
1

Grasping Robot Integration and Prototyping:
The GRIP Software Framework
Brice Denoun, Beatriz León, Miles Hansard, and Lorenzo Jamone.

Abstract—Robotic manipulation is fundamental to many real-
world applications; however, it is an unsolved problem, which
remains a very active research area. New algorithms for robot
perception and control are frequently proposed by the research
community. These methods must be thoroughly evaluated in
realistic conditions, before they can be adopted by industry.
This process can be extremely time consuming, mainly due to
the complexity of integrating different hardware and software
components. Hence, we propose the Grasping Robot Integra-
tion and Prototyping (GRIP) system, a robot-agnostic software
framework that enables visual programming and fast prototyping
of robotic grasping and manipulation tasks. We present several
applications that have been programmed with GRIP, and report
a user study which indicates that the framework enables naive
users to implement robotic tasks correctly and efficiently.

I. INTRODUCTION

ADVANCES in robust autonomous grasping and manipu-
lation would enable new degrees of autonomy in indus-

trial production facilities [1]. This prospect has driven research
into both the hardware [2] and software [3] aspects of the
problem, leading to increasingly capable robotic systems [4],
[5]. Although new algorithms are usually evaluated on physical
robots, constraints in industry are often quite different from
those in the research laboratory. For this reason, it is crucial
for companies to test and compare newly developed methods,
in the context of their own setup and constraints. For example,
a new robotic arm controller, which proved effective in a
human-robot handover experiment, could be of interest for
a company in a pick-and-place task, subject to performance
evaluation. However, this presents several problems, the most
challenging of which is integration. For example, the integra-
tion of a new planner or grasping algorithm, into an existing
production pipeline, requires substantial effort and resources,
owing to the divergence of tools that are used in research
and industry. For this reason, companies may be reluctant to
explore new systems that have been developed in the wider
research community.

To partially bridge this gap between academia and industry,
we believe that a framework for efficient evaluation of new
systems is required. We argue that such a tool should meet
three conditions. First, it should be easy for users to interface
their own hardware with the components that needs testing,
in order to reproduce the essential features of their working
environment. Second, integrating a new software component
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Fig. 1. Overview of the GRIP framework. The architecture allows users
to operate robots with integrated components (hardware and/or software) for
grasping and manipulation tasks. The task editor provides an intuitive interface
for designing and tuning the robot’s behaviour. Arrows indicate the different
(mutually compatible) ways to interface external components.

(e.g. kinematics library or motion planner) should be possible
without having to understand the internal details. Third, it
should be possible to design and evaluate tasks related to
grasping and manipulation, with minimal investment of time.
We believe that a tool with these characteristics would support
the interaction of research and industry, so that companies
could maintain a competitive advantage, by implementing the
best performing methods from the research community. On
the other hand, academia would see the application of novel
ideas to real-world use cases, which could reveal new research
problems. Furthermore, the community at large would benefit
from the increased capabilities of robots.

Hence we propose the Grasping Robot Integration & Pro-
totyping (GRIP) framework, a system for rapid and intuitive
prototyping of grasping and manipulation tasks, involving mul-
tiple integrated components. This hardware-agnostic software
framework is designed to reduce the time and effort required to
explore, test and evaluate newly published robotics algorithms.
In particular, the Graphical User Interface (GUI) guides and
supports the user in all the necessary steps, including: (1) hard-
ware configuration, (2) software integration, (3) design and
execution of complex manipulation tasks.

II. RELATED WORK

Working with robots has become substantially easier in
recent years, because robot-agnostic mid-level software has
provided the communication tools that are required to operate
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complex platforms [6], [7]. In particular, the Robot Operating
System (ROS) [7] furnishes the main tools to manage low-
level tasks such as communication and control, as well as
high-level tasks such as package management and algorithm
integration. These features have made ROS one of the most
commonly used systems in a wide range of robotic research,
such as navigation [8] or planning [9]. For robotic grasping and
manipulation, MoveIt! [10] is a widely used ROS-compatible
solution. However, making the most of software stacks such
as ROS and MoveIt! requires an extensive knowledge of
hardware, motion planners, kinematic libraries, sensors, and
controllers – and how they interact with each other. On the
other hand, companies tend to use more domain specific
solutions [11], which are usually faster [12], and which satisfy
particular constraints. However, the deployment of ROS-based
algorithms, on a given platform, may be challenging for in-
experienced users. This problem has been partially addressed,
in other software systems.

