1 Hilltop Curvature Increases with the Square Root of Erosion Rate

3	E. J. Gabet ¹ , S. M. Mudd ² , R. W. Wood ¹ , S. W. D. Grieve ³ , S. A. Binnie ⁴ , T. J. Dunai ⁴									
4 5 6 7 8 9	 ¹ Department of Geology, San Jose State University, San Jose, California, 95192, USA. ² School of Geosciences, University of Edinburgh, Edinburgh, UK, EH9 3FE. ³ School of Geography, Queen Mary University of London, London, UK, E1 4NS. ⁴ Institute for Geology and Mineralogy, University of Cologne, Germany, 50674. 									
10 11	Corresponding author: Emmanuel Gabet (manny.gabet@sjsu.edu)									
12	Key Points:									
13 14	• Hilltop curvature at our sites does not vary linearly with erosion rate, as predicted by theory									
15	• The inferred transport coefficient appears to be insensitive to climate									
16 17 18	• Processes affecting the underlying bedrock may control the shape of soil-mantled hillslopes									
19	Abstract									
20	The shape of soil-mantled hillslopes is typically attributed to erosion rate and the transport									
21	efficiency of the various processes that contribute to soil creep. While climate is generally									
22	hypothesized to have an important influence on soil creep rates, a lack of uniformity in the									
23	measurement of transport efficiency has been an obstacle to evaluating the controls on this									
24	important landscape parameter. We addressed this problem by compiling a data set in which									
25	the transport efficiency has been calculated using a single method, the analysis of hilltop									
26	curvatures using 1-m LiDAR data, and the erosion rates have also been determined via a									
27	single method, <i>in-situ</i> cosmogenic ¹⁰ Be concentrations. Moreover, to control for lithology,									
28	we chose sites that are only underlain by resistant bedrock. The sites span a range of erosion									
29	rates (6 – 922 mm/kyr), mean annual precipitation (39 – 320 cm/yr), and aridity index (0.08 -									
30	1.38). Surprisingly, we find that hilltop curvature varies with the square root of erosion rate,									

31 whereas previous studies predict a linear relationship. In addition, we find that the inferred 32 transport coefficient also varies with the square root of erosion rate but is insensitive to 33 climate. We explore various mechanisms that might link the transport coefficient to the 34 erosion rate and conclude that present theory regarding soil-mantled hillslopes is unable to 35 explain our results and is, therefore, incomplete. Finally, we tentatively suggest that 36 processes occurding in the bedrock (e.g., fracture generation) may play a role in the shape of 37 hillslope profiles at our sites.

38 Index Terms: 1826, 1819, 1862

39 **1. Introduction**

On soil-mantled surfaces too gentle for significant landsliding, particles are primarily transported downslope by soil creep. Soil creep is a general term for the cumulative effect of myriad individual processes that locally disturb soil, such as the freezing and thawing of pore water [*Anderson et al.*, 2013], shrink-swell cycles [*Carson and Kirkby*, 1972], dry ravel [*Anderson et al.*, 1959; *Gabet*, 2003], burrowing by animals [*Gabet et al.*, 2003], and tree throw [e.g., *Denny and Goodlett*, 1956]. Culling [1963] proposed that the rate of soil creep (q_s ; L²/T) is linearly proportional to hillslope gradient, *S* (L/L), such that

$$47 q_s = DS (1)$$

where D (L²/T) is a sediment transport coefficient. The sediment transport coefficient, D, is a
measure of the efficiency of the various soil creep processes, and its magnitude sets the pace
for hillslope evolution [e.g., *Fernandes and Dietrich*, 1997; *Roering et al.*, 1999]. Although a
nonlinear relationship between gradient and flux is supported by topographic analysis
[*Andrews and Bucknam*, 1987; *Grieve et al.*, 2016; *Hurst et al.*, 2012; *Roering et al.*, 1999]

and physical simulations [*Gabet*, 2003; *Roering et al.*, 2001b], this relationship reduces to
Eqn. (1) on slopes < 20° [*Hurst et al.*, 2012].

55 Our understanding of the controls on D for a particular landscape is limited. Because 56 soil creep processes are typically climatically controlled, either directly (e.g., freeze-thaw) or 57 indirectly through climate's effect on the distribution of the biota, temperature and 58 precipitation are expected to have a dominant role in the transport efficiency of soil creep 59 [e.g., Dunne et al., 2010; Hanks, 2000; Pelletier et al., 2011]. Indeed, Hurst et al. [2013] and 60 Richardson et al. [2019] found that D increases with mean annual precipitation, albeit 61 weakly; the latter also found that D increases with the aridity index, which is the ratio between precipitation and evapotranspiration [Trabucco and Zomer, 2019]. In contrast, Ben-62 63 Asher et al. [2017] concluded that transport efficiency decreases with precipitation, although 64 this result was based on a small data set. Soil thickness [Furbish et al., 2009; Heimsath et al., 65 2005] and soil texture [Furbish et al., 2009], as well as underlying lithology [Hurst et al., 66 2013], may also be important factors. A lack of uniformity in measuring D_{1} however, has 67 been an obstacle in investigating the effect of these various factors. 68 Determining the controls on the transport coefficient is important for a variety of 69 reasons. Because many landscapes are soil-mantled, not affected by overland flow, and too 70 gentle for significant landsliding, Eqn. (1) and its nonlinear counterpart are thought to offer a 71 complete description (or nearly so) of sediment transport across much of the Earth's surface. 72 Moreover, assuming steady-state topography, combining Eqn. (1) with a statement of mass

74
$$C_{HT} = -\frac{E}{D} \left(\frac{\rho_s}{\rho_r} \right)$$
(2)

Gabet et al

conservation yields

73

Page 3

4/6/2021

²SSOAr [https://doi.org/10.1002/essoar.10504389.2] CC_BY_4.0 [First posted online: Mon, 12 Apr 2021 13:31:32] This content has not been peer review 75 where *E* is the erosion rate (L/T), C_{HT} (1/L) is the two-dimensional curvature (i.e., the 76 Laplacian of elevation) of a hill's ridgecrest, and ρ_s and ρ_r are the density (L³/T) of soil and 77 rock, respectively [*Roering et al.*, 2007]. With this equation (and its nonlinear version), *D* 78 and *E* are both assumed to be independent variables: *E* is controlled by the rate at which the

lower boundary is lowered (e.g., via river incision in response to uplift), and *D* is controlled
by the intensity of the various soil creep processes. According to this theory, the profile of a

81 hillslope adjusts itself such that its curvature satisfies Eqn. (2) [*Culling*, 1963; *Gilbert*, 1909].

82 Therefore, understanding the controls on the transport efficiency should provide insight into

83 hillslope form. In addition, studies have used Eqn. (1) and its nonlinear version to model the

84 degradation of fault scarps to estimate earthquake recurrence interval [e.g., Hanks and

85 Schwartz, 1987], and the results are sensitive to the value of the transport coefficient. Finally,

86 understanding the role of the various factors on *D* is important as geologists attempt to infer

87 erosion rates based on topographic analyses [*Hurst et al.*, 2012].

