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Abstract

Adjoint methods are the most efficient approach to compute the design sensi-

tivities as the entire gradient vector of a single objective function is obtained in

a single adjoint system solve. This in turn opens up a wide range of possibilities

to parameterise the shape. Most shape parameterisation methods require manual

set-up which typically results in a restricted design space. In this work, two param-

eterisation methods that can be derived automatically from existing information are

extended to include adaptive design space in shape optimisation.

The node-based method derives parameterisation directly from the computa-

tional mesh employed for simulation and normal displacements of the surface grid

nodes are taken as design variables. This method offers the richest design space for

shape optimisation. However, this method requires an additional surface regulariza-

tion method to annihilate high-frequency shape modes. Hence the best achievable

design depends on the amount of smoothing applied on the design surface. An im-

proved adaptive explicit surface regularization method is proposed in this thesis to

capture superior shape modes in the design process.

The NSPCC approach takes CAD descriptions as input and perturbs the control

points of the NURBS boundary representation to modify the shape. The adaptive

NSPCC method is proposed where the optimisation begins with a coarser design

space and adapts to finer parameterisation during the design process. Driven by ad-

joint sensitivity information the control points on the design surfaces are adaptively

enriched using knot insertion algorithm without modifying the shape. Both param-

eterisation methods are coupled in the adjoint-based shape optimisation process to

reduce the total pressure loss of a turbine blade internal cooling channel. Based

on analyses regarding the quality of the optima and the rate of convergence of the

design process the adaptive NSPCC method outperforms both adaptive node-based

and the static NSPCC approach.
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Chapter 1

Introduction

1.1 Background

Simulation-based shape optimisation receives great attention in aerospace [56, 74],

automotive [142, 129], marine [126] and civil industries. In the past, design method-

ologies were centered around expensive experiments. For example, building a proto-

type and evaluate the performance using wind tunnels and then modify the design

based on the knowledge gained and restart the design. This process should be re-

peated until the final satisfactory design is obtained for a given design condition.

Building and maintaining such experimental facilities are always time consuming

and expensive.

Advances in both Computer Aided Design (CAD) systems and numerical simu-

lation methods have reduced the need for experimental facilities. A CAD model can

be created and its performance can be computed using numerical-based simulation

methods such as Computational Fluid Dynamics (CFD), Computational Structural

Mechanics (CSM) etc. This is also an iterative process and it normally takes a few

hours to few days which is less time-consuming and cost effective. However designer

should redesign or update a CAD model repeatedly based on the knowledge gained

from previous simulations. Major disadvantage of this approach is that, the final

design highly depends on the designer’s experience and to reduce design complexi-

ties designers often include only a few design variables in the design process. Hence

important shape modes may not be explored in the design process. A typical design

work flow with the designer in the loop is shown in Fig. 1.1

14



CHAPTER 1. INTRODUCTION

Figure 1.1: Simulation-based manual design process

Figure 1.2: Simulation-based design process with a numerical optimiser

1.1.1 Numerical optimisation

Engineering design process often required automatic design loop with a large of num-

ber of design variables. Typical design loop with numerical optimisation algorithm

is shown in Fig. 1.2. As a first step, designer should parameterise the shape using a

set of design variables which determines the shape modes during the design process.

After performance evaluation, the numerical optimiser determines the updated set

of design variables that can generate an updated shape with better performance.

Then the simulation process continues with the updated shape. This is an itera-

tive process and the design loop terminates when optimisation converges. Using a

numerical optimiser, one can systematically explore all possible shape modes deter-

mined by the shape parameterisation method employed in the design process with

minimum user intervention.

Early studies used gradient-free approaches to solve shape optimisation prob-

lems. Gradient-free methods require only an objective function value and they

are well suited to handle multi-objective, multi-modal, non-differentiable objective
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functions [34]. These methods can be incorporated with any commercially available

solvers without having access to its source code. However, the major disadvantage

is that they are slow to converge and may require a large number of performance

evaluations [33]. If costly evaluation models are used in the design loop then the

designer is reluctant to use gradient-free optimisation techniques for shape optimi-

sation. Alternatively, one can use surrogate evaluation models in the design loop

to reduce optimisation turn around time [46]. However computational cost for per-

forming design of experiments also increases heavily if a large number of design

variables are used [40]. Hence gradient-free methods are suitable only to handle

coarser design spaces with only a few design variables. Some examples of gradient-

free methods are Non-dominated Sorting Genetic Algorithm (NSGA-II), particle

swarm optimisation and simulated annealing. A comprehensive review of recently

introduced deterministic based optimisation methods can be found in [138].

On the other hand, gradient-based methods are very efficient if the objective

function is differentiable and can handle a large number of design variables with less

evaluations and hence they are preferred. However, gradient-based methods require

gradient of the objective function with respect to each design variable to drive the

design process and the computed gradients must be accurate. This is because,

inaccurate gradient information may affect the design path taken by an optimiser

and may require a large number of design iterations to converge. In addition, they

often converge to local optimum and cost of computing the gradients becomes huge

if a large number of design variables are used. Therefore it is very important to

compute accurate gradients in an efficient manner [99].

1.1.2 Adjoint methods

Generally, gradients can be computed by any one of the following methods namely

finite-difference based approach, complex-step derivative approximation [79], tan-

gent linearisation and adjoint-based methods [78]. Finite-difference method (FD)

can be implemented easily with any black-box commercial solvers without having

access with its source code. However, accuracy of the method is limited to the chosen

step width. It is clearly evident that, a range of step width must be used to achieve

minimum error and further, this minimum error does not occur at a fixed step size for
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all the design variables. Unlike FD, complex-step derivative approximation method

does not involve a difference operation hence not subjected to subtractive cancella-

tion error. However, as similar to FD choice of step width is not obvious, hence not

suitable. Tangent linearisation computes exact gradient, however the computational

cost for gradient computation is scaled with the number of design variables. This is

also applicable to finite difference and complex step derivative method. Hence these

methods are not suitable for gradient-based shape optimisation process.

Of particular interest is the adjoint method which can compute the exact gra-

dients at a cost that is essentially independent of the number of design variables.

Hence adjoint methods are essential when a large number of design variables are used

in the design process. Over the last decades, adjoint methods have been successfully

applied to optimise various turbomachinery [134, 72, 143], aerodynamic [74, 75] and

automotive components [142, 129]. There exists two different approaches to derive

the adjoint gradient. They are a) continuous approach and b) discrete approach. In

the continuous adjoint approach, adjoint of the governing partial differential equa-

tions are derived analytically and then discretised. This approach involves lengthy

hand derivation which may be error prone. On the other hand, in the discrete ad-

joint method, the governing equations are discretised and then the discrete adjoint

equations are formulated. In contrast to the continuous adjoint approach, Auto-

matic Differentiation (AD) tools can be used for developing discrete adjoint solver

which reduces the solver development and maintenance cost.

Automatic Differentiation (AD) software tools allow to compute the exact deriva-

tives for complex algorithms by differentiating the statements of a computer program

that executes the algorithm. Hence exact gradients can be computed with minimal

effort. In addition to that, gradients computed using discrete adjoints can be ver-

ified using tangent linearisation approach which is not available in the continuous

adjoint approach. Hence gradients via discrete adjoints received more attention and

in the present work discrete adjoint solver named STAMPS [93] developed by the

CFD optimisation group at QMUL is used to compute the gradient of the objective

function with respect to the surface mesh nodes.
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1.1.3 Shape parameterisation

Choice of shape parameterisation is crucial which determines the set of shape modes

that can be captured during the design process [112]. Since the best achievable de-

sign belongs to this set, shape parameterisation method influence the final solution

and the rate of convergence of the optimisation process. Adjoint methods do not

penalize the size of the design space hence one can consider the displacement of

every surface grid node as a design variable [64, 57, 27], called as the node-based

method. This method offers richest design space for shape optimisation. However

this design space is very rich and contains unwanted oscillatory modes which needs

to be filtered by the use of surface regularisation method. Additional surface regu-

larisation is necessary, and implicit [62] as well as explicit [64] Sobolev smoothing

methods have been proposed. However, both of them require a smoothing coefficient

and/or number of smoothing iterations to control the amount of smoothing applied

on the shape. In standard node-based parameterisation, the value of this coefficient

or the number of smoothing iterations for explicit is chosen by the user a-priori

and remain fixed throughout the optimisation. This choice is a case dependent and

strongly influence the design space for shape optimisation. For example, larger value

corresponds to over smoothing which suppress the generation of superior designs [70]

and smaller value leads to the generation of highly oscillatory shape modes.

This method is coming under the category of CAD-free parameterisation meth-

ods, while the baseline mesh is derived from a CAD model, this model is not included

in the optimisation loop and hence the resulting optimal shape is not available in

a CAD format and a ‘return to CAD’ step needs to be added to make this shape

available for further design, analysis and/or manufacturing. This step typically re-

quires an automatic post-processing tools to approximate the optimised shape using

a collection of NURBS patches.

CAD-based parameterisation approaches, have been typically employed in both

gradient-based and gradient-free optimisation methods. In these methods, shape pa-

rameterisation is defined in a CAD model which is included in the design loop. The

optimisation hence produces a consistent CAD model of the optimal shape. There-

fore the optimised CAD model can be used for further multi-disciplinary analysis

and manufacturing.
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Figure 1.3: Gradient-based shape optimisation loop

However in a gradient-based shape optimisation loop, sensitivity of the shape

with respect to each design variables (shape derivative) is essential to compute the

gradient of the objective function with respect to the design variables. A typical

gradient-based shape optimisation loop is shown in Fig 1.3. CAD-free approaches

can be differentiated hence can be easily coupled with the gradient-based optimiser.

However when coupled CAD in the loop one must differentiate the CAD-model.

Commercial CAD systems do not provide shape derivatives hence often relied on

finite difference method. As mentioned earlier, the choice of step width is crucial

and the presence of truncation and subtractive cancellation errors restrict the use

of finite difference in the design loop [108, 4].

If the source code of the CAD kernel is available, e.g. as in the case of open-

source CAD engine OpenCASCADE, shape sensitivities can be obtained by applying

Automatic Differentiation (AD) Software tools to the complete CAD kernel. This is

a object-oriented library written using C++ programming language with more than

10,000 classes hence relied on operator-overloading based AD tools such as ADOL-C

which is straightforward to implement. However, for a complex program with a large

computational graph often leads to excessive run-time and memory footprints[19].

Alternatively, researchers from the CFD optimisation group at Queen Mary Uni-
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versity of London developed ‘NURBS-based Parameterisation with Complex Con-

straints (NSPCC)’ method that derives parameterisation directly from the bound-

ary representation (BRep) of a CAD-model. The BRep, in the typical standardised

STEP format, represents the shape using a number of NURBS patches. NSPCC

approach uses control points of the NURBS patches to deform shape in the design

process and has been tested in wide range of applications which includes automo-

tive [142], aerospace [150] and turbomachinery [65]. Since the shape parameteri-

sation is derived from the BRep of a CAD model, construction history of a CAD

model is not requirred hence only subset of functionalities can be added. The imple-

mentation is done in Fortran language hence the efficient derivative code is obtained

using source transformation AD tool TAPENADE.

1.2 Motivation

Most shape parameterisation methods require manual setup [112, 145]. Setting

up auxiliary grids for lattice-based methods, such as e.g. auxiliary grids with Hicks-

Henne bumps on airfoils [56] or stacked spline curves for turbomachinery blades [134],

involve substantial effort and are difficult to extend to complex geometries. To re-

duce complexities, the designer often ends up with choosing small number of design

variables and the design space that capture all the possible shape modes remain fixed

throughout the optimisation. This traditional static parameterisation approach re-

stricts the generation of superior designs outside the fixed envelope and the final

solution highly depends on how the designer parameterise the baseline shape. To

obtain superior designs, the designer should terminate the design process and repa-

rameterise the shape manually in a periodic manner [139, 90, 116]. Even though

design acceleration can be achieved, still incur the limitation of a manually defined

nested level of shape parameterisation. To avoid designer in the loop, the additional

design variables need to be added automatically only if necessary.

Hradil et al. [59] proposed an adaptive parameterisation method based on FFD

approach and Masters et al [83] presented an adaptive subdivision surfaces for shape

optimisation. The results also show design acceleration however optimised geometry

is not available in CAD format for further analysis and manufacturing. Agarwal et
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al. [5] presented a CAD-based adaptive parameterisation method by adding multiple

CAD features to a parametric CAD model. Results showed that the inserted CAD

features are not good enough to capture superior designs hence it affects the rate of

convergence and leads to a sub-optimal solution. This strongly justifies the need for

adding more design variables that can capture important shape modes for design

improvement.

NURBS have become the de-facto industry standard for data exchange between

CAD systems and offers local shape modification property. NSPCC method uses

control points of the NURBS patches to deform shape in the design process. Hence

NURBS manipulations algorithms such as knot insertion algorithm and degree ele-

vation can be used to enrich control points on the design surface. In this work, the

NSPCC method has been extended to handle adaptive design space in the shape

optimisation. The use of NURBS-based adaptive parameterisation method is yet to

be studied and developed in depth. To author’s knowledge no work has been done

to refine control points of the NURBS patches in shape optimisation.

1.3 Thesis Contributions

In the optimisation loop, the best achievable design is strongly influenced by the

number of degrees of freedom and their distribution in the shape parameterisation.

A design space with a small number of design variables places the burden on the

user to express all relevant shape modes to achieve an optimal result hence often end

up with a suboptimal solution [124, 113, 137, 65, 133]. On the other hand, a design

space with a larger number of design variables may capture superior designs however

places burden on the optimisation algorithm to accommodate problems with higher

degrees of freedom such as multiple local minima and the rate of convergence of

the optimisation [133, 74, 77, 80, 38]. Therefore the design loop should be able

include adaptive design space where the low-frequency shape modes are handled

in early stages of the design to accelerate the design process and once the design

variables offered negligible design improvement then high sensitivity regions needs to

be identified to refine parameterisation where it is necessary without modifying the

shape. Moreover, a consistent CAD model should be preserved in the design loop
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for further multi-disciplinary analysis and/or manufacturing. Furthermore accurate

shape derivatives need to be computed.

Two parameterisation methods are considered here, node-based and NSPCC.

The objective of this thesis is to extend the functionalities to handle adaptive design

space in shape optimisation. The following list presents the major contributions to

achieve this goal:

1. Adaptive NSPCC parameterisation method using knot insertion algorithm is

proposed to refine the control net distributions without modifying the geom-

etry.

2. The adaptive refinement is driven by node-based sensitivity information, there-

fore the control points are added only in the region where larger design im-

provement can be achieved when the optimiser has reached sufficient conver-

gence. As a consequence the adaptive NSPCC replaces user in the design loop

as design variables are automatically created based on the adaptive refinement.

3. Investigated the flexibility and efficiency of the Adaptive NSPCC method with

the adaptive node-based method.

4. The entire design chain is reverse differentiated using source transformation

Algorithmic Differentiation tool which is essential for handling large number

of design variable in the design process.

5. The use of the proposed parameterisation methods in an industrial design

chain is evaluated using one-shot optimisation strategy

1.4 Organization of Thesis

The remaining of the thesis is organized as follows:

Chapter 2 presents a brief survey on the most important geometry parameteri-

sation methods and its important requirements for shape optimisation.

In Chapter 3, details about STAMPS a finite-volume primal and discrete adjoint

solver, sensitivity assembly for the entire design chain are presented.

Chapter 4 describes the proposed Adaptive NSPCC parameterisation method

and algorithm.
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In Chapter 5, NSPCC method for handling assembly constraints is presented.

In addition, shape optimisation tools developed in this work are compared with the

currently available open-source SU2 shape optimisation tools.

Comparison of shape optimisation results obtained using the proposed parame-

terisation methods are presented in Chapter 6.

Chapter 7 concludes with the summary of the thesis contributions and recom-

mendations for future work.
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Chapter 2

Literature Review: Shape

Parameterisation

2.1 Introduction

In this chapter, the most useful shape parameterisation approaches are presented.

Shape parameterisation has been one of the main areas of research in shape opti-

misation and over the years a wide range of parameterisation methods have been

developed [112, 60, 122] to list the most important ones: Node-based parameter-

isation, Free-Form Deformation (FFD), Radial Basis Function morphing (RBF),

Parametric Section (PARSEC), Hicks and Hene bump functions and CAD-based

parameterisation. Samareh [112] provides a brief survey on geometry parameteri-

sation methods, Sobester et al. [123] provides a detailed review on parameterisation

methods suitable for aircraft design and optimisation.

One can classify the parameterisation methods in different ways. Among the

available methods, in this work, the shape parameterisation methods are broadly

classified into two categories. The first one is the CAD-free parameterisation that

doesn’t include the CAD description in the design loop. Even though the baseline

mesh is derived from a CAD model, in CAD-free methods, a CAD- model is not

included in the design loop hence not updated. Therefore additional automatic

tool for ‘return to CAD’ step is essential for the parameterisation methods that

doesn’t include CAD in the loop [43, 32, 68]. Methods coming under this category

is termed as CAD-free parameterisation. Some researchers referred this category as
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Figure 2.1: Classification of geometry parameterisation methods

‘Mesh-based’ parameterisation methods [143]. After meshing there is no connection

between a discrete geometry and a CAD model. Hence design variables are not

related to a CAD model

The second one is the CAD-based methods which preserves the CAD description

in the design loop hence one can export the optimised shape in CAD form. CAD-

based methods are essential for multi-disciplinary shape optimisation and analysis.

When employed CAD in the loop, one must differentiate a CAD kernel to obtain

exact shape sensitivities. CAD-free methods can be differentiated however constraint

imposition is a tedious process for complex geometry. Based on this idea, in this work

parameterisation methods are classified as CAD-free and CAD-based methods. In

this chapter, some of the most important methods coming under each category will

be briefly discussed. Figure 2.1 shows the taxonomy of the shape parameterisation

methods discussed in this survey.

2.2 CAD-free Parameterisation

In this method, shape parameterisation is done by using a computational mesh

used without the use of any external CAD-geometry description. Even though the

baseline mesh is derived from a CAD model, this model is not included in the design

loop and hence not updated. Given a design perturbations δXs between the initial

and the updated shape, the computational mesh M can then be updated as,

X ′s = Xs + δXs (2.1)
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δXs = γd (2.2)

where Xs and X ′s are vector of surface mesh coordinates corresponds to the initial

mesh M and the updated mesh M′ respectively, δXs represents the displacements

of the surface mesh coordinates. d and γ > 0 are the descent direction and the

step length respectively which are computed by the optimiser. Based on the type of

deformation method employed in the design loop, CAD-free parameterisation can

be further divided into three types. First one is the node-based parameterisation

method which employs surface grid nodes as degrees of freedom in the design loop.

The second one is the mesh parameterisation method in which the computational

mesh is parameterised using a set of control points or lattice which are used to

deform the design surface in the design loop. Third type is the analytical approach.

2.2.1 Node-based parameterisation

The node-based parameterisation is the most noticeable approach in which the de-

formation field is defined exactly on the same discrete space as of the geometry.

In other words, this method employs each node on the design surface as degrees of

freedom [104, 61, 87, 27, 127, 68, 57, 21, 20]. For example, if a wing surface is discre-

tised by N grid points, then this method has N design variables defining the design

space. This represent the highest possible design space offered by the computational

mesh. Therefore in this work, the term rich design space is used to indicate a design

space that contains a large number of design variables. A typical representation of

design nodes used for shape optimisation ofthe VKI U-Bend geometry is shown in

Figure 2.2. The main advantages of node-based parameterisation approach are:

• It provides rich design space for shape optimisation hence very useful for design

space exploration.

• It can be set up automatically hence does not require time-consuming shape

parameterisation preprocess.

• The same computational mesh is used to discretise both flow and shape thus

any complex shape can be used for shape optimisation.

• Eliminates the use of CAD model in the design loop hence additional CAD
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Figure 2.2: 3D segment of U-Bend geometry with the design nodes

processing tools and data interfaces involved in the optimisation are not re-

quired.

Need for Surface Regularisation

Unfortunately, node-based method includes odd-even oscillatory shape modes in the

design space. In most aerodynamic cases it is very important to have smooth geom-

etry to avoid bumps along the boundary to maintain attached flow, avoid boundary

layer separation and turbulent flow which are all leads to increased drag and a loss

of performance[17]. In addition to that, the presence of small scale oscillations may

lead to impractical and non-manufacturable shapes. In general, a shape can be

represented as superposition of several basis functions each characterized by their

wavelength. For example, a wing shape can be represented as superposition of sin

and cosine waves of different amplitudes and frequencies. In here, different frequen-

cies can be referred as shape modes. For example, if the distance between a surface

crest is large then it has long wavelength hence it can be viewed as a low frequency

shape mode (slow changing surface). On the other hand, if the distance is small

then it has short wavelength hence it can be viewed as a high frequency shape mode

(fast changing surface). Therefore additional surface regularisation methods need

to be incorporated to remove small scale oscillations while preserving desirable and

important shape modes in the design process [127, 57].

Surface regularisation is a process by which surface node points are smoothed

or averaged with their neighbors. This usually has the effect of damping the high-

frequency shape modes in the design process. In simplest form, smoothing can be
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written as,

Ṽ n+1 = V n + β U(V ) (2.3)

where V = [vT1 , v
T
2 ...., v

T
N ],is the input vector with small scale oscillations on the

design surface, N is the total number of surface grid nodes and Ṽ n+1 is the smoothed

vector. U(V ) = [δvT1 , δv
T
2 ...., δv

T
N ] is the vector of modifications to remove small scale

oscillations. U is the smoothing operator, β is the smoothing coefficient and and n

is the number of smoothing iterations both controls the smoothing intensity. In the

design loop, surface regularisation can be applied either to smooth the computed

gradients [63, 68] or smooth the shape directly [64, 58]. In the former type, gradients

are smoothed before fed into the optimiser then V and Ṽ in Eqn. 2.3 becomes G

which is the raw gradient and G̃ which is the smoothed gradient respectively. In

the latter method, design perturbations are smoothed before updating the surface

mesh nodes. In this case V and Ṽ in Eqn. 2.3 becomes δXs which is the input

perturbations and δX̃s is the smoothed perturbations respectively.

Sobolev gradient method has been widely used in many practical applications [61,

62, 54, 63, 114]. Sobolev gradient method is a Laplacian or diffusion type smoothing

method in which the smoothed gradient field G̃ is obtained from initial gradient G

by solving diffusion equation implicitly:

G̃ − β∇2G̃ = G, (2.4)

where β is a tuning factor which controls the intensity of the smoothing.

