

cluding a d-dimensional face [x0, x1, . . . , xd] if x0 + x1 + · · ·+ xd is a quadratic residue.

Hypergraphs with (d+1)-edges constructed by this rule are known to possess some quasir-

andom properties [20, 40, 55]. They also yield large cosystoles in simplicial complexes,

pertinent to d-dimensional coboundary expansion over F2, by Kozlov and Meshulam,

see [53]. However, they fail to be ample. Indeed, if four vertices satisfy a + b = c + d,

then abx is a face if and only if cdx is a face, hence some extensions of such a foursome

are not available. All the explicit constructions considered in the study of quasirandom

hypergraphs break down when it comes to r-ampleness.

Our new construction combines three generalisations of Paley graphs. First, if m|(n−

1) then, rather than quadratic residues in Fn, one may determine adjacency by means of

the multiplicative subgroup of mth powers and its cosets. Having similar quasirandom

properties [3, 49], such graphs proved useful in Ramsey theory [21, 38, 72]. They appear

also in the classification of graphs with strong symmetries [56, 66].

Second, instead of defining hyperedges by summing x0 + · · · + xd, one may use the

Vandermonde determinant,

∆(x0, . . . , xd) :=
∏

0≤i<j≤d
(xi − xj)

This is an appealing route because such products are compatible with the multiplicative

nature of the above subgroups. Hypergraphs produced in this way [36, 52, 67] are known

to have several nice properties, but not r-ampleness.

The final and novel ingredient in our construction is the repeated use of Paley-like

motifs. Faces are selected according to certain cosets of p-power residues mod n, and

those cosets in turn correspond to quadratic residues mod p. For this reason, we name
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such constructions iterated Paley. The need for this double prime construction will be

clarified in the ampleness proof.

For the following set of definitions, fix an odd prime power n, an odd prime p that

divides n− 1, and a primitive element g in the finite field Fn.

Definition 6.6.3. For n, p, g as above, let

Qn,p :=
{
gα | α ≡ β2 mod p, for α, β ∈ Z

}
⊂ Fn

Remark 6.6.4. As p|(n− 1) we have a multiplicative subgroup H = 〈gp〉 of index p in

F×n = 〈g〉, and a group isomorphism F×n /H → (Fp,+) taking gH 7→ 1. The set Qn,p is

the union of H-cosets that correspond to quadratic residues mod p. It therefore contains

about half the elements of the field,

|Qn,p| =
p+ 1

2p
(n− 1)

Definition 6.6.5. The iterated Paley hypergraph Hn,p has Fn as its vertex set, and a

subset {x1, x2, . . . , xt} forms a hyperedge if

∏
1≤i<j≤t

(xi − xj) ∈ Qn,p

Note that (−1) = g(n−1)/2, and (n − 1)/2 ≡ 0 mod p as p is odd, and therefore

(−1) ∈ H = 〈gp〉. Therefore, the condition in the definition of Hn,p does not depend on

the order of the vertices x1, x2, . . . , xt. Note also that all n singletons {x} are included

as 1 = g0 ∈ Qn,p.

The iterated Paley hypergraph might not be a simplicial complex, as it is not neces-

sarily closed downward. We thus consider the largest simplicial complex contained in it,

defined as follows.

Definition 6.6.6. The iterated Paley simplicial complex Xn,p has Fn as its vertex

set, and a set {x1, x2, . . . , xt} forms a simplex if for every subset {xs1 , xs2 , . . . , xsk} ⊆
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{x1, x2, . . . , xt} ∏
1≤i<j≤k

(
xsi − xsj

)
∈ Qn,p.

That is, in the notation of Chapter 2 we say Xn,p = Qn,p.

Remark 6.6.7. The definitions of Qn,p and thereby Hn,p and Xn,p depend on the choice

of primitive element g ∈ Fn. Any other primitive element h = gα ∈ Fn gives the same

construction if α is a quadratic residue mod p, and a different one if not. The two

constructions are not necessarily isomorphic in general. Our results apply to either

choice.

Remark 6.6.8. Hn,p and Xn,p are invariant under a rather large group of symmetries

{x 7→ ax+ b | a ∈ H, b ∈ Fn}.

