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Abstract 

Rock glaciers are increasingly influencing the hydrology and water chemistry of Alpine 

catchments. During three consecutive summers (2017-2019), we monitored by recording 

probes and fortnightly/monthly field campaigns the physical and chemical conditions of two 

rock glacier springs (ZRG, SRG) in the Zay and Solda/Sulden catchments (Eastern Italian 

Alps). The springs have contrasting hydrological conditions with ZRG emerging with evident 

ponding (pond-like), and SRG being a typical high-elevation seep (stream-like). Water 

temperature was constantly low (mean 1.2 °C, standard deviation 0.1 °C) at both springs. 

Concentrations of major ions (dominated by SO4
2-, HCO3

-, Ca2+ and Mg2+) and trace 

elements (As, Sr, Ba, U, Rb) increased, and water became more enriched in heavy stable 

isotopes (δ18O, δ2H) towards autumn. This solute and isotopic enrichment had an asymptotic 

trend at SRG, and a unimodal pattern at ZRG, where peaks occurred 60-80 days after the 

snowmelt end. Wavelet analysis of electrical conductivity (EC) and water temperature 

records revealed daily cycles only at SRG, and significant weekly/biweekly fluctuations at 

both springs attributable to oscillations of meteorological conditions. Several rainfall events 

triggered a transient (0.5-2 hrs) EC drop (of 5-240 µS cm-1) and water temperature rise (of 

0.2-1.4 °C) at SRG (dilution and warming), whereas only intense rainfall events occasionally 

increased EC (by15-85 µS cm-1) at ZRG (solute enrichment and thermal buffering), with a 

long-lasting effect (6-48 hrs). Building on previous research, we suggest that rock glacier 

springs with differing flow conditions, i.e., stream-like and pond-like, have contrasting 

fluctuations of water parameters at different timescales. Thus, for pond-like springs, peaks of 

EC/solute concentrations might indicate a seasonal window of major permafrost thaw. Our 

quantitative description of the hydrochemical seasonality in rock glacier outflows and the 

physical and chemical response to precipitation events provides relevant information for 

water management in mountain areas under climate change. 
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1. INTRODUCTION  

Climate change is having a profound effect on the quantity and quality of Alpine freshwaters, 

as the diminishing hydrological contribution from receding glaciers (Intergovernmental Panel 

on Climate Change [IPCC], 2019) is paralleled by an increased influence from paraglacial 

and periglacial landforms (Haeberli, Schaub, & Huggel, 2017; Brighenti et al., 2019a). In 

particular, rock glaciers (i.e., creeping bodies of rock fragments providing evidence of 

mountain permafrost) have been addressed as significant water reservoirs at a global scale 

(Jones, Harrison, Anderson & Betts, 2018) as their subsurface ice melts much more slowly 

than that of glaciers (Haeberli et al., 2017). Their hydrological importance is also promoted 

by an increasing storage capacity made available by the loss of internal ice (e.g., Wagner, 

Pauritsch & Winkler, 2016; Jones, Harrison, Anderson & Whalley, 2019). In fact, the internal 

structure of rock glaciers influences their hydrological behaviour. Growing evidence suggests 

the importance of a fine-grained basal layer with low hydraulic conductivity, which 

constitutes a groundwater storage system in these landforms. This sub-permafrost layer exerts 

a major control on base flow conditions, with fractures and depressions occurring in the basal 

bedrock only playing a minor role (Jones et al., 2019; Wagner, Brodacz, Krainer & Winkler, 

2020). Most of the rainwater is quickly exported from rock glaciers across lateral flows in the 

supra-permafrost layer, which is made of coarse blocky materials with high hydraulic 

conductivity. The presence of fractures and ice-free areas in the ice-sediment matrix allows 

some water to cross the intra-permafrost zone, enhancing the recharge of the sub-permafrost 

aquifer (Wagner et al., 2020). This mixed water contribution can support surficial waters 

emerging as lakes, ponds, or streams at the rock glacier forefields.  

The seasonal snowmelt is a key hydrological driver of rock glacier springs. In fact, their 

discharge is higher during early summer, and decreases towards autumn as the snow on the 

rock glacier and its catchment progressively melts away (e.g., Krainer & Mostler, 2002; 

Colombo et al., 2018a). During late summer/autumn, only a small fraction of discharge (< 5 

%, e.g., Krainer, Chinellato, Tonidandel & Lang, 2011) can be sustained by internal ice melt 

(Colombo et al., 2018b; Jones et al., 2019), which strongly influences the hydrochemistry of 

rock glacier springs. Long-term studies on headwaters fed by rock glaciers attributed the 

increase of electrical conductivity (EC) and concentrations of major ions and trace elements 

observed in the last decades, to the progressive permafrost thawing (e.g., Thies et al., 2007; 

Colombo et al., 2018b; Steingruber, Bernasconi & Valenti, 2020). The seasonal timing of 

solute export from rock glaciers is particularly important. In fact, high concentrations of 

metals and metalloids have been observed in rock glacier springs, often exceeding drinking 

water and environmental quality standards (Nickus & Thies, 2015; Brighenti et al., 2019b), 

and affecting the water chemistry further downstream along the river network (Brighenti et 

al., 2019a). Solute concentrations typically increase during late summer because the 

contribution of diluting snowmelt decreases, and those of reacted groundwater and 

permafrost ice melt increase (Williams, Knauf, Caine, Liu, & Verplanck, 2006; Caine, 2010; 

Krainer et al., 2015; Colombo et al., 2018a; Munroe, 2018). Different studies revealed 

contrasting patterns of solute increase in rock glacier springs, reporting either an asymptotic 

behaviour of EC/solute concentrations with the plateau corresponding to autumn and winter 

(Krainer, Mostler, & Spötl, 2007; Krainer et al., 2015; Nickus & Thies, 2015; Harrington, 
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Mozil, Hayashi & Bentley, 2018), or a unimodal trend with late summer peaks (Colombo et 

al., 2018a). However, the drivers of these contrasting seasonal trends have yet to be 

investigated. Even the influence of precipitation on rock glacier hydrochemistry is still being 

debated. Colombo et al. (2018a) found intense rainfall events caused solute-enrichment in a 

rock glacier pond whereas most studies reported a dilution effect from rainfall with transient 

solute-depletion in rock glacier streams (e.g., Krainer & Mostler, 2002; Berger, Krainer, & 

Mostler, 2004; Krainer et. al., 2007; Harrington et al., 2018).  

