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Abstract

This paper presents our submission to

the SardiStance 2020 shared task, describ-

ing the architecture used for Task A and

Task B. While our submission for Task

A did not exceed the baseline, retraining

our model using all the training tweets,

showed promising results leading to (f-

avg 0.601) using bidirectional LSTM with

BERT multilingual embedding for Task A.

For our submission for Task B, we ranked

6th (f-avg 0.709). With further investiga-

tion, our best experimented settings in-

creased performance from (f-avg 0.573) to

(f-avg 0.733) with same architecture and

parameter settings and after only incor-

porating social interaction features- high-

lighting the impact of social interaction on

the model’s performance.

1 Introduction

Framed as a classification task, the stance detec-

tion consists in determining if a textual utterance

expresses a supportive, opposing or neutral view-

point with respect to a target or topic (Küçük

and Can, 2020). Research in stance detection has

largely been limited to analysis of single utter-

ances in social media. Furthering this research, the

SardiStance 2020 shared task (Cignarella et al.,

2020) focuses on incorporating contextual knowl-

edge around utterances, including metadata from

author profiles and network interactions. The task

included two subtasks, one solely focused on the

textual content of social media posts for automati-

cally determining their stance, whereas the other

allowed incorporating additional features avail-

able through profiles and interactions. This pa-

0Copyright © 2020 for this paper by its authors. Use per-
mitted under Creative Commons License Attribution 4.0 In-
ternational (CC BY 4.0).

per describes and analyses our participation in the

SardiStance 2020 shared task, which was held as

part of the EVALITA (Basile et al., 2020) cam-

paign and focused on detecting stance expressed

in tweets associated with the Sardines movement.

2 Related Work

In social media, classical features can be ex-

tracted by using stylistic signals from text such as

bag of n-grams, char-grams, part-of-speech labels,

and lemmas (Sobhani et al., 2019), structural sig-

nals such as hashtags, mentions, uppercase char-

acters, punctuation marks, and the length of the

tweet (Wojatzki et al., 2018; Sun et al., 2016),

and pragmatic signals related to author’s profile

(Graells-Garrido et al., 2020). With modern deep

learning models, there is shift towards contex-

tualised representations using word vector rep-

resentation algorithms, either by having person-

alised language models trained on task specific

language or as a pre-trained language model of-

fered after training using complex architecture and

billions of documents. Using deep learning lay-

ers as automated feature engineering methods can

be implemented to train the model afterwards. In

(Augenstein et al., 2016), they utilized Bidirec-

tional Conditional Encoding using LSTM achiev-

ing state-of-the-art results on stance detection task.

Recently, there is a resurgence of research in in-

corporating network homophily (Lai et al., 2017)

to represent social interactions within a network.

Moreover, Knowledge graphs (Xu et al., 2019)

can in turn represent these complex network rela-

tionships (e.g. authors friendships) as simple em-

bedded vectors sampled considering the nodes and

weighted edges within the network complexity

structure.

3 Definition of the Tasks

The stance detection task has been defined in

previous work as consisting in determining the
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Figure 1: Our framework for investigating different combinations of features. For a network interac-

tion graph, we generate user embeddings, using variations of graph neural network (GNN) embedding

methods, namely deep-walk, struct2node and node2vec, and then concatenate author’s vector with its

corresponding utterance features for each stance. We also extract two types of text embedding repre-

sentations for each utterance, embedding-based features, namely word embedding vectors and cosine

similarity vectors, using different models including variations of CNN and bidirectional models. Further,

the results of these two feature extraction methods are concatenated for the final classification step. We

also consider the standard methods that extract frequency-based representations from author profiles and

stance utterances including unigrams and Tfidf vectors. All these four features where combined and fed

into the drop out and dense layers, to finally generate the final label using a softmax activation function.

Though, we deactivate some of these four sources of features and alter the frequency-based vector by

excluding some features, changing the embedding source and reducing the dimensionality for highly

dimensional vectors (e.g. frequency-based features and cosine similarity vectors) using PCA.

viewpoint of an utterance with respect to a tar-

get topic (Küçük and Can, 2020), while others

define it as that consisting in determining an au-

thor’s viewpoint with respect to the veracity of a

rumour, usually referred to as rumour stance clas-

sification (Zubiaga et al., 2018). SardiStance fo-

cuses on the former, and is split into two subtasks:

Textual Stance Detection (Task A) and Contex-

tual Stance Detection (Task B) (Cignarella et al.,

2020). Baselines are provided for Task A using

SVM+unigrams as (f-avg. 0.578), and for Task B

as (f-avg. 0.628) (Lai et al., 2020).

