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a result, we obtain a double-copy interpretation for hyper-Hermitian manifolds, extending
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1 Introduction

A major focus of modern theoretical physics is the remarkable web of connections between
different field theories of interest. In this paper, we explore one such connection, the so-
called double copy between gauge theory and gravity, which has been the basis of much
work over the past decade due to its applications. The double copy originated in the
study of perturbative scattering amplitudes, first in string theory [1] and later in quantum
field theory and gravity [2—4], where it has been studied at various loop orders, both with
and without supersymmetry. More recently, the notion of double-copy relations between
theories has been extended to the context of the classical limit of the theories using a
variety of approaches. These include relating exact, algebraically special solutions to the
equations of motion of the theories [5-35], as well as applications to perturbative methods.
Some examples of the latter are constructing perturbative metrics directly [36], solving the
equations of motion in a world-line formalism [37-46], relating linearised solutions using
a convolution approach [47-57], as well as applying double-copy ideas to the computation
of quantities of interest to gravitational wave astronomy, mainly in the post-Minkowskian
regime [58-71]. Closer to the idea of this paper, there is a large body of literature on



webs of theories related by the double copy, e.g., [72-80]. A comprehensive review of these
developments may be found in refs. [81, 82].

A crucial idea, which fostered the development of the double copy, is the colour-
kinematics duality of Bern, Carrasco and Johansson (BCJ) [2]. This ‘duality’ remains a
conjecture at loop level, but is well established for tree-level (i.e., classical) gauge theory. It
states that the scattering amplitudes can be written in such a way that (apart from scalar-
type propagators) the kinematic dependence has the same algebraic properties as the colour
dependence, thus hinting that there is a kinematic analogue of the colour Lie algebra in
gauge theory. In particular, there is a kinematic analogue for the Jacobi identity of the
colour Lie algebra, which gives rise to a notion of kinematic algebra. Upon taking the double
copy, the colour information is replaced by another copy of its kinematic analogue, so that
two kinematic algebras appear in gravity scattering amplitudes. In fact, starting from two
distinct gauge theories (e.g., degree of supersymmetry or self-duality constraint), the two
kinematic algebras in the gravity theory, each extracted from one of the ‘single copies’, will
be distinct. Despite some progress, the mathematical interpretation of a kinematic algebra
remains elusive, partly because there is no understanding of the colour-kinematics duality
at the level of the action or the equations of motion. This would rely on a formulation of
gauge theory with a single cubic interaction vertex, whereas the usual Yang-Mills action
has also a four-point vertex. This cubic vertex would have as colour factor the usual Lie
algebra structure constant, f*¢, and as kinematic factor the putative structure constant
of a kinematic algebra.

There is an exception, however, where the kinematic algebra has been fully understood.
Reference [83] circumvented the difficulties of the general problem by restricting to the self-
dual sector of pure Yang-Mills theory. In a long-known formulation [84], the action of self-
dual YM involves a single adjoint-valued degree of freedom, and is manifestly cubic. It is
then possible to completely elucidate the kinematic algebra alluded to above, which turns
out to correspond to certain area-preserving diffeomorphisms (n.b. in the mathematical
literature, this group is often referred to as SDiff or SDiffy, and the algebra as sdiff or
sdiffy). Furthermore, the equations of motion can be written in terms of an interaction
involving the product of two sets of structure constants, for the colour and kinematic Lie
algebras respectively. Thus, the colour-kinematics duality becomes explicit, and the double
copy to self-dual gravity straightforward. The equation of motion for self-dual gravity arises
naturally in the form of Plebanski’s (second) heavenly equation [85].

There have been many interesting results regarding kinematic algebras. They have
been explored via algorithms for obtaining colour-kinematics-dual expressions for scattering
amplitudes, e.g., in [86-96], and via a variety of algebraic and geometric approaches, e.g.,
in [97-101]. And yet, to date, it has not been possible to generalise the very explicit
construction for the self-dual sectors to the full Yang-Mills theory and gravity case. This
motivates looking for examples of kinematic algebras that go beyond those of ref. [83].
That is the main aim of our paper, and we will seek to generalise the results of ref. [83]
in two key ways. Firstly, we may form qualitatively different types of gauge and gravity
theories by replacing the Lie and Poisson brackets appearing in the former and latter
with their Moyal deformations [102]. These arise in alternative formulations of quantum



mechanics [103, 104] as well as in the study of field theories in non-commutative spacetimes;
see e.g. refs. [105, 106] for pedagogical reviews. The Moyal bracket constitutes the most
general bracket one can write down for a Lie algebra of functions of two variables [107], here
corresponding to the two-dimensional space on which the diffeomorphisms act. Secondly,
we will consider replacing the sdiff algebra discussed above with the set of arbitrary —
rather than area-preserving — two-dimensional diffeomorphisms (diff). Both of the above
generalisations lead to new instances of the double copy, in which the colour-kinematics
duality is manifest. These results are summarised in the table of theories of section 5.

A second motivation for our paper is to explore the classical integrability (or otherwise)
of the gauge and gravity theories related by the double copy, an aspect that was not consid-
ered in ref. [83]. As is well-known, both self-dual Yang-Mills theory and self-dual gravity are
integrable, and thus admit an infinite number of conserved charges. This integrability can
be expressed in terms of a Lax pair, and we will find a hitherto unexplored double copy inter-
pretation of Lax pairs in different theories. This suggests that integrability of a gravity the-
ory is “inherited” from its corresponding gauge theories via the double copy. Also, in consid-
ering the more general theories outlined above, we will find that integrability in the gravity
theory can be obtained even if only one of the gauge theories in the double copy is integrable.

The structure of our paper is as follows. In section 2, we review the self-dual double
copy, and relate this to ideas regarding integrability. We consider Moyal deformations in
section 3. In section 4, we look at generalising the algebra of diffeomorphisms in the gauge
theory, and construct a corresponding gravity theory. We summarise the web of theories
studied in this paper in section 5, and the general form of the different Lax pairs and the
infinite tower of linearised symmetries is examined as well. Finally, we discuss our results
and conclude in section 6.

2 The self-dual double copy

2.1 Review

In this section, we review salient details of the double copy in the self-dual sector described
in ref. [83]. This will set up useful notation for what follows, whilst also allowing us to
draw attention to aspects of integrability, which were not examined in [83]. Our starting
point is to consider pure Yang-Mills theory. The (vacuum) equation of motion is given by

DHME,, =0, (2.1)

where

Fy = 0,4, — 0,4, —ig[A,, A (2.2)

is the field strength tensor in terms of the gauge field A, = Aj T, and T is a generator of
the Lie algebra g of the gauge group G. Also, D, = 0, —igA,, is the covariant derivative,
where the gauge field in the second term acts in the adjoint representation. The equations
of motion take a particularly simple form if one considers self-dual solutions, for which the
field strength tensor satisfies .

Fu, = %ewaFW. (2.3)



One may introduce coordinates
u=t—z, v=t+z w=x+iy, wW=zx—1y, (2.4)
such that the Minkowski line element becomes
ds? = dudv — dwdw, (2.5)

and the self-duality conditions can be written as

Fup = 0, (2.6)
Fpp = 0, (2.7)
Fuyy — Fyg = 0.