6.6.2 Iterated Paley complexes are ample

Example 6.6.9. Before proving Theorem 6.6.1, we sketch the idea of the proof via

a simple example: accommodating one 3-ampleness challenge, posed by three vertices

a, b, c ∈ X = Xn,p. Given a, b, c, suppose that we are looking for another vertex x ∈ X

such that, say, ax, bx, cx, abx, bcx ∈ X and acx, abcx 6∈ X.

We find x in two stages. First we decide on three suitable H-cosets gαH, gβH, gγH,

where H = 〈gp〉 as before. Then we find x ∈ Fn such that (x− a) ∈ gαH, (x− b) ∈ gβH,

and (x− c) ∈ gγH. Such an x exists by extending the uncorrelation property of squares,

from Paley graphs. Specifically, 3 different additive translations of p-power cosets must

intersect in n/p3 ±O(
√
n) elements.

Without knowing better, we pick α, β, γ ∈ Fp one by one. The requirement ax ∈ X

implies that α must be a square, which gives dp/2e options. A short calculation shows

that bx, abx ∈ X require both β and β + δ to be squares, where δ is determined by

(a − b)gα ∈ gδH. This has p/22 ± O(
√
p) solutions by the same ampleness property of

Paley graphs. The requirements cx, bcx ∈ X and acx, abcx 6∈ X give four constraints:

γ and γ + δb are squares while γ + δa and γ + δab are nonsquares, where δa, δb, δab are

known from a, b, c, α, β. This is satisfied by p/24 ± O(
√
p) elements of Fp, for the same
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reason that Paley graphs are 4-ample.

One has to be a bit careful to avoid contradictions between requirements. For example,

δa = δb might mean no solution for γ. The proof will avoid such problematic cases with

advance planning. On the other hand, sometimes we can take shortcuts. For example,

acx 6∈ X gives abcx 6∈ X come for free. We will not rely on such considerations, as

they would not simplify the argument in general. This will ensure our proof applies to

hypergraphs too.

With the above example in mind, we begin with a formal proof of Theorem 6.6.1.

We first formalize the idea that at every step we have an abundance of choices for the

witness to ampleness, with differences lying in the necessary cosets.

Lemma 6.6.10. In a finite field Fq, let A⊂F×q be a proper multiplicative subgroup of

index m. Given d cosets of A,

A1, A2, . . . , Ad ∈ F×q /A

and pairwise distinct elements

c1, c2, . . . , cd ∈ Fq

the number of elements x ∈ Fq satisfying

(x− c1) ∈ A1, (x− c2) ∈ A2, . . . , (x− cd) ∈ Ad

is at least

q

md
− (d− 1)

√
q − d

m

This lemma says that different additive translates of cosets of m-power residues are

“mutually uncorrelated”. Their intersection is of order q/md as expected from random

subsets, up to an error term of about d
√
q. The proof of Lemma 6.6.10 is given in

Appendix A.5.
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Proof of Theorem 6.6.1. Let X = Xn,p be as in Definition 6.6.6. Consider a set of

vertices σ = {x1, . . . , xd} ⊆ Fn = V (X). Throughout this proof, σ is assumed to be

nonempty. The Vandermonde determinant of σ in Fn falls into one of the p cosets of

H = 〈gp〉,

∆(σ) = ±
∏

1≤i<j≤d
(xi − xj) ∈ gα(σ)H

The exponent α(σ) ∈ {0, 1, . . . , p− 1} is uniquely determined for each σ, as ±1 ∈ H. In

view of the Remark 6.6.4, we regard α(σ) as an element of Fp.

Recall that a simplex σ ∈ X if and only if for all τ ⊆ σ the Vandermonde determinant

∆(τ) ∈ Qn,p. That is equivalent to α(τ) ∈ Qp ∪ {0}, where

Qp :=
{
β2 | β ∈ F×p

}
Qp is the multiplicative subgroup of quadratic residues mod p. We let Qcp := F×p \ Qp
denote the set of quadratic nonresidues.

To verify that X is r-ample, consider a set U ⊂ Fn of r vertices, and a subcomplex

Y ⊆ XU . We seek a vertex x ∈ Fn \ U such that for every σ ∈ XU the join xσ ∈ X if

and only if σ ∈ Y .