For example, PyRobot [13] provides a common Python-
based interface to operate supported robots. This software,
which wraps around ROS, enables Machine Learning and
Computer Vision researchers to focus on developing high level
components (such as grasp pose determination or vision-based
navigation), without having to deal with low-level components
(such as controllers or kinematics). However, only compo-
nents implemented in Python are supported, and integrating
new robots may require advanced ROS, MoveIt! or Python
knowledge, which can be an obstacle to the naive user.

Other works have been presented to enable visual pro-
gramming of robots through state machines [14], [15]. One
example, which is comparable to our proposed framework, is
RAFCON (RMC Advanced Flow Control) [16]. This hardware
and middleware independent framework allows the user to
design complex robotics tasks, through an intuitive GUI. It
uses a system of hierarchical state machines to determine and
coordinate the robot behaviour. RAFCON is a very general
framework for programming robots, ranging from simple
indoor navigation to complete space exploration missions.
To handle such complex sequences of operations, the task
description is high-level (e.g. ‘explore’, or ‘pick object’) rather
than low-level (e.g. use a specific inverse kinematic solver to
move to a computed position). Given the variety of tasks and
robots that can be programmed, the practical use of this tool
becomes very complex, and may be dependent on previously
developed examples. In particular, the integration of low-level
components may not be straightforward.

Some industry-specific frameworks are also commercially
available and allow for rapid and intuitive design of automated
and/or autonomous tasks, such as Artiminds1, Mech-Viz2 and
drag&bot3. These systems mainly support industrial robots
and can be programmed through a drag and drop interface.
They come with a set of available operations (e.g. move
or search). However, these systems are not always able to
accommodate external components (e.g. from academia), as

1https://www.artiminds.com/
2https://en.mech-mind.net/
3https://www.dragandbot.com/

companies usually offer extensions for autonomous sensory-
based systems. We have therefore identified the need for a
framework that can incorporate both low-level and high-level
components, in an intuitive way.

This is the aim of GRIP: a hardware agnostic ROS-based
software framework, which facilitates prototyping and robot
integration, specifically for grasping and manipulation tasks.
Both low-level and high-level components (kinematic libraries,
controllers, motion planners, sensors and learning methods)
can be integrated, without imposing constraints on their im-
plementation (see Figure 1). This greatly improves the re-
usability of existing software components, in the industrial
setting. Unlike the existing solutions, that mainly focus on
easing the programming part, GRIP guides users from robot
and software integration to task execution thanks to a reactive
GUI. The architecture of our framework minimises the effort
required to interface existing software, even on complex sys-
tems (e.g. bimanual robots). We therefore believe that GRIP
is a useful tool, which makes it possible to evaluate grasping
and manipulation software/hardware, with minimal overhead.
The optimal combination of components, for a given task, can
then be integrated into an existing and optimised pipeline.

III. OVERVIEW OF GRIP

The main purpose of this framework is to provide an
environment in which robots can be operated with ROS-
compatible software components, coming from academia, as
well as external software components. Although GRIP pro-
vides a wide range of integration and interfacing options, we
made sure to keep its use straightforward and as programming-
free as possible, as follows:

• Robot interfacing; from material widely available online
• Software and sensor integration; regardless of their im-

plementation details
• Variables definition; to be used during the robot execution
• Task design and execution with integrated components;

through a visual drag and drop interface
Typical use-cases implemented using this procedure are de-
scribed in section VI and videos are available online4.

