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Introduction

In the past few years, there has been increasing interest 
in muscle weakness and wasting, and corresponding 
consequences, in children admitted to the pediatric 
intensive care unit (PICU) (1-3). Short-term impact of 
muscle wasting include prolonged mechanical ventilation 
(MV) requirement, thus increasing PICU length of stay, 
healthcare costs and resource utilization (2). Long-term 

consequences are equally concerning, with muscle weakness 
and wasting extending beyond PICU stay with the potential 
to affect a child’s physical function and development (4). 
Functional impairments are one of the types of morbidities 
observed in the post-intensive care syndrome in children 
(PICS-p), and these physical limitations can indirectly 
impact psychological and social function of not only the 
child, but their siblings and parents as well (5).

However, our understanding of muscle weakness and 
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wasting in critically ill children is still in its infancy—
including identification, trajectory, pathophysiology and 
mechanisms, at risk groups and strategies to overcome 
muscle weakness and wasting. In adults, there appears to 
be a better understanding of muscle weakness and wasting 
in critical illness and recovery. While not completely 
translatable, adult data can potentially offer insights into 
PICU muscle weakness and wasting. 

The aim of this review is thus to summarize the literature 
on muscle weakness and wasting in critically ill children 
with extrapolation of adult data, where potentially applicable 
in children. We will discuss the tools used to measure 
muscle changes in critically ill children, and propose future 
research areas in the study of muscle weakness and wasting 
in critically ill children.

Muscle weakness in critically ill adults

The burden of disability following critical illness has gained 
attention as long-term morbidities in survivors of critical 
illness have become apparent. This was described in the 
seminal studies performed by Herridge et al., where survivors 
of adult acute respiratory distress syndrome were followed 
up to 5 years after their intensive care unit (ICU) stay (6,7). 
Survivors reported impairments in physical function, which 
persisted at 5 years post illness, and was associated with 
increased medical costs and inability to return to work. It 
is now recognized that the effects of critical illness are not 
confined to the ICU; recovery from the sequelae of critical 
illness can take years following discharge.

Physical impairment due to critical illness has also been 
extensively reported in other studies (8,9). Survivors not 
only experience difficulties returning to work, they also 
have problems with strength, engaging in extensive physical 
activity and basic activities such as walking independently 
(7,8). Lung and cardiac dysfunctions have been suggested as 
reasons for functional impairment, but these deficits usually 
resolve after ICU stay and do not appear to be responsible 
for long-term functional impairment (7,10,11). Herridge 
et al. found that survivors of acute respiratory distress 
syndrome attributed their long-term physical limitations 
to muscle loss and weakness acquired during ICU stay (6). 
This muscle loss and weakness is now widely studied, and 
appears to be the cause of significant medical, financial and 
social burden to ICU survivors and their families (7,12-15).

The weakness responsible for functional impairment 
occurs in up to 25–33% in patients who are mechanically 
ventilated for at least 4 to 7 days (14,16), and primarily 

involves muscle wasting (14,17-19), although in a subset, 
polyneuropathy may occur (17). However due to the 
challenges in differentiation and the often co-existence of 
myopathy and polyneuropathy, an umbrella term “ICU 
acquired weakness” (ICUAW) is used to describe this 
phenomenon (20,21). Currently, there is no consensus as 
to how ICUAW can be diagnosed (22), although a bedside 
diagnosis of weakness in critically ill patients without an 
alternate etiology is generally used (21). Manual muscle 
testing is often performed, most commonly using the 
Medical Research Council (MRC) muscle strength score 
(MRC score), which was first validated for use in Guillian-
Barre patients (23). This score tests the ability of different 
muscle groups to overcome varying levels of resistance on a 
scale of 0 to 5, and a total MRC score of <48 out of 60 has 
been commonly used as an indicator of ICUAW (21,22).