88 2. Methods

89

2.1. Site selection and descriptions

90 Appropriate sites were limited to watersheds which had both LiDAR and cosmogenic ¹⁰Be data sets. The ¹⁰Be data came from a global compilation [*Harel et al.*, 2016], and the 91 92 associated LiDAR data were acquired from the OpenTopography (http://opentopo.sdsc.edu) 93 and USGS (https://viewer.nationalmap.gov) platforms. LiDAR data with spatial resolutions 94 coarser than 1-m cannot accurately resolve ridgeline curvatures in all settings [Grieve et al., 95 2016] and so any sites without 1-m resolution data were excluded from the analysis. Because 96 ridgeline curvatures were used to estimate D (see below), only watersheds that appeared to 97 be in topographic steady-state were chosen. For example, watersheds with clear knickpoints

98 or with asymmetrical ridges were avoided, as well as steep watersheds advancing into low-99 relief surfaces. Simulations of hillslope evolution suggest that hillslopes with declining 100 erosion rates adjust so quickly that they are difficult to differentiate from steady state 101 hillslopes; furthermore, hillslopes experiencing accelerated uplift only preserve the signature 102 of changing erosion rates for tens of thousands of years [Mudd, 2017]. Therefore, by 103 avoiding areas with obvious signs of landscape transience, we are less likely to find ridgeline 104 curvatures reflective of transient conditions. Thirty sites from six regions in the United States 105 met our criteria: the Olympic Peninsula (WA) [Belmont et al., 2007], the Feather River area 106 (CA) [Hurst et al., 2012; Riebe et al., 2001; Saucedo and Wagner, 1992], the San Gabriel 107 Mountains (CA) [DiBiase et al., 2010], Yucaipa Ridge (CA) [Binnie et al., 2007], the Idaho 108 Plateau (ID) [Wood, 2013], and the Blue Ridge Mountains (VA) [Duxbury, 2009] (Figure 1). Some of the regions (e.g., the San Gabriel Mountains) had ¹⁰Be data for sites not covered by 109 110 available LiDAR data and, thus, their full data-sets could not be used. Climatic data for these 111 sites were obtained from the 800-m resolution PRISM model [PRISM, 2014], which provides 112 recent (1981 - 2010) 30-yr means for annual precipitation (MAP) and annual temperature 113 (MAT) (Table 1). The aridity index for the sites was determined from Trabuco and Zomer 114 [2019]. While these data are for the modern climate, we assume that they are representative 115 (at least in a relative sense) of the climate state over the time-scale of the erosion rates measured with 10 Be (i.e., $10^3 - 10^5$ yrs). To control for rock strength, we chose sites underlain 116 117 by lithologies known to be resistant to erosion: plutonic and metamorphic bedrock [e.g., 118 Gabet, 2020; Hack, 1973] (Table 1).

119 2.2. Erosion rate calculations

120	To ensure a consistent method for calculating erosion rates, they were determined
121	from ¹⁰ Be concentrations in detrital quartz grains (Table 1). For five of the study regions,
122	published ¹⁰ Be concentrations were used to calculate basin-scale erosion rates. For the Idaho
123	Plateau sites, ¹⁰ Be concentrations were measured from soil and fluvial sediment samples
124	collected for this study (see below). For all six study regions, erosion rates were calculated
125	from the ¹⁰ Be concentrations using a single algorithm [Mudd et al., 2016].
126	A full description of the Idaho Plateau field area can be found in Wood [2013].
127	Ridgetop and basin-scale denudation rates were determined by measuring cosmogenic ¹⁰ Be
128	concentrations in quartz [Brown et al., 1995; Granger et al., 1996]. The ridgetop rates were
129	determined from soil samples taken from the top 20 cm of the regolith at three sites. For the
130	basin-scale erosion rates, fluvial sediment was taken from three 1 st -order streams. Pure quartz
131	fractions from the crushed and sieved (250-710 μ m) and magnetically separated samples
132	were obtained using published procedures [Kohl and Nishiizumi, 1992; Mifsud et al., 2013].
133	ICP-OES analysis of purity was undertaken on splits of the etched quartz. Samples were
134	spiked with ~200 μ g of a commercial Be carrier (Scharlab Berylium ICP standard solution)
135	and prepared as AMS targets at the University of Cologne using a standard sample
136	preparation method [2015]. The samples were prepared alongside a reagent blank; ¹⁰ Be
137	concentrations following blank subtraction are reported in Table 2. Blank corrections are <2
138	%, except for sample S2, for which the correction is <5 %. Samples were measured on
139	CologneAMS [Dewald et al., 2013] and normalized to reference standards [2007].
140	Uncertainties in the concentrations are estimated by propagating the uncertainties of the

AMS measurements and mass of Be added during spiking (estimated 1σ uncertainty of 1%)
of both the samples and the blank.

¹⁰Be concentrations were converted to denudation rates with the CAIRN software 143 144 package, which accounts for topographic shielding and snow shielding [Mudd et al., 2016]. 145 We calculated snow shielding by first fitting a bilinear trend in snow water equivalent (SWE) 146 as a function of elevation based on regional climate data from the National Oceanic and 147 Atmospheric Association [NOAA, 2016] and following Kirchner et al. [2014]. SWE averages 148 were converted to snow shielding values by assuming that snow reduces production solely by 149 spallation [Mudd et al., 2016]. Snow shielding is highly uncertain because of the difficulty of estimating the average SWE over the timescales of $10^3 - 10^4$ years. We calculated 150 151 denudation rates with no snow shielding to assess the sensitivity of denudation rate to snow 152 thickness and found that, without accounting for snow, denudation rate estimates could be as 153 much as 15% higher (for sample S3) but, for most samples, the differences were less than 154 10%. Uncertainties from analytical error and from uncertainties in production scaling and 155 shielding are presented in Table 1 [Mudd et al., 2016].

156

2.3. Transport Coefficient Calculations

Direct estimates of the transport efficiency by field measurements of sediment fluxes over the relevant time and spatial scales across a range of landscapes are impractical. Instead, along ridgelines, where slopes are gentle and soil creep is well described by Eqn. (1), the transport coefficient can be calculated by rewriting Eqn. (2) as

$$D = -\left(\frac{E}{C_{HT}}\right)\left(\frac{\rho_r}{\rho_s}\right)$$
(3).

162 The ratio ρ_r / ρ_s was assumed to be 2 [*Hurst et al.*, 2012]; this value is probably only

163 approximately correct for each of our sites and likely varies by $\pm 25\%$. Ridgeline curvatures

164 were calculated from a 1-m LiDAR DEM for each site using a six-term polynomial function

165 to fit the elevation data within a circular sliding window with a diameter of 14 m. A value of

166 14 m for the analysis window was chosen based on sensitivity analyses presented in Grieve

167 et al. [2016] which followed the method for identifying the optimal window diameter

168 described in Roering et al. [2010] and Hurst et al. [2012].

169 The second derivative of the polynomial function at the window's center is that cell's

170 two-dimensional curvature. Because topographic noise could produce outliers, the median of

the curvatures along each watershed's ridgeline was used in our analyses [Hurst et al., 2012].

172 The average slopes $(\pm 1\sigma)$ along the ridgelines, determined as the first derivative of the

polynomial function, ranged from $0.5 \pm 3^{\circ}$ (Blue Ridge Mtns) to $9 \pm 6^{\circ}$ (Yucaipa Ridge),

thereby validating the use of Eqn. (1). Note that, even at the steepest site along Yucaipa

175 Ridge, nearly 95% of the area analyzed had slopes < 20°. Finally, an automated procedure

176 was used to detect the presence of bedrock outcrops along the ridgelines [Milodowski et al.,

177 2015] to confirm that the sites were mantled with soil. One Yucaipa Ridge site had 75% soil-

178 cover and the other had 90% soil-cover; the soil-cover at the other sites ranged from 97 to

179 100%. Observations of Google EarthTM imagery supported these estimates.