Image processing based convolution filters are also used as a design tool to filter

out high-frequency modes in the gradient fields. It has been widely used in topology

optimisation [120, 121], structural shape optimisation [32, 14] and CFD-based shape

optimisation [127, 58]. The basic idea is that small scale oscillations in the gradient

fields which are smaller than the kernel length scale or filter radius will be damped

out. The kernel for gradient smoothing defines the shape of the function that is

used to take the average of the neighbouring gradients. In the discrete form, filtered

gradient can be written as,

G̃i =

∑d
l=1 Kl · Gl∑d
i=1 Kl

(2.5)

where K is the filter kernel, d is the number of nodal points in the filter domain
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including the center point i. Sigmund et al. [120, 121] defined the kernel function

based on a geometric distance between nodal points. Daoud et al. [32] extended

this distance function to include both topological and geometrical distance to avoid

inconsistent in evaluating the distance between node points on the curved design

surface. Stück and Rung et al. [127] used uniform Gaussian kernel for CFD-based

shape optimisation,

K(r) =
1

4πβ
exp

(
− r2

4β

)
(2.6)

where r is the local filter radius and β is the factor controlling smoothing intensity

as involved in Eqn. 2.4 which is given as half the variance σ2 = γt of the Gaussian

filter kernel. Authors applied this method to the shape optimisation of 3D double

bend duct with three different kernel width σ = 0.1, 0.15, 0.2 . They noticed that

wider filter kernel effectively filtered out small scale oscillations in gradient fields

than narrow kernels hence converge towards better optimal design while the narrow

filter kernel got stuck with the steepest descent optimiser.

In these methods, the smoothed gradients are used by the optimiser hence G = dJ
dα

is replaced with G̃ to compute the search direction d as required in Eqn. 2.1. Kim

et al. [67] noted that the implicit Sobolev gradient method produces oscillations

on the airfoil surface even for a large value of β and Firl et al. [39] pointed out

that gradient direction G is not preserved when smoothing the sensitivities hence

might affect the estimation of curvature of the objective function to employ the

Quasi-Newton method as an optimiser. In addition to that, the choice of smoothing

intensity factor, filter kernel and filter radius, influence the design space hence the

resultant optimal design. More importantly, these are all case dependent and user

needs to select prior to the optimisation process based on experience from similar

applications.

Since the designer is interested in obtaining a smooth geometry in a shape op-

timisation, the Laplacian-based regularisation method can be applied directly on

the shape perturbations before updating the surface mesh nodes [64, 27, 104]. Ac-

cording to this approach, the gradient term G =
(
dJ
dα

)
is need to be processed by

the optimiser rather than G̃. Therefore to compute the total gradient one should

differentiate the surface regularisation method to compute the shape sensitivity and

map the CFD sensitivity G onto the design variables α.
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2.2.2 Mesh Parameterisation

In the node-based parameterisation approach α has a same discretisation as the

surface mesh Xs. So there exist N design variables α, hence offers the richest design

space for shape optimisation. Alternatively, one can also reduce the size of the design

space or use different discretisations forXs and α. This can be done by projecting the

surface mesh nodes to a handful of control points or volumetric lattice which controls

the deformation of computational mesh embedding the volume. These types are

commonly called as mesh parameterisation methods. Mesh parameterisation is the

problem of computing a deformation function that smoothly maps the displacement

of control points embedding the geometry to the displacement of surface grid points.

Given a deformation function (d), update to the computational mesh as given in

the Eqn. 2.1 can be rewritten as,

X ′s = Xs + d(Xs) (2.7)

Most commonly used mesh parameterisation methods for shape optimisation are

Free-Form Deformations (FFD), Directly Manipulated Free-Form Deformations (DMFFD)

and Radial Basis Function (RBF) morphing. Each method constructs the deforma-

tion function differently.

Free Form Deformation

The Free-Form Deformation (FFD) is a well-established mesh parameterisation

method and has been widely used to create smooth deformations in a simulation-

based shape optimisation process [111, 110, 12]. The FFD method is first introduced

by Sederberg et al. [115] using trivariate Bezier volume and it has been extended

to include B-splines [147] and NURBS volume [59] to utilize local shape modifica-

tion properties which are found to be more useful to capture superior designs in

shape optimisation [112, 133]. In this method, the baseline mesh (M) to be de-

formed is embedded into a parametric space built by a set of structured control

points (Pijk) where i, j, k represents the index along each Cartesian direction. In

FFD, one needs to compute the parametric coordinates (u1, u2, u3) for all grid points

embedded inside the control volume. This requires an iterative root-finding New-

ton method. Once the mapping from physical space to parametric space has been
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Figure 2.3: FFD based geometry deformation with its control hull [110]. Control

points highlighted in red are only deformed

established, one can update the mesh inside the control volume by perturbing the

control points. By using FFD one can deform both surface and volume mesh si-

multaneously. Figure 2.3 shows the deformation of a car front bumper using FFD

approach with 6×3×4 control hull. When compared with node-based parameterisa-

tion, additional surface regularisation is not required since geometry deformation is

parameterised with smooth deformation function using a handful of control points.

However, FFD requires the construction of auxillary control hull around the geom-

etry which consumes a lot of pre-processing user set up time and its construction

extremely cumbersome for complex geometries. Moreover, it requires a problem

specific knowledge to achieve an effective set of trivariate control points around the

computational mesh. If not careful, the more important sensitive region may be

covered with a few number of control points. Nemec et al. [10] presented an ap-

proach to construct a second overlaid local control hull around a specific region to

have a more localized geometry deformation which further makes the construction

process more tedious.

Direct Manipulated FFD

In standrad FFD approach, the control lattice may be located far away from the

shape which offers unintuitive design parameters for optimisation and makes it dif-

ficult to obtain constrained deformations [119, 145]. In direct manipulated FFD
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(DMFFD) [86], user specifies the displacements (δX̃h) to some of the points on

the shape X̃h ∈ M and computes the displacements to the control points δP that

satisfies the user-specified displacements. Therefore instead of moving the control

points directly as like in FFD, in this method the user directly moves points on the

geometry which are normally referred as pilot or handle points X̃h. By doing in

this way the constrained deformations can be achieved independent of the influence

of control points. Since DMFFD offers more intuitive design variables than FFD,

DMFFD converged to better design with improved convergence rates in shape op-

timisation [16, 86, 118]. Of course, DMFFD depends on the construction of the

control lattice around the geometry hence facing issues similar to FFD.

Radial Basis Function (RBF) Morphing

RBF mesh morphing method is a global interpolation method used to deform both

surface and volume mesh simultaneously in the design loop [91, 102]. It has prop-

erties similar to FFD method. For example, RBF method parameterise the shape

displacements instead of parameterising the shape directly and deforms the geom-

etry by means of control points surrounding the geometry. However, structured

distribution of control grids are not required, the mesh points and the control grids

are considered as a point clouds [89]. Morris et al. [89] presented RBF based pa-

rameterisation method for shape optimisation of airfoils and later, authors have

extended the RBF method to 3D geometries including modern transport wing [90]

and hovering rotors [9].

2.2.3 Analytical methods

Hicks and Henne [56] employed a set of smooth analytic functions to perturb the

shape in the optimisation process. For example, airfoil geometry can be parame-

terised using a linear combination of basis functions and the baseline shape. Co-

efficients of the basis functions are taken as the design variables which determine

the contribution of each basis function to the perturbed airfoil shape. In [56], Hicks

and Henne proposed a set of sine functions for shape optimisation. This method

is found effective for wing optimisation however difficult to extend it for a complex

shapes [66, 128].
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Sobieczky et al.[124] proposed a parameterisation method called PARSEC (Para-

metric SECtion) for shape optimisation of airfoils. This method parameterise an

airfoil using eleven engineering parameters such as leading edge radius, trailing edge

angle, upper and lower crest position, upper and lower crest curvature, airfoil max

thickness etc. These geometric parameters (PG,i ,i = 1, 2, ...11) are taken as design

variables in the shape optimisation process. PARSEC parameterisation depends on

the geometric properties of an airfoil which is easy to setup. However it offers only

few parameters for shape optimisation which restricts the generation of superior

designs during the design process. In addition to that, Wu et al. [141] pointed out

that PARSEC method is difficult to generalize for a complex geometry other than

wings.

Kulfan [69] proposed a shape parametrisation method called Class Shape Func-

tion Transformation (CST) method. In this method, any general 3D shapes can

be represented by a distribution of class functions, shape functions and body size

parameters. By varying the class parameters one can obtain different cross sectional

shapes. This method parameterise most commonly used aircraft geometries such

as wing shapes, fuselage cross sections and nacelles with a few number of design

variables. Feng [151] parameterised wide range of aircraft components using CST

parameterisation method including belly-fairing, fuselage, wing, nacelle etc. Even

though only few design variables are used to parameterise the geometry a significant

amount of computational effort is required to set-up the geometry for shape opti-

misation. Furthermore, the number and the selection of design variables are purely

based on user experience hence important design variable may left out during the

parameterisation stage which may affect generation of superior designs during a

shape optimisation process.

2.2.4 Other Methods

Proper orthogonal decomposition (POD) is a order reduction technique highly used

in statistical analysis to obtain a low dimensional approximation to a high dimen-

sional vector data by computing dominant modes using SVD. Toal et al. [130] pro-

posed an airfoil parameterisation method using SVD to derive an ordered set of

orthogonal shape modes from a pre-selected airfoil database. Basic idea is that,
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an existing airfoil database for particular flight condition contains a large number

of best designs and by using an orthogonalisation process important geometric fea-

tures could be extracted easily and used to generate best designs in the optimisation.

Ghoman et al. [45] used this concept for shape optimisation of supercritical airfoils

and employed a set of airfoils from specific family to extract shape modes for tran-

sonic flight condition. Poole et al. [105] applied this approach using a large airfoil

database such as a library of NACA 4-series airfoils and the UIUC airfoil database for

airfoil shape optimisation. Allen et al. [8] extended this approach to include shape

optimisation of wing geometry using a sectional approach. Mode shapes extracted

using this method are 2D and the design space is highly depends on the library

of airfoils chosen which relies on user experience to select the suitable database.

Straightforward extension to shape optimisation of complex 3D geometries is not

easy because this method requires the large database of such 3D geometries which

is not easy to create.

Subdivision surfaces are widely used in computer graphics and animation [35].

They describe a smooth surface using a control mesh. By successive use of sub-

division scheme, various levels of control mesh can be obtained. Local refinement

of control mesh around the region of interest is also possible [83]. More recently

subdivision surfaces are received reasonable attention from the shape optimisation

community. Masters et al. [84] presented a parameterisation method based on sub-

division curves for the shape optimisation of 2D airfoils and considers coordinates

of the control mesh as the design variables. Authors used a coarse level of control

mesh in early stages of the optimisation and refined to a fine level as the design

progres. In [82], authors from the same research group extended this approach to

aerodynamic shape optimisation of the ONERA-M6 wing.

Even though CAD-free parameterisation methods eliminate the use of CAD-

software or kernel in the design loop, the optimal shape exists as a computational

mesh. Hence no datum shape is available for multi-disciplinary shape optimisa-

tion and manufacturing process. Therefore additional post-processing is required to

approximate the optimal mesh back to CAD format. This approximation process

could incur a significant error hence may loose optimal performance gained through

an optimisation process.
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2.3 CAD-based Parameterisation

On the other hand, in CAD-based parameterisation CAD model of a geometry is

preserved in the design loop. Hence suitable for multi-disciplinary shape optimi-

sation and manufacturing process. Based on how the parameterisation is defined

using a CAD model, this method can be further divided into two types. They are

1) Explicit parameterisation and 2) Implicit parameterisation.

2.3.1 Explicit Parameterisation

Explicit parameterisation depends on a parameterised CAD model. Hence all in-

cluded CAD parameters can be used as design variables. It is common for designers

to use conventional engineering parameters for the design process. For example, a

parameterisation of three-dimensional turbomachinery blade can be done by using

engineering parameters such as inlet and exit blade angle, stager angle along the

blade height, axial chord length, leading and trailing edge radius etc [134, 113]. This

method can be easily integrated in the industrial design chain and geometric con-

straints can be built into the parameterisation. However, this method restricts the

design space and performance improvement is highly depends on the chosen design

parameters. Innovative or superior designs may not be obtained using this restricted

design space.

Verstraete et al. [134] and Salvatore et al. [92] used Bezier and B-spline curves

to parameterise 2D turbomachinery blade profiles respectively. Authors obtained

the 3D shape of a blade by using cross-sectional design approach (i.e) by stacking

parameterised 2D profiles from hub to tip. The number of 2D slices used in stacking

is a designers choice. For example, Salvatore et al. [92] parameterised compressor

stator blade using 7 slices and Tom et el. [134] used 3 slices for parameterising axial

turbine blade. Similarly, Banovic et al. [19] also employed cross-sectional approach

and used large number of 2D slices to parameterise a 3D turbine blade cooling

channel. Optimum geometry obtained using this type of parameterisation purely

depends on how the designer parameterised the baseline geometry.

On the other hand, one can also use parameters associated with the features of

a CAD model as design variables. Feature-based parametric CAD model has been
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Figure 2.4: Parametric CAD model of S-bend geometry with design parameters [13]

widely adopted in commercial CAD systems such as CATIA, PRO-E, SolidWorks

and open source CAD engine such as open CASCADE. In modern CAD systems,

a geometry can be created by combining a number of modeling features such as

extrude, revolve and sweep etc. Whole history of construction is recorded in the

form of tree-like structure. For example, Fig. 2.4 shows the CAD model of a S-

bend air duct with its feature tree and ten design parameters including nine length

L1− L9 and one angle parameter A1.

In shape optimisation, the geometry can be updated by changing the parameters

of the feature and the CAD system automatically regenerate the parts affected

by the update. The selected parameters should modify the geometry independent

of each other and every update should result in a valid CAD model so that the

design loop continues to run without any termination. Number of researches have

developed API interfaces to CAD system to exposes suitable CAD parameters for

shape optimisation. Robinson et al. [13, 109, 4] employed Visual Basic API for

CATIA V5 to access feature tree parameters. Haimes et al. [51, 22] developed

Computational Analysis PRogramming Interface (CAPRI) to expose and assign

bounds to each CAD parameters to avoid regeneration error.
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2.3.2 Implicit Parameterisation

Alternatively one can derive a parameterisation implicitly from the Boundary Rep-

resentation of a CAD model. The BRep, in the typical standardised STEP or IGES

format, represents the shape using a number of NURBS patches and considers loca-

tion and weights of the NURBS control points to deform the geometry in the design

process. The local shape modification property of NURBS offers wide range of shape

modes in the design space and hence richest design space this representation can

express. Martin et al. [76] and Wendisch et al. [148] presented parameterisation

method based on BRep in which NURBS control points are directly used as design

variables. However, the design surface consists of single NURBS patch which is only

suitable for simple geometries. A complex geometry need to be represented using a

collection of NURBS patches hence multiple NURBS patches need to be deformed

in the design process. However, care must be taken to ensure continuity between

NURBS patches when deforming multiple NURBS patches together in the design

process. The CFD optimisation group at QMUL developed ”NURBS based Param-

eterisation method with Complex Constraints (NSPCC)” for shape optimisation

application.

The important contribution of NSPCC to CAD-based parameterisation based

on the BRep is the formulation of geometric constraints, e.g. G0 − G2 continuity

at NURBS patch interfaces or box, radius and thickness constraints. In addition,

shape update preserves the topology of the CAD model hence one can employ the

NSPCC method in a shape optimisation loop without any additional treatment.

Parameterisation using NSPCC has been explained in 2D by Yu et al. [146] and in

3D with handling multiple NURBS patches by Xu et al. [142, 143] and later it was

extended to deal with adaptive and intersecting NURBS patches in [65, 95]. More

often, NURBS patches extracted from the BRep can contain geometric errors such

as gaps, self-intersecting and/or trimmed NURBS patches and geometrical errors

such as overlapping faces and unshared adjacent edges etc [101, 26]. These errors

are introduced by the CAD engine itself during the data exchange process due to

the absence of constraints on the boundary of the CAD model. In most cases, these

errors are too small to be identified using visualization tools hence major problems

are encountered when employed for mesh generation and shape optimisation process.
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Therefore preprocessing step such as re-parameterisation of the existing CAD model

is required to obtain a clean BRep model without geometric errors.

Auriemma et al. [15] proposed an approach for re-parameterisation based on

a cross-sectional design approach that fits NURBS surface to the CAD geometry.

Using NURBS one can represent a CAD geometry using a wide range of control

net distributions starting from a coarser level that fits a CAD geometry within

a suitable minimum level of tolerance to a finer parameterisation. However, it is

a daunting task to determine the suitable parameterisation a-prior to the shape

optimisation process. Therefore it is important to investigate the influence of the

parameterisation on the shape optimisation process. In this present work, particular

attention is given to investigate the influence of dimensionality of the design space,

quality of the optima and their sensitivity to the choice of control net distribution

on the aerodynamic shape optimisation.

2.4 Benchmark Test Cases

In this work, two optimisation cases are considered:

• Case 1: Lift constrained drag minimization of the ONERA M6-wing at tra-

sonic flow conditions with thickness constraints. The freestream conditions

considered in this work for validation and subsequent optimisation are similar

to the standard benchmark conditions set out in the NPARC Alliance CFD

Verification and Validation programe [3].

• Case 2: Reducing the mass-averaged total pressure loss of the VKI U-Bend

geometry. This is a typical 180◦ bend duct used to circulate cooling air inside

the turbine blade. This is a benchmark test case prepared for adjoint-based

shape optimisation by the About Flow project organized by the Queen Mary

University of London. Boundary conditions considered in this work for val-

idation and subsequent optimisation are similar to the standard benchmark

conditions specified in the About Flow project [135].

Other optimisation test cases are also available in the About Flow project. They

are:
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1. VKI LS89: This is a axial turbine nozzle guide vane, the objective of this

case is to reduce the mass averaged entropy production in the cascade with

constrained exit flow angle of 74◦.

2. TU Berlin Turbolab Stator: Reduce the total pressure loss of the TU Berlin

compressor stator.

3. TUM Drivaer Vehicle: Reducing drag of the vehicle by varying shape of the

side view mirror.

The Aerodynamic Design Optimisation Discussion Group (ADODG) [2] also pro-

vided a range of benchmark cases for optimisation. They are:

1. Viscous drag minimisation of an RAE 2822 airfoil.

2. Subsonic, inviscid drag minimisation of a rectangular wing.

3. Drag minimisation of CRM wing.

2.5 Summary

In this chapter, most important shape parameterisation methods coming under

CAD-free and CAD-based parameterisation methods are presented. When com-

pared with the CAD-free methods, CAD-based methods preserves CAD model in

the design loop which is more useful when employing multi-diciplinary shape op-

timisation and also for manufacturing. Hence CAD-based methods are normally

preferred in industry for shape optimisation. However most of the shape parameter-

isation methods require manual setup [112, 145] which results in a restricted design

space for shape optimisation. Based on information presented in this chapter, in

this thesis more focus will be given on CAD-based parametisation methods. To

be more specific, this work will mainly investigate NURBS-based paramterisation

method for shape optimisation.
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Chapter 3

Gradient-based shape optimisation

3.1 Introduction

Advancements in numerical simulation methods in combination with powerful com-

puters have enabled the designers to create various design tools based on numerical

optimisation algorithms. As a result, simulation-based methods such as Compu-

tational Fluid Dynamics (CFD) and Computational Structural Mechanics (CSM)

are now no longer used only for the performance evaluation of a given complex

configuration. With the development of adjoint approach, it is now possible to com-

pute how a given objective function depends on the shape at a cost independent of

the number of design variables and with the help of numerical optimiser it is now

possible to improve the shape automatically in the design loop.

In the previous chapter, current state of the art to parameterise a given shape

is presented. In this chapter, the details about how one can compute the accurate

gradients efficiently in a design loop are presented. In this work an aerodynamic

shape optimisation is performed in which the scalar objective function (J) is not

only depends on the design variables but also on the physical state of the system

U , input volume mesh Xv and surface mesh Xs which intern depends on design

variables α. Mathematically it can be written as,

minimize
α

J(α, U(Xv), Xv(Xs), Xs(α))

subject to R(α, U) = 0

and other geometric constraints.

(3.1)
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where α represents the vector of design variables and U is the vector of state variables

and R represents the steady state Reynolds Averaged Navier-Stokes Equations.

In a gradient-based shape optimisation, sensitivity of the objective function with

respect to design variables are required. Automatic Differentiation (AD) software

tools allow to compute derivatives for complex algorithms by differentiating the

statements of a computer program that executes the algorithm. This has a number

of advantages: a) the derivatives are exact and b) the AD process can be included

in the build process of the code and any modifications of the primal code (the model

to be differentiated) is automatically carried through to its derivative code. The

details about the AD are presented in Section 3.2.

In general, the objective function as given in Eqn. 3.1 is computed through

evaluation of separate blocks of code in a high-level programming language such as

Fortran, C or C++. Differentiation of the objective function block by block can

be represented as chaining up the derivatives for each of the blocks and it can be

written as,

dJ

dα
=
∂J

∂α
+

∂J

∂U︸︷︷︸
1

∂U

∂Xv︸︷︷︸
2

∂Xv

∂Xs︸︷︷︸
3

∂Xs

∂α︸︷︷︸
4

. (3.2)

In general, combined form of the first and the second term is called as the CFD

sensitivity which is obtained by differentiating the flow solver (Sec. 3.3). The third

term is called as the mesh sensitivity which is obtained by differentiating mesh

deformation or mesh generation algorithm (Sec. 3.3.2). The fourth term is called as

the shape sensitivity obtained by differentiating the shape parameterisation method

(Sec. 3.3.3).

3.2 Automatic Differentiation

As mentioned in the previous section, in this present work only single discipline

is considered. However, Automatic Differentiation tools can be applied to multi-

disciplinary cases as well. Hence in this section J is assumed as vector valued

objective function. This assumption is valid only for this section. If J : Rn → Rm

is an vector valued objective function and to solve an sensitivity-based optimisation

problem we need to compute the sensitivity of J with respect to a vector of design
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variables α which is called as the Jacobian matrix J and it is written as,

∇J =


∂J1
∂α1

∂J1
∂α2

. . . ∂J1
∂αn

...
. . . . . .

