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Abstract 
 

By synergistically combining the individual properties of more than one nanoscale component, 

novel features of hybrid structure assemblies represent a key motivation for making future 

functional nanomaterials. In this thesis, the successful construction of a multiplexed photo-

responsive chip from DNA-wrapped single walled carbon nanotubes (DNA-CNTs) and DNA-

CNT templated inorganic-organic hybrid structures is first demonstrated. The effective 

assembly of the hybrids was characterized by atomic force microscopy (AFM) and the 

corresponding device performance as well as the key mechanisms behind were investigated. 

 

Then a facile approach for the fabrication of end-to-end SWCNT junctions exploiting 

oligonucleotides as molecular linkers is presented. The assembled junctions show clear stimuli-

responsive features stemming from the designed sequences of oligonucleotides; this grants the 

SWCNTs the ability to self-assemble and disassemble under specific conditions in aqueous 

solutions. The junction formation was confirmed by Atomic Force Microscopy (AFM) and 

time-dependent fluorescence analysis. Moreover, an efficient strategy to sort DNA-wrapped 

SWCNTs (DNA-CNTs) by length via a gel electrophoresis technique was developed 

(confirmed by AFM). In addition to the application of oligonucleotides, the use of diazonium 

salts not only as a molecular linker but also the major reactive agent for CNT junction formation 

was also explored. 

 

In conclusion, by integrating DNA-CNTs with other active components, we have achieved the 

assembly for organic-inorganic nanohybrids of multiplexed photo-sensing capabilities and the 

assembly of reconfigurable SWCNT junctions with stimuli-responsive features. Moreover, the 

facile and efficient strategies developed in our work can contribute to the controlled assembly 

of CNT based functional nanohybrids. 
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Chapter 1  

Introduction 

 

 

 

Ever since their discovery in the 1990s,1,2 carbon nanotubes (CNTs) have drawn 

attention from scientists around the world. As novel one-dimensional all-carbon 

materials with outstanding mechanical, chemical, electrical and optical properties,3–8 

CNTs are considered to be one of the most promising nanomaterials to drive the 

development of nanoscience and nanotechnology. After nearly 30 years of intensive 

study, researchers have made extraordinary progress in aspects including CNT 

synthesis, CNT theories (e.g. of 1D electrical transport in CNTs since they provide the 

perfect platform for related experimental tests) and applications of CNTs in fields like  

composite materials, mirco-/nanoelectronics and optoelectronics.7,9–15 However, given 

the great progress achieved, challenges remain such as the efficient sorting of single-

walled carbon nanotubes (SWCNTs) by length and chirality, facile assembly of CNT 

based nanostructures in aqueous solutions and CNT junction engineering with higher 

degree of site-specific control. 

 

Deoxyribonucleic acid (DNA) is the biological molecule that stores and transmits 

significant genetic information in biological systems. Since its conceptual emergence 
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in the early 1980s,16 the field of DNA nanotechnology has taken this molecule out of 

its biological context and used its information to assemble structural motifs and then to 

connect them together. With the increasing popularity DNA has gained from 

researchers around the world, well-designed DNA molecular systems have proved their 

potential to serve as a significant and versatile tool to promote the evolution of novel 

nanostructures.17 

 

In this chapter, we will first introduce the basic concepts and properties, synthesis 

methods, post-synthetic sorting and chemical functionalizations of CNTs. In the second 

section, hybrid nanostructures based on CNTs including DNA-wrapped CNTs, CNT-

semiconductor heterostructures and CNT junctions will be briefly introduced. In 

section three, a concise review on parts of DNA nanotechnology will be covered, with 

the focus on static and dynamic DNA nanostructures.  

 

1.1 Carbon nanotubes (CNT) 

1.1.1 Properties 

Carbon nanotubes (CNTs) are one dimensional carbon materials which can be seen as 

a rolled up cylinder made up from a graphene sheet.18 Graphene is a single layer of 

carbon atoms arranged in a two dimensional honeycomb lattice and the stacked 

graphene layers are known as graphite.19,20 A tube made of a single graphitic layer 

cylinder is called a single walled nanotube (SWCNT) while a tube made with several 

concentrically arranged cylinders is a multiwalled nanotube (MWCNT). The length of 

CNTs can reach the micrometre scale with a diameter range from sub nanometre (as for 
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some SWCNTs) to 100 nm (typical for MWCNTs).21 The presence of the C-C graphitic 

bond provides SWCNT with excellent chemical and mechanical properties, while the 

presence of extended, delocalized π-electron systems grants these carbon materials the 

capability to provide the ideal environment for charge transfer processes,22 when 

combined, for example, with photoexcited electron donors.23 Moreover, the electron 

accepting ability of semiconducting SWCNTs offers an opportunity to facilitate 

electron transport and increase the photo-conversion efficiency of nanostructure 

semiconductor based photovoltaic devices.  