180

2.3 Additional Data

181The dataset described above was supplemented with data selected from a compilation182presented in Richardson et al. [2019] (Table 1). From this compilation, four sites met our

183 criteria: the ridgelines were symmetrical, transport coefficients were estimated by analyzing

184 ridgetop curvatures from 1-m LiDAR data, erosion rates were determined with cosmogenic

¹⁰Be, and the soils were derived from resistant lithologies (Table 1). The only difference is that Richardson et al. used a 15-m window for their curvature analysis whereas our study used a 14-m window; we consider this difference to be insignificant. With the combined datasets, the sites represent a range of erosion rates from 6 to 922 mm/kyr, a range of mean annual precipitation from 39 to 320 cm/yr, a range of mean annual temperature from 2 to 15°

190 C, and range of aridity index from 0.08 to 1.38 (Table 1).

191 2.4 Correcting for Grid Resolution

192 As erosion rates increase, ridgelines become sharper, which could potentially weaken 193 the ability to accurately measure curvature given a fixed grid resolution. In particular, this 194 grid-resolution effect could lead to an increasing underestimate of curvature as ridgelines 195 sharpen with increasing erosion rates, thereby artificially introducing a positive relationship 196 between D and E. To correct for this potential artefact, we performed an analysis in which we 197 compared the estimates of the transport efficiency with those from idealized one-dimensional 198 (1D) hillslopes. We assumed our ridges can be approximated as one-dimensional because 199 curvature perpendicular to ridgelines far exceeds curvature parallel to our ridgelines. 200 To begin, we solved for the elevation of an idealized 1D hillslope by assuming that a

201 nonlinear sediment flux law describes sediment transport on our hillslopes [e.g., *Andrews*202 *and Bucknam*, 1987; *Roering et al.*, 1999]

203
$$q_{s} = -\frac{D\frac{\partial z}{\partial x}}{1 - \left(\left|\frac{\partial z}{\partial x}\right| / S_{c}\right)^{2}}$$
(4)

where q_s is sediment flux (m²/yr), *D* is the sediment transport coefficient (m²/yr), *z* is the surface elevation, *x* is a horizontal distance, and S_c is a critical slope angle. As noted earlier, this equation reduces to Eqn. (1) at gentle slopes. Inserting Eqn. (4) into a statement of mass

207 conservation and solving it under steady-state conditions yields an expression for the

208 elevation of a hillslope [*Roering et al.*, 2001a]:

209
$$z = -\frac{S_c^2}{2\beta} \left[\sqrt{D^2 + \left(\frac{2\beta x}{S_c^2}\right)} - D \ln \left(\frac{S_2}{2\beta} \sqrt{D^2 + \left(\frac{2\beta x}{S_c^2}\right)^2} + \frac{S_c D}{2\beta}\right) \right] + c \quad (5)$$

where β is the ratio between rock and soil density multiplied by the erosion rate ((ρ_r/ρ_s)**E*) and *c* is a constant that sets the absolute elevation of the hillslope profile. At the divide (*x* = 0 m), the curvature is equal to:

213
$$\left(\frac{d^2 z}{dx^2}\right)_{HT} = -\frac{\beta}{D}$$
(6).

As described earlier, curvature at each site was measured from gridded 1-m topographic data. To mimic this procedure on the synthetic hillslope, we solved Eqn. (5) on a grid of points with a spacing of 1 m. Random noise was then imposed on each gridded data point from a uniform distribution ranging from -0.1 to 0.1 m, which is a conservative estimate of vertical error in typical airborne LiDAR data. As with the real landscapes, a 2ndorder polynomial equation was fitted across the ridgetop over a 14-m window and the curvature was calculated at the center node.

However, in any gridded topography, the highest true elevation of the ridge may not be located exactly on the grid sampling point. The exact location of the ridge may be offset from the highest gridded pixel by up to half a pixel width. In Eqn. (5), the ridge is located at x = 0 meters, but to account for the possibility that the ridgeline does not correspond to the highest pixel, we allowed the gridded points to shift laterally by 0.5 m to produce an offset between the center point in the gridded data and the ridgeline.

227 For each study site (Table 1), the values of β and S_c were calculated using the erosion 228 rate and measured curvature to produce idealized ridgetop profiles. Random noise was then 229 applied to the profile, the grid was shifted, and the 'synthetic' curvature was calculated from the fitted 2^{nd} -order polynomial. This process was repeated with variations in D until the 230 231 synthetic curvature matched the curvature measured from the topographic data. We 232 performed 250 iterations of adding random noise to a profile centered on the hilltop, and 250 233 iterations of random noise to a profile centered 0.5 m from the hilltop. These calculations 234 resulted in 500 values for the sediment transport coefficient that account for (1) sampling a 235 continuous hillslope with gridded data, (2) random noise from the DEM, and (3) a potential 236 mismatch between the actual location of the hillcrest and the highest pixel along the 1D ridge 237 in the DEM.

238

239 **3. Results**

240 We find that the 'raw' hilltop curvature (i.e., uncorrected for grid-scale effects) is strongly correlated with the approximate square root of erosion rate: $C_{HT} \propto E^{0.48}$ (Figure 2). 241 242 The 'corrected' hilltop curvature is also correlated with erosion rate although the exponent in 243 the regression increases to 0.53 (Figure 3). In addition, the transport coefficient (calculated from the corrected hilltop curvatures) varies with erosion rate, whereby $D \propto E^{0.47}$ (Figure 4). 244 The transport efficiency is not correlated with any of the climate parameters (Figure 245 5) nor with the 'effective energy and mass transfer' variable (plot not shown), a parameter 246 247 which incorporates both MAT and MAP to represent the influence of climate on soil 248 processes [Rasmussen and Tabor, 2007].

249 **4. Discussion**

250 Our results indicate that, at the sites we examined, erosion rate appears to have a dominant control on the efficiency of sediment transport. The apparent role of erosion rate on 251 252 the efficiency of hillslope sediment transport and the insignificance of climate is unexpected 253 considering that others have found a climatic influence on the value of D [Hurst et al., 2013; 254 Richardson et al., 2019]. In contrast to our results, Richardson et al. [2019] compiled erosion 255 rate and transport coefficient data from studies which used a variety of techniques to estimate 256 these values, and their data included sites in a range of lithologies as well as from regions 257 with a greater range in precipitation. As a result, their larger data set may be better suited for 258 detecting an underlying climatic influence.

To explore how transport efficiency might increase with erosion rate, the factors contributing to soil creep can be assessed with two approaches. For discrete, intermittent large-scale soil creep events (e.g., tree throw), the transport efficiency can be calculated as

$$D = f_e \overline{V} \overline{d} \tag{7}$$

264

where f_e is the frequency of events per unit area (T⁻¹L⁻²), \overline{V} is the average volume (L³) of soil displaced with each event, and \overline{d} is the average distance (L) that volume of soil is displaced [*Gabet*, 2000]. For example, in the case of tree throw, the transport coefficient will depend on the number of toppled trees over a period of time, the average volume of soil in the root plates, and the distance that the root plates are displaced [*Gabet et al.*, 2003]. We are not aware of any reason why any of these three factors would increase with erosion rate. Indeed, in the case of bioturbation, \overline{V} and f_e might be expected to *decrease*. For example, because soils tend to be thinner where erosion rates are high [e.g., *Gabet et al.*, 2015], the volume of
soil available for transport by three throw should decrease. In addition, the frequency of
bioturbation might be expected to decrease in rapidly eroding landscapes because of lower
plant biomass [*Milodowski et al.*, 2014].