...

∂Jm
∂α1

∂Jm
∂α2

. . . ∂Jm
∂αn

 (3.3)

Each column in the Jacobian matrix represents the sensitivity of m number of vec-

tor valued objective functions J with respect to one design variable αj and each

row represents the sensitivity of ith objective function with respect to n number of

design variables α. In large scale industrial applications, the objective function J is

typically not given in analytic form but rather available as a computer code written

in a high-level programming language Fortran, C or C++.

Automatic or Algorithmic Differentiation (AD) have become more and more

widely used in sensitivity-based shape optimisation problems [31, 28, 27]. AD pro-

duces codes that compute exact derivatives of arbitrarily complex programs in which

each line can be expressed as a sequence of elementary instructions computing an

elementary differentiable function. There exist two fundamental modes of algorith-

mic differentiation: tangent and adjoint (reverse) mode. Detailed discussion about

the two modes of AD techniques can be found in [49] and recent advances in AD

can also be found in [42].

An AD tool in forward mode generates the Tangent Linear Model (TLM) (J̇) of

the given program that computes (J) and for one forward sweep with a given seed

vector α̇ ∈ Rn computes the product of the Jacobian with α̇,

J̇ = ∇J · α̇. (3.4)

If a given seed vector α̇ is initialized by setting 1 for the jth variable and 0 for all

other variable then the forward sweep computes jth column of the Jacobian matrix.

Thus n forward sweeps are requirred to compute the full Jacobian ∇J . In the

Reverse mode, AD tool generates the adjoint code and for one reverse sweep with

a given seed vector J̄ ∈ Rm computes the product of the transpose Jacobian with

seed vector as,

ᾱ =
(
∇J
)T · J̄ . (3.5)
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If a given seed vector J̄ is initialized by setting 1 for the ith element and 0 for all

other elements then the reverse sweep computes ith row of the Jacobian matrix J̇i.

Thus m reverse sweeps are requirred to compute the full Jacobian ∇J . If T is a

computational time of a program which computes J , then obtaining full Jacobian

∇J using tangent-linear program with a seed vector α̇ ∈ Rn requires a runtime of

O(nT ). Alternatively, computing full Jacobian ∇J , by calling the adjoint program

with a seed vector J̄ ∈ Rm requires a runtime of O(mT ). Therefore the adjoint

program reduce the computational time if the number of inputs (n) are larger than

the number of functions (m), m << n.

Computational costs associated with each method can also be analyzed using

computational graph as shown in Figs 3.3 and 3.2. In this case only 4 design

variables with single objective function (J) are considered and the principle is similar

for n number of design variables. The graph shown in Fig. 3.1 traces the flow of

computation of the primal program and in this case from 4 design variables from the

top to 1 objective function at the bottom. Each node corresponds to intermediate

values of a function or a line of code in the program. Connecting edges between

nodes represents that each node value is the input to the other node. By using these

connecting edges the partial derivatives of the node with respect to each input can

be traced. In the forward mode we have to seed one input at a time and it moves

towards the end. As a result it tracks how each α affects every node. Therefore we

need to execute the tangent linear code 4 times which is shown in Fig. 3.2. However,

reverse-mode AD records the computational graph of a program and starts at the

output J and moves towards α (i.e) it propagates the seed backwards and computes

derivative of J with respect to every node. As a result derivative of J with respect

to each input α1, α2, α3, α4 computed in a single reverse sweep which is shown in

Fig. 3.3.

3.2.1 AD Implementation

Algorithmic differentiation can be implemented in two different ways. They are: a)

source-code transformation and b) operator overloading.
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Figure 3.1: Computational graph for primal calculation (left)

Figure 3.2: Computational graph for forward mode derivative calculation

Figure 3.3: Computational graph for reverse mode derivative calculation
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3.2.2 Operator Overloading

In operator overloading, declarations of all the floating-point variables are replaced

with a new data type that stores both derivative and primal information, and over-

loading the operators such that they compute the primal as well as propagate its

derivatives. In reverse-mode, operators compute the primal function and record

the computational graph using the ‘tape’ which stores each elemental code opera-

tion and interpreted in reverse to accumulate derivatives. This method is easy to

implement and can be applied to straightforwardly to large codes. However for pri-

mal program with large computational graph ‘tape’ mechanisms leads to excessive

memory requirements and also impede compiler optimisations. AD tools based on

operator overloading method are ADOL-C [48], DCO/C++ [97].

3.2.3 Source-Code Transformation

Source-transformation (s-t) AD parses the source code of the primal and produces

the required new source code for the derivative computation. The ‘tape’ hence does

not exist as a list operations, but as a compact set of instructions similar to the

primal code. Consider e.g. point inversion, the computation of the parametriccoor-

dinates on the surface of the projection of a surface mesh point onto the geometry,

which is obtained by solving a linear system of equations using Newton’s method

for each point. The reverse mode of operator overloading AD needs to record the

operations for all Newton steps for all points.

Using source transformation AD on the other hand would re-use the differen-

tiated source for all nodes and hence avoid tape storage. This makes the source

transformation AD tool a more attractive option and this is what is used in the

current work. Furthermore, AD process can be included in the build process of

the code and any modifications of the primal code (the model to be differentiated)

is automatically carried through to its derivative code. AD tools based on source

transformation are Tapenade [53], TAF [47] and OpenAD/F [131]. In this present

work, AD tool Tapenade is used to obtain both CFD and shape sensitivities as given

in Eqn. 3.2.
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3.3 Discrete Adjoint Formulation

This section presents the classical discrete adjoint formulation used for aerodynamic

shape optimisation process. As presented in Sec. 3.1, the function of intersect shown

in Eqn. 3.1 depends not only on the design variables (α) but also on the physical

state of the system (U). In short form Eqn. 3.1 can be written as,

J = J(α, U(α)), (3.6)

where α represents the vector of design variables for n = 1, ..., N and U is the vector

of state variables. For a given vector α, the solution of the governing equations of the

system yields a state vector U , thus establishing the dependence of the state vectors

on the design variables. Generally, these steady state governing equations are non-

linear and this system of equations are solved using an iterative method by driving

the residuals R to zero which arises from the discretisation of the conservation

equation. Hence, the governing equations are denoted as,

R(α, U(α)) = 0, (3.7)

where R represents steady-state Reynolds Averaged Navier-Stokes equations. In

a gradient-based optimisation, sensitivity of the objective function with respect to

design variables are computed by applying chain rule to Eqn. 3.6. It can be written

as,

dJ

dα
=
∂J

∂α
+
∂J

∂U

dU

dα
. (3.8)

In Eqn. 3.8, the term dU
dα

represents the change of the state variable U with respect

to α which is called perturbation field. Therefore to evaluate the total sensitivity of

the cost function, one needs to evaluate the perturbation flow field for each design

variables. Linearising the non-linear discrete governing equations yields,

∂R

∂α
+
∂R

∂U

dU

dα
= 0. (3.9)

This could be solved iteratively to compute the perturbation field dU
dα

with respect

to each design variable,
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∂R

∂U

dU

dα
= −∂R

∂α
, (3.10)

which can be written in short form as

Au = f, (3.11)

where

A =
∂R

∂U
, u =

∂U

∂α
and f = −∂R

∂α
. (3.12)

In Eqn. 3.11, A represents Jacobian and f is the source term which is the negative

partial derivative of the residual with respect to the design variables and u is the

perturbation field which represents the change in the flow field with respect to α.

Eliminating u from Eq. (3.8), the total sensitivity equation becomes,

dJ

dα
=
∂J

∂α
− ∂J

∂U

(
∂R

∂U

)−1
∂R

∂α
, (3.13)

dJ

dα
=
∂J

∂α
+ gTA−1f, (3.14)

where

gT =
∂J

∂U
.

We first need to solve the Eq.(3.11) for dU
dα

and then substitute the result in expression

(3.14) for the computation of total sensitivity for each design variable α. However,

solving the system of equation Eqn. 3.11 for the perturbation field is usually as costly

as solving the governing equations. When we multiply this cost of evaluations by the

total number of design variables, then the total cost for calculating the sensitivity

vector may become prohibitive

However, this is the starting point of discrete version of the adjoint-based ap-

proach. By transposing and rearranging Eq. 3.14, we can observe that for computing

the adjoint sensitivity (dJ
dα

)T , the auxiliary vector ψ can be obtained by solving the

linear system of adjoint equations see Eqn. 3.17 generated by the second and third

terms in the right hand side of the total sensitivity Eqn. 3.13.

(
dJ

dα

)T
=

(
∂J

∂α
+ gTA−1f

)T
, (3.15)
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(
dJ

dα

)T
=

(
∂J

∂α

)T
+ fT (A−1)Tg. (3.16)

The term A−Tg is solved for the adjoint variable ψ,

ATψ = g, (3.17)

where

ψ =

(
∂J

∂R

)T
. (3.18)

In expanded form, the adjoint Eqn. 3.17 can be written as,

(
∂R

∂U

)T(
dJ

dR

)T
=

(
∂J

∂U

)T
. (3.19)

Using the adjoint solution which obtained by solving Eqn. 3.17, the adjoint sensi-

tivity equation as shown in Eqn. 3.16 can be rewritten as,

(
dJ

dα

)T
=

(
∂J

∂α

)T
+ fTψ, (3.20)

(
dJ

dα

)T
=

(
∂J

∂α

)T
−
(
∂R

∂α

)T
ψ. (3.21)

Source term f is a function of design variables. The dependency structure of the

residuals R of the governing equations describing the flow to the design variables

can be written as,

R = R(Xv(Xs(α))). (3.22)

Hence the source term now can be written as,

f = −∂R
∂α

=
∂R

∂Xv

∂Xv

∂Xs

∂Xs

∂α
, (3.23)

which modifies the adjoint sensitivity Eqn. 3.20 as,(
dJ

dα

)T
=

(
∂J

∂α

)T
+

(
∂Xs

∂α

)T(
∂Xv

∂Xs

)T(
∂R

∂Xv

)T
ψ. (3.24)
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The adjoint method traces the sensitivity backwards from the cost function

through all intermediate blocks to the design variables. Hence a change in α now

affects only the left most term which is computed last. Unless there is a change in

objective function J or a change in the flow field U , the adjoint CFD sensitivity

term
(
∂J
∂Xv

)T
is evaluated only once. Therefore after solving the governing equations

as given in Eqn. 3.7, an adjoint system of equations needs to be solved once for each

objective which is shown in Eqn. 3.17 and it is valid for all the design variables.

However, if there is more than a single objective, all additional objectives require an

additional adjoint solve. This reduces the computational time and makes the adjoint

approach more efficient for handling a large number of design variables. Hence this

approach is used in this present work.

3.3.1 STAMPS: Flow and Discrete Adjoint Solver

The flow and discrete adjoint solver employed in this work is called STAMPS (Source

Transformed Adjoint Multi-Physics Solver) [93] which is an in-house code developed

by the CFD optimisation group at the Queen Mary Unversity of London (QMUL).

It has been used in the references [27, 28, 19, 92, 65, 150, 149, 50]. Initially the

CFD code is named as mgOpt and as the functionalites of the solver is increasing

continuously by the developers it is now named as STAMPS. The primal flow solver

of STAMPS uses a standard node-centred, edge-based compressible finite volume

discretisation using MUSCL type reconstruction of primitive variables with second

order accuracy and stable implicit JT-KIRK scheme [144]. The viscous source terms

are obtained using an edge-corrected Green-Gauss formula. Turbulence modelling is

performed with Spalart-Allmaras RANS model with AUSM scheme for the convec-

tive fluxes. The extended details about the numerical method, primal and adjoint

implementations in STAMPS can be found in [27, 50].

Typical structure of the compressible flow solver with explicit Forward-Euler

timestepping is shown in Listing. 3.1 in which U are the flow variables, Xv represents

the volume mesh, Nrm is the edge and boundary normals, R represents the residuals

of the flow equations and J is the scalar objective function. For a given volume mesh

Xv, the algorithm solves the governing flow equations and computes the objective

function of interest. The downward and upward pointing arrow indicates inputs and
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outputs to the subroutine respectively.

To compute the sensitivity of the objective function with respect to volume

mesh coordinates (i.e) the volume sensitivity Xv = ∂J
∂Xv

, the primal algorithm can

be passed to AD tool for brute force differentiation and the resultant sensitivity

code is shown in Listing. 3.2 in which overline represents the reverse differentiated

code with its corresponding input and output variables. The major disadvantage of

this approach, it includes repeated computation of sensitivity of the residual with

respect to Nrm (i.e) ∂R
∂Xv

at every iteration which increases the computational cost.

From Eqn. 3.24, one can see that this term is normally computed only once after

the adjoint solution is converged. Hence repeated computation is not required.

Furthermore the adjoint variables U always initialized with zero which is also not

suitable if one wants to perform a hot start with previous solution.

As an alternative, Faidon et al. [28] suggested to differentiate only the re-

quired subroutines from the solver and use the same primal time stepping algo-

rithm for adjoint which guaranteed convergence if the primal is converged. Here

the cost function subroutine is reverse differentiated with respect to U and Nrm,

and the residual subroutine is differentiated with respect to U and Nrm. The

update subroutine is self adjoint hence the same subroutine as used in primal com-

putation is used in adjoint calculation as well. The resultant primal time stepping

adjoint algorithm is shown in Listing. 3.3. By using this algorithm, adjoint solution

U can be initialized with partially or fully converged adjoint solution from previous

design step. Each operations in the algorithm shown in Listing. 3.3 computes the

sensitivities in the following order:

1. cost function computes the source term, g =
(
∂J
∂U

)T
.

2. do-loop: computes the adjoint solution ψ =
(
∂J
∂R

)T
= A−Tg

3. residual nrm computes:
(

∂J
∂Nrm

)T
=
(

∂R
∂Nrm

)T ( ∂J
∂R

)T

4. metrics computes: Xv =
(
∂J
∂Xv

)T
=
(
∂Nrm
∂Xv

)T ( ∂J
∂Nrm

)T
.
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PROGRAM primal

CALL initialise_flow (↑ U)

CALL metrics (↓ Xv, ↑ Nrm)

DO It = 1, nIter

CALL residual (↓ U, ↓ Nrm, ↑ R)

CALL update (↓ R, ↑ U)

END DO

CALL cost_fun (↓ U, ↓ Nrm, ↑ J)

END PROGRAM

Listing 3.1: Typical structure of the primal solver

PROGRAM adjoint

J = 1

CALL cost fun(↑ g, ↑ Nrm, ↓ J)

DO nIter = mIt , 1, -1

CALL update (↓ R, ↑ U)

CALL residual u (↑ R, ↓ U)

END DO

CALL metrics (↑ X, ↓ Nrm)

END PROGRAM

Listing 3.2: Adjoint code via ‘Brute force’ differentiation
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PROGRAM adjoint

J = 1

CALL cost fun(↑ g, ↑ Nrm, ↓ J)

DO It = 1, nIter

CALL residual u (↑ R, ↓ U)

R = R - g

CALL update (↓ R, ↑ U)

END DO

CALL residual nrm (↓ U, ↑ Nrm)

CALL metrics (↑ X, ↓ Nrm)

END PROGRAM

Listing 3.3: Adjoint code with primal time stepping for compressible solver

3.3.2 Computation of Design Surface Sensitivity

Mesh Morphing Algorithm in STAMPS:

At each design step, optimiser updates the shape for design improvement. To con-

tinue the design cycle, the computational mesh involved in the simulation needs to

be synchronized with the updated shape. This can be done by the use of structured

meshing algorithm with frozen mesh topology. If the design perturbations are small

one can use available mesh morphing algorithms to smoothly propagate the surface

mesh displacements to volume mesh coordinates. Wide range of mesh morphing al-

gorithms are available spring-analogy, Radian Basis Functions(RBF), Free-Form De-

formation (FFD), linear elasticity and inverse-distance weighting (IDW). STAMPS

offers inverse-distance weighted interpolation method for mesh deformation. The

algorithm of IDW is well documented in literature and it is only briefly discussed

here. Unlike other mesh deformation methods IDW is an explicit method can be

implemented in a matrix-free form, hence it is computationally less expensive and

it is written as,

δXv =

∑Ns

i=1 Ws,iδXs,i∑Ns

i=1 Ws,i

=
Ns∑
i=1

ks,iδXs,i = KδXs, (3.25)
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where Ns is the number of surface mesh nodes and Ws,i describes the weighting

function based on inverse-distance (‖ Xv −X i
s ‖). Our experiments show that IDW

preserves high quality boundary layer mesh during geometry deformation.

Once the primal and adjoint solution are computed, sensitivity of the objective

function with respect to volume mesh nodes which typically called as volume sen-

sitivity are assembled as shown in Listing. 3.3. Then the adjoint sensitivity of the

objective function with respect to the surface mesh nodes Xs which also called as

the CFD sensitivities are computed by projecting the volume sensitivity onto the

surface mesh nodes.

Therefore, the inverse distance weighted mesh deformation algorithm needs to

be differentiated. IDW is a linear operator and in the present work we exactly

differentiate the IDW mesh deformation algorithm to project volume sensitivity to

surface sensitivity. By using Eqn. 3.25, sensitivity of mesh deformation algorithm is

written as, (
∂Xv

∂Xs

)T
= KT . (3.26)

Then the final projection can be written as,

Xs =

(
∂J

∂Xs

)T
=

(
∂Xv

∂Xs

)T
Xv. (3.27)

3.3.3 Projection of Design Surface Sensitivity to Shape

To complete the chain rule as given in the Eqn. 3.24 we need to compute the sen-

sitivity of the objective function with respect to design variables α. The product

term
(
∂J
∂α

)T
=
(
∂Xs

∂α

)T ( ∂J
∂Xs

)T
can be computed using AD tool without explicitly

computing and storing the transposed shape sensitivity matrix
(
∂Xs

∂α

)T
. The final

projection can be written as,

α =

(
∂J

∂α

)T
=

(
∂Xs

∂α

)T
Xs. (3.28)

From Eqn. 3.28 one can see that, seeding X̄s to the reverse differentiated parame-

terisation subroutine
(
∂Xs

∂α

)T
computes α efficiently independent to the size of the

number of design variables.
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3.4 Shape optimisation Framework using ‘one-shot’

Methodology

Adjoint methodology presented in the previous section computes the gradient of the

objective function with respect to design variables which describes the linearized

behavior of the objective function in the vicinity of the current design. By using the

gradient-based optimiser the direction of the design improvement can be computed.

In this work, gradient-based optimiser provided by the SciPy library such as steepest

descent and Broyden–Fletcher–Goldfarb–Shanno (BFGS) methods are employed to

compute the direction of the design improvement. In general, perturbations (δα) to

design variables can be written as,

δα = −γH
dJ

dα
(3.29)

where γ represents the step size which is given by Armijo and Wolf based line search

conditions and H is identity matrix for SD or inverse Hessian approximation matrix

for the BFGS method.

In the present work, an optimisation workflow based on the one-shot methodol-

ogy is employed to simultaneously converge flow (Eqn. 3.7), adjoint (Eqn. 3.17) and

the design (Eqn. 3.24). One-shot method places more importance on the direction

of the gradients rather than their magnitude and last CFD and adjoint solutions

are used as the initial guess for the subsequent design iterations. However both

primal and adjoint solutions are required to converged fully for the first design it-

eration. Then, stopping criteria proposed by Christakopoulos et al. [27] as shown

in the Eqn. 3.30 is employed for the remaining design iterations which control the

convergence of primal and adjoint solutions dynamically via norm of the gradients.

gRMS =

∑
| dJ
dα
|

C
(3.30)

where gRMS is the stopping criterion and C is a user-defined constant. The schematic

overview of the optimisation process which couples NSPCC and STAMPS is pre-

sented in Fig. 3.4.
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Figure 3.4: Shape optimisation work flow with STAMPS
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3.5 Summary

This chapter presents the adjoint methodology to compute the gradient of the ob-

jective function with respect to design variables and its role in aerodynamic shape

optimisation. After a brief description of the Algorithmic Differentiation (AD) tools,

the derivation of the adjoint gradients and its computational efficiency are shown.

Brief details about the in-house flow and discrete adjoint solver STAMPS are pre-

sented and examined the role of source transformation AD tool in the generation of

adjoint code. Finally, details about the one-shot methodology for shape optimisation

are presented.
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Chapter 4

Adaptive Parameterisation

4.1 Introduction

In the last chapter, details about the primal solver and the discrete adjoint method-

ology to compute the sensitivity of the objective function with respect to the surface

mesh coordinates are presented. Once the ‘raw’ sensitivities are computed, they can

be coupled with the shape parameterisation method to perform shape optimisation.

This is the subject of the present chapter.

Computer Aided Design (CAD) systems are extensively used to create 3D model

of a complex geometry. This involves a series of geometric operations such as sweep-

ing, filleting, booleans etc. CAD models are not only used for visualization purpose

but also extremely useful for computational mesh generation, manufacturing, multi-

disciplinary analysis and optimisation. More importantly interactions among dif-

ferent disciplines require a common CAD geometry, for example, design of flexible

structures such as wings. However there are some challenges must be addressed

before using CAD models in a gradient-based shape optimisation process. They

are:

1. Construction of a parametricCAD model is a time consuming process and

depends on the user input hence important parameters may not be included

during the parameterisation. For a complex geometry it is difficult to add

additional parameters automatically in the region of interest during the design

process.
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2. To complete the chain rule as given in the Eqn. 3.24 we need to evaluate the

shape derivative term which gives the sensitivity of the surface mesh node Xs

with respect to the design variable α, ∂Xs

∂α
. This must be computed over a

long list of successive geometric operations and may contain non-differentiable

operations such as booleans. Hence analytic derivatives are difficult to obtain.

Moreover commercial CAD systems do not provide shape derivatives and often

closed source hence impossible to apply algorithmic differentiation tools.

To address these issues, CFD optimisation group at Queen Mary University

of London developed ‘NURBS-based Parameterisation with Complex Constraints

(NSPCC)’ method for shape optimisation. NURBS are the de-facto industry stan-

dard for geometry representation and data exchange between CAD systems. NSPCC

approach derives parameterisation directly from the Boundary Representation (BRep)

of a CAD model without any user input and uses control points and/or weights to

deform the geometry. NURBS offer local shape modification property and can rep-

resent both analytic and free-form shapes with relatively few number of control

points.