 

Because the microscopic structure of carbon nanotubes is closely related to graphene, 

their extraordinary properties have their origin in the particular electronic structure of 

graphene and CNTs are usually defined in terms of the graphene lattice vector (defined 

in Figure 1-1 a by the vectors �⃗�1 and �⃗�2). In carbon nanotubes, the graphene sheet is 

rolled up in such a way that a graphene lattice vector 𝑐 = 𝑛1�⃗�1  + 𝑛2�⃗�2  becomes the 

circumference of the tube. This vector 𝑐, defined by two integers (n1 and n2), is called 

the chiral vector and it defines a particular SWCNT chirality. Figure 1-1 b, c and d 

illustrate SWCNTs with different chiralities. Featured properties of the nanotubes, like 

their electronic band structure, vary dramatically with the chiral vector even for 

SWCNTs with similar dimeter and direction of the chiral vector.18 
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Figure 1-1. The structures of graphene and single walled carbon nanotubes. (a) The 

carbon atoms in a single sheet of graphene are arranged in a honeycomb lattice. The 

basic vectors �⃗�1 and �⃗�2 are presented on the bottom-right corner. (b-d) SWCNTs with 

different chiral vectors. 
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Figure 1-2. Band structures in K space: (a) graphene; (b) semiconducting single-wall 

carbon nanotubes (c) metallic single-wall carbon nanotubes. The yellow lines indicate 

the allowed wave vectors after roll-up of the graphene sheet. (d) The 1D density of 

states (DOS) for the conduction and valence bands. (e) Schematic electronic energy-

dispersion relations and densities of states of: a) metallic (left) and semiconducting 

(right) single-wall carbon nanotubes.6,24,25 

 

The electrical properties of CNTs can be studied starting from the honeycomb graphene 

structure (as shown in Figure 1-1 a). Whereas graphene is a zero-gap semiconductor, 

in the case of the CNTs the electrons are confined along the circumference, and while 

the wave vector �⃗⃗�  along the tube axis �⃗⃗�||  is continuous, as the tube is regarded as 

infinitely long, along the circumference periodic boundary conditions are imposed:  

�⃗⃗�⊥ ∗ 𝑐 = 2𝜋𝑗 
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where 𝑐 is again the chiral vector and j is an integer. Consequently, any wave vector �⃗⃗�⊥ 

is quantized and only certain set of the graphene k states are allowed. Therefore, each 

band of graphene is divided into a set of discrete energy sub-bands defined by j and the 

allowed energy states of a SWCNT are 1D sections of the graphene band structure 

(yellow lines in Figure 1-2 b and c). The position of the allowed states is very important 

as they define the electronic properties of the CNTs: when the allowed states of a CNT 

pass through a Fermi point (K or K’), the tube is metallic. On the other hand, if no state 

passes through the Fermi point the tube is a semiconductor. Specifically, (n, n) 

nanotubes (armchair tubes) are always metallic; (n, m) nanotubes with 𝑛 − 𝑚 =

3𝑗  (𝑗 = 1, 2,3 … ), are almost metallic: a tiny gap opens because of curvature effects; 

when 𝑛 − 𝑚 ≠ 3𝑗  (𝑗 = 1,2,3 … ) , CNTs are semiconductors. In the simple tight-

binding model, the bandgap 𝐸𝑔 of semiconducting CNTs is given by: 

𝐸𝑔 = 4ℏ𝑣𝐹 3𝑑𝐶𝑁𝑇⁄  

where 𝑑𝐶𝑁𝑇 is the CNT diameter and 𝑣𝐹  is the Fermi velocity.26  

 

In Figure 1-2 d the corresponding density of the energy states (DOS) are shown (right 

hand side): the DOS for graphene around the K point is relatively linear, while at the 

saddle point M one spike on each band can be observed. On the other hand, in the case 

of SWCNTs, there are several minima of energy along the allowed sub-bands and in 

correspondence with these points there are more states with similar energy and the DOS 

grows massively generating several spikes called van Hove singularities. Effectively, 

the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular 

orbital (LUMO) of semiconducting carbon nanotubes correspond to the first van Hove 

singularities in the valence and conduction bands, respectively, whereas the HOMO 



7 
 

and LUMO of metallic nanotubes meet at the Fermi level and consequently have a zero 

HOMO-LUMO gap.24 

 

The characteristic absorption and photoluminescence spectra of carbon nanotubes are 

attributed to the van Hove singularities. Every SWCNT species with the specific chiral 

number (n, m) has its unique absorption and photoluminescence spectra (Figure 1-3). 

As illustrated in Figure 1-3 a light is absorbed between the van Hove singularities of 

the valence and conduction band giving rise to Eii absorption transitions (vi → ci) while 

in the case of photoluminescence, after the light induced excitation, electrons first relax 

to the lowest conduction van Hove singularity and finally relax to the highest valence 

van Hove singularity emitting light (E11 transition). In the case of metallic tubes there 

is no energy band gap so while absorbance peaks are present no photoluminescence can 

be observed.  