For dilational creep processes in which soil particles are lofted up and then settle down due to gravity, *D* can be expressed as [*Furbish et al.*, 2009]

278

279
$$D = kRh\overline{N_a \left(1 - \frac{P}{P_m}\right)^2} \cos^2 \theta$$
(8)

280

281 where k is an empirically determined dimensionless constant that accounts for particle shape 282 and the relationship between mean free path length and the vertical displacement of particles, R is particle radius (L), h is soil thickness (L), P is particle concentration ($L^{3}L^{-3}$), P_{m} is the 283 maximum value of P, N_a is the particle activation rate (T⁻¹), θ is the hillslope angle (°) (equal 284 285 to zero at the ridgecrest), and the overbar signifies vertically averaged quantities. The particle 286 concentration (a function of soil bulk density) is not likely to be dependent on erosion rate to 287 a significant degree and, if it is, the term in parentheses would likely decrease with increasing 288 erosion rate, thereby suppressing the value of D. Because soils are thinner in rapidly eroding 289 landscapes [e.g., Gabet et al., 2015], variations in soil thickness also cannot account for the 290 increase in transport efficiency with erosion rate; indeed, the inverse relationship between 291 soil thickness and erosion rate should lead to an inverse relationship between D and E, the 292 opposite of what we have found. With respect to particle activation rate, we are not aware of 293 any studies that have correlated this variable with erosion rate; however, because rapidly

eroding hillslopes tend to have thinner and more exposed soils [e.g., *Gabet et al.*, 2015], the
particle activation rate in these landscapes could potentially be higher, which could lead to an
increase in *D* with *E*. For example, a decrease in vegetation biomass with increasing erosion
rate [*Milodowski et al.*, 2014] could leave the soil surface more vulnerable to raindrop impact
[*Dunne et al.*, 2010]. Nevertheless, as noted above, a reduction in biomass might also be
expected to damp bioturbation, thereby reducing the transport efficiency.

300 The final variable from Eqn. (8) to be explored is particle diameter, R. Previous 301 studies have documented an increase in particle diameter with erosion rate [Attal et al., 2015; 302 *Riebe et al.*, 2015]. Where erosion is slow, particles are exposed to weathering processes for 303 longer periods of time because of longer soil residence times and, as a result, particles 304 become smaller [e.g., Mudd and Yoo, 2010]. In Eqn. (8), particle size is a factor in the 305 transport coefficient because it controls the mean free path of particles in a soil creeping by 306 dilational processes [Furbish et al., 2009]. Although field data from Neeley et al. [2019] 307 suggest that coarser soils have a higher transport coefficient, laboratory experiments have 308 demonstrated that, for the same input of energy, coarse-grained soils will creep faster than 309 fine-grained soils [Supplement to Deshpande et al., 2020]. In addition, of the various factors 310 that could affect the rate of soil creep, particle size is the one with the most potential to vary 311 by multiple orders-of-magnitude between watersheds eroding at different rates [Marshall and 312 *Sklar*, 2012]. For example, while the data are limited, particle radius along a ridgeline increases with erosion rate at the Feather River site (Figure 6). 313 314 While particle size is a potential candidate for explaining the relationship between 315 transport efficiency and erosion rate found here, this hypothesis raises some perplexing

316 issues. First, whereas the relationship between particle size and erosion rate is likely to be

317 constant within a single region, one would expect them to vary between regions according to 318 climate and lithology (although we tried to control for rock strength, variations in texture, for 319 example, could affect particle size). However, despite the expected regional variations in 320 these factors, the sites fall along the same D vs. E trendline (Figure 3). Second, because the 321 more rapid weathering rates in wetter climates should lead to smaller soil particles [Marshall 322 and Sklar, 2012], the transport coefficient should decrease in wetter climates. However, we 323 find no relationship between mean annual precipitation and D (Figure 5). 324 Another potential explanation may be that the transport efficiency is sensitive to slope. 325 Landscapes that are eroding quickly are generally steeper than those that are eroding more 326 slowly. For example, the slopes at the ridgecrests $(S_{\rm HT})$ at our sites increase with the 327 approximate square root of erosion rate (Figure 7). Some property of the soil (e.g., its 328 resistance to disturbance) may be affected by the gradient such that its transport efficiency 329 increases on steeper slopes (P. Richardson, pers. comm.). Furbish and Haff [2010] suggest 330 that the rate at which soil is mobilized might also increase with slope. To explore the consequences of a slope-dependent transport coefficient, we define a new variable, D_s (L²/T) 331 332 $D_s = KS$ (10)333 such that $q_s = D_s S$ 334 (11a)335 or $q_s = KS^2$ 336 (11b) where $K(L^2/T)$ is a constant with the same properties as D. Inserting Eqn. (11b) into a 337

338 statement of mass conservation

339
$$\rho_r \frac{dz}{dt} = -\rho_s \frac{dq_s}{dx}$$
(12)

and integrating twice assuming steady state (dz/dt = E) and $\rho_r/\rho_s = 2$ yields

341
$$E = KCS/2$$
 (13a).

342 To specify that this relationship is applied to the hilltops, we rewrite it as

343
$$E = KC_{HT}S_{HT}/2$$
 (13b).

344 Thus, the assumption that the transport coefficient increases linearly with slope implies a linear relationship between the erosion rate and the product of curvature and slope. Indeed, a 345 346 power-law regression between the two yields an exponent of unity, offering support for the 347 hypothesis that the transport coefficient is slope-dependent (Figure 8). However, because 348 slope and curvature are linearly related along a parabolic curve, Eqn. (13b) is functionally equivalent to $E \propto C^2$ or $C \propto E^{1/2}$, which is the original relationship presented in Figure 3. In 349 350 other words, the linear relationship between E and $C_{\rm HT}S_{\rm HT}$ may simply be a mathematical 351 artefact, and the sediment flux relationship represented by Eqn. (11b) would need to be 352 validated independently. Finally, note that Eqn. (11b) is quite different from the nonlinear 353 sediment flux equation proposed elsewhere [Andrews and Bucknam, 1987; Gabet, 2003; 354 *Roering et al.*, 1999], particularly at lower slopes (Figure 9).

The lack of a clear and robust mechanistic link between *D* and *E*, as well as the square root dependency of the hilltop curvature on erosion rate when Eqn. (2) predicts a linear relationship, suggests that the present theory explaining the profile of soil-mantled hillslopes is incomplete. We tentatively propose that, in resistant lithologies, hillslope curvature may be partially, if not mostly, controlled by processes occuring within the bedrock, rather than the soil. Indeed, in an eroding landscape, the soil on a hill is just a thin mantle covering a much larger bedrock mass; the shape of the hill, therefore, should reflect the shape of the 362 underlying bedrock and the processes acting within it [e.g., *Rempe and Dietrich*, 2014]. 363 However, the absence of any climatic influence in our results suggests that these bedrock 364 processes are not associated with the typical chemical and physical weathering processes; 365 instead, they are likely related to a more universal mechanism. Recent work has begun 366 investigating how, even in soil-mantled landscapes, the generation of fractures in bedrock by 367 topographic stresses may exert an important influence on landform shape [e.g., *Clair et al.*, 368 2015; *Pelletier*, 2017; *Slim et al.*, 2015]. However, whereas the regional tectonic stress is an 369 important contributor to topographic stresses [e.g., Clair et al., 2015; Miller and Dunne, 370 1996], the tectonic stress regime varies widely between our sites. For example, the regional 371 stresses are compressional in the San Gabriel Mountains but extensional in the Wasatch 372 Mountains and the Feather River study area [Heidbach et al., 2016; Wakabayashi and 373 Sawyer, 2000]. Therefore, the alignment of these sites along the same trendline (Figure 2)

374 suggests that our present understanding of rock fracture by topographic stresses is unable to375 explain our results.

376 One potential avenue for further investigations may be an examination of the time-377 dependent nature of fracture growth. At high erosion rates, near-surface bedrock is 378 rejuvenated more quickly, thereby limiting the fracture density. In contrast, in environments 379 where the erosion rate is slower and the rejuvenation of the surface occurs less frequently, the 380 near-surface bedrock may have a higher fracture density as it accumulates damage over time. 381 The relationship found here between hilltop curvature and erosion rate, therefore, may be 382 related to the strength of the underlying rock mass in a way that is not yet understood. As a 383 preliminary test of this idea, we analyzed the data from four sites that met our criteria but 384 were underlain by presumably weak lithologies, sedimentary bedrock or highly sheared

385 metamorphic bedrock [Perron et al., 2012; Richardson et al., 2019]. A comparison of the 386 hilltop curvatures between our original data-set consisting of resistant rocks and the data 387 from the weaker lithologies suggests that, for the same erosion rate, the weaker bedrock 388 forms hilltops with lower curvatures (Figure 10). While the data set from presumably weak 389 lithologies is limited, it supports our hypothesis that weaker bedrock is associated with lower 390 curvatures. Although one might argue that the lower curvatures seen in hillslopes underlain 391 by weaker lithologies could be a result of higher transport efficiencies, a clear mechanistic 392 link between bedrock strength and transport efficiency is lacking (see below), especially 393 considering that most soil creep processes (e.g., tree throw) do not appear to be limited by 394 soil texture.