From eq. (2.6) and a light-cone gauge choice, we may take
A, = A, =0. (2.9)

It follows from eq. (2.8) that there must exist an adjoint-valued scalar function ® = ®*7
such that
Ay = —0,®, Ay =—0,9. (2.10)

Physically, ® represents the single polarisation state that remains in the gauge field upon
projecting to the self-dual sector, and eq. (2.7) implies that it satisfies the following equation
of motion:

*® +ig[0,®, 0,P] = 0, (2.11)

where 9% = 9,0, — 0,05. We follow ref. [83], to rewrite this as an integral equation in
momentum space. Fourier transforming eq. (2.11) and rearranging yields

: —1x- — 1
<I>(k) = —Zg/le‘e (P1+p2 k)/d_pl/d—]bﬁ (plpru _plup2w) (I)(pl)q)(pQ)

. 6(p1 +p2— k
= —Zg/fplfpzm;f)X(pl,m)‘I’(Pl)q’(m), (2.12)

where we have employed the shorthand notation

de
(2m)P’

dp = 5(p) = (2m)PsP) (p), (2.13)

and, in the second line, have defined the kinematic structure constant

X(phpQ) = P1wP2u — P1luP2w- (214)

Antisymmetry of the latter under p; <> ps means that one may replace the product of
scalar fields with a commutator, to finally write

5(p1 +p2— k)

k2 X (pr,p2) F O (p1) B (p2). (2.15)

(k) = g/dpl dp2



The ¢ are the structure constants of the Lie algebra g, [T, T%] = i f2**T°. The kinematic
objects in eq. (2.14) are also the structure constants of a Lie algebra, the Jacobi identity
being

X (p1,p2) X(p1 + p2,p3) + X (p2,03) X (p2 + p3,p1) + X(p3,p1) X(p3 + p1,p2) = 0. (2.16)

The kinematic Lie algebra is infinitely dimensional, with generators of the form
Li = e F%(—kydy + kuy), (2.17)

satisfying
[Lpu Lp2] = Z'X(pla]?2)1—/191-1-10? (2‘18)

It is the Lie algebra sdiff of area-preserving diffeomorphisms in the (w,u) plane. We can
also interpret it as a Poisson algebra, with

{e7 17 72T} = X (py, pp) e PrPRIT, (2.19)
where the Poisson bracket is
{A, B} = 0,A0,B — 0, A0,B. (2.20)

We see that the self-dual YM equation (2.15) is precisely that expected from a Lagrangian
involving a cubic interaction only, whose Feynman rule involves the product of structure
constants for two Lie algebras, corresponding respectively to colour, f%¢, and kinematics,
X (p,q). This makes manifest the BCJ duality between colour and kinematics of ref. [2],
in a sector where the kinematic algebra is a straightforward Lie algebra.

Given eq. (2.15) and the interpretation given above, one may replace the colour struc-
ture constants with a second set of kinematic structure constants, i.e.

fe — X (p1,p2), (2.21)

obtaining the momentum-space equation of motion

=& [aman, PEZR w2 60 0(00), (2.22)

for a scalar field ¢. We now identify the coupling constant as the gravitational coupling

Kk = /327Gy, in terms of Newton’s constant G. In coordinate space, eq. (2.22) is simply
the Plebariski equation for self-dual gravity, also known as the (second) heavenly equation:

0%¢ + k{0, Oud} = 0. (2.23)

Thus, the double copy is particularly clear, and amounts to simply replacing the colour
algebra with its kinematic counterpart. One can also go the other way in eq. (2.21),
replacing the area-preserving diffeomorphisms Lie algebra with a second ‘colour’ Lie algebra
g associated to a Lie group G. In this case, one obtains solutions of the so-called biadjoint
scalar field theory, whose equation of motion is

aZ(I)aa’ + yfabcfa’b’c’q)bb’(pcc/ =0, (2.24)
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Figure 1. Various field theories and the relationships between them. Figure taken from ref. [21].

or, in momentum space,

51 +p2—k)

e Y (et (). (2.25)

(k) =y /d‘md‘pz
Here, y is a coupling constant, and ¢, f@¥<" are structure constants for the two Lie
groups. There is thus a hierarchy of theories as shown in figure 1, which in the self-dual
sector involves scalar field theories with a cubic interaction. In moving to the right in the
figure, one removes an adjoint index from the field, and replaces a set of colour structure
constants in the field equation with a set of kinematic structure constants. The biadjoint
scalar theory plays a crucial role in the formulas expressing the double copy of scattering
amplitudes. From now on, we set the different coupling constants (y, g, k) to one.

This ‘heavenly’ example of the double copy is a different viewpoint to the well-known
story in the integrability literature where self-dual gravity is recovered as a symmetry re-
duction of self-dual Yang-Mills theory, considering the gauge group as the area-preserving
diffeomorphism group on the two-surface ¥, SDiff(¥) [108-110]. This fact has been used
to build hyper-Kéahler metrics from solutions of two-dimensional reduced SDYM equa-
tions [111-113]. The double copy motivates the consideration of the biadjoint scalar theory
mentioned above. Notice that self-dual Yang-Mills theory is a ‘symmetry reduction’ of the
biadjoint scalar theory in the same way that self-dual gravity is a symmetry reduction of
self-dual Yang-Mills theory.

Let us also comment on an alternative description of the self-dual theories. Whereas
the second heavenly equation is eq. (2.23), the first heavenly equation reads

(0,9,0:0) = 1, (2.26)

where (2 is the Kahler potential, and we use the (w,u) Poisson bracket previously defined.
The two heavenly equations are equivalent and arise due to distinct gauge choices [85]. A
somewhat analogous formulation is possible in self-dual Yang-Mills, where instead of (2.10),
the relevant equation is

[0wE, Oy=] = 0, (2.27)

where Z is Lie algebra-valued. This equation arises from a two-dimensional sigma model
with pure SU(N) Wess-Zumino term, and is related to eq. (2.26) in the large-N limit [114],
for reasons similar to those discussed in section 3.1.1. While equations (2.26) and (2.27)
are closely related, the double copy structure is not at all clear, as in the case of (2.23)



and (2.11), which are based on a cubic interaction vertex, the preferred setting for mak-
ing the double copy manifest. Still, it would be interesting to explore these and other
alternative formulations, in the search for further insights into the double copy.

2.2 Lax pairs

There is an additional structure in the equations of motion (2.11) and (2.23) for the self-
dual theories, that did not receive attention in ref. [83], but which will be useful to review
for what follows. Namely, both self-dual Yang-Mills and gravity are known to be integrable
theories, admitting an infinite number of conserved charges. The existence of a Lax pair
indicates that a given theory may be integrable, and we will be interested in tracing how
integrability is inherited by different theories in our double copy examples. For self-dual
YM, this Lax pair consists of two operators obtained from the covariant derivative,

L=D,—ADg, M =D, —AD,, (2.28)

where A € CP! is an arbitrary spectral parameter. It is then straightforward to show
that the self-dual Yang-Mills equations of egs. (2.6)—(2.8) follow from the compatibility
condition

[L, M] = 0. (2.29)

Note that for the explicit gauge choice of egs. (2.9), (2.10), the above Lax pair can also be
written as
L =0, — XN0g + 10,9), M = 0y — MOy + 10, D). (2.30)

The gravitational case can be expressed in a similar way. We can use known results to
classify the types of manifolds that arise, based on the relevant Lax pair, as in [115, 116].
More specifically, let us take V.= {U, V, W, W} to be four independent holomorphic vector
fields on a four-dimensional complex manifold M, such that

L=U-XW, M=W-\V, \eCP!, (2.31)

are operators satisfying Lrv = Lyv = 0 and eq. (2.29), for all A, where v is a non-zero
holomorphic four-form and £ denotes the Lie derivative. Then V forms a null tetrad for
a so-called hyper-Kdhler metric on M. To make contact with the Plebanski equation, we
can choose coordinates such that

U= 81“ V= 87) + (stwau - ¢uw8wa
W = 8107 W = 811) + @buwau - @buuawa (2'32)

which corresponds to
L= au - A (615 + ¢uwau - ¢uuaw) ) M = 6w —A (8’0 + ¢wwau - ¢uw8w) ) (233)

where we use the notation ¢, = 0,0,¢. This Lax pair satisfies [L, M| = 0 if ¢ satisfies
the Plebanski equation (2.23). Furthermore, by considering the holomorphic four-form

v=du/NdvAdwA dw, (2.34)



the Lax pair satisfies also the conditions Lrv = Lyv = 0. Then, the vector fields in
eq. (2.32) form a null tetrad for a hyper-Kéahler metric.
The Lax pairs (2.30) and (2.33) are naturally related, as expected by the double copy.