 

Figure 1-3. (a) Schematic showing the density of electronic states for a single nanotube 

structure. Solid arrows depict the optical excitation and emission transitions of interest; 

dashed arrows denote non-radiative relaxation of the electron (in the conduction band) 

and hole (in the valence band) before emission. (b) Optical absorption spectra and (c) 

photoluminescence contour maps of the 12 sorted (n, m) semiconducting SWCNTs.24 
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1.1.2 CNT synthesis  

CNTs are produced by three major methods: laser ablation, arc discharge and chemical 

vapor deposition (CVD) (Figure 1-4). Laser ablation, is the fabrication of CNTs where 

a high power laser (e.g. Nd:Yag laser) is used to vaporize a carbon target at high 

temperature under a continuous flux of an inert gas (e.g. argon) and carbon nanotubes 

grow on the colder surface of the reactor as the vaporized carbon condenses (Figure 1-

4 a).27 Both SWCNT and MWCNT can be synthetized with this technique and the 

quantity and quality of the tubes depends on the amount and type of catalyst, laser 

power as well as temperature, pressure and inert gas. CNTs can also be prepared 

through arc-discharge which involves applying a voltage between two graphitic 

electrodes in the presence of a metallic catalyst allowing the growth of the tubes 

(Figure 1-4 b).11 Chemical vapor deposition is another method involving the growth of 

CNTs from a metal catalyst through the deposition of a carbon gaseous source (Figure 

1-4 c).28,29 While these are all developed methods for the production of SWCNTs, it has 

still proven to be challenging to control the chirality of the nanotubes.30 
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Figure 1-4. The schematic illustrations of the three major ways to synthesize CNTs. (a) 

laser ablation; (b) arc discharge; (c) chemical vapor deposition (CVD).31 

 

1.1.3 Post-synthetic sorting of CNTs 

The dominant physical dimension of a SWCNT is its length. Certain physical processes, 

such as carrier recombination, could be length-dependent; device applications, such as 

CNT-based scanning probes, require CNT length control for easy and reproducible 

fabrication; solution-phase assemblies of CNTs on solid substrates (e.g. end-to-end 

CNT junction assembly) will also benefit from CNTs with well-defined length (the 

uniform building block). On the other hand, the chirality of SWCNTs significantly 

influences the electronic band structure (especially for semiconducting SWCNTs, as 

mentioned in section 1.1.1). Consequently, from fundamental studies on single chirality 
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SWCNT to SWCNT-based semiconducting device fabrications, the realization of a 

chirality-pure CNT batch is being pursued by researchers around the world. 

 

Though tremendous progress has been made in CNT synthesis, directly making CNTs 

with a particular size or structure remains a major challenge: the current as-produced 

samples still contain CNTs of varied lengths and chiralities.32 As a result, scientists 

have been trying to find out efficient post-synthetic methods to address the CNT sorting 

problem. Based on the CNT parameter that is subject to sorting, these methods can be 

classified into two main branches: length sorting and chirality sorting.  

 

Many studies have been done on length sorting.32,33 Doorn et al. first demonstrated the 

possibility of separating as-produced CNTs by length via capillary electrophoresis 

(CE).32 The underlying mechanism of such separations is that the mobility of the 

solution phase (the dispersed CNTs in corresponding solutions) is charge and size 

dependent under the applied electric field. Based on a similar theory, an approach of 

size-exclusion chromatography (SEC) has shown the potential for CNT length 

sorting:34–36 notably, Zheng et al. developed a SEC method with high resolution sorting 

capability.37 However, in many of the reported works, quantification of length variation 

in obtained fractions was absent. Some works did demonstrate control over the average 

length of separated tubes; the length variation within a given fraction, however, was 

typically very broad and could be as high as 80%. In addition, some of the processes 

reported cannot be scaled up for processing large quantities of materials. It is, thus, 

highly desirable to develop a scalable process that can yield CNT fractions of well-

defined length. 
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In terms of the chirality sorting, several directions were explored. Pioneering work has 

been demonstrated by Zheng et al. where ion exchange chromatography (IEX) was 

exploited to separate DNA-wrapped CNTs (DNA-CNTs) which will be introduced in 

more detail in section 1.2.1;38 following that achievement, more single-chirality 

semiconducting CNT species were obtained with an optimized procedure.39 In 2005 

and 2006, the Mark Hersam group found that density gradient ultracentrifugation 

(DGU), a well-established biochemical separation method, can be adopted for the 

separation of CNT chiralities.40 Applying the aqueous two-phase (ATP) extraction 

method to chirality sorting was first reported by Zheng et al. in 2013.41 The ATP 

extraction method, first explored by Albertson,42 uses polymer–polymer phase 

separation to create two immiscible aqueous phases of slightly different physical 

properties. The ATP extraction method is scalable and relies entirely on homogeneous 

molecular interactions to achieve separation. It is applicable to both surfactant-coated 

and DNA-CNTs. Importantly, the emergence of the ATP method continues the trend of 

moving away from instrumentation-based, external field driven processes to 

spontaneous, molecular force driven CNT separation processes. 