In the NSPCC approach, surface node sensitivities are projected onto the control

points of the design surface. In general, computational mesh resolution is decided

based on RANS requirements. For example, fine mesh resolution is required for

wall bounded flows to capture flow separation accurately. However, control points

distribution on the geometry depends on the local curvature of the shape and when

compared with B-splines surface, NURBS can represent the geometry with a small

number of control points. Hence this projection filters out high frequency gradient

modes and generates smooth geometry in the design process. Previously, the NSPCC

approach has been tested in shape optimisation with fixed control point net on the

design surface. The optimal distribution of control net is difficult to obtain a-prior

to the shape optimisation process. If the control net is too coarse then the important

gradient modes may not be projected effectively which restricts the generation of

superior designs outside this fixed envelope. On the other hand finer distribution

of control points may leads to inefficient navigation in the design space and may

converge to local minima. Therefore the choice of the control net distribution on

the design surface determines the set of shapes during the shape optimisation hence
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influence the best achievable design and rate of convergence of the design process.

In this present work, NSPCC approach is extended to include adaptive design

space for shape optimisation by refining the control points locally on the design

surface using knot insertion algorithm. However we still need to find when to ter-

minate the current design space level and which knot value to insert. This chapter

is organized as follows. Brief introduction about the boundary representation and a

knot insertion algorithm is presented in Section 4.3. Section 4.5 presents the formu-

lation of geometric constraints, e.g. G0 − G1 continuity at NURBS patch interfaces

using test point approach. In Section 4.9, details about the adaptive algorithm are

presented.

In order to test the proposed adaptive NSPCC method, a simple adaptive node-

based parameterisation method is developed which derives parameterisation directly

from the computational mesh employed in the simulation. In the node-based param-

eterisation, displacements of the surface grid nodes are the design variables which

offers the richest design space the CFD discretisation can consider. This design

space is even too rich for the CFD as the parameterisation method can express

high-frequency modes which are not adequately resolved by the CFD and hence

remain poorly damped. Additional regularisation is necessary, and implicit [63] as

well as explicit [64] smoothing methods have been proposed, both of them requiring

to tune a smoothing coefficient. In this work a simple explicit smoothing method is

proposed in which optimisation starts with the large amount of smoothing and as

the design progresses smoothing is reduced to include high-frequency shape modes in

the design space. In Section 4.10, details about the proposed simple explicit surface

regularisation method are presented.

4.2 Boundary Representation (BRep) of a CAD

model

The BRep, in the typical standardised STEP format, represents the geometry as a

collection of NURBS patches. Typical boundary representation of various CAD

models with its control points distribution on the design patches are shown in

Fig. 4.1. The BRep consists of both topological and geometrical entities of a CAD
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(a) U-Bend cooling channel
(b) Wing-body configuration

(c) Onera M6 wing
(d) S-bend

Figure 4.1: BRep of various CAD models with its control points distributions

model. The brief overview of the BRep structure of a CAD model is shown in

Fig. 4.2 in which topological entities are highlighted in blue, and geometric entities

are highlighted in green. In the BRep, a CAD model is represented as a closed

shell formed by several faces. A face is represented by a surface and each face is

bounded by a closed-loop entity called wire. A wire consists of a set of adjacent

edges and an edge is represented by a curve and bounded by two vertices and a

vertex is represented by a point.

In the BRep, surfaces and curves are represented by NURBS which is a current

industrial standard in CAD systems. Before presenting the NSPCC approach, brief

overview of NURBS curves and surfaces are discussed in this section. The reader

is referred to Piegl et al [103] for more detailed discussion on NURBS curves and

surfaces.

Curve representation

The NURBS curve exported by a CAD system is a univariate parametriccurve de-

fined by piecewise rational functions with degree p and parameter s. Mathematically

it is written as,
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Figure 4.2: Overview of the BRep structure of a CAD model

C(s) =

∑n−1
i=0 Bi,p(s)wiPi∑n−1
i=0 Bi,p(s)wi

(4.1)

where Pi are the n number of control points defining a control polygon, Bi,p(s) are

the B-spline basis functions and wi are scalars called as weights. If all the weights are

set to one then Eqn. 4.1 represents a B-spline curve. The pth-degree basis function

Bi,p is uniquely defined on a knot vector S = {s̄0, ...s̄r−1} which consists of r elements

of real numbers in a non-decreasing order. The general form of non-periodic knot

vector is given in the Eqn. 4.2,

S = {a, . . . , a︸ ︷︷ ︸
p+1

, s̄p+1, . . . . . . , s̄r−p−1, b . . . , b︸ ︷︷ ︸
p+1

} (4.2)

where s̄ are called knots and S is the knot vector. Equation 4.2 corresponds to open

knot vector in which first and last knot values have p + 1 multiplicity. The degree

of the basis function (p), the number of knots in a knot vector (r) and the number

of control points of the NURBS curve (n) are related and it is written as,

r = n+ p+ 1. (4.3)

The pth-degree B-spline basis functions are computed by the Cox-de Boor recursion

formula as given below,
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(a) Basis functions (b) B-spline curve

Figure 4.3: An example cubic B-spline curve with rational basis functions

Bi,0(s) =

1 if si ≤ s < si+1

0 otherwise

Bi,p(s) =
s− si
si+p − si

Bi,p−1(s) +
si+p+1 − s

si+p+1 − ui+1

Bi+1,p−1(s) (4.4)

Figure 4.3 shows an example of cubic basis functions defined by the knot vector S =

{0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1} and the corresponding B-spline curve. Figure 4.3

also shows the knot points on the curve which are the points on the NURBS curve

corresponds to each knot points s̄i in a knot vector. These knot points divide the

NURBS curve into curve segments defined on a knot span.

Surface representation

In the BRep, NURBS patches are used to represent the surface of a geometry.

NURBS patches exported by a CAD system are bivariate parametricsurface defined

by piecewise rational functions with degree p and q in the parameter direction s and

t respectively. Mathematically it is written as [103],

S(s, t) =

∑n−1
i=0

∑m−1
j=0 Bi,p(s)Bj,q(t)Pi,jwi,j∑n−1

i=0

∑m−1
j=0 Bi,p(s)Bj,q(t)wi,j

, (4.5)

where Pi,j are the control points which form a bidirectional control polygon with n

and m number of control points along each oparameter direction s and t respectively.

Bi,p(s),Bj,q(t) are the B-spline basis functions defined on the knot vectors S =

{s̄0, . . . , s̄r} and T = {t̄0, . . . , t̄k} with r and k are the number of knots along each

parameter direction respectively. The relation given in Eqn. 4.3 is valid for both
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parameter direction of the NURBS surface. For the current work, we use a non-

periodic or clamped type of knot vectors as given in the Eqn. 4.6 and Eqn. 4.7 in

which the first and last knots have multiplicity of p+ 1 and q + 1 in S and T knot

vectors respectively.

S = {a, . . . , a︸ ︷︷ ︸
p+1

, s̄p+1, . . . . . . , s̄r−p−1, b . . . , b︸ ︷︷ ︸
p+1

} (4.6)

T = {ā, . . . , ā︸ ︷︷ ︸
q+1

, t̄q+1, . . . . . . , t̄s−q−1, b̄ . . . , b̄︸ ︷︷ ︸
q+1

} (4.7)

4.3 Manipulating NURBS surfaces

NURBS offers different algorithms for geometry handling which includes knot in-

sertion, degree elevation, knot removal and degree reduction. Among these knot

insertion [52, 55, 117, 116] and degree elevation [36, 37] algorithms are used in

shape optimisation to refine control points on the design surface.

4.3.1 Knot insertion

As the name suggests, knot insertion inserts a knot into the existing knot vector and

computes the refined control net without modifying the geometry. For example, in

a 2D case, knot insertion inserts a new knot s̃ into the existing knot vector S and

computes the updated control points Qi without changing the curve. Once the knot

span {s̄x, s̄x+1} that contains this new knot s̃ is determined, the p− 1 control points

from the initial control polygon must be replaced with the p number of new control

points (Qx−p+1 to Qx) as a function of initial control points Pi [103].

Qi = γiPi + (1− γi)Pi−1 (4.8)

γi =


1 if i ≤ x− p

s̃−s̄i
s̄i+p−s̄i if x− p+ 1 ≤ i ≤ x

0 if i ≥ x+ 1

where p is the degree of the curve. An simple demonstration of knot insertion

in a quadratic B-spline curve is shown in Figs 4.5a and 4.6a. Figure 4.4a shows

a quadratic curve with initial control polygon defined by the knot vector S =
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{0, 0, 0, 0.2, 0.4, 0.6, 0.8, 11, 1} and Fig 4.4b shows the basis functions of the curve.

The initial curve is divided into 5 segments which are all shown by the knot points in

the Fig 4.4a. A single non-repeated knot s̃ = 0.3 is inserted into the knot vector, as

a result additional control points are added and the number of segments increased to

6. Figure 4.5a shows the comparison of the control polygon before and after inser-

tion with the knot points corresponds to the refined control polygon. It is important

to note that knot insertion does not alter the shape of the curve and inserting non-

repeating knots preserved smoothness of the basis functions. Figure 4.5b shows the

refined basis functions after inserting a non-repeated knot.

However inserting a repeated knot reduces the smoothness of the basis function.

For example, a repeated knot s̃ = 0.2 is inserted into the initial knot vector. Fig-

ure 4.6a shows the comparison of the control polygon before and after insertion with

the knots points corresponds to the refined control polygon. While the new control

points are created, the number of curve segments remain unchanged and reduced

smoothness of the basis function which is shown in Fig. 4.6b. In general, pth-degree

NURBS curve/surface is Cp−l continuous at knot point, where l is a number of knot

multiplicity. In this example, the refined curve is C0 continuous at s̄4 = 0.2. Hence

the curve forced to pass through a control point Q3. During the shape deformation,

this property of knot multiplicity reduces the smoothness of the geometry and may

introduce sharp features hence additional constraints should be imposed on the con-

trol points to maintain smooth geometry deformation in the design process. Hence

in this work, care has been taken to avoid inserting repeated knots in the design

process.

As similar to the NURBS curve, one can insert a new knot in s and/or t parameter

direction of a NURBS surface. From Eqn. 4.5, Pi,j are the bidirectional control

net of the initial NURBS patch with dimension n ×m, i represents the row index

0 ≤ i ≤ n − 1 and j represents the column index 0 ≤ i ≤ m − 1. When a

new knot s̃ is inserted to the existing knot vector S, from Eqn. 4.3 the number

of control points along the s direction increases by one. Note that degree of the

surface/curve remain fixed during the knot insertion. Then the refined control net

Qs
i,j with the dimension (n + 1) × m is obtained by doing a knot insertion s̃ on

each of the m columns of control points. Similarly, refinement along t direction
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(a) Curve with base control polygon (b) Original basis

Figure 4.4: A quadratic B-spline curve with basis functions

(a) Base vs refined control polygon (b) Refined basis

Figure 4.5: Effect of inserting non-repeated knot

(a) Base vs refined control polygon (b) Refined basis

Figure 4.6: Effect of inserting repeated knot
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(Qt
i,j) is performed by doing a knot insertion t̃ on each of the n rows of control

points. A simple demonstration of knot insertion in a bi-cubic NURBS patch is

shown in Fig 4.7. As mentioned earlier, knot insertion alters only the control net

of the NURBS patch not its shape hence the geometry remain unchanged both

geometrically and parametrically. To show the effect of knot insertion only the

control net of the NURBS patch is shown in the Fig. 4.7. Fig. 4.7a shows the control

net of the initial bi-cubic NURBS patch with the knot vector S = {0, 0, 0, 0, 1, 1, 1, 1}

and T = {0, 0, 0, 0, 0.2, 0.6, 1, 1, 1, 1} in the parameter direction s and t respectively.

A single non-repeated knot t̄ = 0.7 is inserted into the knot vector T , as a result

additional column of control points are computed (See Eqn. 4.8) as a function of

initial control points Pi,j. Figure 4.7b shows the refined control net (Qt
i,j) with

the updated knot vector T = {0, 0, 0, 0, 0.2, 0.6, 0.7, 1, 1, 1, 1}. Figure 4.7c shows

the refined control net (Qs
i,j) after inserting a knot s̃ = 0.2 in the s direction with

the updated knot vector S = {0, 0, 0, 0, 0.2, 1, 1, 1, 1}. Figure 4.7d shows the refined

control net after inserting the above mentioned both knots. Note that knot insertion

not only increases the control points it also modifies the location of neighboring

control points.

4.3.2 Degree elevation

Degree elevation is the process of increasing the degree of the basis function in s

and/or t direction without changing the geometry. Due to the fundamental equality

as given in Eqn 4.3, degree elevation by 1 modifies corresponding knot vector and

control points. A simple demonstration of degree elevation is shown in Fig. 4.8

where the initial cubic B-spline curve is defined by 7 control points and after degree

elevation it is defined by 11 control points. Unlike knot insertion, degree elevation

is a global process which modifies all control points except the corner points. Hence

degree elevation is not suitable for local refinement. Dervieux et al.[36] used degree

elevation algorithm to construct three different levels of FFD frames and employed

multilevel parameterisation approach for shape optimisation.
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(a) Before knot insertion (b) After knot insertion: t̃ = 0.7

(c) After knot insertion: s̃ = 0.2 (d) Inserting both knots

Figure 4.7: Effect of knot insertion in a NURBS patch. (a) Original control net (b)

Inserting a knot t̃ = 0.7 one time in the t direction, (c) Inserting a knot s̃ = 0.2 one

time in the s direction, (b) Inserting both knots t̃ = 0.7, s̃ = 0.2 one time in the

parameter t and s respectively

(a) Cubic B-spline curve (b) After degree elevation, p = 4

Figure 4.8: Effect of degree elevation in a B-spline curve
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4.3.3 Knot removal

Knot removal is the reverse operation of knot insertion in which an existing knot

value is removed from the knot vector by fixing the degree hence the associated con-

trol points are removed. However knot removal is not always successful, it modifies

the geometry hence not suitable for shape optimisation. Knot removal is mainly

used for data reduction in computer graphics to obtain a compact representation of

a geometry [73].

4.4 Surface Mesh Mapping

In general, a CAD model and its corresponding computational mesh are generated

using two different tools. Therefore it is important to obtain a computational link

between the surface mesh points and the CAD geometry. During mesh genera-

tion surface mesh points belonging to the design surfaces can be distinguished and

exported with separate surface tags in the mesh file. By using this tag, MESH

EXTRACTOR module reads all the surface mesh points. The link between com-

putational mesh and the underlying CAD geometry is established by finding the

(s, t) coordinates of each mesh point in the parametricspace of the NURBS patch it

belongs to. In the literature, the process of mapping from geometric space to para-

metricspace (IRx,y,z → IRs,t) is termed as the point inversion problem [103] which

computes the parametriccoordinates (s, t) by minimising the distance between the

surface mesh point Xs to the NURBS surface S(s, t). Mathematically this can be

written as [103],

min
{
‖S(s, t)−Xs‖2} (4.9)

The computed parametriccoordinates are remain fixed throughout the optimisa-

tion and stored for surface mesh update.

4.5 Deformation with Geometric Constraints

The NSPCC approach [142, 143] employs control points of a conformal patch topol-

ogy to deform the geometry in the design process. Hence, a finite control point

displacement Pi,j on or near a patch interface affects the surface continuities such
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as G0 (no gaps), G1 (tangency) and G2 (curvature). For example, Fig. 4.9 shows the

local shape modification property of NURBS (S(s, t)) by perturbing control points

at two different locations one at the interface and one at the distance far away from

the interface. A control point displacement at the interface between two adjacent

(a) Original NURBS (b) Perturbed NURBS

Figure 4.9: Shape deformation of a NURBS patch with its control net

patches creates a surface discontinuity which is clearly visible in Figure 4.9b.

Given the BRep of a CAD model as explained in Section 4.2, by using the

NSPCC approach it is possible to deform multiple patches in shape optimisation

without violating surface continuity requirements. In Computer Aided Geometric

Design (CAGD), continuity is the mathematical way to indicate how smooth the

NURBS patches merge at the interface. For example, to ensure G0 or positional con-

tinuity two NURBS surfaces must have a common edge. To ensure G1 or tangency

continuity, G0 must be satisfied first and two NURBS surfaces must share the same

tangent plane for any point along the common edge. G2 or curvature continuity

ensures that two NURBS surfaces must have a common edge, the tangent vectors

lying along the same direction and having the same rate of change of tangent direc-

tion (curvature) at the interface. Therefore, based on the smoothness requirements,

geometric constraints are need to be maintained among the adjacent patches in a

CAD model in the design process.

In the NSPCC approach constraints are evaluated at a number of linearly dis-

tributed test points on the common edge of the adjacent patches. However, this

does not require that adjacent patches should maintain the same number and con-

trol points distribution. The only requirement is that the test points need to be

distributed only in pairs with one on each adjacent NURBS patch. Figure 4.10

shows deployed test points along a common edge of the two NURBS patches. The

calculation of required number of test points along each edge is discussed in the

Section 4.6.
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Figure 4.10: Test points along a common edge and corresponding control net of

adjacent NURBS patches

To ensure G0 and G1 continuity along an edge, the following constraint equations

which is linear for G0 as given in the Eqn. (4.10) and non-linear for G1 as given in

Eqn. (4.11) are need to be maintained and evaluated discretely at each pair of test

points:

G0 = Xp,L −Xp,R = 0 (4.10)

G1 = ~nL × ~nR = 0, (4.11)

where Xp,L and Xp,R are the positional coordinates, ~nL and ~nR are the unit nor-

mal tangent plane. These values are evaluated at the test points deployed along a

common edge and suffix L and R corresponds to Patch-L and Patch-R respectively.

The unit normal vector ~n at a point is defined as,

~n =
∂Xp

∂s
× ∂Xp

∂t∥∥∥∂Xp

∂s
× ∂Xp

∂t

∥∥∥ . (4.12)

where s and t are the parametriccoordinates of the NURBS. In each design update

the change in constraints as given in the Eqn. (4.13) should remain zero,

Gn
g −Gn+1

g = 0, (4.13)

where Gn
g and Gn+1

g represents the constraint values at design iteration n and n+ 1

respectively with g = 0 and 1 for G0 and G1 constraints respectively. Therefore, by

linearising the Eqn. (4.13) we obtain,

Gn+1
g ' Gn

g +
N∑
i=1

∂Gg

∂Pi

δPi, (4.14)
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and assembling the Jacobian for each of the constraint equation as given in the

Eqn. 4.14 we obtain the following linear system of equations

CδP = 0. (4.15)

The matrix C is called constraint matrix and δPi denotes the displacement of x, y, z

coordinates of N control points and in vector form both terms are written as,

C =



∂G0,1

∂P1

∂G0,1

∂P2
. . . ∂G0,1

∂PN

...
. . .

...
∂G0,M0

∂P1

∂G0,M0

∂P2
. . .

∂G0,M0

∂PN

. . . . . . . . .

∂G1,1

∂P1

∂G1,1

∂P2
. . . ∂G1,1

∂PN

...
. . .

...
∂G1,M1

∂P1

∂G1,M1

∂P2
. . .

∂G1,M1

∂PN


=


Gj

0

. . .

Gj
1

 , (4.16)

δP =


δP1

δP2

...

δPN


where M0 and M1 correspond to the total number of G0 and G1 constraint equations

respectively and j is the edge index. By assembling the matrix C as given in

Eqn. 4.16 we can impose different continuity constraints to different edges. The

matrix has a total of Mc rows where Mc corresponds to total number of constraint

equations with N columns which is the total number of control points. Using a

projected gradient approach, the control point perturbations (design space) has to

lie in the null space of C and the design modes are the N basis vector of the null

space and determined using Singular Value Decomposition (SVD).

C = UΣVT (4.17)

where U is the Mc×Mc unitary matrix, Σ is an Mc×N diagonal matrix with positive

real numbers on the diagonal σi called singular values of C and VT represents a
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N × N unitary matrix. The number of non-zero singular values in Σ determines

the theoretical rank r of the constraint matrix, C and last (N − r) columns of the

matrix V span the exact null space of C. With the presence of non-linear constraints

singular values show a gradual decrease rather than sudden drop to zero. Therefore

in NSPCC a cut-off threshold frequency value σC is used to determine the rank of

the matrix C which is denoted as numerical rank r′ and the corresponding nullspace

associated with the numerical rank r′ is termed as numerical nullspace and it is

denoted as Ker(C). Each column in Ker(C) gives a deformation mode that satisfies

the constraints and orthogonal to each other. Therefore the resultant control point

perturbations are computed as the linear combination of the columns of numerical

nullspace which offers richest design space for the shape optimisation and it is written

as,

δP =
N−r′∑
k=1

vk+r′δαk = Ker(C)δα. (4.18)

where δαk with k = 1, 2, ....N −r′ are the perturbations to design variables and vk+r

are the columns of the numerical nullspace. Hence the size of the design space is

N − r′ which is determined by the total number of control points and the threshold

frequency σC .

4.6 Computation of number of test points along

a common edge

The required number of test points along each edge needs to be determined. This

could be computed by running a series of SVD computations with different number

of test points until the number of non-zero singular values in the linearised constraint

matrix C doesn’t change any further. This process is computationally expensive.

Alternatively Zhang et al. [149] proposed an approach to compute the same number

of test points for edges having linear (G0) and non-linear (G1) constraints. The

edges with non-linear constraints might require a large number of test points hence

we extended the approach to define different number of test points for edges having

linear and non-linear constraints.

A common edge defined by NURBS can be viewed as a union of polynomial
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segments with each segment of degree pe,L and pe,R corresponds to Patch-L and

Patch-R (See Fig. 4.10) respectively. For Patch-L we require pe,L + 1 test-points

to fit each polynomial segment exactly. Hence total number of test points for a

common edge (Patch-L) should satisfy the following condition,

Me,L ≥ (pe,L + 1)Ni,L. (4.19)

Ni,L is the total number of polynomial segments for a common edge corresponds to

patch-L and it can be written as,

Ni,L = Ne,L − pe,L −Ke,L (4.20)

where Ne,L and Ke,L are the total number of control points and number of zero knot

spans (arising because of knot multiplicities) defining the common edge. Similar

expression can also be obtained for common edge corresponds to Patch-R. Hence

the total number of test points for a common edge can be obtained as,

Me ≥ fT max(Me,L,Me,R) (4.21)

where fT is an inflation factor and can be chosen between 1.0 ≤ fT ≤ 1.5 for edges

having G0 continuity and 2.0 ≤ fT ≤ 3.5 for edges having G1 continuity.