Section IV explains how we ensure that a maximum of ex-
isting components can be integrated to GRIP with a minimum
overhead while maintaining a good communication between
components. Section V presents the different mechanisms
implemented to graphically guide naive users through all the
steps from robot integration to task execution. Section VI
demonstrates the use of GRIP in five use cases, and briefly
discuss the differences with comparable works. The intu-
itiveness and contributions of our framework are evaluated
in section VII, based on a practical user study, involving
participants with different degrees of expertise in robotics.

IV. INTEGRATION

This section explains how GRIP is able to run a wide
range of hardware and software, in order to make good use
of existing components. This entails two challenges: how to

4https://sr-grip.readthedocs.io/en/latest/
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Fig. 2. Diagram showing the different ways of interfacing a robot with GRIP. Colours indicate the integration modalities, as described in section IV of the
text. Robots can be configured through MoveIt! (blue: IV-A1) or using an existing launch file that gathers all components to be run (orange: IV-A2). External
low-level components can also be integrated into our framework by wrapping them into ROS actions or services (red: IV-B). Black arrows indicate consistent
operations across the integration modalities.

avoid the need for GRIP-specific configuration files, and how
to integrate software components for which a standardised
format is yet to be defined.

A. Interfacing hardware

We assume that the robot has ROS-compatible drivers,
as commonly provided by the manufacturer. In addition,
like most ROS-compatible software, we rely on the standard
Unified Robot Description Format (URDF) file, which typi-
cally accompanies the drivers. This standard file encapsulates
hardware-specific information, which downstream services can
access. Although GRIP provides a way to integrate several
components separately (see section IV-B), it also offers two
ways to interface robots (i.e. running several components at
once) from materials widely available online.

1) Using MoveIt!: As previously mentioned, MoveIt! [10]
is a ROS-compatible framework for manipulation tasks, which
is commonly used in the research community. It embeds kine-
matics libraries, controllers, and motion planners for robotic
hands/arms. Once a MoveIt! configuration package is defined
for a robot, it can be controlled through a C++ or Python API.
This stack allows the user to carry out basic operations such
as motion planning or collision avoidance, without having to
implement them. Due to an active and large community, a
wide range of configurations are available for standard robot
arms (e.g. Franka Panda, Universal Robots, Kuka, Kinova)
and hands (e.g. Allegro Hand, Shadow Dexterous Hand). In
order to use such resources, robots can be interfaced to GRIP
using only a MoveIt! configuration package. After graphically
specifying some options (e.g. available planners, robot speed),
this configuration is used to initialise an arm and/or hand
commander (see Figure 2). These commanders are objects
which, in addition to include most of MoveIt! functionalities,
embed useful functions e.g accessing to upstream information
to ensure a full support of components previously integrated
to the MoveIt! stack (light blue arrow in Figure 2). We
believe this compatibility with MoveIt! is essential, in order
to embrace as much existing work as possible.

2) Using a launch file: GRIP also offers the possibility to
interface a robot through a launch file (i.e. ROS file gathering
all the components to run, potentially including MoveIt!).
However, the controllers and components to be used (even
if already run in the launch file) must be registered in our

framework, in order to create the appropriate states in the task
editor (see Figure 2). This interfacing mode allows users to
operate complex hardware, without a detailed understanding
of it. We demonstrate this facility with both the Allegro Hand
and the Shadow Dexterous Hand, in section VI.

B. Integrating software components

For GRIP to be able to run software written in different
programming languages, and with different interfaces, users
need to:

• Create a ROS package
• Wrap their code inside a ROS service or action server

(see Figure 2)
These operations are straightforward, do not need an in-depth
knowledge of the ROS stack and are widely documented5. We
provide examples of this process for components written in
different programming languages6. Since an external compo-
nent can expect input and can output meaningful information
to be used by other components, the server needs to follow
these rules:

• The request (i.e. input) of the server needs to be named
input and does not have any constraint about its type

• The response (i.e. output) of the server must contain two
fields; an integer named outcome and returned object,
without constraint about its type

The outcome field needs to be returned according to the
component’s behaviour. For instance a grasping method can
find one grasp (outcome 0), several (outcome 1) or none
(outcome 2). The only constraint is that the total number of
outcomes needs to be known when adding this component to
the GUI. We believe that this interfacing modality is generic
and modular enough to handle most of the different types of
components that are encountered.