By the above characterisation of the simplices of X, it is sufficient for the desired

vertex x to solve the following set of 2r − 1 constraints,

∀σ ⊆ U, α(xσ) ∈


Qp if σ ∈ Y

Qcp if σ 6∈ Y
(?)

For every possible hypergraph Y on every set of r vertices U ⊂ Fn, we show that this

problem is indeed satisfiable.

We rewrite the above constraints on x. Clearly, the Vandermonde determinant of xσ

decomposes as follows

∆(xσ) = ±
∏

1≤i<j≤d
(xi − xj)

∏
v∈σ

(x− v) = ±∆(σ)
∏
v∈σ

∆(vx).
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Applying the quotient map F×n → F×n /H
∼−→ F+

p , where the second map is the isomor-

phism gH 7→ 1, yielding the following congruence in Fp,

α(xσ) ≡ α(σ) +
∑
v∈σ

α(vx).

We introduce r new variables, ξv ∈ Fp for each v ∈ U , related to x via ξv = α(vx), and

obtain an equivalent reformulation of (?), with the r + 1 variables ξv ∈ Fp and x ∈ Fn.

∀σ ⊆ U α(σ) +
∑
v∈σ

ξv ∈


Qp if σ ∈ Y

Qcp if σ 6∈ Y
(I)

∀ v ∈ U (x− v) ∈ gξvH (II)

We now show that given any assignment to the r variables ξv there exists x ∈ Fn that

satisfies (II). Indeed, applying Lemma 6.6.10 with q = n, A = H, m = p, and d = r, the

number of x ∈ Fn satisfying (x− v) ∈ gξvH for every v ∈ U is at least

n

pr
− (r − 1)

√
n − r

p
.

Since n > r2p2r, this lower bound is positive, and there exists at least one such solution

x ∈ Fn \ U . This reduces the problem to finding ξv that satisfy (I).

Let U = {u1, . . . , ur} in arbitrary order. Given σ ⊆ U , we call the “last” vertex ui

in this sequence is called the top vertex of σ. To be precise, ui ∈ σ and uj 6∈ σ for

j > i. Since the constraints in (I) are labeled by σ ⊆ U and include the variables are

ξv for v ∈ σ, we determine ξu1 , . . . , ξur inductively, selecting each ξui according to the

constraints where ui is the top vertex. We abbreviate ξi = ξui as no confusion can arise.

Supposing ξ1, . . . , ξi−1 are determined, the next variable ξi has to satisfy the 2i−1
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constraints where ui is the top vertex.

∀ {ui} ⊆ σ ⊆ {u1, . . . , ui}, ξi + δ(σ) ∈


Qp if σ ∈ Y

Qcp if σ 6∈ Y
(??)

where

δ(σ) := α(σ) +
∑

v∈σ\ui

ξv ∈ Fp.

is already known from the variables determined before ξi.

Before invoking Lemma 6.6.10 to show that ξi exists, one has to make sure that all

δ(σ) in (??) are distinct. This requires some care when selecting ξ1, . . . , ξi−1. Suppose

that ui ∈ σ ∩ σ′ is the common top vertex of σ and σ′, and uj ∈ σ \ σ′ is the top vertex

of their difference σ4σ′ = (σ \ σ′) ∪ (σ′ \ σ). Then the condition δ(σ) 6= δ(σ′) takes the

form

ξj 6=

α(σ′) +
∑

v∈(σ′\σ)

ξv

−
α(σ) +

∑
v∈(σ\σ′)\uj

ξv


Since the value on the right hand side is known when selecting ξj it can be avoided as

long as there are enough other options as implied by Lemma 6.6.10. The number of

forbidden values for ξj is at most the number of such pairs of simplices, {σ, σ′}, with

common top vertex ui and top “differentiating” vertex uj . The number of these pairs is

(
2j−1

)2
(2r−j − 1) < 2r+j−2.

To sum up, in order to enable solutions for all ξi we will actually find 2r+j−2 potential

solutions for every variable ξj , and proceed with one that evades every issue among δ(σ)

as shown above.