 

1.1.4 Chemical functionalization of CNTs 

It has been demonstrated that CNTs can interact with different classes of 

compounds.14,29,43–51 The formation of supramolecular complexes allows a better 

processing of CNTs toward the fabrication of innovative nanodevices. In addition, 

CNTs can undergo chemical reactions that make them more soluble for their integration 

into inorganic, organic, and biological systems.  
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In order to facilitate their further applications, by covalently attaching chemical groups 

through reactions onto the pi-conjugated skeleton of CNTs, scientists have developed 

various approaches to functionalize the materials. These approaches are, including but 

not limited to: CNT sidewall halogenation,52–54 cycloaddition,55–57 radical addition58–61 

and amidation reaction.62,63  

 

Importantly, to face the challenge of the direct and efficient functionalization of CNTs, 

researchers have developed a method to functionalize the sidewall and tips of CNTs by 

azide photochemistry, where the irradiation of the photoactive azidothymidine in the 

presence of nanotubes was found to cause the formation of very reactive nitrene groups 

in the proximity of the carbon lattice.55,56 In a cycloaddition reaction, these nitrene 

groups couple to the nanotubes and form aziridine adducts (Figure 1-5).  

 

Figure 1-5. Cycloaddition: photoinduced generation of reactive nitrenes in the 

presence of nanotubes (medium-pressure xenon lamp with maximum output of 112 

mW/cm2 at 254 nm applied).64 

 

Another method introducing radicals onto the CNT surface with diazonium salts was 

explored by several groups.58–61 Derivatization of small diameter CNTs (HiPco) was 

achieved by the electrochemical reduction of substituted aryl diazonium salts in organic 
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media, where the reactive species was supposed to be an aryl radical. The formation of 

aryl radicals was triggered by electron transfer between the CNTs and the aryl 

diazonium salts, in a self-catalyzed reaction. Based on this concept, water-soluble 

diazonium salts were utilized to react selectively with metallic CNTs.61,65,66 In 

particular, electrochemical modification of individual CNTs was demonstrated by the 

attachment of substituted phenyl groups.58–60 The reductive coupling of aryl diazonium 

salts resulted in a C-C bond formation at the graphitic surface of CNTs (Figure 1-6). 

 

Figure 1-6. Radical addition: electrochemical functionalization resulting in C-C bond 

formation.64 

 

1.2 CNT based hybrid structures 

1.2.1 DNA-wrapped carbon nanotubes (DNA-CNTs) 

Though CNTs can be directly decorated with intended functionalities via covalent 

approaches,8 some internal properties (e.g. electronic properties) of CNTs could be 

altered or undermined greatly, especially for SWCNTs. Additionally, the lack of 

solubility and the difficult manipulation in any solvents remain a challenge for the 

further use of CNTs. In fact, as-produced CNTs are insoluble in all organic solvents 
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and aqueous solutions. They can be dispersed in some solvents by sonication, but 

precipitation immediately occurs when this process is interrupted.  

 

Therefore, some non-covalent binding approaches were explored to increase the 

solubility of CNTs without compromising their electronic properties. Different 

molecules like polymers, biomolecules, surfactants and polyaromatic compounds have 

been employed as surfactants.64,67–69 Intriguingly, deoxyribonucleic acid (DNA), as a 

naturally occurring polymer that plays a central role in biology, can also play an 

important role in non-biological contexts due to its unique properties. In particular, the 

formation of a complex from CNTs and DNA has drawn great attention since these 

hybrids will then take the advantages of both the outstanding properties of CNTs and 

the selective recombination ability of DNA strands (e.g. base-paring capability). In 

2003, Zheng38,70 et al. successfully bound single-strand DNA (ssDNA) to nanotubes 

through π-π stacking, in the form of helical wrapping on the surface (shown in Figure 

1-7). The strong noncovalent interaction between CNTs and DNA makes SWCNTs 

soluble and effectively dispersed in aqueous solutions. Moreover, compared to other 

polymer wrapping methods, DNA coupling offers a high CNT concentration as much 

as 4 mg/ml. Additionally, the phosphate groups on the DNA in the hybrids provide a 

negative charge density, which was found to be dependent on the DNA sequence and 

the CNT chirality.71,72 Importantly, by introducing interactions with the DNA strands 

wrapping around CNTs, modifications could be made while still preserving the valued 

CNT properties. 
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Figure 1-7. DNA wrapped SWCNT.38 

 

In addition to the outstanding aqueous solubility they have, these DNA-wrapped CNT 

hybrids also found applications based on other features. In particular, the DNA-CNT 

hybrid introduces a promising way to sort SWCNTs by their chiralities. Given that the 

fine structures (how the DNA wraps the CNT surface) of DNA-CNT hybrids are related 

to the interplay between DNA strands (length and sequence) and CNT chirality, 

researchers have found ways to specifically pick out a single chirality of nanotubes. Tu 

et al. have successfully purified 12 single-chirality CNT species from a synthetic 

mixture via an ion exchange chromatography (IEX) method (Figure 1-8 a).39 On the 

other hand, an aqueous two phase (ATP) extraction method was introduced by Khripin 

et al. to separate single chiralities from a synthetic mixture (Figure 1-8 b, c, d).41 These 

two methods mark the main directions of the chirality sorting for post-synthetic 

SWCNTs. 
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Figure 1-8. (a) Ultraviolet–visible–near-infrared absorption spectra of 12 purified 

semiconducting SWCNTs (ranked according to the measured E11 absorption 

wavelength) and the starting HiPco mixture.39 (b) Schematics of the PEG/dextran two-

phase system used in ATP method. Top phase is PEG-rich, and bottom phase is dextran-

rich. (c) Partition of small diameter CoMoCAT tubes. (d) Partition of large diameter 

arc-discharge tubes.41 

 