C. State generator

As illustrated in Figure 2, interfacing hardware and software
results in a set of states available in the task editor (see
section V-B) which enables users to graphically design and
execute complex manipulation tasks. When interfaced through

5http://wiki.ros.org/actionlib/Tutorials
6https://sr-grip.readthedocs.io/en/latest/user guide/resources.html
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Fig. 3. Example of the configuration required to run two RGBD-sensors:
one fixed, and one mounted on the wrist of a robot. This figure also shows
some of the mechanisms implemented to provide the user feedback about
the current configuration. It includes auto-completion, live parsing and live
update of already registered configuration. The ‘+’ symbol in the margin
marks a template, which must be completed in order to add a new component
(e.g. pose, trajectory or sensor).

MoveIt!, robots can be operated via states that internally call
one or more methods of the configured commander. For each
external component integrated to GRIP, its configuration is
parsed to generate a new state using the Jinja2 templating
library7. This results in states that can be graphically config-
ured (e.g. input of the component) and that contain the user-
specified number of outcomes. When executed, these states
call the server and trigger the transition set by the user,
according to the outcome field of the response.

D. Message managers

One important factor when designing robotic tasks is con-
trolling the flow of information between components. It be-
comes even more challenging when dealing with components
coming from different sources. ROS introduced the notion
of messages that are sent through channels called topics.
These topics can be listened to by any ROS-node to catch the
information sent by others. However, storing and/or sending
specific messages across components is not straightforward,
especially for naive users. In order to make the communication
between integrated components more intuitive, GRIP features
message managers. These objects allow the messages sent by
others nodes or previously defined in the GUI to be stored
or retrieved at any level of the task. Users can either interact
with the managers through the GUI (e.g. add/remove a new
entry, display the current messages that are stored) or through
Python and C++ APIs that can be included in external scripts.

GRIP provides managers for messages containing generic
information, including joint states, poses, plans, and
trajectories. As illustrated in Figure 3, users can initialise
these managers through the GUI. Although these messages are

7https://jinja.palletsprojects.com

generic and widely used in low and high-level components,
we provide users with the possibility to add managers for
custom messages through a well documented procedure. The
purpose of the message managers is to give researchers better
control of the flow of messages, which can be confusing
when working with unfamiliar software components.

It is important to note that the GRIP interface modalities
are not mutually exclusive, and that a user can operate a robot
in the task editor regardless of how components are interfaced
to our framework. This makes it possible to run a custom
low-level controller while also making use of MoveIt!. We
will demonstrate the use of multiple interface modalities in
section VI. We believe that this approach will greatly facilitate
the incorporation of new software components. Our framework
is unique in offering this freedom of interfaces, while also
providing a task editor to carry out experiments.

V. GRAPHICAL USER INTERFACE

Unlike other available software tools, GRIP provides an
intuitive and reactive GUI that guides users through all of the
steps from robot integration to task execution. In this section,
we highlight some of the mechanisms implemented to help
the user.

A. Integration stage

Integrating unfamiliar components can be challenging, for
instance due to unfamiliar syntax. In order to improve its
usability, our GUI includes a wide range of features, which
help the user to configure its robot. For example, we have
implemented real-time checks on all of the different entries
the user can interact with. If the input is not valid, then the
user is directly notified by red signals. These measures range
from simple filename conventions, to full configuration syntax
checks. As illustrated in Figure 3, we have implemented a real-
time parser, which will indicate whether or not the current
input is valid. In addition, we have implemented different
levels of help, depending on the information provided by
the user to the GUI, such as autocompletion or display of
appropriate templates. These features are designed to help
users familiarise themselves with GRIP, and to help them cope
with complex robotic tasks.