4 Experimental Settings

Frequency-based features: These represent fre-

quency vectors including unigram, punctuation

and hashtags provided by (Cignarella et al., 2020).

Further, we include TFiDF vectors.

Embedding-based features: word embedding

Italian Wikipedia Embedding (Berardi et al.,

2015) trained using GloVe 1, Fasttext with (Bo-

janowski et al., 2017) 2 trained using skip-gram

model and with 300 dimensions, and TWITA

embedding (Basile et al., 2018). For TWITA,

two versions of the same tweets were generated.

One preprocessing words where each vector has

100 dimensions, provided by (Cignarella et al.,

2020)3 and referred to as TWITA100. The other

1https://github.com/MartinoMensio/it_

vectors_wiki_spacy
2https://fasttext.cc/docs/en/

pretrained-vectors.html
3https://github.com/mirkolai/
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one trained by us without any preprocessing and

each vector has 300 dimensions, referred to as

TWITA300. We also experimented with multilin-

gual BERT in Task A 4 (Devlin et al., 2019).

Cosine similarity vectors which was introduced

previously in (Eger and Mehler, 2016) to encode

the word meaning within the embedding space. In

our work, we used TWITA300 to train the similar-

ity vectors of all the words in the training set.

Network-based features: Encoding users graph.

To represent user interactions as nodes and edges,

we used a counting scalar value and added one if

each of the following relationships exists: friend-

ships, retweets, quotes and replies, e.g. if all of

them exist then the edge weight between two ac-

counts is four. We calculated all the accounts pro-

vided and generate a directed complex graph con-

ditioned by the existence of friendship, resulting

in 669,745 nodes, 2,871,791 edges with an aver-

age in-degree of 4.2879 and average out-degree of

4.2879.

Generating GNN Embeddings. Taking as input

the encoded network relationships, GNN embed-

dings use different sampling techniques to rep-

resent every node as a vector. To extract these

vectors, we experiment with different graph neu-

ral network models, namely struct2vec (Ribeiro

et al., 2017), deepwalk (Perozzi et al., 2014) and

node2vec (Grover and Leskovec, 2016).

NeuralNetwork-based features As illustrated in

Figure 1, we have different deep learning mod-

els to extract features separately for both word

embedding and similarity vectors matrices. In

our work, we experiment with Convectional Neu-

ral Network (CNN) models and Long short-term

memory (LSTM) models. Variations of CNN

models where applied to NLP downstream tasks

as feature extraction methods for text classifica-

tion. In our work, we used two variations of CNN.

In one model, we used a CNN as a one-head 1D-

CNN with kernel size of 5 allowing the model to

extract features with 5-grams vectors using 32 fil-

ters. Followed by a max pooling layer with pool

size of 2 then flattened layer. In another model,

we used a CNN as a multi-headed 2D-CNN with

1, 2, 3, 5 grams filter sizes, initialising the kernel

weights with a Rectified Linear Unit (ReLU) acti-

vation function and normal distribution weights.

Followed by a max pooling layer with different

evalita-sardistance/
4https://tfhub.dev/tensorflow/bert_

multi_cased_L-12_H-768_A-12/2

pooling sizes taken as one columns pooling fil-

ter with the maximum text length excluding few

grams sizes. For the LSTM, we used two variants.

One is a simple bidirectional LSTM of 64 units

followed by concatenations of max pooling and

average pooling layers, and attention bidirectional

LSTM proposed by (Yang et al., 2016) using 64

units followed by 128 units then attention layers5.

Feature Reduction. We experiment with different

reduction length: 50, 100 and 150. Then. we set

our PCA reduction to 100 as it showed best per-

formance on evolution set.

Sentence Cleaning. We set the cleaning function

to match the preprocessing function by (Cignarella

et al., 2020) to generate TWITA100.

We used four final layers to receive the features

and concatenate them (see Figure 1). In all of the

experiments, our dropout layer set to 0.2, followed

by a dense layer with rule activation function and

another dropout layer of 0.2. Finally, a probabil-

ity vector of the three classes is generated. To de-

termine the correct class, we choose the one class

with the highest probability.

5 Results

In this section, we discuss the results of our sys-

tems submitted to the two tasks.