Muscle weakness and wasting due to critical illness 
appears to be an increasing and debilitating problem both 
within and outside the ICU. Besides the long-term functional 
impairment described above, significant short-term 
consequences include difficulty in weaning off MV (14,24) 
and increased risk of mortality (25). Although the exact 
pathophysiology is unclear, causes of ICU muscle wasting 
are likely multi-factorial—a combination of critical illness 
metabolic alterations and ICU therapy (21). Muscle mass is 
determined by the net balance between protein breakdown 
and synthesis, which are regulated by catabolic and anabolic 
pathways respectively (26,27). In most healthy adults, protein 
breakdown and synthesis are balanced and muscle mass is 
maintained. Critically ill adults experience elevated muscle 
breakdown early in the disease course (13,28), and results in 
a negative protein balance which improves over time (29,30). 
However, post-discharge data has demonstrated that muscle 
does not always return to baseline size, indication possible 
long-term muscle deficits (31). 

Muscle weakness and wasting in critically ill 
children

Muscle weakness has also been reported in critically ill 
children in the past two decades (32-38). Case reports 
illustrate clinical observations of flaccid paralysis after 
weaning of sedatives or failure to extubate from MV, which 
occurred after 7 to 25 days of PICU stay (33-38). Several 
risk factors of muscle weakness and wasting have been 
proposed (39,40). The use of neuromuscular blockade may 
be a possible risk factor for ICUAW in children, as they 
were used in all of the case reports and also suggested as the 
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main cause in several reports (32,35,41). Organ dysfunction 
score was also higher in children with muscle weakness 
compared to those without (38). These risk factors are 
similar to risk factors that have been reported in adult ICU 
muscle weakness (14,39,40), suggesting similar underlying 
pathophysiology of ICUAW in adult and children. These 
include a combination of myopathy and polyneuropathy 
as a result of disuse and immobilization, inflammation, 
altered circulating hormones, malnutrition and medication 
use (20,22). Of note, this phenomenon is different from 
sarcopenia in older adults, which involves an age-related 
decline in skeletal muscle mass and function (42). 

The prevalence of muscle weakness in critically ill 
children appears to remains low compared to critically ill 
adults. In a prospective cohort study, Banwell et al. studied 
the incidence of muscle weakness children admitted to a 
general PICU for >24 hours over a period of 1 year (n=830). 
Muscle weakness was defined using a cut-off of MRC 
grade ≤4 in any muscle group, reduced or absent tendon 
reflexes and an inability to wean from MV as definitions of 
muscle weakness (32). The authors reported a prevalence of 
1.7% (14/830), which is lower than the median prevalence 

reported across adult critically care studies of 30% in 
general ICU cohorts, and 64% in adult sepsis patients (22). 

Part of the difference in adults versus children may be the 
difficulty in muscle strength testing in critically ill children. 
Siu et al. attempted to measure the weekly MRC sum score 
in critically ill children (43). In a cohort of 33 patients aged 
1.1 to 16.1 years, the authors found that the MRC tests 
could not be completed in almost half of the patients. Aside 
from patients being sedated or comatose, reasons for non-
completion included difficulties in understanding, lack 
of cooperation and poor neurological status, especially in 
younger patients.

This demonstrates the need for non-volitional, objective 
measures to detect muscle weakness and wasting in critically 
ill children, to be able to better identify and characterize 
the problem. An option for this is the measurement of 
body composition and muscle during critical illness. With 
increasing study on muscle changes in adults during critical 
illness, interest in muscle and body composition changes in 
critically ill children have also increased. To date, various 
methods have been used to determine muscle and body 
composition in critically ill children (Table 1).