4.7 Constraint Recovery

Constraint handling using projected gradient approach restricts the geometry per-

turbations to be tangent to the linearised constraint functions. For non-linear con-

straints like G1 each tangent step slightly violates the constraints. Hence additional

normal steps in the range space of C is required to recover violated non-linear con-

straints. The recovery of the control points perturbation δP⊥ is given as,

CdevδP⊥ + δGdev = 0, (4.22)

where δGdev is the constraint deviation from the target value and Cdev is the con-

straint Jacobian matrix only related to non-linear constraints that are violated. Each

recovery step should strictly satisfy the linear constraints hence δP⊥ becomes,

δP⊥ = Ker(Csat)δα⊥ (4.23)
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where Csat is the Jacobian matrix containing only linear (satisfied) constraints and

α⊥ is the recovery (normal) perturbations to design variables. By substituting

Eqn. 4.23 into Eqn. 4.22 we obtain,

CdevKer(Csat)δα⊥ + δGdev = 0. (4.24)

We need to first solve the Eqn. 4.24 for δα⊥ and it is given as,

δα⊥ = −[CdevKer(C)sat]
+δGdev (4.25)

where [CdevKer(C)sat]
+ is the pseudo inverse obtained by using SVD. Hence Eqn. 4.23

can be rewritten as,

δP⊥ = −Ker(Csat)[CdevKer(C)sat]
+δGdev (4.26)

Equation 4.26 guarantees that they lie in the null space of Csat hence linear con-

straints are satisfied in each recovery step. This recovery step is an iterative process

which will converge in a few Newton steps if the deviation value is taken back to

below the chosen threshold value. The effect of CAD geometry deformation with

and without constraint recovery is shown in Fig 4.11.

4.8 Computation of CAD sensitivity

To complete the chain rule as given Eqn. 3.28, the sensitivity of surface mesh points

with respect to design variables (i.e) CAD sensitivity needs to be computed. By

using Eqns. 4.5 and 4.18 the CAD sensitivity term can be written as,

∂Xs

∂α
=
∂Xs

∂P

∂P

∂α
. (4.27)

By transposing Eqn. 4.27, the adjoint CAD sensitivity term can be written as,(
∂Xs

∂α

)T
=

(
∂P

∂α

)T(
∂Xs

∂P

)T
. (4.28)

With a CAD model in the design loop, Eqn. 3.28 can be modified to compute the

total sensitivity of the objective function with respect to design variables,

α =

(
∂J

∂α

)T
=

(
∂P

∂α

)T(
∂Xs

∂P

)T
X̄s. (4.29)
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(a) Inner U-Bend without constraint

recovery

(b) Inner U-Bend with constraint re-

covery

(c) Without constraint recovery (d) With constraint recovery

Figure 4.11: Effect of G1 constraint recovery: Deformed U-Bend geometry

With geometric constraints, the numerical nullspace as given in Eqn. 3.28 needs to

be included in the chain rule. Therefore Eqn. 4.29 can be written as,

α =

(
∂J

∂α

)T
=
(
Ker(C)

)T(∂Xs

∂P

)T
Xs. (4.30)

where Xs represents the adjoint sensitivity of the objective function with respect

to surface mesh coordinates
(
∂J
∂Xs

)T
. As discussed in Section 3.3.2, this term is

computed by the STAMPS solver and the term
(
∂Xs

∂P

)T
is computed by differentiation

the NSPCC CAD kernel using source-transformation AD tool in reverse mode. The

complete static NSPCC framework is summarized in the following Algorithm 1.

4.9 Adaptive Refinement

In NURBS-based geometry parameterisation, number of control points and their dis-

tribution on the design surface strongly influence the best achievable design in the

shape optimisation. The adaptive NSPCC method developed in this work progres-

sively adds more control points on the design surface using knot insertion algorithm.

However it is important to determine when to terminate the current optimisation

and which knot value to insert. As discussed in Sec.4.2, a NURBS surface is a func-

tion of two parameters, hence one can insert a knot in either the s or t direction or

in both parameter direction. Each knot insertion adds a row or column of control

points and also modifies the neighboring control points. Therefore it is important

to determine the suitable value of knot to insert so that the refined control net has
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Algorithm 1 Static NSPCC Framework for Shape Optimisation

Input: CAD file in STEP format and computational mesh. σC and δGT

1: Read BRep of a CAD model as a collection of NURBS patches (S).

2: Read surface mesh points on the design surface (Xs)

3: Surface mesh mapping: (IRx,y,z → IRs,t)

a: For each Xs that belongs to NURBS patch S, compute (s, t) using point

inversion.

4: Test points computation.

a: For each common edge compute Me as indicated in Eqn. 4.21.

b: Deploy test points linearly along each common edge.

5: Computation of constraint matrix C.

a: Compute Jacobian for each constraint equations as given in the Eqn. 4.14.

b: Assemble constraint matrix C as indicated in the Eqn. 4.16.

c: Assemble Csat and Cdev using linear and non-linear constraints respectively.

6: CAD geometry update.

a: Compute Ker(C) and Ker(Csat) using SVD as indicated in Eqn. 4.17.

b: Read δα from optimiser.

c: Perturb control points using tangent step as given in the Eqn. 4.18.

d: Compute constraint deviation δGdev.

7: while δGdev larger than δGT do

e: Perturb control points using normal step as given in the Eqn. 4.26.

f: Update δGdev, Cdev

8: Computational Mesh Update.

a: Compute Xs,new by using Eqn. 4.5 with parameters (s, t) obtained from Step 3

and perturbed control points Pnew from Step 7.

b: Compute δXv using IDW as indicated in the Eqn. 3.25 and update Xv,new.

Output: Updated CAD model in STEP format and updated computational mesh.
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more potential for design improvement. The adaptive refinement consists of two

steps which includes Refinement trigger and Refine.

4.9.1 Refinement trigger

Refinement trigger monitors the design progress and determines when to terminate

the current design space level. This step has to be performed automatically without

designer in the loop. Simply one can run the optimisation upto a pre-determined

number of design iteration. Initial we have performed 10 design iterations for each

level and observed sufficient acceleration in the design process [65]. However, this

approach is case dependent and user require a prior knowledge of the convergence

behavior for a design problem.

In this work, the refinement trigger proposed by Anderson et al [11] is used which

triggers the refinement when the rate of convergence of the objective function with

respect to the design iteration falls below some fraction of the maximum attained

in the current design level.

4Ji
max(4Jd)

< εd (4.31)

where 4Ji = Ji−1−Ji, d is the design space level and εd = 0.1 is a cutoff parameter.

Anderson et al. [11] pointed out that the refinement trigger shown in Eqn. 4.31 is

not suitable for all cases. For example, in a highly non-linear region of the design

space, the optimiser may take some time to obtain a faster design improvement

hence Eqn. 4.31 may triggered too early and the design space may not be exploited

properly.

4.9.2 Refine

This step computes the suitable knot value s̃ and t̃ to insert in the both s and t

parameter direction respectively. Zingg et al. [52] used knot insertion algorithm to

refine B-spline volumes in shape optimisation and proposed to insert a new knot

arbitrarily in each knot span of a knot vector. Martins et al. [55] also used knot

insertion to refine FFD frame and insert a new knot in the middle of each knot span.

This may be suitable for simple geometries however for a complex geometry with

large number of patches inserting a knot in each knot span without any additional
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measure may leads to the addition of unnecessary control points on the design

surface. Therefore, a suitable adaptation criterion is needed to precisely enrich the

control point distribution locally on the design surface.

Mesh mapper module computes parametriccoordinates (s, t) to each mesh point

and assign a unique patch ID that it belongs to. Once the refinement trigger ter-

minates the current design level, the magnitude of the adjoint node sensitivities

(G = ∂J
∂Xs

) can be used to identify the region of interest to refine control points. To

raise the regularity of the computed gradients, an additional explicit weighted Lapla-

cian smoothing method is used. More details about this can be found in Sec. 4.11.

Thus the smoothed gradient (Ḡ) is obtained as,

Ḡy+1 = Gy + βU(G) (4.32)

y is the number of smoothing iteration, β is the smoothing parameter and U is the

umbrella operator. Then the surface mesh points in each patch with large magnitude

of the smoothed adjoint sensitivities are identified and assembled in a descending

order. Then for each patch, three different samples of mesh points (z1, z2, z3) are

selected in total of nm number of surface mesh points in a patch (z1 = nm

2
, z2 =

nm

4
, x3 = nm

8
). Then the knot value to be inserted in a patch is calculated as the

average value of parametriccoordinates s and t of the selected mesh points as given

in Eqn. 4.33 and 4.34. As a result, three different sets of new knot values for each

patch are obtained. They are, (sκ1 , t
κ
1), (sκ2 , t

κ
2), (sκ3 , t

κ
3).

s̃κ1 =

z1∑
i=0

sκi
z1

, s̃κ2 =

z2∑
i=0

sκi
z2

, s̃κ3 =

z3∑
i=0

sκi
z3

(4.33)

t̃κ1 =

z1∑
i=0

tκi
z1

, t̃κ2 =

z2∑
i=0

tκi
z2

, t̃κ3 =

z3∑
i=0

tκi
z3

(4.34)

κ is the patch ID, z1, z2, z3 are the number of selected mesh points used in the average

and nm represents the total number of mesh points in a patch. Knot insertion with

these set of knot values creates three refined control nets without modifying the

geometry. Note that there exists an infinite number of possibilities, however in this

work only three refined control nets are obtained at the end of the each design level.

To determine which updated control net to choose for the next design level, the
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Figure 4.12: Shape optimisation work flow with the adaptive NSPCC parameteri-

sation method

adaptation metric proposed by Martins et al. [55] is used.

AM =
1

2

N∑
i=1

(
∂J

∂Pi

−
Ng∑
j=1

∂Gj

∂Pi

)2

(4.35)

where N represents the total number of control points Pi, Ng is the total number of

geometric constrains including G0 and G1.
∂Gj

∂Pi
represents the Jacobian of the each

constraint equation j with respect to each control point Pi. This metric is evaluated

for each control net and choose the one which has larger adaptation metric value.

Note that gradient smoothing is performed only to determine the high sensitivity

region of interest and for optimisation the original node sensitivity (G) is projected

onto the NURBS control points. Figure 4.12 shows the work flow of the shape

optimisation with the adaptive NSPCC parameterisation method.
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(a) U-Bend cooling channel (b) Wing-body configuration

(c) Onera M6 wing (d) S-bend

Figure 4.13: Surface mesh of various geometries used for node-based parameterisa-

tion

4.10 Adaptive Node-based Parameterisation

The node-based method derives parameterisation directly from the computational

mesh employed for simulation and considers normal displacements of the surface grid

nodes as design variables [104, 61, 87, 27, 127, 68, 57]. Figure 4.13 shows some of

the examples of the surface mesh used for the node-based parameterisation method.

Design surfaces of a complex geometry contains thousands of surface nodes, hence

node-based method offers richest design space for shape optimisation. However this

method includes odd-even oscillatory shape modes in the design space which can lead

to undesirable or non-manufacturable shapes in the design process. Therefore ad-

ditional surface regularisation method is required to filter out high frequency shape

modes. Figure 4.14 shows the effect of perturbing a single node independently with

and without the surface regularisation method. In the node-based method, surface

mesh points are not moved independently, through smoothing, mesh points sur-

rounding a perturbed node are also moved to generate a smooth shape. Figure 4.15

compares an updated computational mesh in the design loop with and without the

surface regularisation method.
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(a) Without surface regularisation

(b) With surface regularisation

Figure 4.14: Effect of perturbing a single node with and without surface regularisa-

tion

(a) Initial mesh (b) Without smoothing (c) With smoothing

Figure 4.15: Effect of surface regularisation in shape deformation
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4.11 Smoothing the shape displacements

As discussed in Ch. 2, one can use the surface regularisation method either to

smooth the gradient as proposed by Jameson et al. [132, 63] or smooth the shape

displacement as suggested by Jaworkski et al. [64]. In this work, smoothing is per-

formed directly on the shape displacement to obtain a smooth shape. The resultant

smoothed shape displacement using the explicit Laplacian method is given as,

δX̃n+1
s = δXn

s + βU(δXs) (4.36)

where δXs and δX̃s are the shape displacements before and after smoothing, n

represents the number of smoothing iteration, β is the smoothing coefficient and U

is the scale dependent umbrella operator which is written as,

U(δXs) =
1∑
iwi

∑
i

wi(δQi − δXs) (4.37)

wi = ‖δXs − δQi‖−1 (4.38)

where wi are the weights associated with the Laplacian operator. In this work,

surface mesh nodes are allowed to move in the normal direction. Therefore after

smoothing, the shape displacements are projected along the surface normal direction

using Eqn. 4.39,

δX⊥ = (δXs · Ŝn)Ŝn (4.39)

where δX⊥ are the surface displacements along the normal direction and Sn is the

unit surface normal at each surface mesh node.

4.11.1 Adaptive Surface Regularisation

Jaworski et al. [64] compared both explicit and implicit Sobolev smoothing ap-

proaches in the shape optimisation loop and pointed out that explicit smoothing is

most effective for damping high frequency modes. However care must be taken to

choose the appropriate value for smoothing coefficient (βe) and number of smoothing

iterations (n). As n grows, explicit smoothing completely removes high frequency
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shape modes in the design space and exhibits aggressive damping on middle modes

as well while this may be desired in cases where only low modes are relevant. How-

ever this will not work for inverse design where all shape modes may be needed to

capture the desired shape [128, 132].

Therefore in this work, a simple adaptive explicit smoothing approach is proposed

in which the design process is started with a large value of n in which low-frequency

shape deformations are handled and as the design progress the number of smoothing

iterations are reduced to include high-frequency shape deformations in the design

space.

4.12 Design Scaling

At the end of the each optimisation cycle, the computational mesh needs to be

updated based on the design perturbations given by the optimiser. If the design

perturbations are larger, surface regularisation methods discussed in Section 4.10

may not filter the high frequency shape modes with a sufficient number of smooth-

ing iterations. As a result, mesh deformation algorithm may create a low quality

computational mesh or in the worst case the updated volume mesh may not matched

with the updated shape. In order to resolve this issue, Christakopoulos et al. [27]

proposed a scaling method for each design variable to restrict the perturbations

based on edge lengths. The shape displacements are scaled using Eqn. 4.40,

δXS,i = σi · δX⊥,i (4.40)

δXS,i and δX⊥,i are the shape displacements before and after scaling i = (1, 2, ..Ns),

Ns is the number of surface mesh nodes. Scaling factor (σi) can be obtained us-

ing Eqn. 4.41. It is important to note that design scaling may affect the design

convergence however it restricts the perturbations for each surface mesh node.

σi = ξ

∑Ne

j=1 Lj

Ne

(4.41)

where ξ ∈ [0, 1] is a user defined global scaling factor, Lj is the length of the edge j

connected to the node i and Ne is the total number of edges connected to the node

i.
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Figure 4.16: Shape optimisation work flow with node-based parameterisation

4.13 Primal Algorithm with Node-based Param-

eterisation

The primal work flow with Node-based parameterisation is shown in Fig. 4.16. The

primal algorithm is written in the Fortran language and source transformation AD

tool TAPENADE is used to differentiate the block by block of the primal algorithm

in the reverse mode. By combining each individual blocks the adjoint sensitivity as

shown in Eqn. 3.28 can be modified as,

ᾱ =

(
∂J

∂Xs

)T
=

(
∂X̃s

∂Xs

)T(
∂X⊥

∂X̃s

)T(
∂X⊥
∂XS

)T(
∂XS

∂Xv

)T(
∂J

∂Xv

)T
. (4.42)
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4.14 Summary

In this chapter, the adaptive shape parameterisation method developed in this re-

search work are presented. Firstly, a brief introduction about the boundary rep-

resentation and the different methods available for manipulating NURBS patches

such as knot insertion, degree elevation are presented. Then the details about the

test point approach for handling geometric constraints are discussed. The proposed

adaptive refinement algorithm which includes the sensitivity driven adaptation met-

ric are presented. Finally, a simple adaptive explicit surface regularisation method

is presented for design space exploration.
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Chapter 5

Constrained Wing Optimisation

5.1 Introduction

In chapter 4, I have presented the NURBS-based Parameterisation with Complex

Constraints (static-NSPCC) method to deform multiple NURBS patches in the de-

sign process with user-defined geometric constraints (G0 and G1). In this chapter,

the NSPCC method is extended to handle manufacturing constraints in aerody-

namic shape optimisation. When performing aerodynamic shape optimisation for

an industrial application, a designer needs to impose structural constraints to satisfy

manufacturing requirements of the design. For example build space or packaging

constraints are essential if large number of components are needs to assembled to-

gether with the optimised shape in the later product development cycle. To maintain

structural integrity the optimised shape should be assembled within the available

space defined by the other components in the assembly.

Lift constrained aerodynamic shape optimisation of a wing does not provide suf-

ficient mechanism to prevent the reduction of internal volume which may require

to accommodate wing box or fuel tank and/or other structural parts such as ribs,

spars, stiffeners etc. In aerodynamic shape optimisation of turbomachinery blades,

it is essential to maintain minimum leading and trailing edge radius and thickness

constraints to maintain structural strength and to accommodate cooling channels

to prevent it from overheating. Therefore the shape parameterisation method needs

to handle such manufacturing constraints efficiently without cumbersome prepro-

cessing setup in an gradient-based shape optimisation process. For certain cases,
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this kind of constraints can be handled by imposing maximum and/or minimum

bounds on the design variables [136]. On the other hand, if the engineering param-

eters such as section thickness, leading and trailing edge radius are taken as design

variables, constraints could be implemented as an inequality constraints. To im-

pose manufacturing constraints within the CAD-based NSPCC approach, the same

test point approach is adopted. Effectiveness of the developed shape optimisation

tools in this work is compared with the currently available open-source shape op-

timisation tools. SU2 is an open-source shape optimisation tools written in C++

used to compute flow and adjoint fields for shape optimisation. In addition to that,

Free-Form Deformation (FFD) method is also available with some of the geometric

capabilities such as internal volume and section thickness computations to handle

geometric constraints. In this chapter, efficiency of the developed tools are tested

with the open-source SU2 tools. For this purpose, constrained shape optimisation of

the ONERA-M6 wing is considered for this study. This test case is available in SU2

website as a tutorial case. Therefore in this chapter, two parametrisation methods

static NSPCC and FFD are applied to minimise the drag of the ONERA M6-wing

with lift and geometric constraints under transonic flow conditions.

It should be mentioned that the aim of this study is to compare the effectiveness

of the developed tools in the QMUL-CFD optimisation group with the currently

available state of the art open source SU2 shape optimisation tools. This study

allows us to access the capabilities of the tools developed in this work with the

open source SU2 tools using widely tested optimization test case M6-wing. Efforts

are underway to achieve consistent comparisons between different parameterisation

approaches using similar CFD and optimization tools. This will be considered in

my future work.

This chapter is organised as follows, shape parametrisation of the ONERA M6-

wing using NSPCC and FFD methods are presented in Sec. 5.2. Section 5.3 ex-

plains the test-point approach for handling wing-box and trailing edge thickness

constraints. In Sec. 5.4, brief details about SU2 tools employed in this work are pre-

sented. In Sec. 5.5, details about the computational setup, grid convergence study,

verification and validation study performed using M6-wing are presented. Results

of the constrained optimisation are presented in Sec. 5.6.
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5.2 Shape Parameterisation

In the NSPCC approach, control points of a NURBS patches are used to deform

a shape in the design process. In general, the Boundary Representation (BRep) of

a baseline shape exported by a CAD system often depends on the local curvature

of a shape. For example, region with a large curvature may contain large density

of control points and a flat region may contain sparse control points. However,

during surface conversion from STL (surface tessellation) to the standard boundary

representation, a large number of intersecting and/or trimmed NURBS patches can

be generated. In addition to that density of the control points may be too richer

than the surface mesh required for a CFD simulation. As discussed in Chapter 6,

finer control points affects the rate of design convergence and does not restrict the

shape modes captured in the design space hence can provide best achievable design.

However this is not always the case, a finer control net can also provide multiple

local minima, with a gradient-based optimiser the design process can converge to

any local minima. In addition to that additional surface regularisation may also be

required if the control net is too richer than the surface mesh required for a CFD

simulation.

Therefore as a first step, re-parameterisation is required to achieve best approxi-

mation to the baseline shape. Developing algorithm to obtain exact fit is a challeng-

ing task and is not considered in this work. Since the shape will be altered by the

design the exact fit is not desired. However care must to taken to capture the design

intent, for example local streamwise curvature of the wing which determines the

pressure profile along the wing. Salvatore et al. [15] proposed a re-parameterisation

algorithm using differentiated OCCT kernel. In this work, reparameterisation tool

offered by the commercial CAD system SOLIDWORKS is employed to obtain min-

imum density of control points on the design surface.

5.2.1 ONERA M6 Test Case

The ONERA M6 wing is s semi span wing designed using symmetric airfoil ONERA

D section with a swept angle of 26.7◦. Geometric details of the ONERA M6 geometry

is shown in Fig. 5.1. CAD model of the M6 wing taken from the Cornell university
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Figure 5.1: ONERA M6 wing geometry

ANSYS tutorial website [1] is shown in Fig. 5.2a. This BRep consists of two bi-

cubic NURBS patches with one on top and another one on bottom surface of the

wing. Each patch contains 145 × 4 control net in which 145 control points are

used along the chordwise direction and 4 control points are used along the spanwise

direction. Therefore in total this BRep consists of 1160 control points. Density of the

control points near the leading and trailing edge is quite large hence may generate

highly oscillatory shape modes in the design process which may also affect the design

convergence. Therefore reparameterisation step is performed using commercial CAD

system SOLIDWORKS to obtain minimum density of control points on the design

surface. During this step, G1 continuity is maintained between the top and bottom

surface of the leading edge. The reparameterised M6 wing is shown in Fig. 5.2b

which consists of two bi-cubic NURBS patch with 168 control points and each patch

contains 21× 4 control net.