Let us introduce the Hamiltonian vector field in the (u,w) plane, ®¢, defined by its action

on functions,'

Pr(9) =A{/f, 9}, (2.35)

so that
(@, Py] = (I){f,g}' (2.36)

Then, the Lax pair in self-dual gravity, in eq. (2.33), takes the form
L =0, — XN0g + 0,94), M = 0y — MOy + 0y Py), (2.37)

where the derivatives act only on the components of the Hamiltonian vector fields, that
is, we define 0,®g, = [0y, Py, and 0, Py = [Ow, Py]. This Lax pair mirrors the one in
self-dual YM, eq. (2.30). In the self-dual gravity case, we can also write the Lax pair as

L=0,—M0s+®s,6), M=0y— A0y + Do) (2.38)

2.3 Infinite tower of conserved currents

Let us return to the question of integrability. With the Lax pairs in hand, it is possible
to construct recursively (formally at least) an infinite number of symmetries, associated
to the infinite-dimensional vector space of deformations of solutions to the equations of
motion. This brief review is roughly based on the discussions in [117, 118]. Let us take the
self-dual YM example, with Lax pair given in (2.30). Notice that

[0y 4 10, ®, LU] — [0g + i0,®, M| = 9>V + i[0,®, D, V] + [0, V, 0, D] , (2.39)

where we have used the Jacobi identity and the equation of motion (2.11). Hence, we
obtain a solution V¥ to the linearised equation of motion, ® — ®+ ¥, by solving the system

LU =0, M¥=0. (2.40)

The compatibility condition of this overdetermined system is [L, M] = 0. Now, let us
consider a solution to eq. (2.40) of the form

U(z,A) =) Uy(z)A", (2.41)
n=0
where A is the spectral parameter. Since

LU =3 (0.0, — (0pWnoi +i[0.P, U,_1])) A",
n=0

MU =" (0¥ — (0u¥n_1 +i[0u®, Up_1])) A", (2.42)
n=0

!This Hamiltonian vector field is defined in the (u, w) plane. However, the Hamiltonian functions depend
on the coordinates (u,v,w, ).



with ¥_; = 0, the system (2.40) is solved by an infinite tower of linearised solutions {¥,, }
constructed recursively via

0V = 0V +i[0,8, V1], 0wV, = 0,V +i[0p®, Upy_y]. (2.43)

For instance, we can take Wy = W§T? where ¥ are constants, so that ¥y = i[®, T,
etc. We can also express this hierarchy of infinitesimal symmetries in terms of a hierarchy
of conserved currents, by considering

J(x,\) = (0 0)0y — (04 V)0, such that [0, J"] =0. (2.44)

The infinite tower of currents is given by the A-expansion of J*. Equivalently, we can state
that, if (2.43) represents commuting flows of ¥,, along u and w (this is the compatibility
condition Oy, ¥y, = Oyw¥r), then ¥, is a linearised symmetry due to

O*V,, + [0, ®, 0,V,,] + 1[0 ¥y, 0, ] = i[0*® + i[0,,®, 0,P], ¥, _1] = 0, (2.45)

where the last step follows from the equation of motion for ®. The first equality above
relies on the Jacobi identity.

The discussion for self-dual gravity is analogous. For the Plebanski equation, we can
express the hierarchy of infinitesimal symmetries in terms of Hamiltonian vector fields
{®y,, } recursively via

6u<1>9n = 811,(1)‘9”71 + [6u<1>¢, ¢9n71], @w%n = 61,(1)9”71 + [8w<1>¢, (I)anJ' (2.46)
We can also write

9,0, = Lot + Pio,ody 30 Poutn = o0t T Ploued, ) (2.47)

In analogy with the self-dual Yang-Mills case, we can take ®g, as a constant Hamiltonian
vector field, e.g., ®g, = Oy — Ou, 50 that &g, = [Py, Pg,] = P4 4,1, etc. For these two
examples, we have 0y = u+w and 6; = ¢, — ¢y, respectively. Then the conserved currents
are obtained from

J(x, ) = Dy, such that [0, J#] =0. (2.48)

The analogous statement to (2.45) is
0?05 + {0, 0u0n} + {0uwbn, 0ud} = {0 + {0, ud}, 0n1} = 0, (2.49)
or in terms of Hamiltonian vector fields

D520, 4+ {906,000 }+1{00 0,006} = [PO264{006,0us}s Pon_1] = 0. (2.50)

3 Moyal deformations in gauge theory and gravity

In the previous section, we reviewed the known double copy at the level of equations of
motion in self-dual Yang-Mills theory and gravity, and also drew attention to integrability
aspects that have not been previously considered in a double copy context. Our overall



aim is to generalise this construction, and thus we shall proceed by studying the kinds
of generalisation of the above theories that are possible. We will first look at Moyal
deformations of our usual self-dual theories, a concept which first arose in alternative
formulations of quantum mechanics [103, 104] as well as in the study of field theories in
non-commutative spacetimes [105, 106]. The main idea is to replace the standard product
on functions with the star product *, defined in our present case as follows:

frxg=fexp (Zzh ?> g, (3.1)

where we have defined the operator:
e

— =
P=04,04— 040 (3.2)

that appears in the Poisson bracket of eq. (2.20):

{figy=7f Pg. (3-3)

The star product is associative and non-commutative, and contains a deformation param-
eter h, whose notation stems from the original context in (non-commutative) quantum
theories, and whose interpretation will be clarified below. Its use in defining deformed
equations of motion usually proceeds by defining the so-called Moyal bracket?

1
{f.9" == (frg—g%f) (3.4)
such that in the limit # — 0 we have
lim frg=fg,  lim{f,g}"" ={/ g} (3.5)
1—0 h—0

That is, the star product of two functions reduces to the conventional (commutative)
product of functions, and the Moyal bracket to the Poisson bracket. By substituting
eq. (3.1) into eq. (3.4) and Taylor expanding in %, we may write a general expression for
the Moyal bracket in terms of the Poisson bracket, namely

00 hQS 2s

{f,g}™ = Z 223 23+1 ,Z ( ) {00700 f, 00,025 g}, (3.6)

or equivalently

[e'e) ( ) h25 25+l

2s+1 o
U =3 i & ( ;_>(&%ﬁﬁljfﬂaﬁ“%%w. (37)

In a similar fashion to the previous section, we can explore the algebraic properties of this
object. First, one can show that for any three functions, the Moyal bracket satisfies the
Jacobi identity

{2 M + {{g, M, M + {{h, g}M 1M =0. (3.8)

2Notice that this product is real (see, for instance, eq. (3.6)), even though the individual star products

are not. This means that phases which may appear in some non-commutative theories do not occur here.

~10 -



Then, we consider the particular relation
{erimm, iy = XMy, e, (3.9
where the structure constant X (p1, p2) is given by

XM (o) = X1 S 2SN 13 (2 (e prapa). (3.10)
P1,P2) = P1,DP2 =~ 223(2S+1)!j:0 - ] PlwP2u PiuP2w)” - .

This is a generalisation of the quantity X (p1,p2) encountered in eq. (2.14), and reduces
smoothly to the latter in the appropriate limit:

lim X" (p1, p2) = X (p1, p2). (3.11)
h—0

Furthermore, using eqgs. (3.8) and (3.10), it is easy to see that the structure constant X
also satisfies the Jacobi identity

XM (p1, p2) XM (p1 +p2, ps) + XM (p2, p3) XM (p2 +p3, p1) + XM (p3, p1) XM (p3 + p1, p2) = 0.
(3.12)

We can therefore use the deformed structure constant X (py,ps) as a building block
in constructing generalised field theories that obey double copy relations, and will see a
number of examples below.