For Task A, we used attention Bidirectional

LSTM model performance compared to using dif-

ferent word embedding models, also we anal-

ysed impact of the preprocessing of the runs.

Since there are too many parameters to compare

with, we compared the performance of the embed-

ding models. Our submitted models, BERT and

TWITA300 illustrated in Table 1 with ∗ showed

most promising results using different settings.

With only %80 training data, similarity vectors

generalised better than all other embedding mod-

els. While, when all data are trained, the best

model is the multilingual BERT embedding with

no pre-processing (f-avg 0.601), followed by sim-

ilarity vectors using cleaned text (f-avg 589).

For Task B, we used different feature extraction,

frequency vectors, word embedding and social in-

teraction embedding models, and monitor their

performance while activating the pre-processing

step in all experiments. With a diverse range of

parameters, we experimented with a total of 3845

random runs. Then, we selected the best mod-

5https://www.kaggle.com/mlwhiz/

attention-pytorch-and-keras
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Task A

Eval. Tst. f-avg

Not-preprocessed

Emd# % f-avg T%80 T%100

BERT∗ 0.480 0.532 0.533∗ 0.601
SVs 0.518 0.548 0.589 0.532
TWITA300 0.482 0.526 0.578 0.551
TWITA100 0.480 0.521 0.494 0.551
Fasttext 0.485 0.521 0.479 0.482
GloVe 0.445 0.308 0.401 0.401

Preprocessed

SVs 0.515 0.556 0.524 0.566
TWITA100 0.513 0.543 0.560∗ 0.566
FastText 0.485 0.489 0.532 0.528
TWITA300 0.447 0.490 0.541 0.506
GloVe 0.445 0.308 0.401 0.401
BERT 0.475 0.445 0.512 0.213

Baseline 0.578 0.578

Table 1: Results for Task A. We evaluate all the

embeddings using Attention Bidirectional LSTM.

Our submissions are the ones represented with ∗.

Bold fonts show results above baseline

els considering macro f-score for the two classes

under consideration (AGAINST and FAVOR) (f-

avg). Results are shown in Table 2. By compar-

ing our runs by adding social interaction features,

our models with different settings showed a clear

improvement on our models. In 1#M, we utilise

Conv2D (see NeuralNetwork-based features) for

embedding vectors with TfiDF unigram and tweet

length, where the model achieved an increase on

performance of (f-avg 0.16) when social interac-

tion vectors incorporated into the model. All other

models showed the same improvement with an in-

crease of (f-avg 0.115, 0.118, 0.081, 0.021) for

3#M, 5#M, 7#M and 9#M, respectively.

6 Discussion and main findings

The pipeline depicted in Figure 1 was designed

to investigate the impact of multiple features on

stance detection using variations of feature extrac-

tion methods, which have been experimented in

previous work but we adapted them to the Italian

language in our settings. The training set contains

2132 instances with no evaluation set. In our work,

we create a stratified split of 80-20 to evaluate the

model, which leads to a training data with 1705

samples. Further, our investigation attempted to

randomise different settings, with the aim of sub-

mitting the top two with highest f-avg score on the

remaining set (Eval. 426) for both tasks. Conse-

quently, we found that this methodology did not

generalise well with the testing results. However,

our main findings remain consistent across differ-

ent settings when compared with our results us-

ing the stratified split (T%80) and when the model

was retrained using all the data (T%100). While

our submission evaluated both tasks separately, we

discuss all conclusions jointly in this section.

Having different random settings over all

frequency-based features (14, in our case) would

be a bad strategy to evaluate the methods and

come up with the best approach. To verify

if we need to include all of these, we run

an experiment by including only one feature

from (unigram, Tfidf_unigram, chargrams, net-

work_reply_community, userinfobio). The selec-

tion of these features where based on selecting

the best runs using only one feature from our

randomised parameters. Using all the training set

and CONV2D with (fasttext,TWEC300) and re-

duced SVs with deepwalk user’s social interac-

tion vector, (userinfobio,chargrams) achieved (f-

avg 0.703 and 0.704), respectively. This is also

higher than using AttLSTM for the same set-

tings which achieved (f-avg 0.638 and 0.610).

In general, we achieve better performance with

CONV2D than AttnLSTM for the same settings

on the test data. In another experiment, we reduced

all the 14 frequency-based parameters achieving

(f-avg 0.714) which performs worse than our best

3#M (see 2). Our main conclusion is that the num-

ber of features available is not necessarily corre-

lated with the model’s performance boost.