We thus assume by induction that ξ1, . . . , ξi−1 are given and the 2i−1 constraints

in (??) have distinct translations δ(σ), and apply Lemma 6.6.10 with q = p, A = Qp,
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m = 2, and d = 2i−1. This guarantees at least

p

22i−1 −
(
2i−1 − 1

)√
p − 2i−1

2

possible values for the variable ξi. Since p > 22r+2r and i ≤ r, this number is greater

than

22r−1+2r − (2r−1 − 1)22r−1+r − 2r−2 ≥ 22r−1+2r−1 ≥ 2r+i−2

for all i ≤ r, as required.

In conclusion, there exists ξ1, . . . , ξr ∈ Fp satisfying (??) for every i, and hence also (I).

As shown above, this yields a vertex x ∈ Fn that satisfies (II) and hence LkX(x)∩XU = Y

as required.

6.6.3 Estimating the smallest r-ample iterated Paley complex

In the rest of this section, we discuss the selection of parameters n and p for r-ample

iterated Paley simplicial complexes.

The construction requires two primes satisfying n ≡ 1 mod p, that are large enough as

in Theorem 6.6.1. Given a prime p, the existence of arbitrarily large primes n ∈ pN+1 is

a special case of the classical Dirichlet Theorem [30]. This case actually follows from an

elementary argument. For N > p, let n be a prime divisor of M = 1+N !+· · ·+(N !)p−1 =

((N !)p − 1)/(N ! − 1). As n|((N !)p − 1) we see that n > N . If N ! ≡n 1 then M ≡n p,

which is ruled out by n|M . Therefore, N ! 6≡n 1 while (N !)p ≡n 1. By Fermat’s little

theorem p|(n− 1), as desired.

However, in order to establish our quantitative result, Proposition 6.6.2, we need a

prime n roughly of order p2r. Dirichlet’s theorem asserts that about 1/(p − 1) of all

primes are contained in the arithmetic progression pN + 1, in an appropriate sense of

asymptotic density [43]. The following lemma uses quantitative estimates of the “error

term” to bound the gaps between these primes, which provides such a prime n that is

not too large.

Lemma 6.6.11. There exists a constant P , such that for every prime p > P and every
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M ≥ p8 there exists a prime n ≡ 1 mod p in the interval

M < n <
√
pM

Proof. For a and q coprime, the number of primes less than or equal to x that are

congruent to a mod q is denoted

π(x; q, a) = |{n ≤ x : n is prime, n ≡ a mod q}| .

Bounds on this number under various assumptions on the relation between q and x

are given by the Brun–Titchmarsh theorem [64] and the Siegel–Walfisz theorem [74].

By recent improved bounds due to Maynard [61, Thms 1 & 2], there exists effectively

computable positive constants Q and R, such that if q ≥ Q and x ≥ q8 then

R log q√
q
· x

φ(q) log x
< π(x; q, a) <

2Li(x)

φ(q)

Here φ(q) = |{a < q : (a, q) = 1}| is Euler’s totient function, and the function Li(x) =∫ x
2

dt
log t ∼ x

log x is the Eulerian logarithmic integral. In fact, Li(x) < 3x
2 log x will suffice for

our needs.

Letting q = p and a = 1, it follows for any p > P = max(Q, exp(4/R)) and M > p8

that

π(M ; p, 1) <
3M

(p− 1) logM
<

R log p
√
pM

√
p (p− 1) log(

√
pM)

< π(
√
pM ; p, 1)

The middle inequality is verified by the observation that

3 log(
√
pM)

R log p logM
<

3

R log p

(
1

8
+ 1

)
< 1

Since π(M ; p, 1) < π(
√
pM ; p, 1), there exists at least one prime n ≡ 1 mod p between

M and
√
pM , as required.



Chapter 6. Ample simplicial complexes 148

Proof of Proposition 6.6.2. We now show there exist parameters satisfying the assump-

tions p > 22r+2r and n > r2p2r of Theorem 6.6.1, and n = 2(2+o(1))r2r .