Rock glaciers are efficient thermal buffers, and for this reason they represent potential 

climate refugia for cold-adapted terrestrial and aquatic organisms under global warming 

(Brighenti et al., 2021). Springs fed by intact rock glaciers are typically very cold (< 2 °C), 

which testifies to the occurrence of permafrost (Carturan et al., 2016). The snow and the 

internal ice release latent heat when melting, and cool down infiltrating rainwater (e.g., 

Krainer & Mostler, 2002; Krainer et al., 2007; Millar, Westfall, & Delany, 2013; Krainer et 

al., 2015; Harrington, Hayashi, & Kurylyk, 2017; Munroe, 2018). In fact, rainfall events can 

either trigger transient drops of water temperature (Twater; Geiger, Daniels, Miller, & 

Nicholas, 2014; Krainer et al., 2015; Winkler et al., 2016; Colombo et al., 2018a; Harrington 

et al., 2018), or have no thermal effect (Krainer & Mostler, 2002; Krainer et al., 2007) on 

rock glacier outflows during the snow free period. However, quantitative analyses aimed at 

understanding the main parameters driving intensity, duration, and temporal patterns of the 

response of Twater and solute concentrations to precipitation events are still lacking. Rainfall 

events can also disrupt the diel fluctuations of water parameters in rock glacier springs. These 

oscillations typically occur during the seasonal snowmelt, and smooth down as summer 

progresses (Krainer & Mostler, 2002; Berger et al., 2004; Krainer et al., 2007). Periodic 

fluctuations of EC and Twater might also occur over longer timescales (e.g., associated with 

switching warm and cold periods) but quantitative assessments of such oscillations have been 

never attempted.  

In this study, we investigated the physical and chemical conditions of two rock glacier 

springs in a deglaciating area of the Eastern European Alps (Solda/Sulden valley) during 

three consecutive summers (2017-2019). The springs originate from two different rock 

glaciers with contrasting hydromorphological settings. We addressed three major hypotheses: 

• H1) time elapsed after snowmelt ends has a strong control on the solute dynamics of 

both springs (i.e., enrichment towards autumn); 

• H2) amplitude of EC and Twater diel cycles is larger during the snowmelt period, and 

decreases with increasing time elapsed after the snowmelt end; 

• H3) precipitation events trigger transient responses of EC, and the intensity and 

duration of this response are controlled by the intensity and duration of precipitation 

events. 

 

2. STUDY AREA 

We studied the permanent springs emerging from two tongue-shaped rock glaciers located in 

distinct subcatchments (Zay and Solda/Sulden) of the upper Solda/Sulden catchment, Eastern 

Italian Alps (Figure 1; Table 1). The geographical, climatic, geological, and hydrological 
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settings of the catchment are described in Engel et al. (2019) and Brighenti et al. (2019a). 

Geologically, the area belongs to the Austroalpine domain, represented by a crystalline 

basement and its sedimentary cover (Montrasio et al., 2015; Table 1). Although the ice 

abundance and distribution of these rock glaciers is unknown, the two landforms are 

classified as intact (i.e., containing ice) by Kofler et al. (2020), in agreement with the rock 

glacier inventory of the Autonomous Province of Bolzano/Bozen [APB] (2020a) which 

classified both landforms as active (i.e., intact and with motion). Oversteepened fronts with 

unstable boulders, localised scouring, and sparse/absent vegetation suggest the occurrence of 

creeping activity for both rock glaciers, but no detailed studies exist on their kinematic 

behaviour.  

The Zay spring (ZRG) is five meters wide, and it originates with an evident ponding from 

the south-western side of the Zay rock glacier terminus. In part, this rock glacier is 

hydrologically connected with the Ausserer Zay glacier, whose front is located  ̴ 0.5 km away 

from the rock glacier upstream margin, and the glacier-fed stream flows parallel to the rock 

glacier along its northern margin (APB, 2020a; see Supplementary 1). 

The Sulden spring (SRG) is  ̴ 30 cm wide, and it originates as a typical mountain seep from 

the Sulden rock glacier, which is composed of two merged bodies and is partially reshaped by 

an unsealed road at its terminus (APB, 2020a; Supplementary 1). The spring lies 40 m 

downstream from the western side of the rock glacier front, and it partially drains moraine 

deposits (Supplementary 1). To distinguish the two rock glacier outflows according to their 

distinct water flow conditions, we hereafter define them as pond-like (ZRG) and stream-like 

(SRG) springs.  

Two automatic weather stations managed by the APB were used to retrieve meteorological 

data. The Madriccio/Madritsch station (2825 m a.s.l.) is located within the same glacial 

cirque as SRG, at a distance of 1.4 km and an elevation 232 m higher. A second weather 

station is located in the Solda/Sulden village (1900 m a.s.l.), and it was used to validate 

precipitation data for the Zay spring (see section 3.2). The Madriccio/Madritsch station is 

located 5.6 km away from ZRG and at a 133 m higher elevation, and it is separated from the 

Zay subcatchment by the Rosim subcatchment (Figure 1A). 

 

3. MATERIALS AND METHODS 

3.1. Field activities and laboratory 

The two springs were investigated during three consecutive summers (2017-2019). Recording 

probes for EC and Twater (HOBO U24, ONSET, MA, USA; 5 µS cm-1 and 0.1 °C accuracies; 

HOBO Pendant UA-001-08, ONSET, MA, USA; 0.45 °C accuracy), recording at 30 min 

(2017, 2018) or 15 min (2019) intervals, were deployed during the snowmelt period (i.e., 

before the vanishing of the seasonal snow cover), and retrieved in September/October each 

year during the flow recession period. EC was not recorded at ZRG during 2017 because the 

recording probe was unavailable. Each data-logger was deployed at the same location every 

year, as close as possible to the rock glacier terminus (see Supplementary 1 for their exact 

locations). 

During each sampling campaign, we measured Twater, EC, and turbidity with portable 

probes (Cond-3310 and Turb-430IR, WTW, Germany), and collected water samples for 
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laboratory analyses on a monthly basis during 2017 and 2018, and bi-weekly in 2019 (Figure 

1F). Samples for the assessment of base chemistry were collected in clean 500 mL 

polyethylene bottles, stored in the dark at 4 °C until delivery within two to three days to the 

Hydrochemistry laboratory of the Edmund Mach Foundation (San Michele all’Adige) for the 

measurement of Alkalinity, pH, HCO3
-, Ca2+, Mg2+, Cl-, Na+, K+, total nitrogen (TN), NH4

+-

N, NO3
--N, total phosphorus (TP), PO4

3--P, SO4
2- and SiO2, following standard methods 

(Baird & Bridgewater, 2017). Additional stream water was filtered through cellulose acetate 

membranes (0.45 µm pore diameter) into 100 mL polyethylene bottles (previously washed 

with > 65% HNO3), acidified in the field (1.5 % volume, > 65% HNO3), and delivered to the 

Ecoresearch S.r.l. laboratory (Bolzano/Bozen) where element concentrations (Be, B, Al, Ti, 

V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Ba, Tl, Pb, U, Bi) were 

measured with Inductively Coupled Plasma Mass Spectrometry (ICP-MS ICAP-Q, Thermo 

Fischer® Scientific, MA, USA). To disentangle the contribution of different water sources to 

spring discharge, we collected: (i) snowmelt water (dripping from snow patches); (ii) glacier 

ice melt (from the Zayferner rivulets during glacier ablation); (iii) precipitation (integrated 

monthly samples of May to October; rainwater containers placed nearby SRG and ZRG and 

built following IAEA, 2014); and (iv) spring water in 50 ml polyethylene bottles. These 

samples were stored at 4 °C and analysed by a laser spectroscope (Picarro L2130i, CA, USA) 

at the Free University of Bolzano/Bozen laboratory for the determination of δ2H (0.1 ‰ 

precision) and δ18O (0.025 ‰ precision).   