Another useful realisation is the Moyal deformation of the Lie bracket. Naively, we
could define this as

0o hgs 2s

M _ 25—7 97 J §25—J
[V, W] 222828“,2 ()a NV, 0,00 TW]. (3.13)

For vector fields V and W, the derivatives inside the Lie bracket are understood as acting
as 0,V = [0y, V], etc. Generically, this idea is naive, because such a Moyal bracket does
not in general satisfy the Jacobi identity. A particular case where it does indeed satisfy it
is that of Hamiltonian vector fields,

- ( h2s 2 2s—37 97 J 92s—7]
[@f, D] 2225 2S+ 'Z ; (00700, 00,05°77 By

5h25 2s
- Z 225 25 + 1 |Z ( ) {02:778] 1,600,027 g}
= <1>{ e (3.14)

such that, analogously to the Jacobi identity (3.8),

H(I)f7 @Q]Mv (I)h]M + [[(I)gv (ph]M’ (I)f]M + [[®n, (I)f]M7 (I)Q]M =0. (3.15)
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3.1 Deformed self-dual gravity

As a first application of the above ideas, we will consider a Moyal deformation of the
Plebanski equation, which was investigated in [108, 119, 120]. The deformed Plebanski
(second heavenly) equation is

%) + {0, O} = 0. (3.16)
In momentum space, this deformed equation can be expressed as

d(p1 +p2 — k)

(k) = ;/Jp1@p2kgXM(php2)X(p1,p2)¢(p1)¢(P2), (3.17)

and it is clear from eq. (3.11) that the usual Plebanski equation both in coordinate
space (2.23) and in momentum space eq. (2.22) are recovered in the limit 7 — 0.

The form of eq. (3.17) is particularly appealing from a double copy point of view.
That is, all of the theories considered in this paper have momentum-space integral equations
whose kernels involve products of structure constants, and the present case can be obtained
by a process analogous to the double copy of eq. (2.21), making instead the replacement

£ — XM (py,pa), (3.18)

in eq. (2.15). Below, we will extend this philosophy to obtain a web of theories with certain
desirable properties. Before doing so, however, it is interesting to examine the integrability
of the theory of eq. (3.16). This has been investigated in [120, 121}, where as usual one
may address this question by formulating a Lax pair. There are two possible ways to
do this, namely we may consider a Lax pair consisting of undeformed vectors satisfying a
deformed bracket, or ‘deformed vectors’ satisfying an undeformed bracket. The two options
are related to attributing X (py,p2) or XM (py,p2) in eq. (3.17) to the Lax compatibility
condition or to the Lax pair. For the undeformed Lax pair, we can take the results of
eq. (2.33) and use (3.14) to show that they satisfy the deformed compatibility condition

(L, MM =0 (3.19)

if ¢ satisfies the deformed Plebariski eq. (3.16).

The argument when using a deformed pair (but undeformed bracket) is more involved.
First, let us explain the deformation of the vectors as follows. We can rewrite the Hamilto-
nian vector field ®¢ in the (w, u) plane, given in eq. (2.35), using the Poisson operator (3.2)
in the form o

¢y = f P= fu0u — fulw. (3.20)

Clearly, this vector satisfies the relation
<~
Pr(g)=fPg=1{f g} (3.21)

Now, following the Poisson bracket case, eq. (3.21), we can define (in a slight abuse of
language) a deformed Hamiltonian vector field, @y, by

¥ (9) ={f. 93" (3.22)
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Then we have [121, 122]

2 h <

M =Zfsin(= P

i fsm(2 >
)hQS 28+1

25+ 1\ i c2st1—j pyA2s+1—j )
= . 2

Note that in the & — 0 limit, we recover a conventional Hamiltonian vector field, i.e.
limy_q <I>?/[ = ®. It follows from the above that the Lie bracket of deformed Hamiltonian

vector fields is

[(I)My (I)M] {f gyM- (3.24)

Note that, following the Jacobi identity (3.8), the deformed Hamiltonian vector fields sat-
isfies the Jacobi identity

[@F, @57, @4") + (@5, @3], @] + [}, @], 7] = 0. (3.25)
Taking the ‘deformed vectors’
LM =9, = X (9 + 0L, MM =9, =\ (0, + @} ), (3.26)
we can check that they satisfy the condition
(LM, MM =0 (3.27)

if ¢ satisfies the deformed Plebanski eq. (3.16). To see this, we note that only the A? term
does not vanish trivially, taking the form

[0y + @), 05 + ®)) = *®) + (@) )]

= Pl (b i}

= 0. (3.28)
In this case we have the deformed vectors
U =0y, V=0,+o)
W = 0y, W =0 + @} . (3.29)

The two equivalent approaches mentioned above, of deforming either the bracket or the
Lax pair, are represented by (3.19) and (3.27).

We now proceed in analogy to section 2.3 to obtain an infinite tower of conserved
currents for the deformed theory. First, the linearised equation of motion is obtained from
the deformed Plebanski equation (3.16) via the replacement @2/[ — @é/[ + @M is

0°®;" + (0,0}, 0,95"] + [0 Py, 0uPY'] = 0. (3.30)

Now, let us consider CIJQ/[ of the form

oo
oy = oyt A", (3.31)
n=0
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We can express the infinite tower of linearised solutions {@gf } to eq. (3.30) recursively via

Ou®y! = 05®p |+ [0.2Y, @y ], Oyl = 0,25"  +[0,@}, @ ], (3.32)

9n—1

with @é\{ . = 0. This @gﬁ satisfies the compatibility condition Buawq)g;f = 8w8u<13£:{ and it is
a solution of the linearised equation (3.30), using the Jacobi identity (3.25). Alternatively,
the same infinite tower of linearised solutions can be obtained from Hamiltonian vector

fields but using the deformed bracket. In this notation, we have the recursive equations
au(ben = (915(1)9“71 + [6Uq)¢’ ¢0n71]M7 aw¢6n = av¢6n71 + I:awq)¢’ ¢0n71}M7 (333)

with ®g , = 0. As in the deformed Hamiltonian vector fields, this ®p, satisfies the com-
patibility condition 0,0, P, = 0,,0,Pp, and it is a solution of the linearised equation

82(1)9 + [811)(1)(;51 au(I)G]M + [811)(1)97 8u(1)¢]M =0. (334)

using the Jacobi identity (3.15).

The Moyal-deformed self-dual gravity shares features and properties with the unde-
formed version. One such property, as discussed above, is integrability. In terms of the
language of the first heavenly equation, eq. (2.26), this property can be expressed in a
concise geometric way with an associated 2-form €2, which satisfies the equations d€2 = 0
and QAQ = 0 [121]. This is the Ké&hler form, which is related to the Kéhler potential € as
Q = Qdaxt Ndz”, where ¥ = {w,u} and ¥ = {y, z}. In [123], a Moyal deformation of the
first heavenly equation was considered, and a four-dimensional Moyal deformed integrable
Kaéhler manifold was constructed by imposing in a consistent way that the deformed 2-form
Q is closed, Hermitian and has unit determinant. This procedure provides an alternative
but equivalent approach to equation (3.16), based on the second heavenly equation.

3.1.1 Deformed self-dual gravity as undeformed self-dual Yang-Mills

In this subsection, we take an alternative approach to the Moyal deformation of self-dual
gravity, which leads directly to undeformed self-dual Yang-Mills. Instead of the deformation
X (p1,p2) — XM(p1,po) considered above, we will see that we can think of X (p1, p2) — fob¢
as a Moyal deformation, at least in a particular construction.