In selecting p, we can just rely on Bertrand’s postulate, i.e., for every N ∈ N there

exists a prime between N and 2N . Thus, there exists a prime p in the range

22r+2r < p < 22r+2r+1

Suppose that r is large enough so that p satisfies Lemma 6.6.11. We pick a prime

n ≡ 1 mod p in the range

r2p2r < n < r2p2r+
1
2

Therefore, for r sufficiently large, there exists an r-ample iterated Paley simplicial com-

plex Xn,p, on at most

n < r22(2r+2r+1)(2r+ 1
2

) = 22r2r(1+o(1))

vertices.

Remark 6.6.12. We note that the construction ofXn,p is explicit at least in the following

sense. Given r ∈ N, one can find suitable primes p and n = exp(O(r2r)) and a primitive

g ∈ Fn in poly(n) time. One can also decide whether a given face belongs to the r-

dimensional skeleton of Xn,p in poly(n) time. These rough estimates leave some room

for improvement, as the description of Xn,p and such a face are in fact poly-logarithmic

in n.
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A.1 Bound used in Lemma 3.5.5

Lemma A.1.1. Let r ≥ 2 be a fixed integer and define a function

Qr(n, x) :=
r∑
i=1

(
x

i

)
·
(

n− x
r + 1− i

)
,

we will think of Qr(n, x) as a polynomial in (n, x) of bidegree (r, r + 1). Define a new

function

qr(n, x) :=
r

x
− ζ · r ·Qr(n, x)

nr · x

for some arbitrary positive constant ζ.

The maxima of qr(n, x) over [r + 1, n/2] is attained at one of the two endpoints for

sufficiently large n. Moreover, if ζ >
r!

r + 1
and n is sufficiently large then

max
x∈[r+1,n/2]

qr(n, x) ≤ −εr +O (1/n) < 0

where εr = min

{
ζ

(r − 1)!
− r

r + 1
,
∑
i = 1r 2ζr

2ri!(r+1−i)!

}
> 0.

Proof. The proof will rely on a few simple ideas. We will first show that there is just one

x ≥ r + 1 for sufficiently large n such that q′r(n, x) = 0, i.e. a unique positive stationary

point. We will then show that q′r(n, r + 1) < 0 for large enough n. This then implies

that our stationary point is either a minima or point of inflection and moreover that on

[r + 1, n/2] the maxima is attained at either x = r + 1 or x = n/2, we then just need

some good estimates for qr(n, x) at these points to conclude the proof.

149
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A simple computation shows that

q′r(n, x) =
−r
x2
− ζr

nr
·
(
xQ′r −Qr

x2

)
,

which is equal to zero iff

Qr − xQ′r
nr

=
1

ζ
. (A.1)

Since Qr(n, 0) = 0 we may write Qr(n, x) = xPr(n, x) where Pr(n, x) is a polynomial in

(n, x) of bidegree (r, r) where the coefficients ai,j of terms nixj vanish if i+ j ≥ r + 1.

Therefore,

Qr − xQ′r = −x2P ′r

where P ′r is of bidegree (r, r − 1). In fact, since ar,i = 0 for all i ≥ 1 we know that P ′r is

of bidegree (r − 1, r − 1). Therefore, we may rewrite equation (A.1) as

− x2 ·
∑

i+j≤r−1

bi,j
nixj

nr
=

1

ζ
(A.2)

where bi,j = (j + 1) · ai,j+1, and bi,j = 0 for i+ j ≥ r. Observe that for i+ j ≤ r− 1 and

for x ≤ n/2
xj

nr−i
≤ 1

n

so equation (A.2) is of the form O
(
x2

n

)
= constant. Therefore, for sufficiently large n

there is at most one positive x satisfying (A.1), i.e. there is at most one stationary point

of qr(n, x) in [r + 1, n/2].

We now compute

q′r(n, r + 1) =
−r

(r + 1)2
− ζr

nr
·
(

(r + 1)Q′r(n, r + 1)−Qr(n, r + 1)

(r + 1)2

)
∼ −r

(r + 1)2
− ζr

(
(r + 1)/r!− (r + 1)/r!

(r + 1)2

)
=

−r
(r + 1)2

< 0.

That is for large enough n we know that qr(n, x) is initially decreasing, so the critical
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point found above must be either a minima or a point of inflection. Therefore we know

that the largest value of qr(n, x) on [r + 1, n/2] comes at one of the two endpoints.