5.3 Wing-Box Constraints using NSPCC

Lift constrained aerodynamic shape optimisation of a wing does not provide suf-

ficient mechanism to prevent the reduction of internal volume which may require

to accommodate wing box or fuel tank and/or other structural parts such as ribs,

spars, stiffeners etc. To enforce geometric continuity between patches such as G1

(tangency) or G2 (curvature), constraint equations are numerically evaluated at
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(a) Baseline M6 wing (b) Reparameterised M6 wing

Figure 5.2: BRep of the baseline wing with 145× 5 control net and reparameterised

M6 wing with 21× 4 control on each patch

testpoints distributed along the patch interfaces. To impose wing-box constraints

within the CAD-based NSPCC framework the same test point approach used for

maintaining continuity constraints are extended in this work and the efficiency of

the method is tested by minimising the inviscid drag of the ONERA M6 wing. Fig-

ure 5.3 shows the test points for imposing the wing-box and trailing edge thickness

constraints. A total of 12 set of test points are deployed on the M6-wing evenly

along the spanwise direction. Among these 8 sets of test points are used for wing-

box constraints and 4 pairs of test points for TE thickness constraints. The number

of test points and their distribution along the spanwise directions are determined to

be approximately match the control points distribution of the NURBS patches.

The wing-box and TE thickness constraint functions (T n) at nth design step is

written as,

T n(i) = 1−min
(
tni
t0i
, 1

)
, (5.1)

where the thickness function (tni ) at nth step is defined as,

tni =‖ Xn (ui)−Xn (li) ‖ for i = 1 to nt, (5.2)

where X(u) and X(l) are the surface points on top and bottom NURBS patch

respectively, nt is the total number of pairs of test points, t0i is the thickness of the

baseline design. The thickness constraints T n are imposed as equality constraints:

T n(i) = 0 for i = 1, nt. (5.3)

This implies that wing-box thickness and TE thickness cannot be reduced below

the baseline values throughout the optimisation process. In addition to that G1
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Figure 5.3: Test points for wing-box and trailing edge thickness constraints

continuity is imposed at the leading edge. For ease of notation Jacobian matrix

C as given in Eqn. 4.16 is now rearranged and Jacobian of both geometric and

thickness constraints are combined together and assembled as,

C=



Gj
0

. . .

Gj
1

. . .

Ti


, (5.4)

where j is the edge index and i is the pair of test points for thickness constraints.

The design space is the kernel of this Jacobian which is evaluated using a Singular

Value Decomposition as discussed in Ch. 4. The design variables then effectively

become the vectors associated with non-singular values. Again there is an adjustable

parameter in the form of the threshold value for singular values.

5.4 Free-Form Deformation using SU2 tools

Free-Form Deformation method is the third parametrisation method to be consid-

ered in this work. This method require the definition of auxiliary hexahedral volume

grids that need to be snapped to the geometry to preserve features. This can be
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achieved by the use of trivariate Bezier volume [115] and later it has been extended

to include B-splines [147] and NURBS volume [59] to utilize local shape modification

properties which are found to be more useful to capture superior designs in shape

optimisation [112, 133]. More details about FFD approach can be found in [111].

To demonstrate the effectiveness of the NSPCC approach, current state of the art

open-source FFD tools provided by SU2 are also employed to perform lift constrained

drag minimisation of the ONERA M6 wing under inviscid transonic flow conditions.

These tools has been widely used to create smooth deformation in aerodynamic

shape optimisation of wing. Optimisation setup used in this work is similar to

the tutorial case presented in the SU2 website. Computational mesh presented

in the ONERA-M6 wing SU2-tutorial case is relatively coarse and to ensure valid

comparison, the finer mesh (M3) presented in Sec.5.5 is used with the SU2-tools to

perform shape optimisation using FFD approach.

Figure 5.4 shows the initial wing geometry with the FFD box constructed using

SU2 tool. The distribution of control points on the FFD-box are uniform along

both chord-wise and span-wise direction and flat wing tip with sharp trailing edge

is used in this work. Control points of the FFD box are allowed to deform only

in the z (normal) direction. Note that the root twist is not allowed to vary and

the optimization is carried out at a fixed angle of attack of 3.06◦. The goal of

this optimisation is to minimize the coefficient of drag while imposing lift and wing

section thickness constraints. In SU2, geometric quantities such as internal volume

of a wing and section thicknesses can be computed and used as constraints during the

shape optimisation process. In this work, section thicknesses are computed at five

different locations along the span-wise direction such as y/b = 0.0, 0.2, 0.4, 0.6, 0.8

and constrained to be greater than or equal to the baseline values.

Software’s used

Following SU2-tools are used in this test case to perform FFD-based shape optimi-

sation:

• SU2 CFD is a RANS-based compressible flow CFD solver. It uses a Finite

Volume Method with an edge-based data structure. In this work, this module

is used to perform EULER flow simulations.
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Figure 5.4: FFD-box of the initial wing taken from SU2 tutorial case

• SU2 CFD AD is an adjoint solver. Both continuous and discrete adjoint meth-

ods are implemented in this module. In this work, discrete adjoint approach

is employed to compute adjoint surface sensitivities.

• SU2 GEO is a geometry module used to evaluate internal volume of a wing

and thickness of a wing section and also used to compute its gradients. In this

module, constraint Jacobian and shape sensitivities are computed using finite

difference method.

• SU2 DOT AD is a gradient-projection code used to compute partial derivative

of the objective function of interest such as drag, lift with respect to the shape

design variables. This module project the adjoint surface sensitivities into the

FFD control lattice to compute the gradient of the objective function with

respect to the design variables through a dot product operation between CFD

∂J
∂Xs

and and shape sensitivities ∂Xs

∂α
.

• SU2 DEF is a mesh deformation module used to deform the volume grid. After

perturbing the surface grid using FFD approach, SU2 DEF module deform the

volume grid using linear elasticity method.

• Apart from these tools, shape optimization.py a python framework is also

available to integrate all the executable SU2 binaries to perform automated
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shape optimisation process. In this work, SLSQP optimiser with default set-

tings available in shape optimization.py script is used to drive the design pro-

cess.

5.5 Grid Convergence Study and Validation

In this section, the computational setup used in the drag minimisation of the M6

wing under inviscid flow conditions, grid convergence study and CFD model valida-

tion are presented. The freestream conditions considered in this work for validation

and subsequent optimisation are similar to the standard benchmark conditions set

out in the NPARC Alliance CFD Verification and Validation programe [3], and are

listed below:

• Freestream Mach number, Ma = 0.84.

• Freestream Pressure, P∞ = 101325 Pa

• Angle of attack = 3.06◦

• Freestream Temperature, T∞ = 288.15K

To perform grid convergence study a sequence of 3 computational grid were

generated ranging from 56676 to 540309 unstructured cells. The grids are generated

using ANSYS-mesher. The farfield is configured using C-O topology and extends

to 100 Mean Aerodynamic Chord lengths in all direction from the wing surface.

Surface meshes of all the three grid levels are shown in Fig. 5.5. Total number of

nodes in all grid levels used in this work is given in Table 5.1. Simulations were

performed on all the meshes with second order accuracy using Roe’s flux functions

and Venkatakrishnan’s limiter. Slip wall on the wing surface, farfield and symmetry

on the outer domain were used as boundary conditions. The comparison of the

coefficient of pressure computed using an in-house flow and adjoint solver STAMPS

with the experimental data is given in Figure 5.6. Values of the coefficient of pressure

are taken at different locations along the spanwise direction of the M6 wing. The

location are highlighted in Figure 5.1. The finer grid (M3) fairly captured both

location and strength of the lambda shocks along the spanwise direction. A small
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(a) Coarse (M1) (b) Medium (M2) (c) Fine (M3)

Figure 5.5: Surface meshes of all the three grid levels.

Grid
Total number of

nodes

Total number of

surface nodes

Coarse (M1) 56676 7920

Medium (M2) 171501 27493

Fine (M3) 540309 99480

Table 5.1: Grid sizes

discrepancy between the computed and experimental results is observed near the

root section of the wing. This behavior is also noted with the other simulation

results obtained on highly refined grids. Martins et al. [75] pointed out that this

may be due to the presence of the splitter plate in the physical setup and other wall

effects in the wind tunnel test section which are not computationally modelled.

Additionally the open source SU2 solver is also used to verify the capabilities

of the STAMPS solver. In SU2 solver, Jameson-Schmidt-Turkel scheme (JST) cen-

tral scheme is used with Venkatakrishnan’s limiter. Comparison of coefficient of

pressure between STAMPS and SU2 solver computed using fine grid (M3) is shown

in Fig. 5.7. Figure 5.8 shows the comparison of the coefficient pressure taken at

different locations along the spanwise direction of the M6-wing. Results shows that

the overall features of the lambda shock is fairly matched between the SU2 and

STAMPS solver.
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(a) y
b = 0.20 (location 1) (b) y

b = 0.44 (location 2)

(c) y
b = 0.65 (location 3) (d) y

b = 0.80 (location 4)

(e) y
b = 0.90 (location 5) (f) y

b = 0.95 (location 6)

Figure 5.6: Coefficient of pressure for each grid level compared with experimental

data
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(a) STAMPS (b) SU2

Figure 5.7: Comparison of coefficient of pressure between STAMPS and SU2 com-

puted using fine grid (M3)

5.6 Shape Optimisation

Shape optimisation tools developed in this work and the state of the art open-source

SU2 tools are used to minimise inviscid drag of the ONERA M6 wing under transonic

flow conditions with constant lift and thickness constraints. Brief overview of the

problem formulation and performance of the both methods are discussed in this

section.

5.6.1 Problem Formulation

Optimisation-1: FFD and SU2

The optimisation problem is the inviscid drag minimisation of the ONERA M6 wing

with sharp trailing edge under transonic flow conditions. Boundary conditions are

similar to the benchmark conditions given in the NPARC website [3]. Details are

presented in Sec 5.5. In this optimisation, FFD parametrisation method is used to

parameterise the baseline ONERA M6. FFD control grid is constructed using Bezier

form of blending function. Both Bezier and B-Spline forms are available in SU2.

In total, FFD control box consists of 198 control points in which 11 control points

are placed along chord-wise direction, 9 control points are placed along span-wise

direction and 2 of them are placed perpendicular to xy plane. Degree of the Bezier

blending functions along each parameter direction u, v, w is 10, 8, 1 respectively.

During the optimisation, each control point is allowed to deform along the z (normal)
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(a) y
b = 0.20 (b) y

b = 0.44

(c) y
b = 0.65 (d) y

b = 0.80

(e) y
b = 0.90 (f) y

b = 0.95

Figure 5.8: Comparison of coefficient of pressure between STAMPS and SU2 com-

puted using fine grid (M3). SU2: CL = 0.2925, CD = 0.012, STAMPS:CL =

0.296, CD = 0.013
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coordinate direction. Control grid formulation is similar to the SU2 ONERA M6

tutorial case

Both leading and trailing edge of the wing are allowed to move, while the angle

of attack is fixed. Lift coefficient is constrained to be greater than or equal to its

baseline value C∗L = 0.2925 which is computed using SU2 CFD solver with fine-grid

(M3). A total of five wing section thickness constraints are used, one at the root

section and remaining four of them are distributed along the 20%, 40%, 60% and 80%

of wing span. For this case, Sequential Least Squares Programming (SLSQP) is used

as the optimiser. SLSQP is a Sequential Quadratic Programming (SQP) method,

designed for handling large number of equality and inequality nonlinear constraints.

It uses Han–Powell quasi–Newton method with a BFGS update. More details about

SLSQP algorithm can be found in [140]. To interface with SU2 tools and scipy

SLSQP optimiser, a python optimisation script provided in the SU2 tutorial case is

used. The optimisation problem considered is described below:

minimize
α

J(α) = CD(α)

subject to CL ≥ C∗L

ti ≥ t0, i = 1, ...., 5

(5.5)

Static NSPCC and STAMPS

As similar to the above case, the objective is to reduce the coefficient of drag while

maintaining the lift coefficient. In this case, both top and bottom surface of the

ONERA M6 wing are parameterised using bi-cubic NURBS patch with 21 control

points are placed along the chord-wise direction and 4 control points are placed

along the span-wise direction. In total, BRep of the ONERA-M6 wing consists of

168 control points. Each control point is allowed to deform only in the z coordinate

direction. In this case, constraints are handled differently, for example, wing-box

and trailing edge thickness constraints are handled by using test points approach

presented in Ch.5.3. A total of 12 thickness constraints are used, 4 of them are

distributed along 30% of chord line and 4 of them distributed along 50% of chord

line to ensure assembly of internal components such as wing-box. Trailing edge

(TE) of the wing is fixed and 4 test points are distributed along 95% of chord line
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to prevent cross over and reduction in the thickness of the TE. Lift coefficient is

constrained to be greater than or equal to its baseline value C∗L = 0.296 which is

computed using STAMPS primal solver with fine-grid (M3) and handled by using

penalty function method. Angle of attack is fixed during the optimisation. The

optimisation problem considered for this case is described below:

minimize
α

J(α) = CD + λ(CL − C∗L)2,

subject to ti ≥ t0, i = 1, ...., 12

(5.6)

where λ is a penalty coefficient. Table 5.2 shows a brief comparison of the main

characteristics of both optimisation approaches employed in the test case.

5.7 FFD vs Static NSPCC

Optimisations are conducted using both the parameterisation methods using fine

grid (M3) containing total 540k nodes, as the grid-independence study showed that

this grid offered sufficient resolution (Sec. 5.5). In case-1, SLSQP optimiser is used

and in case-2, BFGS optimiser is used to drive the design process. Figure 5.9 shows

a comparison of the optimisation convergence history between the case-1 and case-2.

In Table 5.3, comparison of drag reduction and number of design variables (NDV )

employed in each optimisation case are presented. In case-1 (FFD+SU2), primal

and adjoint flow solutions are fully converged in each design step hence large per-

turbations can be achieved during the design process. However, in case-2 one-shot

methodology is used to drive the design process [27]. Hence shape deformations are

controlled by smaller step sizes which are monitored by the Armijo and Wolf based

line search conditions. As a result, when compared with the NSPCC approach, the

FFD approach achieved a very rapid decrease in the objective function value. How-

ever optimal shape obtained using the NSPCC approach achieves 22.3% reduction

in the drag coefficient whereas FFD method achieves 20.2% reduction in the drag

coefficient. This performance improvement may be caused by the presence of large

number of design variables and orthogonal shape modes in the design space. The

results of the drag minimisation optimisation are presented in Table 5.3. Large num-

ber of researchers [24, 105, 8, 25, 107, 45] pointed out that orthogonal shape modes

regularize the design space and essential to achieve more robust shape optimisation.
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Steps FFD Static NSPCC

CAD Geometry SOLIDWORKS(.step)

Control Grid

Dimension

11 * 9 * 2

(Bezier FFD lattice)

21 * 4

(NURBS control net)

Design Variables
z-coordinates of the

FFD lattice

Linear combination of the

nullspace of the

constraint matrix

Grid Generation ANSYS Mesher-Fine grid (M3)

Flow Solver SU2 CFD Primal mode STAMPS

Discrete

Adjoint Solver
SU2 CFD AD Adjoint mode STAMPS

Gradient Computation

(CFD sensitivities)
SU2 DOT Sensitivity mode STAMPS

Shape Sensitivities
SU2 GEO

(Finite difference)
Adjoint mode NSPCC

Constraint Jacobian
SU2 GEO

(Finite difference)
Tangent mode NSPCC

Surface Deformation FFD Deformation mode NSPCC

Volume Deformation
SU2 DEF

(Linear elasticity method)

Deformation mode STAMPS

(Inverse Distance Method)

Optimiser
Scipy tools

(SLSQP)

Scipy tools

(BFGS)

Objective Function Minimise: J = CD Minimise: J = CD + λ(CL − C∗L)2

Aerodynamic Constraint C∗L C∗L

Geometric Constraints Section thickness
G1 continuity, Wing-box

and trailing edge thickness

Table 5.2: Description of the optimisation process using both FFD-SU2 and NSPCC-

STAMPS.
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Design 4CD% NDV

FFD + SU2 −20.27% 198

NSPCC + STAMPS −22.3% 486

Table 5.3: Optimisation results obtained using FFD and NSPCC

In the NSPCC approach, z-coordinates of the control points of NURBS patches are

used to deform the shape and the design space is the kernel of the constraint Jaco-

bian which is evaluated using Singular Value Decomposition. The design variables

then effectively become the linear combination of the columns of the nullspace. The

deformation modes in the nullspace are orthogonal to each other hence each shape

mode in the nullspace corresponds to a unique set of control point perturbations

which offers rich design space coverage for shape optimisation.

From Eqn. 4.18 the size of the design space is given by N − r′ in which N is

the total number of control points allowed to deform in the design process and r′ is

the numerical rank of the constraint matrix. For this test case, number of control

points is fixed throughout the optimisation which is N = 160. Value of r′ depends

on the chosen threshold frequency value σC , for this test case the chosen value is

10−9 which results 486 number of design variables at the end of the optimisation.

On the other hand, in the FFD approach, z-coordinates of the FFD control points

are used as design variables and the shape modes are not orthogonal to each other,

hence it offer poor design space converge and may leads to a suboptimal solution

in the design process [6]. Furthermore, the distribution of control points is uniform

on the surface of the FFD-box hence large number of design variables are required

for the optimiser to explore the design space. For example, clustering of control

points are required in high curvature region to capture superior shape modes. In

addition, the FFD-box is constructed using Bernstein polynomial, which provides

global shape modification property. Therefore to achieve better performance, B-

Spline or NURBS based FFD-box needs to be constructed around the M6-wing,

this will be considered as future work.

Figure 5.10 shows the comparison of Mach number distributions between baseline

and optimised M6-wing. In both optimisation case, strength of the lambda shock

wave relative to the baseline geometry has been reduced significantly. However
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Figure 5.9: Convergence history of the objective function

(a) Baseline (STAMPS) (b) Baseline (SU2)

(c) Optimised (NSPCC) (d) Optimised (FFD)

Figure 5.10: Comparison of Mach number distributions between NSPCC and FFD

for the ONERA M6 drag reduction case
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the optimised shape obtained using FFD show a small rear shock around the tip

section of the wing which is not present in the geometry obtained using the NSPCC

approach. In addition, strength of the first shock near the root section is only

slightly reduced in the FFD case. This may be the source of the difference in the

drag reduction between opt-NSPCC and opt-FFD. Masters et al.[82] also observed

a similar kind of pattern when performed shape optimisation of M6-wing using a

coarser level subdivision parametrisation method and also noted that some remnant

of front and rear shocks are reduced as they increases the number of design variables

in the optimisation. This clearly indicates that sufficient number of design variables

are required to achieve shock free solution. Figure 5.11 shows the distribution of

coefficient of pressure over the baseline and optimised geometries taken at different

sections along the span-wise direction of the M6-wing. We can clearly see that,

strength of the shock wave near the root section of the opt-NSPCC has been reduced

significantly than the opt-FFD geometry.

Cross-sectional shape changes along the span-wise direction are shown in Fig. 5.12.

When compared with the NSPCC, optimised geometry obtained using FFD method

captured large surface deformation near the root section of the M6-wing. This is

may be due to the fact that FFD-box is constructed using Bernstein polynomial

which has global shape modification property. Hence local or thin surface changes

that are essential near shock region may not be projected properly onto the FFD-

box. On the other hand, with the presence of local shape modification property

of NURBS the NSPCC method has a potential to capture the local surface defor-

mation computed by the adjoint sensitivity information, hence achieved large drag

reduction of 22.3%. In addition, due to the presence of clustering of control points

near the leading edge the NSPCC method was able to capture most of the small

surface changes and reduce the strength of the leading edge shock wave significantly.

Results show that, the NSPCC approach has the potential to obtain a signifi-

cantly improved wing shape with a coarse distribution of control points along the

span-wise direction and with assembly constraints. In this case, wing-box and trail-

ing edge thickness constraints are implicitly defined using the test point approach.

Using the NSPCC approach, assembly constraints can be imposed in an optimi-
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(a) y
b = 0.20 (b) y

b = 0.44

(c) y
b = 0.65 (d) y

b = 0.80

(e) y
b = 0.90 (f) y

b = 0.95

Figure 5.11: Comparison of Cp plot for optimised designs obtained using static

NSPCC and FFD
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(a) y
b = 0.20 (b) y

b = 0.44

(c) y
b = 0.65 (d) y

b = 0.80

(e) y
b = 0.90 (f) y

b = 0.95

Figure 5.12: Comparison of optimal shapes obtained using NSPCC and FFD
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sation case without additional pre-processing step. This reduces the user set-up

time substantially for the given problem. On the other hand, FFD method requires

the construction of axillary hexahedral control lattice around a wing shape. For a

complex geometry, this step may be tedious one.

As experimental results are available, shape optimisation of the ONERA M6-

wing has been studied by numerous researchers using a wide range of parametrisation

methods. Hence the results are compared with other previous works available in the

literature and this is shown in Table. 5.4. It can be seen that, parameterisation

method based on subdivision surfaces outperforms the NSPCC approach. Masters

et al. [81] employed SNOPT optimiser for handling lift and volume constraints.

Based on the presented details, a significant amount of deformations are observed

near the trailing edge region which may reduce the drag further. Therefore, optimal

shapes had better performance improvement than other methods. To highlight

the flexibility of the NSPCC approach, comparison of TE shapes of the optimised

wing obtained with and without TE thickness constraints are shown in Fig. 5.13.

Using the NSPCC approach with assembly constraints, TE thickness is maintained

in the span-wise direction. As presented in Table 5.4, drag is reduced by 22.3%

while satisfying the assembly constraints. Further improvement can be achieved by

adaptively increasing the control points on the design surface.