Table 1 Methods used to assess muscle weakness and wasting in critically ill children 

Methodology Brief description Advantages Disadvantages

Medical  
Research Council 
(MRC) sum score

Used to gauge strength of limb muscles in  
relation to the assessor’s resistance

Performed at bedside Subjective

No equipment  
necessary

Requires children to be able to understand 
instructions and cooperate with  
measurements 

Skinfolds and 
circumference

Skinfolds used to measure fat size and overall 
body fat percentage. Triceps skinfolds often 
measured together with arm circumference to 
determine fat and muscle stores

Bedside measurement Significant inter/intra-rater variability

Inexpensive tools  
required

Accuracy also limited by edema, which is 
common in critically ill children

Bioelectrical  
impedance  
analysis

Sends a weak electrical current through the 
body, and using values of resistance and  
reactance, provides an indicator of fat and  
fat-free mass

Bedside measurement, 
easy to administer

Equations to estimate fat and fat-free mass 
are inaccurate in conditions of fluid overload

Objective Does not inform on distribution of muscle or 
fat throughout the body

Ultrasonography Can be used to assess muscle cross-sectional 
area, thickness, echogenicity as well as fat  
thickness. Muscle groups studied: upper and 
lower limb muscles, diaphragm

Bedside measurement Ultrasound machine required

Objective Measurements can be operator dependent

Computed  
tomography (CT) 
and magnetic 
resonance  
imaging (MRI)

Imaging methods that use specialized  
machines to detect specific body tissue  
components. Muscle and fat size can be  
measured on each image to provide  
information on fat and muscle size

Gold standard for  
identification of  
specific fat and muscle 
components

Expensive, specialized manpower and  
equipment required

CT scans associated with radiation

May require sedation for accurate  
measurement
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Muscle wasting demonstrated by various 
measurement methodologies 

Arm muscle circumference

Traditional anthropometric measurements have included 
the use of mid-upper arm muscle circumference and triceps 
skinfold thickness, which can be used to calculate the upper 
arm muscle circumference and muscle area (44). This 
method is non-invasive, fast to administer and requires 
only simple measurement tools such as a tape measure and 
skinfold calipers. 

Zamberlan et al. monitored mid-upper arm circumference 
and triceps skinfold thickness in critically ill children (n=90) 
on admission and after a week (45). There was an overall 
reduction in arm circumference, which was attributed to a 
decrease in triceps skinfold thickness but not arm muscle 
circumference. Similar findings were reported by Hulst 
et al., who monitored mid upper arm circumference in 
critically ill children from PICU admission to discharge (46). 
In 93 children, during their PICU stay, significant decreases 
in mid upper arm circumference and triceps skinfold 
thickness were observed, but changes in corresponding arm 
muscle circumference were not reported.

Skinfold measurements are subject to inter-rater 
differences, which can limit the accuracy of longitudinal 
changes (47). In addition, edema can affect the accuracy of 
arm muscle area and skinfolds measurements, which can 

limit its utility in children who experience significant fluid 
shifts (48). 

Computed tomography (CT) and magnetic resonance 
imaging (MRI)

CT and MRI scans are considered one of the most accurate 
methods in visualizing and differentiating between different 
body tissue components (49,50). Using specialized software 
and established greyscale thresholds for various tissue 
components (e.g., skeletal muscle, visceral adipose tissue), 
skeletal muscle and various adipose tissue components can 
be measured from MRI and CT images. Our group has 
used these imaging methods to assess skeletal muscle mass 
and adipose tissue size at PICU admission (51). Using 
imaging data from 92 children, we found that higher 
skeletal muscle and adipose tissue size at PICU admission 
was associated with functional impairment that persisted 
to hospital discharge (51). However, CT and MRI scans 
have not been used to study longitudinal skeletal muscle 
changes in critically ill children. Part of this reason is the 
that CT and MRI imaging is rarely done in critically ill 
children due to the radiation involved in CT scans, as well 
as the need for specialized equipment and manpower. The 
low frequency of measurements thus limits the utility of 
these imaging methods to assess skeletal muscle changes in 
pediatric critical illness.

Ultrasonography 

Muscle ultrasonography in critically ill children has gained 
recent interest after the use of this method to identify 
muscle wasting in critically ill adults (52). However, muscle 
imaging using ultrasound has been used for over two 
decades in monitoring of changes in neuromuscular diseases 
such as spinal muscular atrophy and Duchenne muscular 
dystrophy (53,54).