395 If bedrock processes have an important influence on hillslope form, then hilltop 396 curvature cannot be used for estimating the transport coefficient, at least in landscapes 397 underlain by resistant rock. This limitation might explain why we were unable to detect any 398 climatic influence on D, in contrast to compilations that include estimates of D from a variety 399 of techniques [Hurst et al., 2013; Richardson et al., 2019]. In addition, if hillslope form is 400 primarily dependent on the underlying bedrock, estimates of D based on topographic 401 characteristics might be expected to be of different magnitudes than estimates from other 402 techniques. Indeed, in the compilation presented by Richardson et al. [2019], transport 403 coefficients estimated from relief and hilltop curvature are generally 5-10 times higher than 404 those estimated from the modeling of scarps for the same aridity index (a factor that was 405 determined to be a control on D) despite the fact that estimates based on scarp evolution were 406 often performed on slopes comprised of unconsolidated sediment, which might be expected 407 to have higher values of D. Therefore, the mismatch between the estimates of the transport

408 coefficient based on topographic metrics and those based on other techniques suggests that409 some other factor is influencing hillslope shape.

410 **5.** Conclusions

411 The square-root dependency of hilltop curvature on erosion rate challenges the 412 prevailing theory linking soil creep to the shape of soil-mantled hillslopes, which predicts a 413 linear relationship between the two. This dependency could be explained if the transport 414 coefficient also varies with the square root of erosion rate. However, we are unable to 415 propose a robust mechanism linking the transport coefficient to the erosion rate. Given the 416 difficulties in accounting for our results within the standard theory of hillslope evolution, we 417 tentatively propose that in landscapes underlain by resistant lithologies, hillslope curvature is 418 not related to soil creep but is, instead, controlled by processes in the underlying bedrock. 419 Finally, the robust relationship between ridgetop curvature and erosion rate across a 420 range of climatic conditions suggests that the latter can be estimated directly from 421 topographic analysis in rock types similar to those analyzed in this study. However, erosion rates determined with this procedure must incorporate uncertainties in the original ¹⁰Be 422 423 erosion rate measurements, uncertainties in the curvature measurements, and the uncertainty 424 in the regression between $C_{\rm HT}$ and E. Nevertheless, our results have the potential for 425 providing a simple approach for estimating watershed-scale erosion rates through the 426 measurement of hilltop curvatures.

427

428 Acknowledgments

429 Idaho field work for this project was conducted with assistance from B. Wood, S.
430 Powell, and E. Hewitt. There were no real or perceived financial conflicts of interest for any

Page 19

- 431 author nor did any author have an affiliation that could be perceived as having a conflict of
- 432 interest with respect to the results of this paper. The data supporting the conclusions can be
- 433 found in the tables and references. This project was partially funded by graduate student
- 434 research grants from GSA and SJSU. LiDAR elevation data were acquired with a Seed
- 435 Project from the National Center for Airborne Laser Mapping in the summer of 2011.
- 436 Software used for analysis was developed under NERC grant NE/J009970/1. We are grateful
- 437 to J. Pelletier, J. Roering, and P. Richardson for their careful reviews and helpful comments,
- 438 and D. Furbish for extended and insightful discussions.
- 439

440 Data Availability Statement

441 Original data for this research are provided in Tables 1 and 2. Additional data were

442 compiled from Belmont et al. [2007], Binnie et al. [2007], Dibiase et al. [2010], Duxbury

443 [2009], Hurst et al. [2012], Richardson et al. [2019], and Riebe et al. [2001].

444 **References**

- 445 Anderson, H. W., G. B. Coleman, and P. J. Zinke (1959), Summer slides and winter scour, 446 dry-wet erosion in Southern California mountains: U.S.D.A., Forest Service, Pacific 447 Southwest Forest and Range Experiment Station Technical Paper PSW-36. 448 Anderson, R. S., S. P. Anderson, and G. E. Tucker (2013), Rock damage and regolith 449 transport by frost: An example of climate modulation of the geomorphology of the 450 critical zone, Earth Surface Processes and Landforms, 38(3), 299-316. 451 Andrews, D. J., and R. C. Bucknam (1987), Fitting degradation of shoreline scarps by a 452 nonlinear diffusion model, Journal of Geophysical Research, 92(B12), 12,857-453 812.867. 454 Attal, M., S. M. Mudd, M. D. Hurst, B. Weinman, K. Yoo, and M. Naylor (2015), Impact of 455 change in erosion rate and landscape steepness on hillslope and fluvial sediments 456 grain size in the Feather River Basin (Sierra Nevada, California), Earth Surface 457 Dynamics, 2, 1047-1092. 458 Belmont, P., F. J. Pazzaglia, and J. C. Gosse (2007), Cosmogenic 10Be as a tracer for 459 hillslope and channel sediment dynamics in the Clearwater River, western
- 460 Washington State, *Earth and Planetary Science Letters*, 264, 123-135.

461	Ben-Asher, M., I. Haviv, J. J. Roering, and O. Crouvi (2017), The influence of climate and
462	microclimate (aspect) on soil creep efficiency: Cinder cone morphology and
463	evolution along the eastern Mediterranean Golan Heights, Earth Surface Processes
464	and Landforms, 42(15), 2649-2662.
465	Binnie, S. A., W. M. Phillips, M. A. Summerfield, and K. Fifield (2007), Tectonic uplift,
466	threshold hillslopes, and denudation rates in a developing mountain range, Geology,
467	35, 743-746.
468	Binnie, S. A., T. J. Dunai, E. Voronina, T. Goral, S. Heinze, and A. Dewald (2015),
469	Separation of Be and Al for AMS using single-step column chromatography, Nuclear
470	Instruments and Methods in Physics Research Section B: Beam Interactions with
471	Materials and Atoms, 361, 397-401.
472	Brown, E. T., R. F. Stallard, M. C. Larsen, G. M. Raisbeck, and F. Yiou (1995), Denudation
473	rates determined from the accumulation of in situ-produced 10Be in the Luquillo
474	Experimental Forest, Puerto Rico, <i>Earth and Planetary Science Letters</i> , 129(1-4),
475	193-202.
476	Carson, M. A., and M. J. Kirkby (1972), <i>Hillslope form and process</i> , 475 pp., Cambridge
477	University Press, New York.
478	Clair, J. S., S. Moon, W. S. Holbrook, J. T. Perron, C. S. Riebe, S. J. Martel, B. Carr, C.
479	Harman, K. Singha, and D. d. Richter (2015), Geophysical imaging reveals
480	topographic stress control of bedrock weathering, Science, 350, 534-538.
481	Culling, W. E. H. (1963), Soil creep and the development of hillside slopes, <i>Journal of</i>
482	Geology, 71, 127-161.
483	Denny, C., and J. Goodlett (1956), Microrelief resulting from fallen trees, USGS Professional
484	<i>Publication</i> , 288, 59-68.
485	Deshpande, N., D. J. Furbish, P. Arratia, and D. Jerolmack (2020), The perpetual fragility of
486	creeping hillslopes, EarthArXiv, doi:10.31223/osf.io/qc9jh.
487	Dewald, A., et al. (2013), CologneAMS, a dedicated center for accelerator mass spectrometry
488	in Germany, Nuclear Instruments and Methods in Physics Research Section B: Beam
489	Interactions with Materials and Atoms, 294, 18-23.
490	DiBiase, R. A., K. X. Whipple, A. M. Heimsath, and W. B. Ouimet (2010), Landscape form
491	and millenial erosion rates in the San Gabriel Mountains, CA, Earth and Planetary
492	Science Letters, 289, 134-144.
493	Dunne, T., D. V. Malmon, and S. M. Mudd (2010), A rain splash transport equation
494	assimilating field and laboratory measurements, Journal of Geophysical Research -
495	<i>Earth Surface</i> , <i>115</i> (F01001), 1-16.
496	Duxbury, J. (2009), Erosion rates in and around the Shenandoah National Park, VA,
497	determined using analysis of cosmogenic 10Be, MS thesis, 123 pp, University of
498	Vermont.
499	Fernandes, N. F., and W. E. Dietrich (1997), Hillslope evolution by diffusive processes: the
500	timescale for equilibrium adjustments, Water Resources Research, 33(6), 1307-1318.
501	Furbish, D. J., and P. K. Haff (2010), From divots to swales: Hillslope sediment transport
502	across divers length scales, <i>Journal of Geophysical Research</i> , 115(F03001),
503	doi:10.1029/2009JF001576.
504	Furbish, D. J., P. K. Haff, W. E. Dietrich, and A. M. Heimsath (2009), Statistical description
505	of slope-dependent soil transport and the diffusion-like coefficient, Journal of
506	Geophysical Research, 114(F00A05), doi:10.1029/2009JF001267.