 

3.2. Data analysis 

We used the meteorological data recorded by the two automatic stations (1st January 2016 to 

31st December 2019; APB, 2020b). We considered the following parameters: snow height 

(cm, 10 min resolution), precipitation (mm, 5 min), air temperature (Tair, °C; 10 min) at the 

Madriccio/Madritsch station; precipitation (mm) and Tair (°C) at the station of the 

Solda/Sulden village (same time resolution as for Madriccio/Madritsch). This dataset was 

elaborated to ensure consistent interval records of water parameters (i.e., 30 min intervals 

during 2017 and 2018, 15 min intervals during 2019). Based on the Madriccio/Madritsch 

station, we quantified the meteorological conditions in the area, and estimated for each year 

the end of the snowmelt period, defined as the date from which the winter snow cover was 

absent (< 0 cm) for at least seven consecutive days. Based on this date, we calculated for each 

sampling date the variable “days after the snowmelt”, that we used as a proxy to describe the 

seasonal patterns of water parameters while accounting for the contrasting end of the 

snowmelt period among different years.  

A Principal Component Analysis (PCA) was performed to visualize the physical and 

chemical parameters characterizing the two springs and their seasonality. We used the R 

package factoMiner (Husson, Josse, Le & Mazet, 2020) which automatically applies 

variables standardisation (scaling and centering), and the factoextra (Kassambara & Mundt, 

2020) and corrplot (Wei et al., 2017) R packages for data visualisation. δ18O was discarded a-

priori from PCA analysis because it was strongly collinear with δ2H.  

The relationship between precipitation events and the variation of water parameters was 

estimated by determining new variables from the physico-chemical and meteorological 
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dataset. For each precipitation event (minimum intensity ≥5 mm h-1 over the recorded 

interval), we calculated the following parameters: total precipitation (mm); duration (hrs); 

and the average and maximum intensity (mm hr-1) of precipitation. The minimum inter-event 

time (to consider two separate precipitation events) was set at 1 hr, as suggested by Molina-

Sanchis, Làzaro, Arnau-Rosalén, & Calvo-Cases (2016). The type of precipitation was 

estimated for each event as a function of the liquid-solid state of water, based on the average 

air temperature during the event (US Army Corps of Engineers; 1956): rainfall (Tair > 3 °C), 

rainfall/snow (1 °C ≤ Tair ≤ 3 °C), snow/rainfall (-1 °C ≤ Tair < 1 °C) or snow (Tair < -1 °C). 

We could use the weather dataset of the Madriccio/Madritsch station also for the analyses at 

ZRG (located in an adjacent subcatchment) because all precipitation events associated to 

responses in EC/Twater at this spring were also recorded by the Solda/Sulden weather station 

(located at the Zay closing section), and as such could be considered as catchment scale 

events.  

When a transient shift (δ) above the instrumental accuracy of Twater (> 0.1 °C) and/or EC (> 

5 µS/cm) was detected (for Twater we used the records of HOBO Pendant UA-001-08, with 

lower accuracy, only when the U-24 was not recording, i.e. during 2017 and June/July 2018), 

we calculated the following weather variables: lag time (hrs) between the onset of the 

precipitation event and the onset of the response; variation of EC (δEC = EC 

minimum/maximum – EC at the precipitation onset); variation of Twater (δT = Twater 

minimum/maximum – Twater at the precipitation onset); δEC and δT duration (hrs; time 

elapsed to return to pre-event values or to the trend of the corresponding cycles, assessed by 

visual inspection of EC and Twater plots).  

To estimate the drivers and temporal trends of water parameters we used a combination of 

Linear Models (LM), Generalised Linear Models (GLM) and Generalized Additive Models 

(GAM) that were performed using the basic R functions (for LM, GLM) or the package mgcv 

(for GAM; Wood, 2020) in R 4.0.0 (R Development Core Team, 2020). To identify trends in 

the recorded time series we applied GAMs separately for each station, assuming daily 

averages of Twater and EC as response variables, days after the snowmelt as an explanatory 

variable, and year as covariate. Moreover, to prevent heterogeneity of residuals, we discarded 

some outliers in the series before running the GAM analyses, following Zuur et al. (2009). 

We also used LM, GAM, and GLM to identify the drivers of the physical and chemical 

response to precipitation events, separately for each station, by setting the absolute variations 

in the parameters (δEC, δT, δEC duration, δT duration) as response variables and the 

parameters of precipitation (total precipitation, intensity, maximum intensity, days elapsed 

after the snowmelt) as predictors, and precipitation type as categorical covariate. We 

validated the models with residual graphs and following the procedures outlined by Zuur et al 

(2009). The distribution family (Gaussian or Gamma) of GAM/GLM was selected based on 

the Akaike Information Criterion (Zuur et al., 2009). Thin plate regression spline is the 

default smoother used for GAM in the mgcv package (Wood, 2020). 

The periodicity in Twater and EC time series was analysed with wavelet analysis. This 

spectral analysis investigates periodical phenomena in time series by partitioning the 

variability in the series into different components according to different frequencies (Morlet, 

Arens, Fourgeau, & Giard, 1982). We applied Morlet wavelet transformation with the R 
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WaveletComp package v1.1, which automatically standardises the data after detrending 

(Rösch & Schmidbauer, 2018). The statistical significance (p ≤ 0.01) of different periods was 

estimated by comparing the actual spectrum against a white noise (random) distribution. The 

expectation of the power spectrum at each time and scale is based on the series variance 

(Rösch & Schmidbauer, 2018). We applied separate analyses for each station, year, and 

parameter. With the same package, we also analysed wavelet coherence among Twater, EC, 

Tair and global radiation to detect consistent fluctuations and phase coherence among these 

variables. 

We visualised the isotopic dataset in a dual plot, where we fitted the global (GMWL) and 

the local (LMWL) meteoric water lines. We used the LMWL regression parameters to 

estimate the line-conditioned excess of all water samples (lc-excess; Landwehr & Coplen, 

2006).  