Limb muscle
Limb muscles play a large role in movement and autonomy, 
and thus have been monitored in muscle disorders (55-58). 
In pediatric neuromuscular disease, ultrasounds demonstrate 
decreasing limb muscle thickness as well as an increase in 
muscle echogenicity, an indication of progression of disease 
(56,59). Muscle size and echogenicity measurements have 
both been shown to correlate with physical function and 
strength (55,56,59). 

In critically ill children, both upper and lower limb 

Figure 1 Ultrasound image of a rectus-femoris cross sectional 
area. Arrows depict the quadriceps muscle thickness and adipose 
tissue thickness. Solid white outline depicts the rectus femoris 
cross-sectional area.



Pediatric Medicine, 2021 Page 5 of 11

© Pediatric Medicine. All rights reserved. Pediatr Med 2021;4:13 | http://dx.doi.org/10.21037/pm-20-83

muscles have been studied. The most commonly studied 
muscle has been the quadriceps muscle (Figure 1) (2,3,60), 
partly due to ease and accessibility of measurement in 
the immobile, supine state during critical illness. The 
quadriceps muscles also play an important role in mobility, 
which is one aspect of physical function that has been 
shown to be impaired in critically ill adults (7). Other limbs 
measured include the biceps brachii and tibialis anterior (2). 

Overall, ultrasounds demonstrate decreases in muscle 
size during critical illness. Adults have reported an average 
decrease in quadriceps muscle size of 2% to 3% per day 
during critical illness (13,61). Two studies have reported 
similar rates of muscle wasting in critically ill children. In a 
dual-center study, Valla et al. found a decrease in quadriceps 
thickness of 9.8% [interquartile range (IQR), 0–13.3%] on 
day 5 of PICU stay, while Johnson et al. reported a decrease 
in quadriceps thickness of 1.5% per day (2). In comparison, 
Johnson et al. found that there were no significant decreases 
in biceps or tibialis muscles, indicating differences in 
vulnerability of muscle groups to atrophy during critical 
illness, and emphasizing the effects of critical illness (2). 
Factors associated with loss of quadriceps muscles in 
bivariate analyses included age >1 year, traumatic brain 
injury and greater body mass index, although these did not 
remain significant in the final multiple regression model. 

Diaphragm muscle 
Ultrasound of the diaphragm muscle has been recently 
studied to understand the rate of diaphragm atrophy, as well 
as to predict extubation success. Diaphragm ultrasound is 
most commonly performed between the right anterior and 
the mid-axillary lines, at the intercostal space between the 
eighth or the tenth ribs (62-64). Overall rates of diaphragm 
atrophy in children range from approximately 2.0% to 
3.4% per day (2,62,64), lower than rates of 6% to 7.5% 
reported in adults (65,66). In both children and adults, rates 
of diaphragm atrophy are the fastest in the first 2 to 3 days, 
tapering off in subsequent days (62,67). One factor that has 
been reported to be associated with diaphragm atrophy was 
the use of neuromuscular blockade, although this was not 
consistent across studies (2,64).

Diaphragm thickening fraction (DTF), which is 
commonly measured using M-mode ultrasound, has 
been used to predict extubation success (62,63). DTF is 
calculated using the equation [(diaphragm end-inspiratory 
thickness – end-expiratory thickness) ÷ end-expiratory 
thickness]. In critically ill children, a DTF cut-off of ≥17% 
and ≥21% have been reported to predict extubation success 

in mechanically ventilated children (62,63). 
One limitation of ultrasonography is its highly operator-

dependent nature, implying that accuracy of measurements 
can depend on the person performing the measurement (68).  
Clear protocols and repeated training as well as inter-
operator reliability testing would help in improving 
accuracy and reducing human error in measurements 
(69,70). 