507	Gabet, E. J. (2000), Gopher bioturbation: Field evidence for nonlinear hillslope diffusion,
508	Earth Surface Processes and Landforms, 25(13), 1419-1428.
509	Gabet, E. J. (2003), Sediment transport by dry ravel, Journal of Geophysical Research,
510	108(B1), 2050, 2010.1029/2001JB001686.
511	Gabet, E. J. (2020), Lithological and structural controls on river profiles and networks in the
512	northern Sierra Nevada, Geological Society of America Bulletin, 132(3-4), 655-667.
513	Gabet, E. J., O. J. Reichman, and E. Seabloom (2003), The effects of bioturbation on soil
514	processes and sediment transport, Annual Review of Earth and Planetary Sciences,
515	31, 259-273.
516	Gabet, E. J., S. M. Mudd, D. T. Milodowski, K. Yoo, M. D. Hurst, and A. Dosseto (2015),
517	Local topography and erosion rate control regolith thickness along a ridgeline in the
518	Sierra Nevada, California, Earth Surface Processes and Landforms, 40(13), 1779-
519	1790.
520	Gilbert, G. K. (1909), The convexity of hillslopes, Journal of Geology, 17, 344-350.
521	Granger, D. E., J. W. Kirchner, and R. C. Finkel (1996), Spatially averaged long-term
522	erosion rates measured from in situ-produced cosmogenic nuclides in alluvial
523	sediment, Journal of Geology, 104(3), 249-257.
524	Grieve, S. W. D., S. M. Mudd, and M. D. Hurst (2016), How long is a hillslope?, Earth
525	Surface Processes and Landforms, 41(8), 1039-1054.
526	Hack, J. T. (1973), Stream-profile analysis and stream-gradient index, Journal of Research of
527	the U.S. Geological Survey, 1(4), 421-429.
528	Hanks, T. C. (2000), The age of scarplike landforms from diffusion - equation analysis,
529	Quaternary Geochronology: Methods and Applications, 313-338.
530	Hanks, T. C., and D. P. Schwartz (1987), Morphologic dating of the pre-1983 fault scarp on
531	the Lost River Fault at Doublespring Pass Road, Custer County, Idaho, Bulletin of the
532	Seismological Society of America, 77, 837-846.
533	Harel, M. A., S. M. Mudd, and M. Attal (2016), Global analysis of the stream power law
534	parameters based on worldwide 10Be denudation rates, Geomorphology, 268, 184-
535	196.
536	Heidbach, O., M. Rajabi, K. Reiter, M. Ziegler, and W. Team (2016), World Stress Map
537	Database Release 2016. V. 1.1, edited, GFZ Data Services.
538	Heimsath, A. M., D. J. Furbish, and W. E. Dietrich (2005), The illusion of diffusion: Field
539	evidence for depth-dependent sediment transport, Geology, 33(12), 949-952.
540	Hurst, M. D., S. M. Mudd, R. C. Walcott, M. Attal, and K. Yoo (2012), Using hilltop
541	curvature to derive the spatial distribution of erosion rates, Journal of Geophysical
542	Research - Earth Surface, 115, 1-19.
543	Hurst, M. D., S. M. Mudd, K. Yoo, M. Attal, and R. C. Walcott (2013), Influence of
544	lithology on hillslope morphology and response to tectonic forcing in the northern
545	Sierra Nevada of California, Journal of Geophysical Research - Earth Surface, 118,
546	832-851.
547	Kirchner, P. B., R. C. Bales, N. P. Molotoch, J. Flanagan, and Q. Guo (2014), LiDAR
548	measurement of seasonal snow accumulation along an elevation gradient in the
549	southern Sierra Nevada, California, Hydrological Earth Systems Science, 18, 4261-
550	4275.

551	Kohl, C. P., and K. Nishiizumi (1992), Chemical isolation of quartz for measurement of in-
552	situ -produced cosmogenic nuclides, Geochimica et Cosmochimica Acta, 56(9), 3583-
553	3587.
554	Marshall, J. A., and L. S. Sklar (2012), Mining soil databases for landscape-scale patterns in
555	the abundance and size distribution of hillslope rock fragments, Earth Surface
556	Processes and Landforms, 37(3), 287-300.
557	Mifsud, C., T. Fujioka, and D. Fink (2013), Extraction and purification of quartz in rock
558	using hot phosphoric acid for in situ cosmogenic exposure dating, Nuclear
559	Instruments and Methods in Physics Research Section B: Beam Interactions with
560	Materials and Atoms, 294, 203-207.
561	Miller, D. J., and T. Dunne (1996), Topographic perturbations of regional stresses and
562	consequent bedrock fracturing, Journal of Geophysical Research, 101B, 25,523-
563	525,536.
564	Milodowski, D. T., S. M. Mudd, and E. T. Mitchard (2014), Erosion rates as a potential
565	bottom-up control of forest structural characteristics in the Sierra Nevada Mountains,
566	<i>Ecology</i> , <i>96</i> (1), 31-38.
567	Milodowski, D. T., S. M. Mudd, and E. T. A. Mitchard (2015), Topographic roughness as a
568	signature of the emergence of bedrock in eroding landscapes, Earth Surf. Dynam.,
569	<i>3</i> (4), 483-499.
570	Mudd, S. M. (2017), Detection of transience in eroding landscapes, Earth Surface Processes
571	and Landforms, 42(1), 24-41.
572	Mudd, S. M., and K. Yoo (2010), Reservoir theory for studying the geochemical evolution of
573	soils, Journal of Geophysical Research: Earth Surface, 115(F03030).
574	Mudd, S. M., M. Harel, M. D. Hurst, S. W. D. Grieve, and S. M. Marrero (2016), The
575	CAIRN method: Automated, reproducible calculation of catchment-averaged
576	denudation rates from cosmogenic radionuclide concentrations, Earth Surface
577	Dynamics, 4, 655-674.
578	Neely, A. B., R. A. DiBiase, L. B. Corbett, P. R. Bierman, and M. W. Caffee (2019),
579	Bedrock fracture density controls on hillslope erodibility in steep, rocky landscapes
580	with patchy soil cover, southern California, USA, Earth and Planetary Science
581	Letters, 522, 186-197.
582	Nishiizumi, K., M. Imamura, M. W. Caffee, J. R. Southon, R. C. Finkel, and J. McAninch
583	(2007), Absolute calibration of 10be AMS standards, Nuclear Instruments and
584	Methods in Physics Research Section B: Beam Interactions with Materials and
585	Atoms, 258(2), 403-413.
586	NOAA (2016), National Center for Environmental Information, edited.
587	Pelletier, J. D. (2017), Quantifying the controls on potential soil production rates: a case
588	study of the San Gabriel Mountains, California, Earth Surf. Dynam., 5(3), 479-492.
589	Pelletier, J. D., et al. (2011), Calibration and testing of upland hillslope evolution models in a
590	dated landscape: Banco Bonito, New Mexico, Journal of Geophysical Research:
591	Earth Surface, 116(F4).
592	Perron, J. T., P. W. Richardson, K. L. Ferrier, and M. Lapotre (2012), The root of branching
593	river networks, Nature, 492, 100-103.
594	PRISM (2014), PRISM Climate Group, edited.