We tested for statistical differences in the physical and chemical variables between the two 

springs by Mann-Whitney test (U-statistics). We used this non-parametric test because most 

of the data were not normally distributed (Shapiro-Wilk test, p < 0.05), and/or because 

variances were significantly uneven between groups (Levene’s test, p < 0.05), even after data 

transformation. We used the software SPSS (v.25, IBM, 2018) to carry out these statistical 

analyses.  

 

4. RESULTS 

4.1. Climatic conditions during the monitoring period 

During the three years of monitoring, the Madriccio/Madritsch station recorded typical alpine 

conditions, with a mean air temperature of -1.2 °C and winter snow cover lasting for 206-222 

days (Figure 1F). An early onset of snow accumulation occurred in 2016 (10th October) when 

compared with 2017, 2018 (late October) and 2019 (mid-November). In 2017 there was an 

earlier end to the snowmelt (10th June) compared to 2018 (16th June) and 2019 (29th June). 

Summer 2017 was warmer (August air temperature = 8.6 ± 3.9 °C) and wetter (total 

precipitation during the snow free period equal to 506 mm) than the summers of 2018 (7.5 ± 

3.3 °C; 390 mm) and 2019 (7.8 ± 2.9 °C; 504 mm).  

 

4.2. Hydrochemistry and tracers 

At both springs, water temperature was very low and constant over the entire monitoring 

period (1.2 ± 0.1 °C), and SO4
2-, Ca2+, HCO3

- and Mg2+ were the dominant ions 

(Supplementary 3). At the stream-like spring (SRG), EC values and SO4
2-, Ca2+, HCO3

-, Mg2+ 

and K+ concentrations were significantly higher (U > 41, p ≤ 0.002), and turbidity was 

significantly lower (U = 311, p < 0.001) than at the pond-like spring (ZRG). Concentrations 

of the other ions did not significantly differ between the two springs. Concentrations of As, 

Sr, and Ba were significantly higher (U > 105, p < 0.001), and those of Rb significantly lower 

(U = 240, p < 0.001) at SRG, whereas Al, Mn, Fe, Ni, Cu, Zn, Se, Mo, Pb and U did not 

significantly differ between the two springs. Ag, Cd, Sn, Sb, Tl, Bi, Cr, V were very close to 

or below detection limits (Supplementary 2, 3). 

The first two axes of the PCA explained 72.2 % of the total variance within the dataset 

(Figure 2, Table 2). The gradient along PC1 separated the samples from the two stations, with 
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SRG being in general more solute-enriched. Sample scores spread on a seasonal gradient 

along PC1 for both stations but only for ZRG along PC2. Both springs exhibited isotopic 

enrichment, increasing Twater, EC, and concentrations of major ions, silica, and trace elements 

as a function of the days elapsed after the snowmelt period, yet with contrasting patterns 

(Table 3, Figure 3, 4). At SRG, solute concentrations exhibited a linear increase and the 

isotopic enrichment had an asymptotic behaviour over the time gradient. In contrast, ZRG 

showed a positive unimodal trend for these parameters, with peaks corresponding to 60-80 

days after the end of the snowmelt (i.e., early September; Figure 4).  

Water samples from both springs plotted along the GMWL on a dual isotope plot (Figure 

3A). Values of δ2H and δ18O in spring water samples were significantly lower than in 

precipitation (U > 142, p < 0.001), and were not significantly different from melting snow 

and glacier ice melt (p ≥ 0.28). Values of δ2H, δ18O, and lc-excess were lower at ZRG than at 

SRG for each sampling occasion (Figure 3B, 3C). As summer progressed, spring water 

became increasingly enriched in heavy isotopes, shifting from the signals of melting snow 

and ice to those of precipitation (Figure 3). 

 

4.3. Trends of water parameters at multiple timescales 

The continuous monitoring of EC and Twater revealed contrasting patterns for the two springs 

during the study period (Figure 5A). GAM analysis confirmed the importance of the days 

after the snowmelt as a significant explanatory variable (Figure 5B, Table 3). Seasonal 

minima in Twater were recorded during the snowmelt period at both stations. As summer 

progressed, water temperature showed a positive unimodal behaviour at the stream-like 

spring (SRG), peaking during mid-summer, and a continuous increase at the pond-like spring 

(ZRG). In contrast, EC continuously increased at SRG and had a positive unimodal behaviour 

at ZRG, where peaks occurred during late summer before the autumn decline (Figure 5A).  

Wavelet analysis showed distinct cycles in the Twater and EC series at the two springs 

(Figure 6). For SRG one-day cycles and one-, eight- to 16-day cycles, respectively, were 

displayed. The most intense daily fluctuations were detected during the snowmelt period, 

when both water parameters had late evening minima and mid-day maxima (0.1-0.2 °C and 

20-70 µS cm-1 fluctuation ranges). The intensity of EC fluctuations at SRG progressively 

smoothed over the summer (e.g., 10-30 µS cm-1 during August), whereas Twater had a 

unimodal trend with larger oscillations (0.2-0.3 °C), albeit close to the instrument precision, 

during August. Daily oscillations of water parameters occurred earlier in the day as summer 

progressed (e.g., mid-day maxima and early evening minima), and ceased during September 

(Figure 6). In contrast, daily fluctuations were absent at ZRG, where Twater had primary 16-

day (0.4 °C fluctuations) and secondary 5-day fluctuations (0.1-0.2 °C), and these oscillations 

persisted during the entire summer. For EC, cycles were detected at ZRG from mid-August, 

with six to eight-day primary and 16-day secondary fluctuations (of 10-144 µS cm-1), and 

displaying a higher intensity during early September. The bivariate time series of Twater and 

Tair/global radiation revealed coherent fluctuations at different timescales for both springs, 

but these were only in phase at SRG in early summer (i.e., during the snowmelt; 

Supplementary 3). Periods of precipitation, snow cover presence and/or cold air conditions 

recorded at the Madriccio/Madritsch station after the end of the seasonal snowmelt 
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corresponded to the major interruptions of the diel cycles in Twater and EC at the rock glacier 

springs (Figure 6). 

 

4.4. Effect of precipitation events 

The two springs showed contrasting responses to precipitation events. The analysis of the 

time series at the Madriccio/Madritsch station over the three summers detected 218 

precipitation events.  

At SRG, only one snow/rainfall event (from a total of N = 18), 19 rainfall/snow events (N = 

38) and 40 rainfall events (N = 145) were associated with a response in EC and/or Twater. 

Almost 94 % of rainfall or rainfall/snow events > 2 mm occurring when snow cover was 

absent were associated with a negative response in EC and a positive response of Twater 

(larger than the instrument accuracy). Total precipitation was the best predictor for the 

response of EC and Twater at the two springs in GLM analyses, and also gave the best 

performance (explained deviance) when periods of snow cover presence were excluded from 

the analysis. During snow-free periods, we observed a low fall in EC (of 5.5-11.1 µS cm-1) to 

precipitation events down to a threshold of around 5 mm, after which δEC declined as a 

function of total precipitation (Figure 5A, Figure 7, Table 3). Models revealed that the 

response of Twater to precipitation events was most likely to occur for the events during 

relatively warm conditions (Tair > 4 °C) and when snow cover was absent. The delay between 

precipitation onset and the associated response in Twater and EC ranged between 30 min and 

2.5 hrs.  