In another experiment, we attempted to

compare the performance of TWEC100 with

TWEC300 (see Section 4). From Table 1, we

observed that lower dimensionality and pre-

processing may cause the model to under perform

by around (f-avg 0.050), at least. Though, this

impact was not significant with T%100. However,

matching the processing between the embedding

vocabulary and the annotated set yields better

performance. For example, TWITA100 was

more persistent on performance between T%80

and T%100. This highlights the importance

of pre-processing and reducing the differences

between the embedding vocabularies and labelled

sentences. In general, our embedding experiment

for Task A show high sensitivity on model

performance with pre-processing settings.

Inspired by previous work on encoding word

meanings, we experimented with SVs embedding.

Interestingly, these vectors showed high f-avg,



202

Task B

Eval. Tst. f-avg

#M % f-avg T%80 T%100 Settings.

1 0.590 0.651 0.683 0.733
Conv2D(FastText) + Conv2D(PCA(SVs)) + PCA(unigram +
Tfidf_unigram + length) + DeepWalk

2 0.511 0.521 0.605 0.573
Conv2D( FastText ) + Conv2D( PCA(SVs) ) + PCA(unigram +
Tfidf_unigram + length)

3 0.595 0.640 0.662 0.719
Conv2D(FastText)+ Conv2D(PCA(SVs)) +
Conv2D(PCA(Tfidf_unigram + chargrams)) + DeepWalk

4 0.525 0.507 0.608 0.604
Conv2D(FastText)+Conv2D(PCA(SVs))+PCA(Tfidf_unigram
+ chargrams)

5 0.600 0.645 0.710 0.718
Conv2D(FastText) + Conv2D( PCA(SVs)) + PCA(unigram +
length)+ DeepWalk

6 0.487 0.495 0.661 0.600
Conv2D(FastText + Conv2D(PCA(SVs)) + PCA(unigram +
length)

7 0.600 0.671 0.709∗ 0.696

Conv2D(TWITA300) + Conv2D(PCA(SVs)) + PCA( length
+ network_quote_community + network_reply_community +
network_retweet_community + network_friend_community +
userinfobio + tweetinfocreateat) + DeepWalk

9 0.574 0.532 0.629 0.615

Conv2D(TWITA300) + Conv2D(PCA(SVs)) + PCA( length
+ network_quote_community + network_reply_community +
network_retweet_community + network_friend_community +
userinfobio + tweetinfocreateat)

9 0.602 0.691 0.677∗ 0.681

AttLSTM(FastText) + AttLSTM(PCA(SVs)) +
PCA(puntuactionmarks + length + network_quote_community
+ network_retweet_community + network_friend_community
+ userinfobio) + Node2Vec

10 0.459 0.488 0.456 0.660

AttLSTM(FastText) + AttLSTM(PCA(SVs)) +
PCA(puntuactionmarks + length + network_quote_community
+ network_retweet_community + network_friend_community
+ userinfobio)

Baseline 0.628 0.628

Table 2: Top performing settings over all sampled runs using our architecture for Task B. Our submissions

are the ones represented with ∗. Bold fonts show highest/above baseline results

better than BERT and TWITA300 with T%80

although it showed a significant drop when the

model was trained with T%100. This finding

opens an investigation towards the ability of SVs

to perform better under different settings. For that,

we removed PCA(SVs) and run same settings of

#M1, and our model achieved (f-avg 0.678), show-

ing a significant impact of SVs on model’s perfor-

mance. Further, we investigate the robustness of

deepwalk modelling over node2vec and struct2vec

for the same best settings of #M1, resulting on (f-

avg 0.641 and 0.604) for node2vec and struct2vec,

respectively. Also, in terms of accuracy, the deep-

walk model produces an improved accuracy of

(% 0.725) compared to node2vec (% 0.665) and

struct2vec (% 0.658). This indicates that deepwalk

is more reliable on this testing set than other mod-

els.

7 Conclusion

In this work, we described a state-of-the-art stance

detection system leveraging different features in-

cluding author profiling, word meaning context

and social interactions. Using different random

runs, our best model achieved (f-avg 0.733) lever-

aging deepwalk-based knowledge graphs embed-

dings, FastText and similarity feature vectors ex-

tracted by two multi-headed convolutional neural

networks from auther’s utterance. This motivates

our future, aiming to reduce the model complexity

and automate the feature selection process.
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