- Rasmussen, C., and N. Tabor (2007), Applying a quantitative pedogenic energy model across
 a range of environmental gradients, *Soil Science Society of America Journal*, *71*(6),
 1719-1729.
- Rempe, D. M., and W. E. Dietrich (2014), A bottom-up control on fresh-bedrock topography
 under landscapes, *Proceedings of the National Academy of Sciences*, 111(18), 65766581.
- Richardson, P. W., J. T. Perron, and N. D. Schurr (2019), Influences of climate and life on
 hillslope sediment transport, *Geology*, 47, 423-426.
- Riebe, C. S., J. W. Kirchner, D. E. Granger, and R. C. Finkel (2001), Minimal climatic
 control on erosion rates in the Sierra Nevada, California, *Geology*, 29(5), 447-450.
- Riebe, C. S., L. S. Sklar, C. E. Lukens, and D. L. Shuster (2015), Climate and topography
 control the size and flux of sediment produced on steep mountain slopes, *Proceedings of the National Academy of Sciences*, *112*(51), 15574-15579.
- Roering, J. J., J. W. Kirchner, and W. E. Dietrich (1999), Evidence for non-linear, diffusive
 sediment transport on hillslopes and implications for landscape morphology, *Water Resources Research*, 35(3), 853-870.
- Roering, J. J., J. W. Kirchner, and W. E. Dietrich (2001a), Hillslope evolution by nonlinear,
 slope-dependent transport: steady state morphology and equilibrium adjustment
 timescales, *Journal of Geophysical Research*, *106*(B8), 16499-16513.
- Roering, J. J., J. T. Perron, and J. W. Kirchner (2007), Functional relationships between
 denudation and hillslope form and relief, *Earth and Planetary Science Letters*,
 264(1), 245-258.
- Roering, J. J., J. W. Kirchner, L. S. Sklar, and W. E. Dietrich (2001b), Hillslope evolution by
 nonlinear creep and landsliding: An experimental study, *Geology*, 29(2), 143-146.
- Roering, J. J., J. Marshall, A. M. Booth, M. Mort, and Q. Jin (2010), Evidence for biotic
 controls on topography and soil production, *Earth and Planetary Science Letters*,
 298, 183-190.
- Saucedo, G. J., and D. L. Wagner (1992), Geologic map of the Chico quadrangle, California,
 Division of Mines and Geology.
- Slim, M., J. T. Perron, S. J. Martel, and K. Singha (2015), Topographic stress and rock
 fracture: a two-dimensional numerical model for arbitrary topography and
 preliminary comparison with borehole observations, *Earth Surface Processes and Landforms*, 40(4), 512-529.
- Trabucco, A., and R. Zomer (2019), Global Aridity Index and Potential Evapotranspiration
 (ET0) Climate Database v2. CGIAR Consortium for Spatial Information
- 630 (CGIAR-CSI). Published online, available from the CGIAR-CSI GeoPortal at
 631 https://cgiarcsi.community.
- Wakabayashi, J., and T. L. Sawyer (2000), Neotectonics of the Sierra Nevada and the Sierra
 Nevada-Basin and Range transition, California, with field trip stop descriptions for
 the northeastern Sierra Nevada, in *Field Guide to the Geology and Tectonics of the Northern Sierra Nevada*, edited by E. R. Brooks and L. T. Dida, pp. 173 212,
 California Division of Mines and Geology.
- Wood, R. (2013), Transient hillslope response to an incision wave sweeping up a watershed:
 a case study from the Salmon River, MS thesis, 42 pp, San Jose State University, San Jose, CA.
- 640

641

P(Q, Q, A, A) = 1/1 + 1/1 + 1/1 + 1/1 + 1/2 +	000 + 00 DV $40 + F' + 1$			
ENNUAT I https://doi.org/10.1002/essoar.1050438	9 / 10 BY 40 First nost	ed online. Mon 12 Apr 2021 1	S' 31' 37 I I his content has not been bee	r reviewed
Lobolin [intps://doi.org/10.1002/00000011020120		ea omme. mon, 12 mpi 2021 it	.51.52 This content has not been pee	101101100.

644	Figure 1. Map of the United States showing the locations of the study sites.
645	
646	Figure 2. Median hilltop curvature increases with the approximate square root of erosion
647	rate. Because ridgetops have negative curvature, the absolute value of curvature is plotted to
648	allow a power-law regression. For clarity, error bars are not shown here; uncertainties are
649	presented in Table 1.
650	
651	Figure 3. Corrected median hilltop curvature vs. erosion rate. Accounting for grid-resolution
652	effects modifies the relationship between curvature and erosion rate, albeit only slightly
653	(compare with Figure 2).
654	
655	Figure 4. Inferred transport efficiency (D) increases approximately with the square root of
656	erosion rate. D was calculated using the corrected hilltop curvatures.
657	
658	Figure 5. Inferred transport efficiency (D) vs. various climatic measures. Inferred transport
659	efficiency does not depend significantly on mean annual precipitation (A), mean annual
660	temperature (B), or the aridity index (C). Note that the plot for mean annual temperature does
661	not include the data set from Richardson et al. [2019], which did not provide these values.
662	
663	Figure 6. Geometric mean of particle size (R) increases with inferred erosion rate (E) at the
664	Feather River site [Gabet et al., 2015]. Particle sizes of soil surface samples were measured
665	at regular intervals along a ridge with a gradient in erosion rates. Because local topography

Figure captions

666	along the ridgeline (i.e., saddles and knobs) was found to have a strong control on soil
667	properties at this site, we present here only the data from the knobs. Erosion rate calculated
668	from ridgetop curvatures using the relationship reported in the present study. 1σ for particle
669	size data averages 5.8 mm (error bars not shown for clarity).
670	
671	Figure 7. Mean slope at the ridgeline increases with erosion rate. The steeper slopes
672	generally found in rapidly eroding landscapes can also be recognized along the ridgecrests.
673	
674	Figure 8. Product of hilltop curvature and slope vs. erosion rate. The nearly linear
675	relationship between the two supports a sediment flux law of the form $q_s = KS^2$. This linear
676	relationship may be a mathematical artefact.
677	
678	Figure 9. Comparison of nonlinear sediment flux equations. Dashed line represents the
679	commonly used nonlinear equation calibrated with values determined in Roering et al.
680	[1999]. Solid line represents fluxes calculated with Eqn. (11b) and calibrated to provide a
681	comparison with the dashed line. Fluxes were calculated over the range of hilltop gradients
682	measured at our field sites. Note that a linear regression (not shown) through the dashed line
683	yields an R^2 of 0.9999, confirming the use of Eqn. (1) as an appropriate substitute for the
684	standard nonlinear equation at low slopes.
685	
686	Figure 10. Curvature vs. erosion rate according to rock type. For the same erosion rate, the
687	hilltop curvature is lower at sites underlain with presumably weaker bedrock when compared
688	to sites with stronger bedrock. Sites shown with the square markers are Tennessee Valley

- 689 (CA), Oregon Coast Range (OR), Gabilan Mesa (CA), and Allegheny Plateau (PA) [Perron
- 690 et al., 2012; Richardson et al., 2019].