At ZRG, only seven precipitation events influenced Twater. The response was weakly 

negative and close to the instrument accuracy (-0.2 < δT < -0.1 °C), long-lasting (1-2 days), 

and it was only recorded from late July to early September. We found no relationship 

between the meteorological parameters and δT. Only 9 (total N = 96) precipitation events 

influenced EC with values above the instrument accuracy. These events occurred during 

relatively warm conditions (Tair > 4 °C) and when snow cover was absent. δEC was positive 

and exponentially related to total precipitation (R2 = 0.79, p = 0.001), as also shown by 

GAMs (Figure 7, Table 3). The δEC lag-time ranged from 6-9.5 hrs (except 2 hrs on one 

occasion), and we found no relationship between precipitation duration and δEC duration. 

 

5. DISCUSSION 

The two springs investigated in this study are typical examples of rock glacier outflows but, 

despite exhibiting many common features, they display significant differences in 

hydrochemistry and seasonal trends of water parameters. In these ways, they embody the 

contrasting hydrochemical patterns that can be found in the literature on rock glacier 

hydrology.  

 

5.1. Snow and permafrost drive spring similarities 

As outflows from intact rock glaciers, the two springs have comparable physical and 

hydrochemical attributes. They have very cold waters with only small fluctuations in 

temperature on a daily and seasonal basis, their chemistry is dominated by sulphates, calcium, 

magnesium and carbonates, and a sharp solute enrichment occurs during late summer under 
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the coupled influence from reacted groundwater and permafrost (see Jones et al., 2019). It has 

long been recognized how snowmelt is a major hydrological driver in alpine settings 

(Khamis, Brown, Milner, & Hannah, 2015), and we normalised the interannual variability in 

the snowmelt timing by analysing the seasonal trends of water parameters as a function of the 

days elapsed after seasonal snow cover disappeared. In particular, our results fully support 

the first hypothesis (H1) of a solute enrichment occurring at both springs after the snowmelt 

end towards autumn. Meteorological variability influences the thermal conditions of rock 

glaciers, and thus their hydrological behaviour (Colombo et al., 2018a). For example, an 

anticipated snow accumulation precludes the efficient cooling of the active layer during 

winter (thermal buffering of snow against cold air), whereas an anticipated snowmelt, and 

warm summers, accelerate the warming of the active layer and promote ice melting 

(Schoeneich et al., 2011). In fact, while the snowmelt water typically has very low solute 

concentrations (e.g., Engel et al., 2019) and as such promotes water dilution during early 

summer, permafrost ice is enriched in solutes and its thawing enhances solute concentrations 

in the water during late summer (Colombo et al., 2018b). Thus, we attribute the higher EC 

and concentrations of major ions and trace elements detected at both springs during late 

summer 2017 to a higher ice melt contribution compared with summers 2018 and 2019. 

Summer 2017 had an earlier end of the snowmelt period, warmer atmospheric conditions, and 

a higher amount of rainfall when compared with summers 2018 and 2019. Furthermore, the 

earlier onset of winter snow accumulation in 2016 when compared with 2017 and 2018, 

helped maintain the rock glacier in warmer winter conditions. 

 

5.2. Lithology and geomorphology drive spring differences 

Despite these similarities, the two rock glacier springs differed in several hydrochemical 

parameters and in their seasonal behaviour. The hydrological connection between the Zay 

rock glacier and the glacier located upstream (Brighenti et al., 2019a) explains the higher 

turbidity values (peaking in the seasonal period of glacier ablation), the more depleted 

isotopic signal, and the lower concentrations of major ions recorded at the Zay spring when 

compared with the Sulden spring. The different bedrock composition of the two rock glaciers 

can explain the distinct concentrations of major ions and trace elements in the two springs. 

These differences progressively decline towards autumn, when the baseflow contribution 

becomes the dominant component of rock glacier discharge (Wagner et al., 2020). Although 

some studies did not find evidence of a lithological origin of high trace element 

concentrations in rock glacier waters (Thies et al., 2007; Krainer et al., 2011), and some 

attributed solute export from permafrost thawing to the release of legacy contaminants 

(Scapozza et al., 2020), rock weathering is considered the major driver of trace element 

export in rock glacier waters. This is especially under permafrost thawing conditions 

(Colombo et al., 2018b) when variations in the availability of weathering products results in 

the preferential export of different combinations of solutes (Steingruber et al., 2020; Tolotti et 

al., 2020). In fact, rubidium and uranium had higher concentrations at the Zay spring, where 

the latter element exceeded up to four times the limits for drinking water and environmental 

quality standards (as no limits for the European Union [EU] exist, we here refer to the United 

States Environmental Protection Agency [EPA], 2018) during late summer, and these 
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elements are typical minor constituents of the orthogneisses of the Zay catchment (Mair, pers. 

comm., 2019). In contrast, concentrations of arsenic, barium, and strontium were much 

higher at the Sulden spring, where the bedrock is enriched in these elements (Engel et al., 

2019). Notably, arsenic concentrations were high, exceeding by two to four times the limits 

for drinking water quality (EU, 2020), but did not show a clear seasonality. This suggests that 

permafrost thawing does not enhance arsenic concentrations, which instead might originate 

from the weathering of the calcareous bedrock filling the cracks in this area of tectonic 

contact (Montrasio et al., 2015). In fact, a recent study attributed the origin of arsenic in rock 

glacier waters to the presence of As-enriched carbonate ores associated with quartz dykes 

(Eder, 2019). 

The two springs have different fluctuations of water parameters at multiple timescales. 

This was detected by wavelet analyses, used in this study for the first time to investigate rock 

glacier hydrology. Diel cycles of EC and water temperature were only detectable at the 

Sulden stream-like spring, where they were particularly evident during the snowmelt period 

(i.e., before and immediately after the calculated end of the snowmelt) and smoothed out as 

summer progressed. This agrees with other studies on rock glacier springs that pointed to the 

importance of snowmelt cycles in driving the oscillations of water parameters (Krainer & 

Mostler, 2002; Berger et al., 2004; Krainer et al., 2007). The absence of diel cycles at the Zay 

pond-like spring is possibly due to the rock glacier body, that may be very efficient in 

buffering the snowmelt cycles occurring at its surface because of the smoothing effect from 

massive rocky debris. Also, translatory flow mechanisms occurring in the rock glacier 

interior might offset the potential fluctuations of water parameters (see paragraph 5.5). Thus, 

there is not clear support for the second hypothesis (H2) on the presence of clear diel cycles 

of water parameters in rock glacier springs as these fluctuations were only evident for the 

Sulden stream-like spring.  However, wavelet transformations detected fluctuations at weekly 

to bi-weekly timescales, suggesting that both rock glaciers are hydrochemically and thermally 

responsive to the medium-term meteorological variability typical of the alpine summer.  