In order to do that we follow now ref. [124], which considered the case of SDYM in
RLP=1 with su(N) or sl(N,C) Lie algebra valued fields.® In ref. [124], a novel version of
the basis for these algebras was found, in terms of a double index notation m = (mq, ms).
In more detail, the Lie algebra generators can be written as

N mim
L =—5_w 5 gmme (3.35)
where w = exp (%), and S and T are N x N matrices such that SV = TV = —1 and

T-58=wS-T. These generators satisfy

m

[Lons L) = iFS ™ Ly g, (3.36)

3By SDYM beyond D = 4, we mean simply the straightforward extension of (2.11), where the wave
operator is D-dimensional. The dimensionality is not relevant for our purposes.
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where Fy(nn}jn) = N sin (£m x n). Thus, the analogue of eq. (2.15) is given by

o

M—'——MX(PLPQ)E sin (;m X n) 2™ (p1)®" (p2). (3.37)

1
M (k) = 5 /Cfplcfpz 12 -

In this basis, scalars ® are expanded as ®(z) = >",, " (z)Ly,.
In the limit N — oo for the Lie algebra in eq. (3.36), we get the sdiff(7?) algebra

{em,en}tr = (M X n)emin, (3.38)

where m x n = ming — maony, and the Poisson bracket on T2 is {f, g}7 = fro9ue1 — fo192s-
The generators of sdiff(T?) with local coordinates (x1,z2) are

em = expi(mixy + maxa). (3.39)

Furthermore there is an isomorphism which maps the Lie bracket (3.36) into the Moyal
bracket for e,,:

2 h
{em, en ) = 7 sin <2m X n) Emtn, (3.40)
where we have made the identification
2
h= FW (3.41)

Thus the large-N limit corresponds to the limit A — 0.
Then, the equation of motion on RMP =3 x T2 describes an integrable Moyal deformation
of self-dual gravity equation known as the x-SDYM system [125, 126] given by

8¢ + {90, D} =0, (3.42)

forp =3, " (h;x, x1,22)em and ¢™ = > 02 " ¢)'. Equation (3.42) can then be written
as

(p1 +p2 — k)

1
m—+n _
o™ (k) = h/dfpufpz 12

X (p1,p2) sin (Zm X n) ¢ (p1)d" (p2)- (3.43)
The master equation (3.42) is proven to correspond to an integrable system [125], by showing
the existence of Lax pairs, an infinite hierarchy of conserved quantities, and a twistor
construction. Moreover in ref. [126] some explicit examples are given. The direct map
between (3.43) and the SDYM equation (3.37) is clear.

Taking the limit 7 — 0 in eq. (3.43), we get the Plebanski-Przanowski equation [119]

5(p1 +p2—k)

2 X (p1,p2)(m X n)dg (p1) 45 (p2). (3.44)

1
¢ (k) = 5/67201th2
Equivalently, one can take the limit N — oo in eq. (3.37) on RLP~3, For instance, the
D = 4 case corresponds to R x T2, In this case the gauge theory is the principal chiral
model, which is an integrable two-dimensional reduction of SDYM equations on RY3. This
model leads to the Husain-Park heavenly equation which was discussed in [126, 127].
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It is worth mentioning that this procedure can be employed to interpolate between
all theories shown in figure 1. For instance, we can start from the biadjoint scalar theory
and take in eq. (2.25) two times the representation of the Lie algebra in the trigonometric
basis [124] i.e. f%¢ — Zsin (%m x n) and fave 7 sin (%/m’ x n'). Taking the limit,
for instance, A — 0 this represents the inverse zeroth copy and we get self-dual Yang-Mills
equation (2.15). A further limit &’ — 0 leads straightforwardly to the double copy, i.e. the
self-dual gravity equation (2.22). It is also possible to start from the self-dual gravity
equation (2.22) and take its single copy as a Moyal deformation of gravity with A’ # 0.
A further Moyal deformation with % # 0 in the gauge theory leads directly to the zeroth
copy giving the biadjoint scalar theory. Thus, this procedure allows us to interpolate with
two continuous parameters i and i/ among the set of theories mentioned in figure 1. Of
course, this particular construction relied on periodic identifications of coordinates, so that
a T? arises, and the Fourier modes are discrete. If they are not discrete, then we will have
structure constants labeled by continuous indices like X (py,po) in the earlier discussion.

3.2 Deformed self-dual Yang-Mills

We will now explore the Moyal deformation of self-dual Yang-Mills theory. We will see,
however, that the deformation that fits in with the colour-kinematics duality does not
coincide with the most commonly considered Moyal deformation of self-dual Yang-Mills —
whereas the latter deformation is integrable [128, 129], the former does not preserve it.

Starting from the deformed Plebanski equation for self-dual gravity in momentum
space (3.17), we have two different single copies. One of them, replacing XM (py, po) — ¢,
is the usual self-dual Yang-Mills theory. On the other hand, we can take X (py,p2) — fo¢
and we obtain a deformed version of self-dual Yang-Mills. The equation of motion for this
gauge theory in momentum space is

(k) = 3 [amip, PR ) et et (3.05)

In the limit A — 0, we recover the usual SDYM equation (2.15). Furthermore, one may
show that eq. (3.45) is equivalent to the position space equation

%P +i[0,®, 0,2 =0, (3.46)

where we are using the Moyal bracket (3.13). This theory differs from the usual Moyal
deformation of self-dual Yang-Mills theory that is considered in the literature, which can
be written as

0*® +i[0,®,0,P), = 0, [A,B], = Ax B — B~ A. (3.47)

This latter equation has a very specific interpretation: it is the theory one obtains upon in-
troducing self-dual Yang-Mills theory in a non-commutative spacetime. To our knowledge,
no such interpretation exists for eq. (3.46), which is the unique theory one obtains upon
single copying the deformed Plebanski equation in the above-mentioned fashion. Both
eq. (3.46) and eq. (3.47) reduce to the usual self-dual Yang-Mills theory in the limit A — 0.
The relation between these two distinct deformations is not obvious. In fact, the colour
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structure of eq. (3.47) is very different from the one typically found in gauge theories. For
instance, a calculation shows that

i[9 (BT™), 0y (BYTY)), = —% fabCTcd% (n{@", "} = hT T {9, 0,0"} M
1

= —5 fUT{0, 0"} —nT T {9,8%,0,8"} + O(R?). (3.48)
In the right-hand side of the first line, the first/second term has only odd/even powers of
h. We can see right away that ® is generically not a colour Lie algebra element in the
usual Moyal deformation (3.47), i.e., ® # ®%T?; because if you start with ® = ®*T* in the
left-hand side of eq. (3.47), a distinct colour structure is generated, T which is not an
element of the Lie algebra. Instead, ® lives in the enveloping algebra generated by elements
T(@az2 ... 7an)  This contrasts with the single copy theory case of eq. (3.46), where ® lives
in the Lie algebra. The question of whether there is a more direct physical interpretation of
eq. (3.46) is interesting.* For our present purposes, we shall simply examine the question of
integrability, by attempting to construct a Lax pair following an analogous process to that
of SDYM. We will take a naive approach in order to see where it fails. Applying the Moyal
bracket (3.13) for a gauge field, one may first look at the components of the deformed field
strength tensor

FY = 0,A, — 0,A, — Ay, A, (3.49)
and the deformed self-duality conditions take the form
EM =0,
FM — o,
EM _pM — . (3.50)
These equations arise as the condition [L, M]M = 0 for the two operators defined in

eq. (2.30). However, this does not by itself guarantee integrability, which may be seen
upon trying to construct a hierarchy of linearised solutions. The replacement ® — ® + ¥
results in the linearised equation

O*V 4 i[0,V, 0,0M +i[0,®, 0, V)M = 0. (3.51)

Expanding W in powers of the spectral parameter A, we can express the infinite tower {¥,, }
recursively via

0y, = 05V, 1 +i[0,®, ¥, 1M, 0wV = 0, Wy 1 + [0 ®, U, 1], (3.52)

with W_; = 0. One may be tempted to conclude that the theory is integrable. However,
this type of construction relies crucially on the Jacobi identity for the bracket, which fails
in the present case of the Moyal bracket (3.13).° It relies on the Jacobi identity in order to

4There are several instances in the double copy literature where one theory of no obvious relevance of its
own is very useful for providing building blocks, via the double copy, for more physically relevant theories.