Bioelectrical impedance analysis (BIA)

BIA utilizes electrical currents to inform body fluid status 
and composition. Based on the respective resistance (R) 
and reactance (Xc) of current speeds in different medium, 
BIA is capable of detecting the total body water (71). 
Resistance and reactance values can also be put into pre-
established equations to estimate body fat and fat-free mass 
components (71). BIA measurements are non-invasive, 
easy to administer and relatively inexpensive, making it 
ideal for the PICU setting. However, BIA is subject to fluid 
shifts—a common occurrence in critically ill patients, which 
limits the accuracy of the equations used to estimate body 
composition, and thus the accuracy in informing changes in 
body composition during critical illness. 

With the inaccuracies of fat and fat-free mass estimations 
during periods of fluid shifts, researchers have shifted 
towards the use of raw data of resistance and reactance, 
which are less influenced by fluid status compared to 
equations used to estimate fat and fat-free mass (72). 
Resistance and reactance can then be used to calculate phase 
angle using the equation: arctangent (Xc ÷ R) × (180 ÷ π). 
Phase angle has been used to gauge the general health of a 
cell, and an indirectly, muscle mass (73,74). In critically ill 
adults, several observational studies have reported that lower 
phase angle on admission was associated with mortality  
(75-78). Various cut-offs of phase angle reported to be 
predictive of mortality include <3.49° to <4.8° (77,78). 
Importantly, Looijaard et al. described a decrease in phase 
angle, albeit non-significant, in a small cohort (n=15) of 
critically ill adults (79). This study also reported a correlation 
between greater protein intake and increases in phase angle, 
although this could have been confounded by other non-
nutritive factors fluid balance.

BIA-derived resistance, reactance and phase angle has 
also been studied in critically ill children. In a mixed PICU 
cohort of 247 patients, Zamberlan et al. demonstrated 
that a phase angle on admission ≤2.8° was associated with 
higher risk of mortality and a longer PICU stay (80). 



Pediatric Medicine, 2021Page 6 of 11

© Pediatric Medicine. All rights reserved. Pediatr Med 2021;4:13 | http://dx.doi.org/10.21037/pm-20-83

The authors also found that this phase angle cut-off was 
able to differentiate between those with a mid-upper arm 
circumference ≤5th percentile for age, suggesting phase 
angle as a possible alternative method to identify low 
nutritional status in critically ill children.

To understand longitudinal BIA changes, Azevedo et al. 
conducted BIA measurements in a general PICU cohort of 
332 children requiring MV at admission and discharge (72). 
The authors found that reactance and resistance generally 
increased from 48 hours of PICU admission to PICU 
discharge, with a greater increase in reactance compared 
to resistance and an overall increase in phase angle. The 
authors also found that survival was generally associated 
with an increase in resistance from PICU admission to 
discharge, while in non-survivors there was a trend of 
decrease in either resistance or reactance. 

These studies suggest potential for the use of resistance, 
reactance and phase angle in predicting outcomes in 
critically ill children. However, how these parameters 
correlate with nutritional intake and body composition 
during critical illness remains unclear. In addition, before 
BIA can be used for body composition analysis in critically 
ill children, it requires further study, including ensuring that 
the measurements are able to account for gender, age and 
ethnic differences in body composition (81). 

Understanding muscle wasting and areas of 
future research

Relationship between muscle and function

While several studies have demonstrated muscle loss 
in critically ill children (2,3), none have yet correlated 
muscle changes with physical function in survivors of 
pediatric critical illness. In adults, recovery from ICU 
muscle weakness can take time, and physical impairments 
are seen up to 5 years post critical illness in adults (7). In 
PICU functional outcome studies, there is evidence that 
the impairment can also be prolonged (82,83). In the 
cohort study (n=830) eluded to earlier on the prevalence of 
muscle weakness in critically ill children, muscle weakness 
persisted in majority (89%) of the patients at 3 months 
after discharge, with reported poor physical endurance at 
18 months post-discharge in one of the patients (32). Case 
reports of PICU muscle weakness during also described 
children suffering from prolonged impairments of certain 
areas of function despite strength recovery. For example, 
an 18-month-old girl reported being easily fatigued after 

strength recovery at 5 months (84), while another patient  
(21 months) experienced developmental delay including 
motor delay after strength recovery at 16 months (33). 
Although this motor delay might not necessarily be due 
to muscle deficits, they have been reported in children 
with liver-failure associated muscle wasting, which 
improved with restoration of weight and muscle mass (85). 
Determining recovery in children requires not just a return 
to baseline, but also a catch-up to their peers. This may 
differ depending on the developmental age and plasticity 
of the children. Thus, assessing age-appropriate functions 
in PICU survivors is important to avoid overlooking 
functional disabilities during the growing ages.