 

5.3. A window of permafrost thaw revealed by water parameters? 

The contribution from permafrost ice melt in rock glacier outflows is more likely to occur in 

the late summer, when the 0 °C isotherm reaches the interstitial ice and triggers partial 

melting (Williams et al., 2006; Leopold et al., 2011; Colombo et al., 2018a). At the Sulden 

rock glacier, the increased permafrost ice melt contribution might have caused the onset of 

water temperature decline and the solute enrichment at the end of August/early September 

each year during the study period. The behaviour of water temperature resembles that 

previously reported for active (Krainer & Mostler, 2002; Krainer et al., 2007; Krainer et al., 

2015; Munroe, 2018) and inactive (Harrington et al., 2018) rock glaciers, as well as for 

periglacial taluses (Millar et al., 2013). In contrast, the steady increase of water temperature 

at the Zay pond-like spring suggests a slow thermal response of the rock glacier to the 

degree-days previously accumulated over the season. At this spring, EC and solute 

concentrations had a unimodal trend, peaking 60-80 days after the snowmelt end. Similar 

timings of maximum EC and solute concentrations were also detected by studies on ponds 

influenced by rock glaciers (Colombo et al., 2018a) and permafrost (Colombo et al., 2019), 
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and may reveal the period of permafrost thaw. This “window of permafrost thaw” ends when 

the cold air and the declining solar radiation promote the re-cooling of the active layer in 

autumn and prevent further internal ice melting. The isotopic enrichment occurring during the 

same period at the Zay pond-like spring might reveal the release of water from permafrost ice 

melt that has undergone several freeze/thaw cycles (Williams et al., 2006), and/or a higher 

contribution from liquid precipitation, which was isotopically more enriched when compared 

with the spring water.  

At the Sulden stream-like spring, the window of permafrost thaw might be identified 

differently. In the late summer, any solute enrichment occurring during this period (at least, 

during dry days), while isotopic values do not change, cannot be attributed to the 

concentration-effect, and might reveal permafrost ice melt. Unfortunately, discharge was not 

monitored in our study, and this hypothesis thus remains speculative and should be tested in 

future research. 

 

5.4. Contrasting responses to rainfall events 

Several precipitation events which occurred during the monitoring period triggered a 

transient response of EC at the two springs. The variations were more marked when the snow 

cover was absent, precipitation was very likely in the form of rainfall, and precipitation 

amounts were high. However, our third hypothesis (H3) on the precipitation features driving 

the response characteristics of the springs cannot be accepted. In fact, the intensity and 

duration of EC response to precipitation events was evident and controlled by the 

precipitation characteristics only at the Sulden stream-like spring, where a rapid (in the order 

of hours) dilution and warming effect associated to the rainfall events occurred. Although a 

fast and transient solute dilution from rainfall has already been reported in rock glacier 

outflows (Krainer & Mostler, 2002; Krainer et al., 2007; Harrington et al., 2018), our study is 

the first to provide a measure of the intensity and duration of these responses, suggesting a 

threshold of 5 mm rainfall after which the increase of rainfall strongly correlates with an 

increased effect on EC and water temperature. The positive thermal response to rainfall 

(during snow free periods) at Sulden, which is unique in the literature (Krainer & Mostler, 

2002; Krainer et al., 2007; Geiger et al., 2014; Krainer et al., 2015; Winkler et al., 2016; 

Harrington et al., 2018; Colombo et al., 2018a), might be promoted by the increased 

subsurface water flow coming from the surrounding moraine deposits that occupy part of the 

spring catchment. During rainfall events, water percolating the moraine sediments might mix 

with the rock glacier waters before outflowing at the Sulden spring, with the observed effect 

of dilution and warming. However, we suggest that this physical and chemical influence has a 

short duration, as the scarce development of these morainal debris promotes a quick water 

routing and hinders water retention.  

At the Zay pond-like spring, a long-lasting effect of rainfall events was observed in terms 

of solute enrichment, with an intensity that is correlated to the volume of rainfall. However, 

only a few rainfall events triggered a detectable response in EC, and we could not identify the 

event parameters responsible for this response. A similar hydrochemical response to 

precipitation was described in a rock glacier pond by Colombo et al. (2018a), who concluded 

that rainfall events occurring during the snow free season enhance solute concentrations 
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because infiltrating rainfall flushes out the weathering products derived from permafrost 

thaw. 

 

5.5. Potential drivers of contrasting hydrological patterns in rock glacier outflows 

Building on previous studies, we suggest that the distinction between stream-like and pond-

like systems might be a good predictor of physical and chemical patterns at multiple 

timescales in rock glacier waters (Figure 8) arising from different hydromorphological 

settings.  

Stream-like springs, such as the one at Sulden, emerge and flow in defined channels. Their 

solute concentrations exhibit an asymptotic behaviour as summer progresses, and drop as a 

function of snowmelt cycles and rainfall events (Figure 8A). The Sulden rock glacier lays on 

steep slopes and this might promote a quick water routing across a steep sub-permafrost 

aquifer (according to Wagner et al., 2020). An efficient mixing of this groundwater baseflow 

with the rainfall/snowmelt water (which has previously crossed the unsaturated layer by 

lateral flow) would result in the solute dilution that we observed at the spring after rainfall 

events and snowmelt cycles. Intra-permafrost flow may become active during autumn, when 

the 0° isotherm is at its maximum depth within the active layer. In this period, most of the 

infiltrating water can be routed at greater depths and recharge the sub-permafrost aquifer, 

instead of being quickly exported across the supra-permafrost flow and smoothing the 

response of EC to rainfall events. At the same time, the weathering products resulting from 

permafrost thaw would be released into the bulk sub-permafrost flow and be exported as 

baseflow from the rock glacier. 

In contrast, at pond-like springs (such as the one at Zay) solute concentrations peak during 

late summer, rarely increase after rainfall events, and are not influenced by snowmelt cycles 

(Figure 8B). A prevalence of slow and distributed water pathways in the rock glacier interior 

might cause a buffered hydrological behaviour that we observed at the pond-like spring 

(Winkler et al., 2016; Harrington et al., 2018). The Zay rock glacier has a gentle slope for 

most of its longitudinal profile, the water velocity at the spring is very low, and a wet 

meadow with raised grass tufts located in the rock glacier forefields indicates a diffuse water 

table emergence (Hayashi, 2020). The presence of a ponding system reveals the emergence of 

the aquifer close to the rock glacier front. Displacement (translatory flow; see Sprenger et al., 

2019) and/or uplifting mechanisms (e.g., transmissivity feedback; Bishop, Seibert, Köhler & 

Laudon, 2004) have been suggested as key processes promoting the outflowing of old 

groundwater during rainfall events in aquifers and have been also suggested to occur in 

periglacial taluses (Muir, Hayashi & McClymont; 2011). These hydrological processes would 

explain the solute enrichment occurring after rainfall events at the Zay ponding spring, 

particularly during the window of permafrost thaw when the rock glacier aquifer is enriched 

in solutes that are flushed from the intra-permafrost layer.  