5.8 Summary

In this chapter, the static NSPCC method is extended to handle assembly con-

straints such as wing-box and trailing edge thickness constraints in aerodynamic

shape optimisation. The proposed methodology was tested by minimising the drag

of an ONERA M6-wing at inviscid transonic flow conditions subject to the con-

straints that lift and thickness should not reduce from the baseline values. The

entire implementation is done in Fortran hence source transformation AD tool is

used to obtain constraint Jacobian and shape sensitivities for optimisation. In this

work, in-house flow and discrete adjoint solver STAMPS is used to obtain flow fields

and gradients. A python-based optimisation framework is developed to integrate

the CAD kernel and STAMPS solver developed in this work with the scipy-BFGS
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Origin Grid Size
Parametrisation

method
NDV

Objective

Function

Additional

Constraints

Drag

Reduction

15→936 -33.5%Multi-level

Subdivision 60→936 -32.72%

60 -31.3%

15 -29.68%

236 -29.34%

Masters et al.[82] 300K
Subdivision

Surface

936

Drag (Euler) Volume

-25.87%

Present Work 540K Static NSPCC 486 Drag (Euler)
Wing-box and

TE thicknesss
-22.3%

Present Work 540K FFD 198 Drag (Euler) Thickness -20.2%

Martins et al.[75] 8M FFD 150 Drag (Turbulent) Thickness -19.1%

Martins et al.[75] 1M FFD 150 Drag (Turbulent) Thickness -18.8%

Zingg et al.[100] 2.2M FFD 226 Drag (Turbulent) Volume -17.1%

Martins et al.[75] 1M FFD 150 Drag (Euler) Thickness -16.6%

Anderson et al.[98] 359K
Engineering

Parameters
21 Drag (Turbulent) NA -15.5.%

Qin. et al.[88] 312K Bezier Surface 15 Drag (Turbulent) Volume -14.9%

Dheeraj et al.[4] 154K
Parametric

CAD model
27 Drag (Euler) NA -14%

Orovio. et al.[23] 43K FFD 12 Drag (Turbulent) NA -10%

Table 5.4: Comparison of drag reduction with previous work
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(a) y
b = 0.20 (b) y

b = 0.44

(c) y
b = 0.65 (d) y

b = 0.80

(e) y
b = 0.90 (f) y

b = 0.95

Figure 5.13: Comparison of TE shapes of the optimised wing obtained with and

with TE thickness constraints using NSPCC approach.
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optimiser.

Performance of the developed shape optimisation tools are compared with the

currently available state of the art open source SU2 shape optimisation tools. Free-

From Deformation (FFD) method is available in SU2 tools and the tutorial case

setup provided in the SU2 website is used to perform shape optimisaiton of the ON-

ERA M6 wing. Detailed grid convergence study, verification with SU2 and validation

study are performed in this chapter. The results show that the overall features of

the lambda shock computed using STAMPS are fairly matched between the SU2

and the available experimental results.

Two parametrisation methods namely static NSPCC and FFD methods have

been compared with respect to their effectiveness for minimising drag of the ONERA

M6-wing. NSPCC derives the design space directly from a boundary representation

(BRep) of the geometry. Constraints are handled using test-point approach and the

design space is derived from the kernel of the constraint Jacobian which is evaluated

using SVD. The resultant shape modes are orthogonal to each other hence regularize

the design space and offers robust shape optimisation process. When compared with

the FFD method, NSPCC approach offers better local shape control and able to

capture small scale adjoint information in high curvature region which reduces the

strength of the leading edge shock hence leads to more drag reduction. Furthermore,

using test point approach user can easily impose assembly constraints in the design

process and its gradients can be evaluated using AD tools. In addition to that, entire

design chain is reverse differentiated hence gradient computation is independent to

the number of design variables.
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Chapter 6

Shape Optimisation of VKI

U-Bend

6.1 Introduction

In chapter 3, details about the in-house flow and discrete adjoint CFD solver named

STAMPS are presented and then gradient of the objective function with respect to

design variables are assembled using adjoint methodology. Automatic differentia-

tion tool based on source-transformation approach is employed to differentiate the

necessary blocks of code in the design chain. In Chapter 4, details about the pro-

posed adaptive NURBS-based parameterisation method with complex constraints

(adaptive-NSPCC) are presented in which the control points of the NURBS patches

are used to deform geometry in the design process. In Section 4.10, the adaptive-

node based parameterisation method is proposed in which the normal displacements

of surface grids are taken as design variables. In this chapter, both shape param-

eterisation methods are coupled with the STAMPS solver and applied to the aero-

dynamic shape optimisation of internal turbine cooling channel U-Bend [135] with

the objective to minimise the total pressure loss.

6.2 Turbine Blade Cooling Channel

To achieve high thermal efficiency modern gas turbines are required to operate at

extremely high temperature. To withstand high temperature, turbine blades are

111



CHAPTER 6. SHAPE OPTIMISATION OF VKI U-BEND

Figure 6.1: U-Bend geometry with design surfaces are highlighted in green

equipped with intricate cooling channel which circulates cooling air through multiple

passages inside the blade and discharged through small holes located on the blade

wall. This cooling air creates a thin insulating layer along the outer surface of the

turbine blade.

This U-Bend passage turns the cooling fluid 180 degrees and of crucial impor-

tance since they represent the region of high-pressure loss. The goal of the opti-

misation process is to deform the U-Bend region of an internal serpentine cooling

channel such as to minimise the mass-averaged total pressure loss defined as J ,

minimize
α

J =

∫
inlet

Ptot~u · ~ndS −
∫
outlet

Ptot~u · ~ndS∫
inlet

~u · ~ndS
(6.1)

where α represents the design variables, Ptot is the total pressure, u is the velocity

vector, n is the surface normal direction and S is the cross section area. Figure 6.1

shows the U-Bend geometry with design surfaces are highlighted in green. The

dimensions of the baseline U-Bend geometry is shown in Fig. 6.2. It consists of a

two squared cross section ducts and a hydraulic diameter of Dh = 0.075m. Both

ducts are connected by the half-circular U-Bend.

6.3 Shape Parameterisation

To determine the influence of distribution of control points on the design surface,

three levels of control net distributions are used to parameterise 180 degree bend
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Figure 6.2: Dimensions of the U-Bend geometry.

region of the U-Bend geometry. Control points on the design surfaces are refined

globally in both parameter direction which represents coarse (L1), medium(L2) and

fine (L3) design spaces for shape optimisation. The U-Bend region composed of 12

patches which include 8 rectangular and 4 half-circular patches. In particular, the

total number of control points in each level are refined by the order of two.

For coarser level (L1) each patch is parameterised using cubic NURBS curve

along the streamwise direction with 6 control points and cubic rational Bezier curve

along radial direction with 4 control points (perpendicular to streamwise direction).

Hence L1 parameterisation exhibits global shape control along the radial direction.

In total L1 has 288 control points with each patch defined using 6 × 4 control net

which is shown in Fig. 6.3a. In L2, each patch is parameterised using bi-cubic

NURBS patch with 8 × 6 control net in which streamwise and radial directions

are defined using 8 and 6 control points respectively, resulting in a total of 576

control points. In L3, each patch is defined using bi-cubic NURBS patch with

12 × 8 control net in which 12 and 8 control points along streamwise and radial

direction respectively resulting in a total of 1152 control points. Control points

distributions defining the U-Bend region corresponding to each level are shown in

Fig. 6.3. Figure 6.4 shows the comparison of the sensitivity of the design surface for a

single control point projected over the computational mesh for each level presented

above. This confirms that the last two parameterisations (L2 and L3) have the

property of local control and moreover the influence region of a control point is very

small for L3.

In order to test the performance of the proposed adaptive-NSPCC method the

U-Bend shape with the coarse net L1 is used as the initial geometry. Once the re-

finement trigger terminates the current design space level, control points are refined
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only in the regions where smoothed node-sensitivities are larger by using knot inser-

tion algorithm. In an adaptive framework it is important to determine the suitable

value of knot to be inserted in a knot vector. Zingg et al. [52] proposed to insert a

new knot arbitrarily in each knot span of a knot vector to refine control points of

B-spline volumes. Martins et al [55] insert a new knot in the middle of each knot

span to refine FFD frame. This may be suitable for simple geometries however for

a complex geometry with a large number of patches inserting a knot in each knot

span without any additional measure may leads to the addition of unnecessary con-

trol points on the design surface. Therefore, additional sensitivity-based adaptation

criteria which is discussed in Section 4.9 is employed to choose a suitable value of

knot to be inserted in each parameter direction. Adaptive NSPCC replaces user in

the design loop as the control points are refined automatically using the sensitivity

driven adaptation criteria which reduces the unnecessary addition of control points

on the design surfaces.

At common edges between the deformable and fixed NURBS patches which are

near to inlet and exit channel of the U-Bend region, the first three layers of control

points of the moveable NURBS patches are fixed so that the entry and exit throats

both have G2 continuity and meet with zero curvature. The geometric continuities

on the common edges between the movable design patches are imposed by using

the test point approach presented in Section 4.5. G0 continuity is imposed on all

common edges to avoid surface gaps during CAD deformation. On the other hand,

G1 continuity is imposed only on the edges that connect rectangular and circular

patches. Figure 6.1 also shows some of the continuity constraints imposed on the

common edges.

On the other hand, node-based method derives parameterisation directly from

the computational mesh employed in simulation. Grid convergence strudy is per-

formed to select to suitable mesh for optimisation. The details of the grid conver-

gence study are presented in Section. 6.4 The selected computational mesh consists

of 260k nodes and the design surface consists of 9500 surface nodes. The surface

mesh used in the node-based parameterisation is shown in Fig .6.5.
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(a) Coarse: Level-1 (b) Medium: Level-2

(c) Fine: Level-3

Figure 6.3: Three different levels of NURBS-based parameterisation

(a) Coarse: Level-1
(b) Medium: Level-2

(c) Fine: Level-3

Figure 6.4: Sensitivity of a control point on the outer U-Bend patch ∂Xs

∂P
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Figure 6.5: Surface mesh of the baseline U-Bend geometry

6.3.1 Shape sensitivity validation

It is necessary to validate the correctness of the differentiated code. Our approach

is to validate the forward and reverse differentiation of the shape parameterisation

kernel before integrating them into a design chain. L1-CAD model and fine mesh

are employed for performing shape sensitivity validation. Details of the fine mesh is

presented in the grid convergence study (Section 6.4)

AD Code vs Complex Step Derivative

All the required derivatives of geometric operators, including surface sensitivities

with respect to parameters s and t for point inversion (Eqn. 4.5), entries of the

constraint matrix C (Eqn. 4.16 and Eqn. 5.4) and shape sensitivities (Eqn. 4.30 and

Eqn. 4.42) are computed using derivative code produced by the source transforma-

tion AD tool Tapenade [53].

Figure 6.6 shows the relative error in shape sensitivity ∂Xs

∂α
for a particular surface

grid point with respect to a design variable α for a range of step size h ∈ [10−2, 10−21]

computed using a forward difference, a central difference and the complex step

method, using the AD value as reference. As expected, the forward difference

shows linear convergence, while central difference and complex step derivative show

quadratic convergence.

However accuracy of the method depends on the chosen step width. If chosen step

width is too small, then subtractive cancellation error will dominate hence relative

error diverges for finite difference method when step width reaches its threshold
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Figure 6.6: Convergence of relative error for a surface point using complex step,

forward and central difference.

limit h∗. In this case, h∗ = 10−8 for forward difference and h∗ = 10−6 for central

difference. On the other hand, the complex-step approximation does not involve

a difference operation hence extremely small step width h∗ < 10−7 can be chosen

without subtractive cancellation error.

To verify the AD derivatives we compare to the values obtained with the complex

step method [125]. The method is very easy to use in Fortran which allows very

simple conversion from all double precision variables to double precision complex

variables. However additional care has been taken as discussed in [30, 79] when

handling intrinsic functions such as abs and conditional branches IF..THEN..ELSE.

Figure 6.7 shows the convergence of truncation error for seven surface points using

complex step derivative method. The comparison of reverse mode surface sensitivity

magnitude with respect to a control point on three different NURBS patches against

complex step derivative with step width h∗ = 10−8 is shown in Fig. 6.8. The overall

magnitude plots verify that AD sensitivities matches the complex step derivative

closely.
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Figure 6.7: Relative error for seven surface points using complex step derivatives.

Error: ε = |FD−AD|
|AD| .

Taylor Test

Additionally AD sensitivities are also verified using a Taylor test with a range of

step sizes h ∈ [10−2, 10−20]. The Taylor test is useful to fix the problems of the finite

difference round-off error being amplified by a small step size.

f(x+ h)− f(x)− h∂f
∂x

= O(h2). (6.2)

Figure 6.9 shows a overview of a taylor test for constraint Jacobian on a number of

test points. As similar to Mladin et al [18], we observe better convergence than the

theoretical convergence rate of h2 and this continues upto error converges to machine

precision, in this case h∗ = 10−7. Comparison of total sensitivities computed with

both forward and reverse mode shape are presented in Fig. 6.10. For visual clarity,

results are shown here only for a number of sensitivity index and confirm that results

coincide to a very high extent.

Shape Matching

Furthermore, we have developed a shape matching optimisation problem to verify

the adjoint version of NSPCC CAD kernel in the design loop. Main objective is to

use the differentiated CAD sensitivities in both forward and reverse mode to find a
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(a) Complex step: patch ID-2 (b) AD (reverse): patch ID-2

(c) Complex step: patch ID-9 (d) AD (reverse): patch ID-9

(e) Complex: patch ID-10 (f) AD (reverse): patch ID-10

Figure 6.8: Verification of reverse differentiated surface sensitivities with respect to

control point using complex step derivative method with step width 10−8.

set of control points to match a given perturbed CAD geometry. This geometry is

created by giving arbitrary perturbations to control points using NSPCC algorithm

hence both CAD (P◦) and computational grids are perturbed (X◦v ). Figure 6.11

shows the comparison between the initial (P) and perturbed geometry (P◦) to be

matched. We choose to minimize the sum of quadratic distances between perturbed

surface mesh points (X◦s ) and NURBS surface approximation (X ′s). Therefore entire

NSPCC algorithm as presented in Algorithm 1 is utilized without CFD in the loop.

This leads to the following objective function,

J = γ

NS∑
i=1

(
X ′i,s −X◦i,s

)
(6.3)

where NS is the number of surface mesh points and γ is a scaling factor. Figure 6.12

shows the convergence history of the shape matching problem using both modes
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Figure 6.9: Overview of Taylor test for seven test points

of AD with BFGS as optimiser. Since tangent and adjoint CAD sensitivities are

converge to machine precision the objective function value is equivalent to machine

precision at every design iteration. Hence both cases are converged to the same

shape.

6.3.2 Computational time

To measure the performance of reverse differentiation of NSPCC approach we have

parameterized the U-Bend geometry with an additional three control net levels

L4, L5 and L6 with the total number of control points 2304, 4752 and 9360 respec-

tively. These additional levels were used only for testing the performance of reverse

differentiation and not for optimisation purpose. Figure. 6.13 shows the amount of

computation time taken for CAD sensitivity in a single design step using forward,

adjoint and central difference method with respect to all design variables for control

net levels of six different sizes. In this test, fine mesh is used for computing CFD

sensitivities which is selected based on the grid convergence study (Section 6.4). For

clarity, time taken to compute flow fields (CFD primal), adjoint variables (CFD ad-

joint), STEP file parser, null space computation and CFD sensitivity assembly were

omitted and presented only the computational time taken for the CAD sensitivity

evaluation in a single complete design chain.
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(a) (b)

Figure 6.10: (a) Verification of objective function sensitivities computed using re-

verse mode CAD sensitivities with forward mode CAD sensitivities, (b) Verification

of objective function sensitivities for node-based method.

(a) Original NURBS (b) Perturbed NURBS

Figure 6.11: U-Bend geometry used in the shape matching optimisation problem.

In this case, the forward mode outperforms the central difference method, this

is due to the fact that sensitivity computation with respect to each control point

requires surface evaluation for both positive and negative perturbations. This plot

clearly shows the performance benefits of using the reverse differentiation of NSPCC

approach (adjoint mode) compared to both forward mode and central difference,

especially when the number of control points is large. Therefore in the design chain,

we employed reverse differentiated NSPCC approach for shape optimisation.
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Figure 6.12: Convergence of objective function for shape matching problem using

both tangent mode and adjoint mode NSPCC

6.4 Grid convergence study

The Reynolds number based on the hydraulic diameter (Dh = 0.075m) of the U-

Bend is Re = 43830. A Mach number of 0.1 allows for valid assumption of incom-

pressible flow. In order to accelerate the convergence of compressible solver for low

Mach number condition, pressure scaling method suggested by Robert et al. [41] is

employed in this work. For a given reference velocity U0 = 8.4m/s, density ρ, and

Mach number M , the required static pressure p can be calculated as follows,

p =
ρU2

0

γM2
. (6.4)

This type of pressure scaling ensures good convergence for low Mach number flows

and is especially suitable for internal flows where pressure drop across the domain is

of primary interest. The adjoint solver in STAMPS is derived from the flow solver

using the automatic differentiation(AD) tool Tapenade. The time-stepping of the

adjoint equations is based on a fixed-point method using the same assembly steps as

the primal. Details of the numerical method, primal and adjoint implementations

can be found in [27, 50].

Based on the suggestions given by McHale et al. [85] four grid levels have been

generated to perform a detailed grid convergence study: a coarse (C), a medium

(M), a fine (F ) and an extra fine (XF ) mesh with each level containing 50k, 125k,

260k and 500k nodes respectively. Computational grids are created using Ansys

Mesher with the coarse grid (C) having Y + value of 3 and remaining all grids
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Figure 6.13: Computational time taken for CAD sensitivity evaluation, Forward

mode vs Reverse mode CAD sensitivities

having Y + value of 1. The U-Bend geometry has square cross-section hence it

has sharp corners which generates singular cells while using body-fitted mesh with

square topology. To avoid this we created the butterfly topology at the inlet which

has a square block in the center and the remaining four blocks filling the peripheral

around the square block. Then by using the method of sweeping in Ansys Meshing

we sweep the butterfly topology from inlet to the outlet through the interior domain

of the U-Bend geometry. The structure of all the grid levels at the inlet and outlet

of the U-Bend geometry is shown in Fig. 6.14.

In this work, the objective function value and velocity profiles at three different

locations are compared with all the grid levels to make sure the solution is inde-

pendent of the mesh resolution. These velocity profiles including both streamwise

as well as radial directions are taken one at the 90◦ turn region (location A) and

others (location B and C) at the exit of the channel are shown in Fig. 6.15a. Fig-

ure 6.15b shows the variation of the normalized objective function value with all

the grid levels. Figure 6.16 shows a comparison between the normalized stream-

wise velocity profiles at the location A, B and C (along the vertical lines). The

positive and negative z/Dh indicates the top and bottom surfaces respectively from

the center of the U-Bend. Figure 6.17 shows a comparison between the normalized
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(a) Coarse (C) (b) Medium (M)

(c) Fine (F ) (d) Extra Fine (XF)

Figure 6.14: The inlet and outlet of the structured hexahedral meshes of all levels

radial velocity profiles at the location A, B and C (along the horizontal lines). From

the comparison, it is found that both streamwise and radial velocity profiles from

the fine (F ) and extra-fine meshes are closely matched and hence solution became

independent of the mesh resolution. Figure 6.15b shows that the fine mesh results

in a difference of less than 0.1% for the objective function value with the extra fine

(XF ) mesh.This difference is found acceptable for the present study [85] and hence

the fine mesh (F ) is used for the optimisation purpose. The steady-state nonlinear

primal flow solver fully converges and the discrete adjoint solver uses the same time-

marching scheme which also fully converges the adjoint solution. The convergence

history of both flow and adjoint solution using fine mesh is shown in Fig. 6.18.

6.4.1 CFD solver validation

The numerical results obtained using STAMPS are compared with the computa-

tional and experimental ones performed by Coletti et al. [29, 7] for the same Reynolds

number Re = 43830. In their experimental work, the inlet leg with 23.3Dh long

is used to guarantee a fully developed flow at the location of the circular bend.

Based on the suggestion given in test case description [135] the inlet leg of 10Dh

with respect to the center of the U-Bend region is used in the present numerical
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(a) Locations used for velocity profiles (b) Grid convergence of objective function

Figure 6.15: Grid convergence study.

study to reduce the computational cost. For the validation of our present model,

the simulation is performed using fine mesh (F ) containing total 260k nodes, as

the grid-independence study showed that this grid offered sufficient resolution, see

Fig. 6.15b. Comparison of the computed normalized axial velocity profile taken at

the inlet section before the bend region shows very good agreement with experi-

mental results as shown in Fig. 6.19. The comparison of the simulated velocity field

and experimental results by Coletti et al.[29], the Large Eddy Simulation results by

Alessi et al. [7] and the STAMPS results is shown in Fig. 6.20 for the symmetric

mid plane (Z/Dh). The STAMPS solution captures the large flow separation region

right after the turn. However height and length of the separation region are un-

derestimated. Similar behavior is also noted in the RANS-based results of Alessi et

al. [7].

Figure 6.21 shows a good match between STAMPS and LES for the counter-

rotating Dean vortices at the 90◦ turn region, only small discrepancies near the

inner wall separation region can be observed. The comparison of normalized ve-

locity magnitude at the outlet leg 2Dh in Fig. 6.22 shows that STAMPS captured

the overall flow pattern well. In particular, interactions between the Dean vor-

tices and the recirculation region are well captured and velocity distributions are

also consistent with LES results. However, the inner wall flow separation bubble

is slightly underestimated in STAMPS, similar to other RANS-based U-Bend stud-

ies [29, 94, 96]. The analysis of the STAMPS solution computed on the fine (F )

mesh is in good agreement with the published experimental and numerical results.
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(a) at A (b) at B

(c) at C

Figure 6.16: Streamwise velocity profiles along the vertical lines
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(a) at A (b) at B

(c) at C

Figure 6.17: Radial velocity profiles along the horizontal lines at A and along y axis

at B, C

Figure 6.18: Convergence history of flow and adjoint solver
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Figure 6.19: Comparison of normalized streamwise velocity profile taken the at inlet

leg between experimental and STAMPS

Figure 6.20: Comparison of normalized velocity field (U∗) along streamwise direction

between experimental and simulation taken at mid plane. (a) Experimental [29] (b)

LES simulation [7] (c) RANS simulation [7] (d) RANS-(STAMPS)

Hence this configuration has been used for the optimisation studies.

6.5 Static vs Adaptive NSPCC

6.5.1 Optimisation Work Flow

In this work, two different types of parameterisation methods are proposed. They

are CAD-based adaptive NSPCC method and adaptive node-based method. In this

chapter, both parameterisation methods are used to minimise the mass-averaged

total pressure loss of the VKI U-Bend channel (Eqn. 6.1). This section describes the

optimisation framework for aforementioned shape parameterisation methods. This

Algorithm 2 is generic and can be used to setup any industrial test case for shape
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Figure 6.21: Comparison of normalized velocity field at 90◦ turn region. (a) LES [7]

(b) (b) STAMPS

Figure 6.22: Comparison of normalized velocity field at outlet leg 2Dh. (a) LES [7]

(b) RANS [7] (c) STAMPS
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optimisation. In this work, a Python framework has been developed to integrate

all the required CFD and geometry modules with the Python-SciPy library to drive

the design process. To set up a new case, a user needs to provide a CAD file (.Step)

and the corresponding CFD mesh of the baseline geometry.