B. Task editor

In common with other robot programming frameworks [14],
[16], we opt for a graphical programming paradigm through
state machines. This approach is more intuitive than textual
programming and does not require specific prior knowledge.
Unlike FlexBE [14] or RAFCON [16] that implemented their
own state machine system, we decided to base our task editor
on the well established SMACH [17] library. This ROS-
compatible software provides a wide range of state classes and
containers (e.g. hierarchical, concurrent, sequential) allowing
users to create complex and adaptive tasks through textual
programming. While SMACH containers include a userdata
object (i.e. dictionary of variables accessible across the states),

https://jinja.palletsprojects.com
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Fig. 4. Appearance of the task editor when designing a bimanual operation (see section VI-Bimanual robots). The user can navigate both between and
within hierarchies, via the sub-windows that are created when new containers are added. Different levels of zoom will show or hide the configuration data of
each state, to ensure an appropriate visualisation.

a certain degree of expertise is required to implement coherent
and deep state machines with a correct flow of information. For
this reason, all of the generated states and containers proposed
in our framework are derived from SMACH components, and
include our modifications to enable intuitive visual program-
ming. This will be demonstrated in section VII.

As illustrated in Figure 4, creating a task consists of:
• Drag and dropping states or state machines in the window
• Configuring each state
• Connecting the outcomes of the different elements to

define the behaviour of the robot
This intuitive way of programming allows the user to under-
stand the logic of the task at a glance. Unlike RAFCON or
FlexBE, for which the user needs to define global variables,
our state machines can dynamically store/retrieve information
from both its userdata and the different message managers. In
addition, each state can quickly be further configured directly
in the task editor. These features allow for rapid configuration
of complex robotic tasks, unlike textual programming.

One of the main challenges related to such a GUI is navi-
gating inside substantial state machines with deep hierarchies.
An appropriate visual interface can ease the design and config-
uration of complex tasks. In particular, we have implemented
zooming and multi-windowing mechanisms (see Figure 4).
Zooming-in on a specific state displays the different options
that can be configured. When a new state machine is added
to an existing one, a compact and box-like representation
will appear, and a sub-window corresponding to the new
container will be created. This window will be dedicated to
the definition and configuration of the given hierarchy, while
keeping a clear view in the first sub-window. The task editor
also features consistency checks, which can assist novice users.
At execution time, our containers allow the user to keep track
of which state is currently being run, which provides a useful
tool for debugging.

We believe that GRIP’s task editor enables intuitive visual
programming of grasping and manipulation tasks. It can be
used by experienced users, while providing a simple and
straightforward interface to novice users. We argue that the
interactive mechanisms, implemented in the GUI, make it

easy to define and edit complex robotic behaviours (see
section VII-B).

VI. CASE STUDIES

This section outlines five examples, from the wide range of
scenarios in which GRIP can been used.

Benchmarking (Figure 5-a): GRIP can be used to evaluate and
analyse several state-of-the-art components of a grasping or
manipulation pipeline. In the present work, we benchmarked
four grasping algorithms [18], [19], [20], [21] on a set of
20 objects, over a total of 6000 grasps. Each method has
been deployed on a EZGripper mounted on an Universal
Robot UR5 arm. Since these different methods have not
been demonstrated using similar platforms, their associated
code usually includes robot-specific components for control
or motion planning. However, some of these components are
not available for our platform. In addition, none of the methods
we benchmarked describe a grasp using the same convention,
which leads to four different messages. The architecture of
GRIP allowed us to configure a common motion planning and
control pipeline using MoveIt!, which ensures that we evaluate
only the performance of the grasp generation. We quickly
integrated the core methods by wrapping them into services
and using the C++ and Python API to make their output
compatible with the controller provided with the EZGripper.

Visual-exploration (Figure 5-b): Multiple sensors can easily
be integrated with GRIP, thereby facilitating the exploration
of cluttered scenes. In this case, we used a RealSense D435i
mounted directly on the end effector of a Franka Panda
arm, in conjunction with an externally fixed Kinect2. In this
work, the robot performed a pre-defined spiral trajectory above
the objects, and periodically captured point clouds from the
RealSense device. The collected point clouds were registered
through a custom method and the combined point cloud was
used as input to an existing grasping algorithm [20]. Here,
GRIP allowed us to easily run and coordinate a recently
published method with an external component, not specifically
designed for ROS.