Unfortunately, these hypotheses linked to contrasting geomorphological settings are 

supported by few studies, and the hydrological regime and internal structure of the Zay and 

Sulden rock glaciers are still unknown. Further research involving hydrological, 

hydrochemical, and geophysical characterisation of rock glaciers is necessary to better 

elucidate the linkages between the internal structure of these landforms and their 
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hydrochemical behaviour at multiple timescales, as well as to verify the existence of these 

two major systems featuring distinct hydrological dynamics.  

 

6. CONCLUSIONS 

This study details the seasonal trends in water temperature and solute concentrations of rock 

glacier springs and, to the best of our knowledge, represents the first attempt to quantitatively 

describe the fluctuation of these parameters at multiple timescales, including the effects from 

precipitation events. Our results provide additional insights on the importance of 

hydromorphological settings in driving the physical and chemical attributes of rock glacier 

outflows. The seasonality of these springs is dictated by the dilution effect from melting snow 

paralleled by an increasing influence from internal ice melt, resulting in continuously cold 

waters and increasing concentrations of major ions and trace elements as summer progresses. 

Based on the limited literature, we hypothesized that the distinct patterns of water routing 

determine the hydrochemical behaviour of rock glacier outflows. Stream-like springs with 

channelised base flow pathways display diel cycles of water parameters, and rainfall events 

cause solute dilution because the rainwater is efficiently routed across the rock glacier. In 

contrast, pond-like springs, relying on a shallow and distributed aquifer, have smoothed diel 

cycles of water parameters, and react slowly to changing atmospheric conditions in particular 

rainfall. These events can trigger solute enrichment, likely promoted by displacement or 

uplifting mechanisms occurring in the rock glacier aquifer. A seasonal window of major 

permafrost thaw can be detected for these rock glacier springs because of the efficient export 

of weathering products during this period.  

Given the increasing hydrological influence of rock glaciers in deglaciating and 

glacier-free catchments, a better understanding of the drivers for distinct physical and 

hydrochemical patterns would help inform the management of water resources under ongoing 

climate change. For example, drinking water monitoring might be intensified during the 

window of permafrost thaw for pond-like springs, with less frequent water quality testing 

needed in autumn and winter. In contrast, stream-like rock glacier springs might be of greater 

concern given the prolonged seasonal persistence of high solute concentrations in these 

waters. These differing patterns might also be ecologically relevant since the enrichment of 

heavy metals might hinder the survival of cold-adapted species that are also sensitive to water 

contamination.  
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Figure 1. Main features of the study sites. A) Geographical location of the Zay and 

Sulden/Solda subcatchments in the European Alps; the two areas are separated by the Rosim 

subcatchment (not highlighted in the figure); B) Location in a DEM map of the Zay (ZRG) 

and C) Sulden spring. D-E) Pictures of the sites with spring locations highlighted. F) Weather 

conditions at the Madriccio/Madritsch station (APB, 2020b). Monthly values for: total 

precipitation (Prec., in mm, black columns), average snow cover thickness (snow, in cm, grey 

area) and average air temperature (Tair, °C, black line) during different years (that are 

separated by dotted vertical lines). The snow free seasons, when only transient snow events 

occurred, are highlighted in green bars. The accumulation of winter snow started on the 10th 

October in 2016 (not shown). Vertical black arrows indicate the sampling dates. 

 

Figure 2. A) PCA biplot with varimax rotation. Ellipses group the samples of the two springs 

(continuous line = ZRG, dashed line = SRG). B) Correlation matrix of the selected variables, 

with Pearson values represented by different colours (blue = positive correlation, red = 

negative correlation). Colour intensity and circle size represent the correlation strength (pale 

and small = weak, intense and large = strong). Blank cells correspond to correlations that are 

not significant (p > 0.01). 

 

Figure 3. Trends of stable water isotopes. A) Dual-isotope plot for water samples of 

precipitation, snowmelt water, ice melt and spring water at the two springs. Local (LMWL in 

black; δ2H = 7.8 δ18O + 16.9) and Global (GMWL in red; δ2H = 8.2 δ18O + 11.27) Meteoric 

Water Lines are plotted. The close-up box highlights the plot area where the spring samples 

are located in the dual plot. Scatterplots of B) isotopic values (δ2H) and C) line-conditioned 

excess (lc-excess) as a function of the days after the snowmelt variable. D) boxplots of lc-

excess for precipitation, ice melt, and snowmelt water samples, with the same axis scale and 

centring as in C) to facilitate comparison. Notes: points for precipitation refer to multiple 

events that occurred during two weeks to one month and collected on the day of reference. 

Interpolation lines are based on polynomial regression (level three for green-ZRG, level two 

for black-SRG). Values of δ2H and δ18O are expressed in ‰ (against the Vienna Standard 

Mean Ocean Water). 

 

Figure 4. Seasonal trends of water parameters over summer, as a function of the days after the 

snowmelt end (reference Madriccio/Madritsch station, APB; 2020) at SRG (left panels) and 

ZRG (right panels). In each scatterplot, distinct parameters are shown in different colours and 

shapes, and their scale corresponds to that of the axis where the name of each parameter is 

placed. Interpolation lines represent linear regression or polynomial smoothing curves of 

level three (turbidity at SRG, smoothing curves for ZRG). 

 

Figure 5. A) Series of EC and Twater (daily average) at the two springs over the logging period 

(24th June – 20th September 2017, 9th June – 26th September 2018, 18th June – 15th October 

2019). As a reference, we provide the daily values of air temperature and total precipitation, 

and the presence of snow cover at the Madriccio/Madritsch station (Source: APB, 2020b). B) 

Model fit of GAMs analyses performed with Twater and EC in the two springs, setting the days 
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after the snowmelt as a smoothing term (see Table 3 for model numerical results). Solid line 

is the smoother, shaded area represents 95 % confidence interval. 

 

Figure 6. Wavelet power spectrum of electrical conductivity and water temperature recorded 

at SRG and ZRG during each summer. As a reference, the daily values of air temperature 

(°C, black line), snow height (cm, grey area) and total precipitation (mm, grey bars) at the 

Madriccio/Madritsch station are plotted in the centre of the figure (Source: APB, 2020b). 