Moreover, site-specific modifications of DNA-CNT hybrids are possible as a result of 

the different surface conditions between the CNT sidewall and terminal ends that are 

introduced by the helical wrapping of DNA. For instance, Attanzio et al. attached 

semiconductor quantum dots (QDs) exclusively to the terminal ends of DNA wrapped 

CNTs (Figure 1-9).73 This highlights the realization of finer control over the assembly 

of CNT based nanostructures (e.g. end-to-end SWCNT junctions). 
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Figure 1-9. QDs site-specifically attached to the terminal ends of DNA wrapped CNTs. 

(a) Representative AFM image of SWCNT-QD heterostructures. (b) Schematic and 

AFM deformation image (defined as the penetration of the tip into the surface at the 

peak force) of monofunctionalized SWCNT-QD structures: the different mechanical 

response of the two components of the hybrid is evident. (c) Schematic and AFM 

topographical image of bis-functionalized SWCNT-QD structures.73 

 

1.2.2 CNT-semiconductor hybrids 

By synergistically combining the individual properties of more than one nanoscale 

component, research efforts on heterostructures assembly and their features represent a 

key motivation for making future functional nanomaterials.73–79 Both carbon 

nanomaterials and semiconductor nanocrystals have been widely studied and a number 

of devices have been developed. A further step towards better and more efficient 

devices would be to combine these two materials into functional heterostructures either 
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to merge and improve the properties of the single components or to take advantage of 

the possible phenomena that can be generated at the interface.  

 

As depicted in Figure 1-10, different from nanocomposites, where several components 

in different phases are mixed together in a single matrix material resulting in a 

combination of the properties of the single component materials (the materials are 

usually synthetized separately and then combined so that one phase is dispersed into a 

second one),75,80 nanohybrids are assembled with a finer control so that a second 

component is in direct contact with the main support material. In these nanohybrids, 

the interface between the component materials plays a more significant role. As a result, 

hybrid materials merge the properties of the components in a way that creates new 

properties distinct from those of either building blocks.75 

 

Figure 1-10. Schematics of nanocarbon composites and hybrids showing differences 

between (a) nanocarbon composites and (b) nanocarbon hybrids.75  
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CNT based hybrids are of particular interest due to their advantageous features such as 

high surface area and outstanding electrical and electronic properties.81,82 Consequently, 

CNTs can serve as promising building blocks in nanoarchitectures, making them 

exceptional nanostructure supports for certain applications.74,83–87 Meanwhile, 

inorganic semiconducting quantum dots (QDs) are very appealing components to be 

assembled with CNTs since they exhibit broad absorption bands and high band gap 

tunability depending on their size and composition.88–91 

 

As a typical example, researchers have been trying to fabricate devices based on CNT-

QDs hybrids for next generation optoelectronic applications. In this regard, CdS and 

CdSe  have been widely employed to fabricate systems exhibiting photoresponses to 

the green/blue light in the visible spectrum.88,92–94 Istvan et al synthesized CdS-SWCNT 

hyrbids in THF and methanol, and investigated the electron transfer from CdS to 

SWCNT by transient absorption spectroscopy (TAS).92 A similar electron transfer 

process was proposed for CdSe-CNT heterostructures in a study carried out by 

Liangbing Hu et al., where hybrids were assembled on a surface from DMF solutions  

employing CdSe QDs pre-functionalized with a pyrene derivative.93 Moreover, 

researchers revealed that amine molecules were able to mediate the doping of SWCNTs, 

giving them the capability to tune the photoresponse of fabricated CdS-CNT hybrid 

devices.94 Similarly, PbS based systems extend the photoresponse into the red and near 

infrared (NIR) regime.89,95–99 Defa Wang et al fabricated photovoltaic devices based on 

PbS-CNT hybrids made from oleyamine capped PbS QDs and pre-functionalized 

MWCNTs.96 Fast photoresponse was further obtained in PbS-CNT based devices 
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fabricated with pulsed laser ablation techniques.97 Additionally, multiple exciton 

generation (MEG) was observed in PbS-CNT hybrids highlighting their potential for 

high performance optoelectronic applications.98 

 

1.2.3 CNT junctions 

As the promising building block of nanomaterials, CNTs not only form heterostructures 

with other components but also assemble into intriguing configurations with themselves 

in the presence of specific molecular linkers. The CNT junctions, though considered as 

one of the simplest configurations, are significant because of their various potential 

applications. For instance, the construction of junctions between SWCNTs100–104 has 

been investigated for the fabrication of nano-electronic devices.105–107 Additionally, the 

use of SWCNTs as nanoelectrodes was proved essential in single molecule 

investigations such as molecular electron transportation studies.73,79,101,108–111  

 