Bimanual robots (Figure 5-c): Two robot arms are controlled
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(a) (b) (c) (d)

Fig. 5. Examples of robotic tasks that can be executed with GRIP. These include (a) benchmarking of grasping algorithms, (b) dual-camera based exploration
of clutter, (c) bimanual dexterous manipulation, and (d) repetitive industrial tasks.

in a coordinated way to unscrew the lid of a plastic bottle. One
arm is equipped with an EZGripper and is used to hold the
bottle using a MoveIt! controller. The other arm is equipped
with an Allegro Hand which is controlled using an external
ROS package [22] to unscrew the lid. For this use case, we
used the launch file provided in the ROS package of the spring
framework that directly runs gravity compensation for the
Allegro hand’s fingers. Once two MoveIt! arm controllers were
registered in our GUI, we were able to easily coordinate the
two arms to unscrew the lid. Here, we integrated a custom-
made controller for the EZGripper, which adapts the force
applied to keep the bottle stable. The task editor corresponding
to this use case is illustrated in Figure 4.

Industry-related tasks (Figure 5-d): A complex dexterous
manipulation task was carried out using the Shadow Dexterous
Hand mounted on a UR10 robot arm. The task consisted
of picking a pipette, drawing some liquid contained in a
glass container to release it in a small plastic tube, which
is subsequently grasped and moved to a pre-determined pose.
This use case reflects the potential of the GRIP framework
to cope with automated real-world tasks. Similarly to many
commercial robots, both the Shadow Hand and the UR10 are
ROS compatible and are provided with launch files that run
all the necessary ROS components. Thanks to the hardware
manager, both robots could be operated by GRIP by simply
interfacing a launch file provided by the manufacturer. The
necessary states were then generated automatically, by GRIP.
The task editor was subsequently used to choose the sequence
of way-points and motion trajectories for the arm and finger
joints required to automate the task. The entire process took
approximately 30 minutes to complete.

Design of reactive behaviours: The GRIP framework can
also be used to easily generate new and reactive behaviours
from existing components at the task level. In fact, due to the
task editor interface and the ease with each new states can be
added, reactive behaviours can be implemented graphically,
without having to modify an existing method. For instance,
we upgraded a plain pick-and-place system, so that placement
into a crate is only attempted if the picking stage succeeded.
After integrating a grasping method [19], we have integrated a
high level method that performs an image difference to check

if an object has been grasped, and a new state that generates
a new end-effector pose within a given radius.

These different scenarios show the variety of tasks and robots
that can be targeted using GRIP, by combining different inte-
gration modalities. It is important to note that some of these
tasks could not have been implemented using commercial
solutions (e.g. drag&bot) because the set of supported robots
is fixed. On the other hand, GRIP allows users to interface
their own robot, using widely available materials. Designing
complex tasks such as the bimanual operation through textual
programming (e.g. with SMACH) would be tedious due to the
substantial number of states and containers involved. While
RAFCON and FlexBE provide advanced GUIs to design sim-
ilar tasks, integrating new robots or new software components
is less flexible. For example, each component to be run by such
frameworks would need to be rewritten in a specific language
following a very specific format or template.

VII. USER STUDY

GRIP’s practical usability has been evaluated in a user study.
Its purpose is to assess the intuitiveness of (1) interfacing
different robot hardware, (2) integrating different software
components and (3) designing and executing manipulation
tasks, in typical robotic scenarios.

A. Experimental protocol

In order to evaluate GRIP in realistic conditions, we asked
participants to perform a set of four tasks, in the following
sequence:

1) Integrate a UR5 robot arm using MoveIt! and make it
move between two pre-recorded joint states.

2) Change the kinematics library and motion planner con-
figured by default to TRAC-IK8 and BiTRRT9. Repeat
the previous motion to make sure the integration was
successful.