A simple approximation shows

Qr(n, n/2) =
r∑
i=1

nr+1

2ri!(r + 1− i)! (1 +O(1/n)) .

We let Ar :=
∑r

i=1
1

2ri!(r+1−i)! and remark that qr(n, n/2) = −2ζrAr +O(1/n) ≤ −εr +

O(1/n).

It is easy to see that

Qr(n, r + 1) =

r∑
i=1

(
r + 1

i

)
·
(

nr+1−i

(r + 1− i)! +O(nr−i)

)
=

(r + 1) · nr
r!

+O(nr−1).

Therefore we easily observe that

qr(n, r + 1) =
r

r + 1
− ζ

(r − 1)!
+O(1/n) ≤ −εr +O(1/n),

which completes the proof.

A.2 Computation for Lemma 4.3.4

Recall (4.12)

µ(X,Y ) =
∏
s∈X

p′s ·
∏

s∈S−X
(1− p′s) ·

∏
s∈Y

ps
p′s
·
∏

s∈X−Y

(
1− ps

p′s

)
. (A.3)

where Y ⊂ X and that we wish to show that

(π1)∗(µ)(A) =
∏
s∈A p

′
s ·
∏
s 6∈A(1− p′s) (A.4)

(π2)∗(µ)(B) =
∏
s∈B ps ·

∏
s 6∈B(1− ps) (A.5)
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where π1, π2 are projections onto the first and second complex respectively.

We will show (A.4) and note that (A.5) follows with an identical method,

(π1)∗(µ)(A) =
∑
B⊆A

µ(A,B)

=
∑
B⊆A

∏
s∈A

p′s ·
∏
s 6∈A

(1− p′s) ·
∏
s∈B

ps
p′s
·
∏

s∈A−B

(
1− ps

p′s

)

=
∏
s∈A

p′s ·
∏
s 6∈A

(1− p′s) ·

∏
s∈A

(
1− ps

p′s

)
·
∑
B⊆A

∏
s∈B

ps
p′s

1− ps
p′s


=
∏
s∈A

p′s ·
∏
s 6∈A

(1− p′s) ·

∏
s∈A

(
1− ps

p′s

)
·
∑
B⊆A

(−1)|B|
∏
s∈B

(
1− 1

1− ps
p′s

)
=
∏
s∈A

p′s ·
∏
s 6∈A

(1− p′s) ·
[∏
s∈A

(
1− ps

p′s

)
·
∏
s∈A

1

1− ps
p′s

]

=
∏
s∈A

p′s ·
∏
s 6∈A

(1− p′s)

as required. To go from line 4 to 5 in the above we used the equality

∏
u∈U

(1− xu) =
∑
V⊆U

(−1)|V | ·
∏
v∈V

xv.

A.3 Proof of Lemma 5.6.1

Proof. We obviously have

1 =
∏

σ∈F (L)

(pσ + qσ) =
∑

J⊂F (L)

(∏
σ∈J

pσ ·
∏
σ/∈J

qσ

)
. (A.6)

Note that in the above sum, J can be also the empty set. Denote by A(J) ⊂ J the set

of all simplices σ ∈ J such that for any face τ ⊂ σ one has τ ∈ J . Note that A = A(J)

is a simplicial complex, it is the largest simplicial subcomplex of L with F (A) ⊂ J . We

also note that the set of external simplices E(A|L) is disjoint from J .

Fix a subcomplex A ⊂ L and consider all subsets J ⊂ F (L) with A(J) = A. Any such

subset J ⊂ F (L) contains F (A) and is disjoint from E(A|L). Conversely, any subset
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J ⊂ F (L) containing F (A) and disjoint from E(A|L) satisfies A(J) = A.

Denoting S(A) = F (L)− F (A)− E(A|L) and I = J ∩ S(A) we see that any term of

(A.6) corresponding to a subset J with A(J) = A can be written in the form

 ∏
σ∈F (A)

pσ ·
∏

σ∈E(A|L)

qσ

 ·
∏
σ∈I

pσ ·
∏

σ∈S(A)−I

qσ

 (A.7)

and the first factor above is p(A), see (5.6). Hence the sum of all terms in the sum (A.6)

corresponding to the subsets J with A(J) = A equals

p(A) ·
∑

I⊂S(A)

∏
σ∈I

pσ ·
∏

σ∈S(A)−I

qσ

 = p(A) ·
∏

σ∈S(A)

(pσ + qσ) = p(A). (A.8)

We therefore see that the statement follows from (A.6).