®We made comments regarding this property near (3.13), where we noted that, when the Moyal-deformed
bracket was applied to vector fields, the Jacobi identity did not apply in general, but did apply to Hamil-
tonian vector fields.
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prove that this infinite tower is a solution of the linearised equation (3.51) — without the
Jacobi identity, one cannot show that ¥, is a symmetry if ¥,,_; is. Even before that, the
Jacobi identity is crucial in order to relate the linearised equation to the presumptive Lax
pair. To see in detail how the Jacobi identity fails, let us take three gauge fields V' = V*T%,
W = WPT? and U = U°T*. First, the Moyal bracket of V and W is explicitly

M_‘OO (— )h% 25 25\ Labd 2s—j ajtra\(aj 92s—jrrbyd

; = ( hQS 2 abd b d
21222528—{—1'2 f V23 ij2s ]T
= if*VWT? + O(h?), (3.53)

using the notation 9;,0;'F = F, ,,. Now, for three gauge fields, we have

HV W]M U]szffabdfdceTe (354)
)s+s h2(s+8 25 2¢' 4 25’ b
X Z 22(5+s/) 23+1 28 +1 'ZOJIZO j 7 j/ (VQG jij] 25— 1)25 -3’ ]/U/Qs
bd pd b R b b *
= — fabd pdeee | yayy Uc*ﬂz(*l) <J) (V3 jWia jUSH (VW )a 5Us5 ) | +O(RY).
§=0

Finally, the Jacobi type equation gives

VW U + (W, o), VY + o, v, w
— _(fabdfdce +fbcdfdae —|—fcadfdbe)TeVaWbUc+O(h2). (355)

The leading order term, O(h°), vanishes due to the colour Jacobi identity. However, the
first subleading term is proportional to

2
if2 a ce a c a c
Z(*UJ <]> [ferd e (Voo y ;Wi s U+ (VOW )2 5Us 2 ;)
=0
+fbcdfdae (ngfj,] Co ]Va-i-(WbUc)zfj,j jc}2ij>+fcadfdbe (Ug JJ‘/J2 JWb+(U V )2 JJW]bQ J):I
£0, (3.56)

that is, it does mnot vanish generically. Hence, [[V,W]M UM + [[W,UM, V™ +
[[U,VIM WM = 0. The integrability property relies implicitly on the Jacobi identity
for the appropriate bracket, which fails in this case. Therefore, the deformation (3.46) of
the SDYM equation of motion, which we arrived at by taking the single copy of Moyal-
deformed SDG that keeps the factor XM (py,p2), and changes X (p1,p2) — fo¢, is not
integrable. This is because the integrability of Moyal-deformed SDG relies precisely on the
factor X (p1,p2), which we discarded here.

3.3 Doubly deformed self-dual gravity

We have so far been constructing various theories from known self-dual integral equations,
by replacing different structure constants by their deformed counterparts. Continuing
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this procedure, we can consider the theory one obtains by taking two copies of the Moyal-
deformed kinematic algebra, whose structure constant is XM (p1,p2). This can be obtained
e.g. by taking the deformed self-dual Yang-Mills theory of eq. (3.45), and replacing f*¢ —
XM (py,p2). The resulting equation of motion in momentum space then takes the form

k !
= 3 [ aman PR i g ) X o po)otm), (357

where
o0 (_ 1 ) s h/25

/ 2s 28 s—j j
xM (P1,p2) = X(phm);m—*‘l)!;( 1) (] ) (pleQu) (p1up2w) ) (3-58)

and we have introduced a second deformation parameter &’ to be associated with M’. In
position space this equation is

sh25 23

2 2s 2s—j+1aj + aj 92s—j+1 M’ _

If we take either of the limits A — 0 or &/ — 0, we recover the deformed Plebariski
equation (3.16). Furthermore, it is straightforward to verify that eq. (3.59) arises from the
(doubly deformed) Lax Pair condition

LM MMM — o, (3.60)

To see this, one may first note that only the A\?> does not vanish trivially, which in turn
leads explicitly to

[0y + ®L 0 + @XM = 92 @l + [0}, pI)M
M/
P02 Bt Lo (O oo b0t gy
=0. (3.61)

Moreover, we can obtain the same equation with [LM , MM ]M/ = 0. For this double de-
formed Plebanski equation (3.59), we obtain a linearised equation of motion obtained from
the replacement CIJQ/[ " <I,>gf 4 @é\/f '. Expanding @é\/[ " in powers of the spectral parameter
A, the infinite tower {@gf } can be expressed recursively as

8.0 = 0,0+ [0,05", @) M, B @i = 9,8)1 4+ [9,®M )" 1M, (3.62)

with <I>9]Vf/1 = 0. Similar to the deformed self-dual Yang-Mills infinity tower (3.52), the
infinity tower (3.62) satisfies the compatibility condition awﬁuq)é\;[ "= &LGU,CI)S;[ '. However,
also similarly to the deformed self-dual Yang-Mills theory, the integrability construction
fails because the Jacobi identity of the Moyal bracket applied to deformed vector fields fails.

In this section, we have demonstrated the existence of a family of generalised self-
dual gauge and gravity theories obeying double copy relationships. The key ingredients
were the expression of such theories as integral equations whose kernels manifestly contain
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products of structure constants, and the introduction of new such constants — e.g., those of
Moyal-deformed diffeomorphism algebra, X (p1,p2) — that could be used as appropriate
building blocks. In all cases, we could show that the position space equations of motion
resulted from a Lax pair type of condition, although this was not always sufficient to
guarantee integrability. The Moyal deformation considered above is in fact only one possible
generalisation of the heavenly double copy between self-dual theories: we examine another
in the following section.

4 Generalising to the diffeomorphism algebra

We will now, operating with a similar motive as in the previous section, consider a second
— independent — generalisation of our usual self-dual theories. That is, we will consider a
less restrictive gauge group, by relaxing the requirement that the kinematic group (SDiff)
preserves the volume form, in this case the (u,w)-area form. This gives instead the group
of full two-dimensional diffeomorphisms (Diff) in the (u,w) plane. As we will see, this Diff
group is in turn related to hyper-Hermitian manifolds, thus going beyond the hyper-Kéhler
structures in conventional self-dual gravity, discussed here in section 2.2.
Let us take a vector field Wy in the (w,u) plane:

\I/f = anA = fwaw + fuaua (4'1)

where A € {w,u} and f4 = f4(u, v, w, w) depend on all the coordinates. In this form, Uy
is an element of diff, the Lie algebra of Diff. The vector ¥ satisfies the Jacobi identity

H\Dﬁ \1/9]7 Up] + H\I]gv sl \I/f] + [[Yh, qu]? \Ilg] =0, (4.2)

for the functions f#,¢*, h4. To make the connection with the previous sections, we need
the kinematic object associated with the Lie algebra diff. To this end, let us define a vector
in the direction A and momentum p by ¥, 4 = e~%94. The commutator between two of

such vectors is
[Wp,a, Vo8] = iY (44, PB)Ypiq0, (4.3)

where we define the kinematic object

YA(pic,pap) = p2pde — prody. (4.4)

This satisfies Y4 (pic, pa) = =Y (p2p.pic) and also, as we will see shortly, a Jacobi
identity. As a consequence, it will be interpreted as a structure constant of the two-
dimensional diffeomorphism algebra (diff). Following eq. (4.2), we have the Jacobi relation