Horizontal axes represent the timeline, shown only in the plot of weather conditions. Vertical 

axes indicate the fluctuation period (days). The wavelet power spectrum (coloured space, 250 

power levels) represents the affinity of each variable to each period over the series. White 

contours delineate the areas of significant periods (p < 0.01, method “white noise”), and the 

black line indicates a ridge in the power spectrum (i.e., strongest affinity of the variable with 

the corresponding period). 

 

Figure 7. Scatterplots of precipitation parameters vs. the associated response of water 

conditions at the two springs. We fitted 95 % confidence intervals of linear (LM) and 

Generalised Additive (GAM) models. Red points indicate the values that were discarded 

from the models because snow cover was present (Precipitation-δEC plot) or because Tair was 

low (< 4 °C; Precipitation-δT plot) during the event. 

 

Figure 8. Schematic representation of the distinct behaviour of rock glacier springs at 

multiple timescales during the snow free season. A) Stream-like springs such as the Sulden 

one exhibit an asymptotic behaviour of solute concentrations as summer progresses (A1). 

Rainfall events (arrows, thickness, and length indicate increasing precipitation amount) cause 

a rapid dilution effect (A2) at these springs, where diel fluctuations of solute concentrations 

are evident soon after the snowmelt period, and progressively smooth towards the end of the 

summer (A3). B) Pond-like springs such as the Zay one exhibit a unimodal behaviour of 

solute concentrations as summer progresses (B1), with peaks corresponding to the window of 

permafrost thaw (WPT). Rainfall events can cause a delayed and long-lasting effect of solute 

enrichment (B2) at these springs where diel fluctuations of solute concentrations do not occur 

(B3). Callouts indicate the number of studies supporting this evidence (see main text for 

references). 

 

  



 
24 

 

 
  



 
25 

 

 
 

 
 

  



 
26 

 

 
 



 
27 

 

 
 

 



 
28 

 

 



 
29 

 

 
  



 
30 

 

Table 1. Characteristics of the Sulden and Zay rock glaciers, and their studied springs. Morphometric features 

were calculated from APB (2020a). a Rock glacier lithology was estimated by visual inspection at the rock 

glacier front, and thus the % values of bedrock constituents represent a rough estimate. b A siderite with 

manganese ore (  ̴1-2 m thick) crosses sub-horizontally the upper cliffs of the Zay subcatchment (Mair, pers. 

comm, 2019). c calculated along the first ten meters of the stream. Water velocity was recorded with a hand 

probe (see Brighenti et al., 2020). 

Rock glaciers Sulden Zay 

Elevation range (m a.s.l.) 2620-2765 2719-2820 

Area (m2) 120 000 88 000 

Maximum length and width (m) 450, 360 563, 266 

Front maximum height (m) 20 10 

Front maximum steepness (%) 78 45 

Average surface steepness (%) 35 18 

Lithology of rocky debris a 

Quartzphyllites (40%), 

michaschists (30%), 

orthogneisses (30%), 

sporadic andesites 

Orthogneisses (70%), 

quartzphyllites (30%) b 

Springs SRG ZRG 

Elevation (m a.s.l.) 2600 2719 

Channel slope (%) c 20 < 1 

Catchment area (m2) 330 000 355 000 

Catchment occupied by rock glacier (%) 36 24.8 

Average slope of upstream catchment (%) 44 28 

Water velocity (m/s) c 0.4-0.6 0.1-0.2 

Discharge (L/s) c 29-46 28-173 

 

 

Table 2. Variable loadings of the physical and chemical variables in the principal component analysis. Bold 

numbers indicate strong correlation (< -0.6 or > 0.6) 

 PC1 PC2 

EC 0.99 0.01 

Mg2+ 0.97 0.02 

Sr 0.97 -0.11 

Ba 0.96 -0.14 

Ca2+ 0.96 0.08 

HCO3
- 0.95 -0.05 

SO4
2- 0.91 0.07 

As 0.90 -0.19 

pH 0.88 0.04 

Rb -0.82 0.46 

δ2H 0.73 0.22 

Turbidity -0.68 -0.16 

K+ 0.66 0.27 

P-PO4
3- 0.55 0.18 

U -0.22 0.82 

Twater -0.07 0.78 

N-NO3
- -0.01 0.73 

SiO2 0.14 0.63 

Na+ 0.39 0.60 
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Table 3. Results from Linear Models (LM), Generalised Linear Models (GLM) and Generalised Additive Models (GAM). For each analysis we provide: the response 

variable; the explanatory variable (elapsed = days elapsed after the snowmelt; duration/intensity = duration/intensity of precipitation) and covariates (* = interaction term), 

the model type (LM, GLM, GAM); the type of distribution selected (GAM/GLM); the F-value of the smooth term (GAM) or t-value of the explanatory variable (GLM) or the 

F-statistic for LM; the intercept and slope values; the deviance explained (Dev.exp.) by GAM/GLM or R2 value for LM.   
a p-values of the intercept were always < 0.001; b Slope compared with 2017, only for GAM of Figure 5; c p-value of covariates, only for LM and GLM. d Data from 2017 are 

missing, and values for 2018 start from early August. 

 

 

Response variable Explanatory var., covariates Model type Distribution (link) F/t Intercept a; Slope b; p-value c Dev.exp. / R2  

Twater at SRG elapsed, year  GAM (Figure 5) Gamma (log) 839.5 0.12; 2018 = 0.006, 2019 = -0.06 38.9 % 

EC at SRG elapsed, year GAM (Figure 5) Gaussian 7976 550.7; 2018 = -54.1; 2019 = -52.4 83.4 % 

Twater at ZRG elapsed, year GAM (Figure 5) Gaussian 9075 1.15; 2018 = -0.006, 2019 = -0.08 81.6 % 

EC at ZRG d elapsed, year GAM (Figure 5) Gamma (log) 17691 4.9; 2019 = -0.09 94.0 % 

δEC duration at SRG Duration  LM (Figure 7) na 96.5 0.56; 1.0, < 0.001 0.66 

δT duration at SRG Duration  LM (Figure 7) na 54.3 0.4; 1.12, < 0.001 0.65 

|δEC| at SRG 
Total precipitation, elapsed, 

intensity 
GLM Gamma (log) -8.45 2.12; p > 0.71 60.3 % 

δT at SRG 
Total precipitation, 

maximum intensity, Tair 
GLM Gamma (log) 3.3 -1.78; p > 0.36 48 % 

δT at SRG (Tair > 4°C) Total precipitation  GLM Gamma (log) 6.3 -2.4 67 % 

δEC at ZRG Total precipitation GAM (Figure 7) Gamma (log) 28.6 3.5 77.5 % 

|δEC| at SRG Total precipitation GAM (Figure 7) Gamma (identity) 14.4 2.5 74.9 % 

δT at SRG Total precipitation GAM (Figure 7) Gaussian 21.7 0.48 83.5 % 

 

 