A.4 Sufficiently ample complexes are 2-connected: alter-

native proof

Theorem A.4.1. For r ≥ 79, every r-ample simplicial complex is 2-connected.

Proof. Let X be a 79-ample simplicial complex, we will show that this X is 2-connected.

Let f : S2 → X be a continuous map. By the first part of Lemma 6.4.1 X is simply

connected, so we are only required to show that the map f is null-homotopic. By the

Simplicial Approximation Theorem f is homotopic to a simplicial map g : Tn → X where

Tn is some triangulation of the 2-sphere on n vertices. We will prove by induction on n

that any such map is null-homotopic. Clearly if n ≤ 79 we are done, so throughout we

suppose n ≥ 80. Suppose now that we have shown every Tk → X is null-homotopic for

k < n.

Remark that the graph T (1)
n is planar, so we may apply the Planar Separator Theorem

[59] which states:

The vertices of an n vertex planar graph can be partitioned into three sets U, V, S such
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that no edge joins a vertex in U with a vertex in V , neither U nor V contains more than

2n/3 vertices, and S contains no more than 2
√

2
√
n vertices.

We apply this to find disjoint vertex sets U, V, S that cover V (Tn) with |U |, |V | ≤ 2n
3

and a separator |S| ≤ 2
√

2
√
n. For S to separate the 2-sphere the induced subcomplex

TS = (Tn)S must be homotopy equivalent to S1. Let U ′, V ′, S′ ⊂ V (X) denote the images

under g of U, V, S respectively. Let A,B be the induced complexes XU ′ , XV ′ with C

denoting the 1-cycle formed by the induced complex XS′ . Clearly A, B are supported

by at most 2n
3 vertices and C by at most 2

√
2
√
n vertices.

By Lemma 6.4.1, C is the boundary of some 2-disc D on at most 2
√

2
√
n+ 2

√
2
√
n

79−3 + 1

vertices. Therefore, the map g, which is equal to the composition

Tn → A ∪B ∪ C → A ∪B ∪D → X,

is null-homotopic when both inclusions A∪D → X and B∪D → X are null-homotopic.

Both A ∪D and B ∪D are embedded 2-spheres on at most

2n

3
+ 2
√

2
√
n+

2
√

2
√
n

76
+ 1

vertices. This is strictly smaller than n if

72n · 772

762
< n2 − 6n+ 9,

which holds whenever n ≥ 80, as we have assumed. By our inductive hypothesis we

therefore have that both A ∪ D → X and B ∪ D → X are null-homotopic, which

concludes the proof.

A.5 Proof of Lemma 6.6.10

Following works on Paley graphs and tournaments [8, 11, 37], we use character sums to

prove Lemma 6.6.10. A multiplicative character of a finite field Fq is a map χ : Fq → C,



Appendix A. 155

such that χ(0) = 0, χ(1) = 1, and χ(ab) = χ(a)χ(b) for every a, b ∈ Fq. Since χ is

a homomrphism between the multiplicative groups, its image is all mth roots of unity,

where m = (q − 1)/| kerχ| is called the order of χ.

The following estimate of character sums is based on the work of André Weil [15, 69].

This formulation appears in [57, Thm 5.41] or [43, Thm 11.23].

Theorem A.5.1 (Weil). Let χ be a character of order m > 1 of a finite field Fq, and

let f(x) be a polynomial over Fq, that cannot be written as an mth power, c · g(x)m. If

f(x) has at most d distinct roots in a splitting field, then

∣∣∣∣∣∣
∑
x∈Fq

χ (f(x))

∣∣∣∣∣∣ ≤ (d− 1)
√
q

Proof of Lemma 6.6.10. Let α be a primitive element in Fq, and let ω = e2πi/m. In terms

of the subgroup A of index m, we define the multiplicative order-m character χ(x) = ωt

for every x ∈ αtA and t ∈ Zm = Z/mZ, and as usual set χ(0) = 0.