YD(qAapB)YE(va (p + q)C) + YD(kB, QC)YE(pDa (q + k)A) + YD(pC7 kA)YE(qDa (p + k)B) =0,
(4.5)

for any E. The kinematic factor Y4 (p1c, p2B), which is the structure constant for diff, will
be our focus in this section.
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4.1 Hyper-Hermitian manifold

The notion of a hyper-Hermitian manifold is a generalisation of the hyper-Kéhler case,
where the volume preserving condition Lrv = Lyyv = 0 is relaxed on the gravitational Lax
pair (2.31). Taking the Lax pair (2.31), we can rewrite the condition [L, M] =0 as

U,W]=0, [UV]+[W,W]=0, [W,V]=0. (4.6)

Then, V = {U,V,W, W} forms a null tetrad for a hyper-Hermitian metric on a four-
dimensional complex manifold M. Following [116, 130, 131}, we can define the vectors

U - 81“ W = aun
V =0, + 0¥y, W =045+ 0,¥;. (4.7)
As in previous sections, for notational brevity, we denote 0, ¥ = [0y, ¥¢] and 0,¥f =

[Ou, Uf]. The tetrad V satisfies eq. (4.6) if and only if f# satisfies
P+ {fB,0pf4) = 0. (4.8)

It was shown in ref. [116] that this system describes an hyper-Hermitian manifold. In
momentum space, eq. (4.8) implies the integral equation

0(p1 +p2— k)

5 X (p1,p2)Y (pro,p28) 7 (01) 1€ (p2), (4.9)

FAKR) = ;/cfmcfpz
thus justifying our above remark relating the Diff group to hyper-Hermitian manifolds.
Before proceeding, let us point out that Hyper-Hermitian geometries can be more
formally defined as follows. Let M be a four-dimensional manifold and g be a Riemannian
metric on M. If M is equipped with three complex structures I, J, K satisfying the algebra
of quaternions, i.e., IJ = —JI = K, and g is a Hermitian metric for the three complex
structures, then M is hyper-Hermitian. If, besides this, the three Kéhler forms are closed,
dQr = dQy = dQxg = 0, then M is hyper-Kéhler. A hyper-Hermitian manifold has a
self-dual Weyl tensor. On the other hand, a hyper-Ké&hler manifold has a self-dual Weyl
tensor and also a vanishing Ricci tensor.%
Similarly to the arguments in section 3, the fact that the kernel of the integral equation
of eq. (4.9) involves a product of structure constants immediately furnishes it with a double
copy interpretation. In particular, we note that eq. (4.9) can be obtained via the double-

copy-like replacement
£ = Y pio,p2b), (4.10)

in the structure constants of the colour Lie algebra in eq. (2.15). Furthermore, eq. (4.9)
then shows that hyper-Hermitian manifolds are governed by a product of kinematic Lie
algebras, namely

sdiff x diff.

5These statements apply to our convention on (anti-)self-duality. Literature following different conven-
tions may take the Weyl tensor for these manifolds to be anti-self-dual instead.
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Now, the Lax pair L and M associated with the vectors (4.7) for an hyper-Hermitian
manifold is given by

L =0, — A0g + 0,7)), M =0y — MOy + 0T ), (4.11)

and the eq. (4.8) arises from the condition [L, M] = 0. We can recover conventional self-
dual gravity if we impose the condition Lv = Ljrv = 0 on the Lax pair (4.11): there must
then exist a function ¢ such that f* = —0,¢ and f* = 0,,¢, such that eq. (4.8) reduces to
the single Plebanski equation (2.23).

Similarly to the previous cases, we can construct a hierarchy of linearised solutions.
The linearised hyper-Hermitian equation, for Uy — Wy 4 W, is

Wy + [0V 5, 0, W] + [0 ¥y, 0,9 5] = 0. (4.12)

Expanding ¥, in powers of A, the infinite tower of linearised solutions {W¥,, } to (4.12) is
recursively expressed as

0V, =05V, , + [0V, ¥y ], 0wV, = 0¥y, | + [0wVy, Yy, ], (4.13)

with ¥, | = 0. This ¥, satisfies the compatibility condition 0,0,¥, = 0,0, ¥, , and
the tower solves eq. (4.12). This relies on the Jacobi identity (4.2).

In addition to the structure constants of diff considered above, we could also introduce
a Moyal deformation of sdiff.” This results in a deformed version of the hyper-Hermitian
equation (4.8). The integral form of the equation of motion reads

1 0(p1 +p2—k
fA(k) = Q/dp1dp2(1]€22)XM(phP2)YA(P107pQB)fB(Pl)fc(pz)’ (4.14)
and it is straightforward to obtain the equation in position space,
P+ {fB, 05 M = 0. (4.15)

Using the Lax pair eq. (4.11), this deformed equation arises from the condition [L, M]™ = 0.
The linearised deformed hyper-Hermitian equation, for Uy — ¥, 4 W, is

Uy + [00T s, 0, T )M + [0, Ty, 0,9 M = 0. (4.16)

Expanding ¥, in power of A and using the Lax equation, the infinite tower {V, } is
recursively expressed as

WYy, =05V, | +[0,9,9, M OV, =0V, | + [0,V ¥, M (4.17)

with W, | = 0. In this naive hierarchy we are using the Moyal bracket on non-Hamiltonian
vector fields, and similarly to the deformed self-dual Yang-Mills and doubly deformed
Plebanski cases, the Jacobi identity fails, and hence integrability is lost.®

"Seen in a different way, we could start from eq. (3.45) and make the replacement (4.10).

8A different version of a deformed hyper-Hermitian structure is presented in [132]. That particular ex-
ample formally retains integrability of the theory, although a twistor description is missing. Following [133],
they make a deformation of the standard homomorphism between diff(S*) and the Poisson algebra on the
cotangent bundle T*S'. It would be interesting to know whether these ideas fit into an expanded double
copy web of theories.
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4.2 Other Diff theories

Motivated by the appearance of the Diff group, a natural question is: what is the ‘gauge
theory’ with kinematic algebra diff? This gauge theory is the single copy of the hyper-
Hermitian eq. (4.9) (or its deformed version (4.14)), via the replacement X (p1,p2) — f.
The ‘Diff-gauge’ theory is described by the equation

a + aoc C!
o4 /cfplcf py P ;2)2 0L tP2 = K) fabey A, o) 08P (1) (o), (4.18)

for A = u,w. It is straightforward to express it in position space as
9?4 +i[®8 apd?) = 0. (4.19)

We can recover the SDYM eq. (2.11) if we impose on ®* the condition ®¥ = —3d,® and
¥ = 9, P. Of course, this condition is similar to imposing the volume preserving condition
in the hyper-Hermitian case.

Finally, we can make the replacement (4.10) in eq. (4.18) and obtain a theory with
two copies of the diff algebra. In momentum space these equations are

FAP (k) /JP dp2 it Jrng k)YA(plE,pQC)YB(PlF,P2D)fCD(p1)fEF(p2)a (4.20)

for A, B,C, D = u,w, whereas in position space, we have
018 + fOP(0c0p f17) — (0c f4P)(0p fF) = 0. (4.21)

Equations (4.18) and (4.20) complete our web of theories, by combining all of the
modifications of self-dual Yang-Mills that we have considered. Again, the physical relevance
of the new theories on their own — outside the remit of the double copy — is not clear,
and it would be interesting to explore them further.

We pointed out early on the well-known fact that it is possible to recover self-dual
gravity (hyper-Kéahler manifold) as a symmetry reduction of the self-dual Yang-Mills theory,
considering the gauge group as the area-preserving diffeomorphisms group on the two-
surface ¥, SDiff(¥) [108-110], and that this can be used to build hyper-Kéhler metrics
from solutions of two-dimensional reduced SDYM equations [111-113]. In a similar form,
as seen in this section, we can obtain the hyper-Hermitian equations taking the gauge
group as the area-preserving diffeomorphisms group in the Diff-gauge equations. It would
be interesting to see if it is possible to build hyper-Hermitian metrics from solutions of
two-dimensional reduced Diff-gauge equations.