Nutritional and rehabilitative strategies 

The evidence for nutritional strategies in improving muscle 
wasting and physical function remains unclear. In adults, 
while observational studies have reported reduced muscle 
wasting with greater energy adequacy (86,87), nutritional 
interventions have failed to translate to improvements in 
muscle mass in randomized controlled trials (RCTs). For 
example, in the Early versus Late Parenteral Nutrition in 
Critically Ill adults (EPaNIC) RCT, early parenteral protein 
and energy provision did not ameliorate muscle wasting or 
result in better physical function, and instead was associated 
with more muscle weakness and slower recovery (88,89). 
The Early Versus Delayed Enteral Feeding (EDEN) trial 
also did not find a difference in physical function between 
trophic and full enteral feeding in critically ill adults in 
the first week of ICU stay (90). Individualized, targeted 
nutrition did not result in better physical quality of life 
compared to standard of care in the Early Goal-Directed 
Nutrition in ICU Patients (EAT-ICU) trial (91). A possible 
explanation for this may be an impaired mitochondrial 
function and dysregulation of skeletal muscle bioenergetics, 
as intramuscular adenosine triphosphate content and 
substrates were found to correlate with muscle loss in 
critically ill adults (92). These trials collectively suggest the 
need for further considerations with regards to the timing, 
substrate and amount of feeding in critical illness. 

Early mobilization (EM) is another aspect of care that 
has been studied in reducing muscle weakness and wasting. 
In critically ill adults, EM helps to improve function in 
the adult ICU (93), but there is a lack of consensus and 
perceived acceptable thresholds for safety guidelines of 
early rehabilitation in critically ill children (94). While 
these definitions of EM and safety thresholds differ across 
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units, rehabilitation has generally shown to be safe within 
the PICU (95). A recent point-prevalence study of physical 
rehabilitation efforts within the PICUs in the United States 
demonstrated that children with better pre-PICU function 
are less likely to receive rehabilitation compared to children 
of poor pre-PICU function (96), although these children 
have shown to be at greater risk for functional impairment 
post-PICU stay (82,97). However, the impact of early 
rehabilitation on physical function post-PICU stay has not 
yet been demonstrated. Choong et al. conducted a pilot 
trial evaluating in-bed cycling in PICU patients, but did not 
observe a difference in physical function in the intervention 
group (98).

Research on nutrition and rehabilitation during 
pediatric critical illness in relation to muscle wasting and 
functional outcomes is still in its infancy. Extrapolation 
of adult evidence to the pediatric population must be 
done with caution, and be respectful of the differences 
in protein homeostatic responses between adults and 
children. Interventions that may not have been effective in 
adults may have different effect on children. For example, 
feeding has been shown to be highly anabolic in younger 
children, especially neonates, compared to adults (99).  
Trials on both nutrition and early rehabilitation are 
needed in critically ill children to determine its effect on 
muscle wasting and functional outcomes. Further, it may 
be important to understand the synergistic combination 
of nutrition and exercise during critical illness, as is being 
done in adults in the Nutrition and Exercise in Critical 
Illness (NEXIS) trial (100).  

Conclusions

While evidence demonstrates of muscle weakness and 
wasting in critically ill children, there is insufficient 
understanding of the pathophysiology, risk factors and long-
term consequences on child function and development. 
Incorporating non-invasive, objective, bedside methods 
such as ultrasonography and BIA in the assessment of 
muscle and body composition changes together with 
measurement of function and development may help 
overcome this. Research efforts addressing these can benefit 
the understanding of the PICS-p. 
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