6.5.2 Flow Field of the Baseline Geometry

The pressure losses in a serpentine cooling channel are caused by the effect of both

wall friction and momentum exchanges due to the change in the direction of the flow.

Figure 6.23 shows the flow field of the baseline geometry obtained using Paraview.

The cross sectional slices are taken at different locations along the channel. When a

coolant flow passes through the U-Bend, the presence of pressure gradient normal to

the streamline provides the centripetal force that required to turn the flow around

the bend. This results in very low static pressure close to the inner bend region,

hence when the flow exists the bend region it experiences a strong adverse pressure

gradient along the streamwise direction. The fluid particles that are close proximity

to the inner wall have low-velocity and don’t have the potential to overcome the

adverse pressure gradient. Hence the flow separates from the inner wall boundary

and loses some of its energy in generating local eddies.

In addition to that, losses also take place due to the presence of strong secondary

flows in the radial plane of the U-Bend geometry because of the pressure gradient

normal to the streamline. The fully developed flow profile disrupts the balance be-

tween the pressure gradient and centripetal force. As a result of inertial effects, fluid

at the center of the bend moves towards the outer wall at the mid-plane and comes

back towards the inner wall near the top and bottom walls. This creates symmetric

strong counter-rotating vortices at 90◦ turn region called Dean type vortices which

persists in the long downstream exit channel of the U-Bend. This strong spiral

motion in conjunction with the flow separation reduces the effective cross sectional

area and accelerates the flow towards the outer wall of the exit channel which in-

creases the velocity gradients at the wall. Hence results in greater frictional losses

in a U-Bend cooling channel than the straight pipe under similar conditions. This

can be clearly seen in Fig. 6.23. A similar pattern was found in both experimental

[29, 44] and numerical simulations [71, 136]. Therefore an effective design should be
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Algorithm 2 Shape Optimisation Framework

Input: CAD file in STEP format and the corresponding computational mesh.

1: Choose the parametrisation method and select the design surfaces.

a: NSPCC: Read BRep of a CAD model (S) and surface mesh points (Xs) and

perform surface mesh mapping.

b: Node-Based: Read surface mesh points on the design surface (Xs)

2: Primal and adjoint computation:

a: Run STAMPS solver in primal mode to compute flow fields (Eqn. 3.7) and

objective function value (Eqn. 3.6).

b: Run STAMPS solver in adjoint mode to compute adjoint fields (Eqn. 3.17)

and CFD sensitivity (Eqn. 3.27).

3: Computation of total gradient (∂J
∂α

):

a: NSPCC: Run NSPCC CAD kernel in adjoint mode to compute shape sensi-

tivity term and total gradient as given in Eqn. 4.30.

b: Node-Based: Run node-based kernel in adjoint mode to compute shape

sensitivity term and total gradient as given in Eqn. 4.42.

4: Optimiser:

a: Compute perturbation to design variables (δα) using SD or BFGS optimiser.

5: Refinement: If refinement trigger satisfied as given in Eqn. 4.31

a: NSPCC: Refine NURBS control net as presented in Sec. 4.9.2.

b: Node-Based: Reduce number of smoothing iteration (Sec. 4.11).

6: Shape update:

a: NSPCC: Run NSPCC CAD kernel in deformation mode to compute pertur-

bations to control points (δP) as presented in Sec. 4.26.

b: Node-Based: Run node-based kernel in deformation mode to compute

smooth perturbations to surface mesh points (δXs) (Sec.4.10).

7: Computational Mesh Update:: (δXv) (Sec. 3.3.2)

a: Run STAMPS solver in mesh deformation mode to deform volume mesh.

8: Repeat steps 2 through 7, until no further improvement in cost function is

obtained.

Output:

a: NSPCC: Updated CAD model (Snew) and computational mesh (Xv).

b: Node-Based: Updated computational mesh (Xv)..
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Figure 6.23: Flow field of the baseline geometry

able to reduce the effects of secondary flows and flow separation near the turn and

exit channel of the U-Bend geometry.

6.5.3 Static NSPCC

Global refinement of control points on the design surface

Before testing the proposed adaptive parameterisation method, the influence of

global refinement of control points on the regularity of the shapes captured in shape

optimisation and its impact on the rate of convergence of the optimisation is in-

vestigated. Aerodynamic shape optimisation of internal turbine cooling channel

is performed by using three levels of parameterisation coarse (L1), medium (L2)

and fine (L3). Each optimisation is performed independently and control point dis-

tribuition on the design surface remain fixed throughout the optimisation. For the

first two levels steepest descent method is used as the optimiser for the entire design

process. However, for the third level the optimiser is switched to BFGS when the

rate of convergence of SD algorithm becomes poor. Finer level parameterisation

does not constrain the design, however it may provide multiple local minima in the
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design process. Therefore for the finer level, when the rate of convergence of SD

algorithm become too poor, it may converge to a sub-optimal solution, hence the

optimiser has been switched to BFGS to search for a better solution. Figure 6.24

shows a comparison of the convergence histories of the objective function for all

three levels of optimisation.

The value of SVD cut-off frequency σC determines the rank r′ of the constraint

matrix C, hence influence the resultant modes and the number of design variables

(NDV ). In this work, a value of σC = 10−10 is used for all the optimisation runs.

Each control points are allowed to deform in x, y, z direction and weights are remain

fixed throughout the optimisation. Effect of varying σC is investigated in [94]. Ta-

ble 6.1 shows the percentage drop in total pressure loss achieved in each optimisation

and the number of design variables offered by the static NSPCC approach to each

control net level. As the design space dimension increases, performance of the shape

improves further. However this is not applicable to every case as the finer parame-

terisation may contain more local minima hence the gradient-based optimiser may

converge to any local minima [133].

Figure 6.25 shows the comparison of optimised shapes obtained using three differ-

ent parameterisation. Opt-L1 represents the optimum shape obtained using coarse

control net level (L1) as a baseline shape. Similarly, opt-L2 and opt-L3 represents

the optimum shapes obtained using L2 and L3 control net level respectively. One of

the interesting features of the opt-L3 design is the presence of surface undulations

that the other two levels failed to capture. This is mainly due to the availability of

strong local shape control on L3 parameterisation which generates high frequency

shape modes during the design process whereas other two levels handle low-frequency

shape modes than L3 in the design space. This can be clearly seen in the Fig. 6.4

which shows L3 parameterisation exhibit a very small region of influence for a con-

trol point over the computational mesh than other two levels. Furthermore, the

optimised geometries obtained using global refinement almost preserves the sym-

metric nature of the baseline shape which can be seen in Fig. 6.26 which compares

the inner U-Bend region of the optimised geometries obtained using static NSPCC

approach.

Hradil et al. [59] pointed out that finer parameterisation may capture surface
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Figure 6.24: Convergence of objective function: Static NSPCC

Level
Control net

dimension

Total number

of control points (3N)

Size of the

design space (NDV )

Percentage drop in

total pressure loss

L1 4× 6 864 442 -25.34%

L2 6× 8 1728 1082 -26.67%

L3 8× 10 3456 2100 -27.52%

Table 6.1: Optimisation results obtained using static NSPCC

wiggles even if the shape parameterisation generate smooth shapes in the design

space which may also affects the rate of convergence of the gradient-based shape

optimisation process. When compared with the baseline shape, the optimum shape

obtained using level 3 parameterisation shows better performance improvement than

other levels. However, the design space richness and the presence of surface wiggles

affects the rate of convergence of the optimisation. For the current application,

control point refinement upto L3 is sufficient, further refinement might generate

very high surface undulations in the design space which may not be resolved by the

CFD solver hence additional surface regularisation or gradient smoothing might be

needed.

6.5.4 Adaptive Parameterisation

In the adaptive refinement study, optimisation starts with the coarser control net

(L1) and they are refined locally using knot insertion algorithm without modifying
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Figure 6.25: Comparison of optimised geometries: Static-NSPCC

Figure 6.26: Comparison of inner U-Bend shape: Static NSPCC
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the shape. The refinement criteria is driven by the smoothed node-based adjoint

sensitivity information and the control nets of all the 12 design NURBS patches

are refined only in the region where the gradient modes are high. During the op-

timisation, the design space has been refined three times. Figure 6.27 compares

the convergence history of the objective function value between static and adaptive

NSPCC methods. Table 6.2 shows the comparison of number of design variables

and the performance improvement achieved between static and adaptive NSPCC

method. Shape optimisation using the refined design space is able to reduce the

objective function value further and has the potential to capture important shape

modes outside the fixed envelope offered by the static design space. However, no ap-

propriate improvement can be made with the fourth design space level. Figure 6.28

shows the comparison of optimum geometries obtained using static and adaptive

NSPCC method. Figure 6.29 shows the convergence history of the control points

distribution on the design surfaces. Adaptive refinement does not preserve the sym-

metric nature of the control net hence it has more potential to capture asymmetric

shape modes in the design process. This can be clearly seen in Fig. 6.30 which shows

the evolution of the inner U-Bend region in the design process.

Figure 6.31 shows the comparison of the convergence history of the objective

function between adaptive NSPCC and adaptive node-based parameterisation meth-

ods. In the adaptive node-based parameterisation method, optimisation starts with

n = 30 smoothing iterations and with each refinement trigger, the number of smooth-

ing iterations is reduced by 5. When compared with the node-based method, NSPCC

offers better convergence as the shape deformation modes are orthogonal to each

other which may not be the case for the node-based method as the shape modes are

not independent of each other. For the current application, the adaptive-node based

method is converged to local optima. Furthermore, the resulting optimal shape still

contain certain high-frequency shape modes. This can be seen in Fig. 6.32 which

shows the optimised mesh obtained using adaptive-node based method.

6.5.5 Flowfield of the optimised geometry

When compared with the baseline configuration, optimised geometries obtained us-

ing both the parameterisation methods suppress flow separation near the inner wall
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Figure 6.27: Convergence of objective function: Static vs Adaptive NSPCC

Level
Control net

dimension

Total number

of control points (3N)

Size of the

design space

Percentage drop in

total pressure loss

L1 4× 6 864 442 -25.34%

L2 6× 8 1728 1082 -26.67%

L3 8× 10 3456 2100 -27.52%

Adaptive NSPCC

Iter 1-7 4× 6 864 574 -14.51%

Iter 8-23 5× 7 1260 736 -25.68%

Iter 24-37 6× 8 1728 1026 -30.63%

Iter 42 7× 9 2268 1402 -30.8%

Table 6.2: Optimisation results: static NSPCC vs Adaptive NSPCC
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Figure 6.28: Comparison of optimised geometries: Static NSPCC vs Adaptive

NSPCC

(a) design iteration = 7 (b) design iteration = 23

(c) design iteration = 37 (d) design iteration = 42

Figure 6.29: Convergence of control points distribution: Adaptive NSPCC
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Figure 6.30: Comparison of inner U-Bend region: Static NSPCC vs Adaptive

NSPCC

Figure 6.31: Convergence of objective function: Adaptive NSPCC vs adaptive node-

based
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Figure 6.32: Optimised mesh: Adaptive node-based

of the exit channel and reduces wall shear stress significantly. Figure 6.33 shows

the comparison of velocity magnitude taken at mid symmetry plane between base-

line and optimised geometries. The reason for the design improvement is threefold.

Firstly, all levels of parameterisation altered the radius of the inner U-Bend, this

can be clearly seen in Fig 6.30 which shows the comparison of inner U-Bend region

between baseline and optimised geometries. For incompressible and irrotational flow

the velocity gradient normal to the streamline is proportional to the curvature of

the streamline. Hence the optimised geometries with enhanced radius of curva-

ture reduces the required radial pressure gradient and hence the streamwise adverse

pressure gradient, resulting in a smaller separation zone.

Secondly, the duct section is considerably enlarged for all the optimised geome-

tries, this can be clearly seen in Fig. 6.34 which compares the CS area taken at the

90◦ turn region, all the optimum geometries exhibit larger CS area than the base-

line geometry. Hence reducing the velocity in the bend which, similar to the radius

increase, reduces the required centripetal forces, hence the required radial pressure

gradient, hence the separation zone. When compared with the other geometries, the

optimised shape obtained using adaptive NSPCC shows larger cross-sectional area

which further reduces the pressure gradient normal to the stream line. Lower normal

pressure gradient at the turn generates weaker secondary vortex which significantly

reduces the associated diffusion loss. In addition, weaker secondary vortex reduces

velocities near the outer wall of the exit channel which reduce the wall shear stress

further.

Finally, a third contribution is obtained by the formation of strake like shape

along the vertical direction of the inner U-Bend such as widely used on airplanes

and pipelines. At the inner part of the U-Bend, a low velocity region was observed

which is shown in the Fig. 6.34. The size of this region is more for baseline geometry
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Computation

Percentage

over total time

L1 L2 L3

Primal 44.99 44.87 44.74

Adjoint 54.75 54.59 54.43

Surface

Mesh Mapping
0.16 0.22 0.33

SVD null space 0.05 0.22 0.34

CAD perturbation 0.01 0.01 0.02

Constraint recovery 0.02 0.05 0.11

Table 6.3: Computational time breakdown for a single design step

than others. From Fig. 6.34c and Fig. 6.34d it is interesting to note that inner U-

Bend region of the opt-L3 captures strong convex or hump-like shape mode along

vertical direction however the opt-L2 and adaptive NSPCC geometry exhibit weak

convex like shape whereas opt-L1 and adaptive node-based shape doesn’t include

this local shape mode. This strake like shape mode formed at the center of the inner

U-Bend that splits the counter-rotating vortices hence re-energies and reduces the

low velocity region in the optimum geometries.

The costs associated with each of these steps for three levels of parameterisation

at first design step in which primal and adjoint CFD solves upto full convergence

are shown in Table 6.3.
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(a) Baseline (b) opt-L2

(c) opt-L2
(d) opt-L3

(e) adaptive NSPCC
(f) adaptive node-based

Figure 6.33: Comparison of velocity magnitude between optimised geometries. Cross

section taken at middle plane.
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(a) baseline (b) opt-L1

(c) opt-L2 (d) opt-L3

(e) adaptive NSPCC (f) adaptive node-based.

Figure 6.34: Comparison of secondary flow structure between optimised geometries.

Cross-section taken at 90◦ turn region
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Chapter 7

Conclusion and Future Work

The aim of this thesis work is to develop a NURBS-based adaptive parameterisa-

tion method for shape optimisation. NURBS have become the de-facto industry

standard for boundary representation(BRep) and data exchange between different

CAD systems. The BRep in the typical standardised STEP format represents the

geometry as a collection of NURBS patches. One can use the control points of the

NURBS patches to deform geometry in the shape optimisation. However a finite

displacement of control points near or at the patch interface leads to the violation

of geometric constraints such as G0 − G2 between patches. Researchers from the

CFD optimisation group at QMUL have developed the NURBS-based parameteri-

sation method with Complex Constraints (NSPCC) method for shape optimisation.

NSPCC approach has many advantages. They are:

1. Local shape control: NSPCC offers wide range of shape modes in the design

space though the use of local shape modification property of NURBS.

2. Robustness: Surface mesh mapping is done via parametric coordinates this

not only preserves the characteristics of original surface mesh but also handles

large CAD and surface mesh deformation without any failure.

3. Efficient constraint handling: Both geometric and manufacturing con-

straints are handled simultaneously via test point approach. Based on the

smoothness requirements different geometric continuities such as G0, G1 and

G2 can be maintained at each NURBS patch interfaces.

4. CAD sensitivities: NSPCC CAD kernel bas been differentiated using source
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transformation tool TAPENADE in forward mode which provide exact CAD

sensitivities for shape optimisation.

5. Portability: Preserves CAD geometry in the design loop hence easy to trans-

fer between disciplines for MDAO based applications and/or manufacturing.

Furthermore, a valid CAD model is obtained in each design step hence it can

be used for inspection and/or remeshing during premature termination of the

design loop.

Shape optimisation often required a large number of design variables to capture

important shape modes in the design process. Gradient-free methods are computa-

tionally expensive when large number of design variables are employed in the design

process. Therefore gradient-based methods are required to handle rich design space.

However the adjoint method is essential when using gradient-based optimiser in

the loop which computes the gradient of the objective function independent to the

number of design variables. The major contributions of this thesis are as follows:

7.0.1 Reverse differentiation of the entire design chain:

In this work, CFD sensitivities are computed by using in-house flow and discrete

adjoint solver named STAMPS. Previously, NSPCC CAD kernel has been differen-

tiated in a forward mode [142, 143, 65] where computational costs for computing

CAD sensitivity is proportional to the number of design variables. In this present

work, the NSPCC CAD kernel is differentiated in reverse mode, therefore the entire

design chain in now differentiated using source transformation AD tool in reverse

mode which computes adjoint sensitivities in an efficient manner.

In Section 6.3.2, performance of the reverse differentiation of the NSPCC CAD

kernel is tested by using six different control net levels of the U-Bend geometry

L1, L2, L3, L4, L5 and L6 with the total number of control points 288, 576, 1152,

2304, 4752 and 9360 respectively. The results of the performance analysis shows

that forward mode differentiation of the NSPCC CAD kernel affects the overall

performance when a large number of control points are employed in the design

process
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7.0.2 Influence of control points distributions on the shape

optimisation process:

Using NURBS one can represent a shape with a wide range of control net distribu-

tions starting from a coarser level that fits a shape within a suitable minimum level

of tolerance to a finer parameterisation. However, it is a daunting task to determine

the suitable parameterisation a-prior to the shape optimisation process. Therefore

it is important to investigate the influence of the parameterisation on the shape

optimisation process.

In this present work, aerodynamic shape optimisation of internal turbine blade

cooling channel is performed using three levels of control points distribution L1,

L2, and L3 with total number of control points 288, 576, and 1152 respectively

(Section 6.5.3). Control points are refined globally on the design surface and each

optimisation is performed independently with fixed design space. Results of the

shape optimisation shows that, finer parameterisation not only improves the objec-

tive function but also creates surface undulations even if the shape parameterisation

method mostly captures smooth shapes. Furthermore, the optimisation performed

using finer parameterisation is driven by high-frequency shape modes which causing

the optimisation to stall and may converge to any local minima. This behavior is

widely observed with finer parameterisation [70, 133] and gradient smoothing may

be required to damp out high-frequency shape modes in the design space [61] to

accelerate convergence.

7.0.3 Adaptive Design Space

In this present work, NSPCC approach is extended to include adaptive design space

for shape optimisation by refining the control points locally on the design surface

using knot insertion algorithm. The proposed adaptive parameterisation method

has been used to reduce the pressure loss of the internal turbine cooling channel

U-Bend (Section 6.5.4). Optimisation begins in a coarser design space focusing on

low-frequency shape modes and then automatically refining the parameterisation

to include high-frequency shape modes only in the regions where significant high-

frequency surface sensitivities are detected. Design space enrichment is performed by
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inserting knots in both parameter directions of the NURBS patches. The refinement

procedure is fully automatic and minimal user input is required to setup the design

space for the optimisation.

This approach is both efficient and complete by eliminating the arbitrary trade-

off between the dimension and distribution of the design variables in the design

space. The optimised geometry obtained using adaptive parameterisation outper-

forms static parameterisation. In addition, the resultant geometry is smoother than

the optimum geometry obtained using finer parameterisation (L3). This is due

to the fact that early design stages are driven by low-frequency shape modes and

high-frequency shape modes are permitted as the design approaches the minimum.

This characteristics behavior is found desirable for shape optimisation which cap-

tures better shape modes in the design process and also reduce the stiffness of the

optimisation [11, 83, 65]. In this work, a simple explicit adaptive surface regualari-

sation method is also proposed in which optimisation is started with large amount

of smoothing iterations and as the design evolves amount of smoothing is reduced to

achieve better convergence rate. When compared with adaptive node-based method,

both static and adaptive NSPCC method shows better convergence and also con-

verge to better solution.

7.1 Recommendations and Future Work

This thesis presents the successful integration of reverse differentiated adaptive

CAD-based shape parameterisation into gradient-based aerodynamic shape opti-

misation process which further opened the research direction for future work.

• Needs to investigate the efficiency of the proposed parameterisation method

with other shape optimisation benchmark test cases. Currently work is in

progress by the author to test the robustness of the adaptive parameterisation

in the shape optimisation of constrained drag reduction of Onera M6 wing.

• The adaptive refinement criteria presented in this work needs to be investigated

further to include large number of candidates for the selection process.

• The proposed adaptive NSPCC method has been tested in shape optimisa-
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tion based on single discipline. As presented above, adaptive NSPCC method

preserves CAD model in the loop hence this can be extended to handle multi-

objective functions. Currently other PhD student from the same research work

is testing the efficiency of the method in the shape optimisation of turbine

blade cooling channel including both fluid flow and conjugate heat transfer

analysis.

• The proposed parameterisation is suitable to handle untrimmed and conformal

patch topology which has topologically four edges. The extended NSPCC to

handle trimmed and intersecting NURBS patches in the shape optimisation

are in close to completion by other team members in CFD-optimisation group

at QMUL.

• Fortran-based NSPCC CAD kernel needs to be coupled with open source CAD

engine such as openCASCADE for reading and writing STEP files. Therefore

boundary representation of any complex geometry can be extracted. Current

version of the CAD kernel depends on python-based STEP parser developed

by the author which can read and write STEP file which has conformal patch

topology.

• Fortran-based NSPCC CAD kernel needs to be coupled with other open source

NURBS library such as SISL-The SINTEF Spline Library. The SISL library

is written in C and offers wide range of NURBS handling algorithms such as

surface-surface intersection computation and NURBS fitting for curves and

surfaces. The work is in initial stage by the author and some initial results by

the author can be found in [106]. To authors knowledge reverse differentiation

of the intersection algorithm is not yet performed. Reverse differentiation

of the design chain with intersection would be very useful to handle shape

optimisation of intersecting components such as wing and fuselage.

• Currently CFD sensitivities are computed using in-house flow and discrete

adjoint solver STAMPS, current version of the solver does not support different

turbulence models for handling complex test case. The developed methodology

is a stand-alone tool which can be coupled with other open source solvers such

as SU2, openFOAM etc.
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• NSPCC method needs to be extended to include multi-level parameterisation

in the design process and needs to tested with the adaptive NSPCC method.
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