3) Using a launch file, run the Shadow Dexterous Hand
mounted on a UR10 arm, and add the necessary states

8http://wiki.ros.org/trac ik kinematics plugin
9https://ompl.kavrakilab.org/classompl 1 1geometric 1 1BiTRRT.html

http://wiki.ros.org/trac_ik_kinematics_plugin
https://ompl.kavrakilab.org/classompl_1_1geometric_1_1BiTRRT.html
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Fig. 6. Experimental time distributions, with respect to different tasks (four panels), and levels of expertise (coloured boxes, with quartiles above and below
the median, in each case). A total of 12 participants managed to complete all tasks within 1 hour 45 minutes, and 4 more participants completed all tasks
except programming the robot. All participants managed to complete the three first tasks within 1 hour. For simple tasks (top row), robot configuration and
programming time is similar regardless of the expertise of users; this can be attributed to the intuitive GRIP GUI. However, the level of expertise does affect
the time required to complete more complex tasks (bottom row). The general trend is that the time spent to read and assimilate the documentation (denoted
‘other’) is inversely related to the level of expertise.

to the previous task to create a pick and place scenario
from pre-recorded poses.

4) Add a Kinect2 and integrate an external grasping algo-
rithm [19], to run an autonomous pick and place task.

In order to avoid unexpected behaviours, participants were
asked to select the joint states and poses among a list of safe
ones. Participants were provided with the links to the official
repositories of the grasping algorithm10 and of the Shadow
Hand11. For convenience, the names of the topics generated
by the Kinect2 were also provided in the instructions.

In order to reflect realistic conditions, participants did not
have any training time with our software, but were provided
with a documentation. The latter only contained generic prin-
ciples (e.g. wrapping code inside a ROS server) and examples
for robots and software components that were not involved
in the experiment (e.g. Franka Panda robot), limiting the
documentation bias.

The cohort was composed of 25 participants; 15 males and
10 females between 22 and 54 years old. All participants
had a Computer Science background and were first-time
users of GRIP. Among them, only three had experience in
programming Universal Robot arms, and none had worked
with the Shadow Dexterous Hand. Before the study, each
participant was asked to complete a questionnaire about their
background. No personal information was asked (apart from

10https://github.com/dougsm/ggcnn
11https://github.com/shadow-robot/sr interface/tree/kinetic-devel

age and gender) and participants gave their consent that the
collected data was going to be anonymously used in a scientific
study. This questionnaire consists of three 0–4 rating scales
corresponding to the following questions:

• How familiar are you with robotics? Was it part of your
education, or do you have other experience in the field?

• How familiar are you with programming robot hardware,
for grasping and manipulation tasks?

• How familiar are you with ROS (Robot Operating Sys-
tem)?

For these three questions, answering ‘0’ means having no
knowledge whereas ‘4’ means having in-depth knowledge and
thus being proficient in the task, tool or concept. Based on the
replies from the participants, we were able to define three
groups:
(A) Those with no knowledge of robotics (9 participants).
(B) Those with basic robotics knowledge, but who have never

used ROS (8 participants).
(C) Those who have previously used ROS, or who have pre-

vious experience in robot programming for manipulation
tasks (8 participants).

This classification allows us to estimate the value of GRIP, for
each type of user. A useful metric for this is the time spent
by participants on each task and sub-task (i.e. configuring
hardware and software components, design and execution of
the task). We also measured how much time participants
spent consulting documentation and external resources, rather

https://github.com/dougsm/ggcnn
https://github.com/shadow-robot/sr_interface/tree/kinetic-devel
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than using the framework itself. In order to collect this data,
participants worked with a version of GRIP that embeds
several timers. Every time the user changed the window focus,
time stamps were stored. In addition, participants were asked
to press a button when they finish a task. The resulting time
stamps allowed us to determine the time spent on windows
within and outside our GUI.

At the end of the allotted time (1 hour 45 minutes), par-
ticipants were asked to complete another questionnaire about
their experience. It consists of one binary question and three
0–4 rating scales:

• How intuitive was the configuration of a robot?
• How intuitive was programming the robot (i.e. using the

task editor)?
• How frustrating was your experience with the software?
• Have you completed all of the tasks? If not, how much

more time do you estimate would have been required?
When rating frustration, we asked participants to consider the
overall usability of GRIP and whether they thought the GUI
was overly constraining. For this particular scale, ‘0’ means
no frustration, whereas ‘4’ means very high frustration (i.e.
they were not able to perform anything). For the last question,
if participants answered ‘no’, then they had to choose between
the following possibilities: less than 15 minutes, between 15
and 30 minutes, between 30 and 45 minutes, between 45
minutes and 1 hour, more than an hour.