5 Summary of results

Throughout this paper, we have established a set of theories that generalise self-dual Yang-
Mills and gravity. The momentum space equation for each theory contains a manifest
product of structure constants associated with colour and / or kinematic algebras, thus
allowing theories within the set to be related via the double copy. We summarise the com-
plete set in table 1, where the first column (consisting of choosing two potentially distinct
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X Fe(G) | X(p1,p2) (sdiff) XM (p1,p2) (Moyal) VA (pip,pac) (diff)
fabe (Q) Biadjoint | SDYM Moyal-deformed SDYM | Diff-Gauge

scalar
X(p1,p2) (sd- | — SDG Plebanski | Moyal-deformed SDG | Hyper-Hermitian
iff) (Hyper-Kéhler) (Hyper-Kébhler)
XM (py,p2) — — Moyalx Moyal SDG Moyal-deformed
(Moyal) Hyper-Hermitian
YA(p1.p2c) | — — — Diffx Diff Gravity
(diff)

Table 1. The web of theories studied in this paper. Each theory has an integral equation containing
two structure constants, appearing on the left-hand and upper entries of the table. We represented
in grey the theories that are integrable.

colour algebras) corresponds to biadjoint scalar theory. The second column contains the
usual SDYM and SDGR theories (for a hyper-Kéhler manifold), whose double copy was
discussed in detail in ref. [83]. The third column corresponds to our first generalisation of
the double copy procedure (section 3), in which one of the structure constants is taken to
be a Moyal deformation of the kinematic structure constant. This leads to single Moyal
deformations of SDYM and SDGR, and also a doubly deformed gravity theory, whose equa-
tion of motion contains a product of two Moyal kinematic factors. We should point out the
(non-integrable) Moyal-deformed SDYM case considered in the table, which is the one that
straightforwardly matches the double copy structure, is not the same as the more conven-
tional Moyal deformation of SDYM commonly considered in the literature, as discussed in
section 3.2. The second generalisation considers the kinematic algebra diff, where the area
preserving condition has been relaxed. A product with sdiff results in a Hyper-Hermitian
manifold. In section 4, we have studied this as well as its Moyal deformation, a Diff-gauge
theory, and a double-Diff gravity, as recapped in the fourth column of table 1.

The entries of table 1 identified in grey correspond to integrable theories. All such
theories have X (p1,p2) as one of the double copy factors, and this factor is at the origin of
their integrability. The equation of motion in momentum space reads

5(p1 +p2—p)
2

1
Typ) = 5 [ dpidps X(pr.p) e X () Ypn(p). (1)

where 111 9 provides the other structure constant. In coordinate space, we have
O*Y, + [0wY,, 04X, = 0. (5.2)

Pleasingly, all the integrable theories can be written in a similar manner, where T, is
¢ = O for self-dual Yang-Mills, is ®4 for self-dual gravity, is @é/[ for singly Moyal-
deformed self-dual gravity, and is ¥ for hyper-Hermitian gravity. Their Lax pairs can be
expressed as

L =0, —X0g+0.Y)), M =0y — MOy + 0, ,), (5.3)

and the equation of motion follows from the condition [L,M] = 0. Integrability follows
from the existence of an infinite hierarchy of conserved currents, associated to an infinite
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hierarchy of solutions to the linearised equation of motion. The latter is obtained by making
the replacement Y, — Y, 4+ T, in eq. (5.2):

82Ta + [apra auTa] + [awTayaqu] = 0. (5'4)
The hierarchy of solutions {Y,,, } arises via
auTocn = aﬂf’ranq + [8qu, Tan71]7 awTayL = avTocnq + [apr, Tan71]7 (5'5)

where T,_, = 0. In this hierarchy, T, is guaranteed to satisfy the linearised equation of
motion if Y,, , does.

Several non-integrable theories in table 1 naively share some of these features, at least
those which possess X (p1,p2) as one of the double copy factors (we exclude here the
case where X (p1,p2) is the other factor, where the theory is integrable). Then eq. (5.2)
changes only by employing a Moyal-deformed bracket, that is, we make the substitution
[,] — [,]]™. The following equations also appear to tell an analogous story with the
same substitution. However, crucially, the Moyal-deformed bracket fails to obey the Jacobi
identity, and the steps leading to the conclusion of integrability fail.

6 Conclusions

In this paper, we have constructed new examples of gauge and gravity theories satisfy-
ing manifest double copy relations, motivated by previous work in the self-dual sector of
Yang-Mills theory and gravity [83]. Each of our theories has an integral momentum-space
equation containing a product of two (potentially different) sets of structure constants,
associated with colour and / or kinematic degrees of freedom. We have considered two
generalisations of ref. [83], namely the use of Moyal deformations of the kinematic sector,
and also the use of a full two-dimensional diffeomorphism group rather than its more re-
stricted area-preserving counterpart. This gives new kinematic structure constants, and
our web of theories — summarised in table 1 — consist of all possible combinations of
these various building blocks.

We have also studied the integrability properties of the web of theories. This aspect was
not considered in ref. [83], and we discussed how the well-known integrability constructions
(e.g., Lax pairs) in self-dual Yang-Mills theory and self-dual gravity are related in a manner
expected by the double copy. More generally, for the web of theories summarised in table 1,
the only integrable theories are those for which at least one of the two sets of structure
constants is X (p1, p2), associated to sdiff, i.e., the Lie algebra of area preserving diffeomor-
phisms. These include self-dual Yang-Mills theory, self-dual gravity and its single Moyal
deformation, and hyper-Hermitian gravity (an extension of self-dual gravity associated to
hyper-Hermitian manifolds instead of hyper-Kéhler manifolds). In those cases, it is possible
to construct a Lax pair, and to relate it to an infinite hierarchy of linearised symmetries,
expressed as conserved currents. When none of the two sets of structure constants was
associated to sdiff, the integrability construction failed. In these cases, we may still have a
presumptive Lax pair interpretation, and a bracket based on a deformation of the standard
Lie or Poisson brackets, but this bracket fails to obey the Jacobi relation. This agrees with
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previous literature, e.g., ref. [121] regarding Moyal-deformed brackets. We have the inter-
esting consequence that singly Moyal-deformed self-dual gravity can be thought of as “in-
heriting” its integrability from one of its constituent gauge theories under the double copy,
i.e., from the one with kinematic algebra X (p1, p2) and not the one with kinematic algebra
XM (py,p2). The picture that emerges is that, when integrability exists, it does so because
at least one of the sides of the double copy is integrable. In the cases at hand, all integrable
theories are related to self-dual Yang-Mills theory by substitution of f®¢ by other structure
constants, which can be thought of as arising from a ‘symmetry reduction’. Hence, the class
of integrable theories considered here is consistent with Ward’s conjecture [134, 135].
There are a number of possible avenues for further work. Firstly, it would useful to es-
tablish the possible physical interpretation and applications of the theories that have been
introduced in order to complete the web obtained via the double copy. This includes the
question of whether or not they can be furnished with a geometric interpretation. Secondly,
it would be very interesting to determine whether the usual non-commutative deformation
of self-dual Yang-Mills theory, discussed briefly in section 3.2, also admits colour-kinematics
duality and double copy interpretations, despite the fact that its colour structure is very
different from that of the undeformed theory. If such an extension of our approach exists,
it would also be interesting to study whether the conclusions would persist under known
transformations of the star product (e.g. those of refs. [136, 137], which may to lead to differ-
ent quantum field theories). Finally, our hope is that the results of our study may stimulate
the construction of yet more double copy examples, which may possibly in turn enhance
our understanding of conventional Yang-Mills and gravity beyond the self-dual sector.
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