In this context, the controlled assembly of linear (end-to-end) junctions through in-

solution approaches100,101,112–114 is particularly desirable for the low-cost (solution 

processable) fabrication115–117 of carbon nanotube-based devices.109,111 Different 

methods have been explored for junction formation.100,103,104,118 For instance, Clement 

et al. demonstrated an efficient one-step chemical strategy allowing the formation of 

linear DNA-CNT junctions with diazonium salts in aqueous solutions.119 On the other 

hand, although different technologically-relevant nanomaterials have been designed to 

respond to changes in the surrounding medium,120,121 the assembly of reversibly 

reconfigurable end-to-end SWCNT junctions in-solution has yet to be demonstrated; 

this would allow the facile fabrication of carbon nanotube-based stimuli-responsive 
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molecular systems and devices. To address this challenge, we have developed a strategy 

combining photo-activated cycloaddition reaction with dynamic DNA nanostructures 

to realize stimuli-responsive CNT junctions.122 

 

1.3 DNA nanotechnology 

1.3.1 Background  

 DNA is the molecule that stores and transmits genetic information in biological 

systems and the field of DNA nanotechnology takes this molecule out of its biological 

context and uses its information to assemble structural motifs and then to connect them 

together. This field has had a remarkable impact on nanoscience and nanotechnology, 

and has been revolutionary in improving our ability to control molecular self-assembly. 

 

DNA is the genetic information carrier for all known living organisms and some viruses. 

It is a biopolymer of nucleotides, with each nucleotide containing one of four 

nucleobases: cytosine (C), guanine (G), adenine (A), or thymine (T); a deoxyribose; 

and a phosphate group. The interaction between two DNA biopolymers or strands is 

determined by the coding of bases, known as Watson–Crick base pairing,123 where A 

pairs with T and C pairs with G through hydrogen bonding. Massive amounts of 

information, genetic or nongenetic,124 can be stored in a piece of DNA with defined 

sequences. 

 

Intriguingly, from a material science perspective, the unique characteristics of DNA 

make it a promising material candidate for a wide range of applications. Since  

interactions between DNA molecules are specifically governed by Watson–Crick base 



22 
 

pairing, DNA has the most predictable and programmable interactions of any natural 

or synthetic molecule. It possesses remarkable binding specificity and thermodynamic 

stability and owns a library of nearly infinite choices of sequences to build versatile 

nanostructures. It is also structurally well-defined on the nanometre scale and has a 

persistence length of about 50 nm under conventional conditions. These incomparable 

features have led to the foundation of DNA nanotechnology. DNA nanotechnology is 

the field in which DNA (or RNA) molecules are utilized as building blocks for self-

assembly into artificial nanostructures. Its conceptual emergence can be traced to 1982, 

when Seeman16 proposed utilizing DNA structures to aid the crystallization of proteins. 

Three decades of development have led to the use of DNA as a designer molecule with 

an enormous capacity to construct both static and dynamic nanostructures with 

unprecedented precision and complexity. These DNA nanostructures are a set of 

materials with unique properties (e.g., well-defined size, geometry, interactions) that 

can be utilized on their own or be combined with other materials for many biomedical 

applications. For example, pristine DNA nanostructures have been used to interact with 

biological systems to enable biosensing,125 bioimaging,126 or drug delivery.127 

 

1.3.2 DNA nanostructures 

1.3.2.1 Static DNA nanostructures 

Based on the fully complementary double helix, static DNA nanostructures such as 

DNA tiles and DNA origami have been designed and built by researchers in the field. 

DNA tiles are a set of artificial structures composed of several DNA single strands with 

unique sequences, whose hierarchical assembly leads to the formation of large DNA 

structures. Seeman et al.128 reported the first DNA tile, named the immobile four-way 
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junction, that was built from four single DNA strands (Figure 1-11 a). This DNA tile 

closely resembles the natural Holliday junction, in which strand migration is prevented 

by minimizing the sequence symmetry in the junction. Three-, five-, six-, eight-, and 

12-way junctions have been constructed via the same strategy.129–131 Nevertheless, such 

DNA tiles failed to assemble into higher-order structures due to significant structural 

flexibility both on and off the tile plane. Rigid DNA double-crossover (DX) structures 

were then proposed and fabricated.132 In these structures, two four-way junctions are 

confined within two parallel DNA double helices by two crossovers (Figure 1-11 b). 

In 1998, a two-dimensional (2D) DNA crystal structure was fabricated through sticky-

end mediated assembly of a two-arm DX tile.133 This was the first example of a higher-

order crystal-like structure assembled from DNA, representing a milestone in the field 

of structural DNA nanotechnology. 

 

Origami refers to the art of folding and sculpting flat paper into objects with arbitrary 

shapes. The idea of making DNA origami, reported by Rothemund134 in 2006, creates 

similar art at the nanoscale. In the molecular self-folding process, a long ssDNA 

(scaffold DNA), typically the M13 bacteriophage genome DNA (∼7,000 nt), is folded 

into designed objects with well-defined geometry by hundreds of synthetic, short (20–

60 nt) ssDNAs (known as staple DNAs). 