Let A1, . . . , Ad be A-cosets, and c1, . . . , cd be distinct field elements, as in the lemma.

We define t1, . . . , td ∈ Zm such that Ai = αtiA, and consider the function

S(x) =
d∏
i=1

m−1∑
j=0

(
ω−tiχ(x− ci)

)j
If x satisfies (x− ci) ∈ αtiA then χ(x− ci) = ωti and the ith factor equals m. Otherwise

it is the sum of all mth roots of unity and therefore vanishes, except in the case x = ci

where it contributes 1. It follows that S(x) = md for every x that is counted in the

lemma. Any other x attains S(x) = 0, apart from x ∈ {c1, . . . , cd} where |S(x)| ≤ md−1.

In conclusion, if N is the number of x ∈ Fq that satisfy (x − ci) ∈ αtiA = Ai for all

i ∈ {1, . . . , d}, then ∣∣∣∣∣∣
∑
x∈Fq

S(x)

∣∣∣∣∣∣ ≤ Nmd + dmd−1

On the other hand, we expand the same sum over S(x) into md different sums of
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characters.

∑
x∈Fq

S(x) =
∑
x∈Fq

d∏
i=1

m−1∑
j=0

ω−jtiχ(x− ci)j


=
∑
x∈Fq

∑
j1...jd

(
d∏
i=1

ω−jiti

)
d∏
i=1

χ(x− ci)ji

=
∑
j1...jd

ω−
∑
i jiξi

∑
x∈Fq

χ

(
d∏
i=1

(x− ci)ji
)

The first term, which corresponds to (j1, . . . , jd) = (0, . . . , 0), is equal to q. Recall that

c1, . . . , cd are distinct and maxi ji < m. By Weil’s Theorem, it follows that each one of

the other md − 1 terms is bounded in absolute value by (d − 1)
√
q. Therefore, by the

triangle inequality, ∣∣∣∣∣∣
∑
x∈Fq

S(x)

∣∣∣∣∣∣ ≥ q − (md − 1)(d− 1)
√
q

The lemma now follows by combining the two estimates of the sum, and solving forN .
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[4] W. Ballmann and J. Świa̧tkowski. On l2 cohomology and property (t) for auto-

morphism groups of polyhedral cell complexes. Geometric and Functional Analysis,

7:615 – 645, 1997.

[5] Jonathan A. Barmak. Connectivity of ample, conic and random simplicial com-

plexes, 2021.

[6] A. Björner. Topological methods. Handbook of combinatorics, page 1819–1872,

1995.

[7] A. Björner and M. Tancer. Combinatorial alexander duality - a short and elemen-

tary proof. Discrete and Computational Geometry, 42:586–593, 2009.

[8] Andreas Blass, Geoffrey Exoo, and Frank Harary. Paley graphs satisfy all first-order

adjacency axioms. Journal of Graph Theory, 5(4):435–439, 1981.

[9] Andreas Blass and Frank Harary. Properties of almost all graphs and complexes.

Journal of Graph Theory, 3(3):225–240, 1979.
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[31] Paul Erdős and Alfred Rényi. On the evolution of random graphs. Publ. Math.

Inst. Hungar. Acad. Sci., (5):17–61, 1960.
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[60] László Lovász. Large networks and graph limits, volume 60. American Mathemat-

ical Soc., 2012.

[61] James Maynard. On the brun-titchmarsh theorem. Acta Arithmetica, 157(3):249–

296, 2013.

[62] Roy Meshulam and N. Wallach. Homological connectivity of random k-complexes.

Random Structures and Algorithms, (34):408–417, 2009.

[63] K. Mine and K. Sakai. Subdivisions of simplicial complexes preserving the metric

topology. Canad. Math. Bull., page 157–163, 2012.

[64] H. L. Montgomery and R. C. Vaughan. The large sieve. Mathematika, 20(2):119–134,

1973.

[65] Raymond Paley. On orthogonal matrices. Journal of Mathematics and Physics,

12(1-4):311–320, 1933.

[66] Wojciech Peisert. All self-complementary symmetric graphs. Journal of Algebra,

240(1):209–229, 2001.



Appendix A. 162
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