Figure 1.

چ Washington A Oregon tono tdaho Plateau Feather River ★ * Wasatch Mountains Tennessee Valley Virginja 🖈 North Carolina 🖈 San Gabriel Mountains * Yucaipa Ridge South the second 67 ×.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

						k	k				
		Sample	Latitude	Longitude	Lith-	MAT ^ĸ	MAP ^ĸ	Eros. ± 1σ	Med. Crv.'	Ave. Slope	D' ± 1σ
Region	Source	ID	(°N)	(°W)	ology	(°C)	(cm/yr)	(mm/kyr)	(1/m)	(m/m)	(cm²/yr)
San Gabriel	а	SG128	34.3376	118.0104	gr	12	55.5	37 ± 8	-0.02544	0.031	29 ± 6
Mountains	а	SG130	34.3783	117.9893	gr	11	59.8	62 ± 13	-0.02515	0.028	50 ± 10
(CA)	а	SG131	34.3666	117.9920	gr	11	58.8	85 ± 20	-0.03410	0.038	49 ± 12
	а	SG132	34.3658	117.9891	gr	11	60.1	93 ± 19	-0.04039	0.043	46 ± 9
	b	na	34.3640	117.9920	gr	na	77.1	108 ± 17	-0.03086	na	70 ± 12
Idaho Plateau	С	S1	45.4773	114.9618	tnlt	8	62.4	55 ± 11	-0.03254	0.039	34 ± 7
(ID)	С	S2	45.5008	114.9519	tnlt	5	71.0	101 ± 21	-0.07189	0.025	28 ± 7
	С	S3	45.5262	114.9293	tnlt	3	116.6	37 ± 7	-0.02139	0.012	34 ± 7
	С	R2	45.4843	114.9558	tnlt	7	61.8	78 ± 16	-0.03083	0.073	51 ± 11
	С	R3	45.5348	114.9015	tnlt	2	119.8	35 ± 7	-0.00971	0.019	72 ± 14
Yucaipa Ridge	d	3	34.0497	116.9280	qm,	9	70.1	922 ± 203	-0.08083	0.092	228 ±
(CA)					gns						57
	d	4	34.0530	116.9401	qm,	9	70.1	801 ± 175	-0.18688	0.159	86 ± 28
					gns						
Blasingame (CA)	b	na	36.9540	119.6310	tnlt	na	38.7	30 ± 4	-0.02727	na	22 ± 3
Olympic	е	U-WC-S	47.7399	124.0457	gw	8	315.1	177 ± 39	-0.04884	0.049	72 ± 17
Peninsula (WA)	е	L-WC-S	47.7302	124.0379	gw	8	315.1	225 ± 51	-0.04755	0.050	95 ± 22
	е	L-EFMC-S	47.6581	124.2432	gw	9	319.6	144 ± 34	-0.04422	0.049	65 ± 16
Blue Ridge	f	SH-01a	38.5713	78.2873	gr	11	107.5	23 ± 5	-0.01391	0.019	33 ± 7
Mountains	f	SH-02a	38.6636	78.3550	mb	10	104.5	6 ± 1	-0.00616	0.009	19 ± 4
(VA)	f	SH-07	38.5816	78.4144	gr	10	108.6	10 ± 2	-0.01699	0.025	12 ± 2
	f	SH-10	38.6572	78.2822	gr	11	106.8	13 ± 3	-0.01203	0.018	21 ± 5
Feather River	g	BRB-2	39.6491	121.3020	qd	12	140.0	33 ± 7	-0.02036	0.022	32 ± 7
(CA)	h	BEAN-1	39.6126	121.3295	qd	13	133.2	35 ± 8	-0.02013	0.024	35 ± 7
	h	BEAN-2	39.6225	121.3283	qd	14	124.0	38 ± 8	-0.01969	0.024	39 ± 8
	h	BEAN-4	39.6237	121.3273	qd	12	136.1	53 ± 12	-0.02097	0.025	51 ± 11
	h	BEAN-5	39.6312	121.3298	qd	13	136.5	40 ± 8	-0.01954	0.024	40 ± 8
	i	BEAN-7	39.6284	121.3277	qd	13	134.7	85 ± 18	-0.02557	0.030	67 ± 14
	i	FT-3	39.6714	121.3109	qd	11	123.7	21 ± 4	-0.01425	0.017	29 ± 6
	i	FT-4	39.6712	121.3109	qd	11	124.8	21 ± 4	-0.01513	0.020	27 ± 6

Table 1. Site information. (na = not available)

	i	FT-6	39.6784	121.3155	qd	10	119.8	19 ± 4	-0.01338	0.017	29 ± 6
	i	SB-1	39.7189	121.2411	qd	8	121.9	58 ± 12	-0.01475	0.019	79 ± 17
	i	FR-4	39.6344	121.2771	qd	15	140.5	234 ± 79	-0.04535	0.035	103 ±
											36
	i	FR-5	39.6354	121.2713	qd	15	140.5	124 ± 39	-0.03858	0.047	64 ± 21
Wasatch Mtns	b	na	40.8920	111.8650	gr	na	51.5	89 ± 9	-0.02507	na	71 ±15
(Utah)											
Great Smokey	b	na	35.6220	83.2040	qtz	na	154.0	27 ± 2	-0.02872	na	19 ± 1
Mtns (NC)											

^a Source for ¹⁰Be data and lithology: [*DiBiase et al.,* 2010]

^b Source for all data: [*Richardson et al.*, 2019]

^c Samples were collected for this study; source for lithology: [Wood, 2013]

^d Source for ¹⁰Be data and lithology: [*Binnie et al.*, 2007]

^e Source for ¹⁰Be data and lithology: [*Belmont et al.*, 2007]

^f Source for ¹⁰Be data and lithology: [Duxbury, 2009]

^g Source for ¹⁰Be data for all Feather River samples except FR-4 and FR-5: [*Hurst et al.*, 2012]

^h Source for ¹⁰Be data for FR-4 and FR-5: [*Riebe et al.*, 2001]

Source for lithology: [Saucedo and Wagner, 1992]

gr = granitic, tnlt = tonalite, qm = quartz monzonite, gns = gneiss, gw = greywacke, mb = metabasalt, qd = quartz diorite, qtz = quartzite

^k applies to data from all sources except Richardson et al [2019]; MAT = mean annual temperature; MAP = mean annual precipitation; data from the PRISM Climate Group, http://prism.oregonstate.edu, accessed 25 March 2017

Values corrected for grid-resolution effects. Grid-resolution adjustment for sites L-WC-S, L-EFMC-S, SH-01a, SH-02a used a 12-m analysis window because adustments using 14-window failed to converge to a solution. Sensitivity analyses indicate an average difference of <2% for curvature corrections using a window diameter of 12 m vs. 14 m.

Sample ID	Sample	AMS	¹⁰ Be	¹⁰ Be
	depth	measurement	concentration	concentration
	intervals	ID	$(x10^3 \text{ at } g^{-1})$	uncertainty 10
	(cm)			$(x10^3 \text{ at g}^{-1})$
S1	0 - 2	s04446	119.9	5.7
S2	8 - 10	s04447	91.94	7.18
S3	16 - 18	s04448	373.7	17.8
R2	n/a	s04450	91.49	4.43
R3	n/a	s04451	408.8	15.1
R4	n/a	s04452	480.1	16.6

Table 2. Details of ¹⁰Be analysis from Idaho site.