B. Results

The breakdown of the time spent on each task for each
group of participants is shown in Figure 6. Similarly, the
ratings from the post-experiment questionnaire are reported
in Figure 7 for each group of participants. Both sets of data
are used to evaluate GRIP, based on three aspects:

Intuitiveness of configuration: The total amount of time
spent on configuring hardware and software components is
consistent among the three groups and remains low (less than
6 minutes) across the tasks. We attribute this effect to our
intuitive GUI, which helps users, across all groups, to integrate
hardware and software components.

Intuitiveness of programming: The total amount of time
spent on designing and executing the two first tasks is not
statistically different across the three groups. For the third task,
the difference becomes significant, as experienced participants
spent less time than more naive users. We attribute it to the
difference in participant’s background. In fact, users that are
unfamiliar with robotics would need more time to understand
and coordinate all the components required in a pick-and-place
scenario. However, the task editor was reported to be quite
intuitive by all users, regardless of their group.

Completion time: All participants were able to complete the
three first tasks in a short amount of time. This means that
even naive users were able to integrate and configure two
robots, and to execute an automated pick-and-place operation
within an hour. The reported time also consists of external
factors, including reading the documentation and assimilating
novel concepts. This demonstrates that our GUI and interface

modalities are intuitive and straightforward, even for users
with no previous knowledge in ROS or robotics. Within the
allotted time, task 4 was completed by 12 participants (1 from
group A, 3 from group B and all participants from group
C), with an average completion time of 1 hour 38 minutes.
As indicated in Figure 6, four naive participants managed
to finish configuring the robot and to integrate the grasping
algorithm, but did not have enough time to program it. This is
because users needed to understand the inputs and outputs of
the grasping algorithm to successfully port it, which can be a
long process without any background in robotics and computer
vision.

Fig. 7. Distribution of ratings given by participants in each expertise group,
in the second questionnaire. Each participant was asked to evaluate their
experience regarding the robot configuration, programming intuitiveness, and
general frustration.

The results of this user study show that even without
previous knowledge of robotics, users are able to configure
different robots and program them to perform simple tasks, in
a limited amount of time, owing to the intuitive GUI. On the
other hand, our framework allows users with more knowledge
to easily carry out typical grasping tasks in less than 1 hour 45
minutes, with integrated software and/or hardware. These
results highlight the contribution of our framework: an intuitive
and modular interface to (1) interface new robots, (2) integrate
new components and (3) design and execute grasping and
manipulation tasks.

VIII. CONCLUSION

We have presented and evaluated GRIP, a hardware agnostic
ROS-based and standalone software, which facilitates robot
programming with integrated components for grasping and
manipulation tasks. Its intuitive GUI allows users to configure
a wide range of robots and software components. In order
to decrease porting and integration effort, our software also
supports a wide range of hardware and software integration
methods. It features a dedicated interface, which can be used
to intuitively design and execute a wide range of tasks, through
hierarchical state machines. This was demonstrated in five case
studies, involving different robots and tasks. It was shown that
the modular GRIP framework can cope with tasks such as pick
and place, and in-hand manipulation, as well as exploration
with several sensors, and complex tasks involving a bimanual
system. A realistic experiment showed that GRIP can be
used by naive users to program robotic manipulation tasks
successfully in a very short amount of time. Notably, users
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have reported that the system is very intuitive, due to its well
organised structure and easy to use GUI. GRIP is not limited
to a specific application or to a specific robotic setup; rather,
it is a general framework that can help any user to evaluate
a new component on their own setup. We believe that this
will facilitate the exchange of knowledge between academia
and industry, and the deployment of robotic solutions in real-
world applications.
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