 

Two distinct DNA origami design strategies have been developed so far: lattice-based 

origami and wire-frame origami (Figure 1-11 c). These methods differ in the 

arrangement of helices within the DNA origami objects. Earlier DNA origami studies 

built upon the lattice-like packing of DNA helices, in which the helices were closely 
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packed into square 134,135 honeycomb,136 hexagonal or hybrid lattices.137 Flat 2D objects, 

such as the famous smiley face (Figure 1-11 d-i), were the first to be constructed.134 

Further folding of flat 2D origami sheets led to the formation of hollow 3D containers, 

such as a DNA box (Figure 1-11 d-ii)138 and a tetrahedron.139 In contrast to lattice-

based DNA origami, wire-frame DNA origami produces porous structures by 

minimizing the packing of DNA helices. Bathe and colleagues140 developed an 

algorithm named DAEDALUS that enabled the automated design of a large library of 

polyhedral structures (Figure 1-11 d-iii). Hogberg and colleagues141 reported an 

alternative wire-frame strategy that renders designed objects into meshes. 3D objects, 

such as the Stanford bunny (Figure 1-11 d-iv), have been fabricated through this 

method. Wire-frame DNA origami excels at constructing arbitrary-shaped, soft, and 

porous structures. 
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Figure 1-11. Static nanostructures assembled from DNA tiles and DNA origami. (a) 

Artificial immobile junction assembled from four DNA strands. (b) Rigid double-

crossover structures. (c) Two basic DNA origami design strategies: lattice-based 

versus wire-frame origami. (d-i & d-ii) Representative two-dimensional (2D) and 

three-dimensional (3D) objects assembled from lattice-based DNA origami. (d-iii & d-

iv ) Representative 2D and 3D objects assembled from wire-frame DNA origami. 
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1.3.2.2 Dynamic DNA nanostructures 

The possibility to reversibly control the structures of nucleic acids, the stability of 

duplex nucleic acids and the ability to design precise complex geometry at the 

molecular scale renders structural DNA nanotechnology capable of constructing 

nanomaterials, devices, and machinery that can sense, respond to, and navigate the local 

environment; transfer motion, forces, and energy; and process and communicate 

information. Constructing dynamic DNA-based devices with these functions generally 

requires integrating various underlying components with a range of mechanical and 

chemical properties, including flexibility and biochemical addressability.142,143 

 

In addition to the well-established duplex structures of oligonucleotides originating 

from complementary base-pairing, with designed internal properties, other DNA 

structures could be induced by specific external triggers. For instance, cytosine-rich 

strands self-assemble under acidic conditions into intercalated structures (known as “i-

motif”),144 that dissociate at neutral pH values, while G-quadruplex145 structures 

(helical guanine tetrads formed from guanine-rich nucleic acid sequences) are stabilized 

by K+. Similarly, triplex formation bridged by C+•G-C or T•A-T complexes, undergo 

pH-induced formation or dissociation.146,147 Figure 1-12 illustrates the concept of a 

DNA switch while exemplifying the pH-induced reversible functions of the DNA 

switch. In this example, a cytosine-rich sequence is subjected to an acidic pH value 

(pH=5) that triggers the formation of the i-motif quadruplex structure stabilized by the 

homo-cytosine base-pair depicted in the inset. Neutralization of the pH (pH=7) 

destabilizes the i-motif structure and restores the random coil state of the nucleic 

acid.144 
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Figure 1-12. The i-motif DNA structure and the pH induced reconfiguration process: 

cytosine-rich strands self-assemble under acidic conditions (pH 5 in the scheme) into 

intercalated structures (known as “i-motif”) which will then dissociate at neutral pH 

values (pH 7 in the scheme). 

 

Another important stimulus that can trigger the dynamic process and reconfiguration of 

DNA structures is nucleic acid itself.148,149 In 2000, the concept of isothermal DNA 

strand displacement was first introduced, which became essential to the construction of 

many DNA machines.150 In this concept, a DNA “tweezer” (Figure 1-13 a) is closed 

by the addition of DNA “fuel” strands and re-opened with a different DNA strand, with 

the mechanical motion measured by fluorescence energy transfer between two dyes. 

The notion is that an unpaired ‘toehold’ extension to a motif component on the machine 

can bind to the complete complement of the strand. Upon binding, when the toehold is 

sufficiently long (usually about eight nucleotides), the complement will branch and 

migrate to the other end of the strand, thereby removing the strand from the motif 

because more nucleotide pairs are formed. A DNA actuator that was introduced into a 

2D tile lattice enabled switching of the entire lattice between a stretched and a compact 

conformation.151 In a different concept — “hybridization chain reaction” — hairpin 

DNA monomers assemble only when a trigger DNA strand is added. More specifically, 
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the trigger strand opens the first hairpin, which can then open the second hairpin, which 

in turn opens the first, and so on (Figure 1-13 b). As a result , the DNA assembly can 

be triggered and amplified autonomously.152,153 

 

Figure 1-13. Dynamic DNA systems based on strand-displacement principle. (a) A 

DNA tweezer. In the open form (top), the two fluorophores are separated. Strand F 

brings the blue and green strands together and closes the tweezer, increasing 

fluorescence resonance energy transfer (FRET). Strand F* removes F by strand 

displacement, restoring the open form of the tweezer. Asterisks denote complementary 

DNA sequences.150 (b) Hybridization chain reaction. Hairpin DNA monomers H1 and 

H2 stay closed until input strand A is introduced. This strand opens H1, revealing a 

region that opens H2, which in turns opens H1, and so on, until a polymer is formed.152 
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1.4 Summary 

The synergistic effect from the combination of CNTs and DNA is a theme in 

nanoscience and nanotechnology. With their exceptional features, CNTs have been 

considered as one of the most promising nanomaterials for various future applications. 

On the other hand, the integration of DNA nanotechnology with CNTs has granted 

CNTs more flexibility and possibilities to build functional nanostructures. 

 

In the following parts of this thesis, after briefly introducing the experimental methods 

that were used during related research works (Chapter 2), we will mainly focus on the 

assembly of functional CNT hybrid and CNT junction engineering. In particular, in 

Chapter 3 the use of DNA-CNT templates for the assembly of hybrid nanostructures 

with inorganic semiconducting materials in aqueous solutions and their application in 

optoelectronic devices is discussed. In Chapter 4, a facile approach for the fabrication 

of end-to-end SWCNT junctions exploiting DNA strands as the stimuli-responsive 

molecular linkers is presented. In addition to the application of oligonucleotides, in 

Chapter 5 an efficient way to sort DNA-CNTs by length via a gel electrophoresis 

technique (confirmed by AFM) is developed, which further facilitated the analysis of 

CNT junction formation with diazonium salt in our laboratory. Finally, in Chapter 6 the 

thesis will be summarized and concluded with the addressing of future challenges in 

the field. 
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Chapter 2  
 

Experimental Techniques 

 

 

 

In this chapter, the main experimental techniques exploited throughout the studies in 

the thesis will be introduced. As the valuable tool to directly confirm the assembly of 

CNT based nanohybrids, atomic force microscopy is first introduced. To gain further 

information of the nanocomponents and assembled materials (composition, band gap, 

excited state kinetics etc.), spectroscopy methods including steady-state absorption 

spectroscopy, transient absorption spectroscopy and steady-state fluorescence 

spectroscopy are discussed. At last, a brief introduction about the electrophoretic 

techniques that are used for the length sorting of DNA-CNTs and the manipulation of 

assembled hybrids between nano-electrodes will be presented. 

 

2.1 Atomic force microscopy (AFM) 

Atomic force microscopy (AFM), also called scanning force microscopy (SFM) is a 

type of scanning probe microscopy (SPM). Invented by Binning in 1986,1 AFM allows 

the mapping of the topography/morphology of surfaces and interfaces with a vertical 

resolution approaching 0.1 nanometre and lateral resolution of no more than few tens 

of nanometres. The AFM system has evolved into a useful tool for direct measurements 
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of intermolecular forces with its featured atomic-resolution characterization that can be 

employed in a broad spectrum of applications such as electronics, semi-conductors, 

materials and manufacturing, polymers, biology and biomaterials.2–4 

 

In AFM experiments, a sharp tip (with a radius usually smaller than 12 nm) is applied 

to probe the sample surface.5 By measuring forces (typically of the van der Waals type) 

between the tip and surface at very short distances (0.2-10 nm probe-sample), AFM 

provides a 3D profile of the surface at the nanoscale. As depicted in Figure 2-1, a 

typical AFM system consists of a micro-machined cantilever probe and a sharp tip 

mounted to a piezoelectric (PZT) actuator and a position sensitive photo detector for 

receiving a laser beam reflected off the end-point of the beam to provide cantilever 

deflection feedback. The basic principle of AFM operation is to scan the tip over the 

sample surface with feedback mechanisms that enable the PZT scanners to maintain the 

tip at a constant force, or constant height above the sample surface. As the tip scans the 

surface of the sample, moving up and down with the contour of the surface, the laser 

beam which reflects from the back side of the cantilever is detected by the photodetector. 

The position of the beam signal in the sensor measures the deflection of the cantilever 

and in turn the force. A feedback loop is introduced to maintain the tip at a constant 

height above the surface (depending on the working mode). In the constant force mode, 

the PZT transducer monitors real time height deviation. In the constant height mode, 

the deflection force on the sample is recorded. 
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Figure 2-1. The typical AFM configuration. The small spring-like cantilever (4) is 

carried by the support where a piezoelectric element (3) oscillates the cantilever (4) at 

its eigen frequency. The sharp tip (5) is fixed to the free end of the cantilever (4), acting 

as the probe. The detector (2) records the deflection and motion of the cantilever (4) 

through reflected laser beam from a laser source (1). The sample (6) is mounted on the 

sample stage (7). The feedback gained from detector (2) is processed by the controlling 

system (8) which then decides the motion of the piezoelectric actuator (3) according to 

the working mode of the AFM. Numbers in parentheses correspond to numbered 

elements of AFM in the scheme. 

 

According to the configuration described above, the interaction between tip and sample, 

which can be an atomic scale phenomenon, is transduced into changes of the motion of 

cantilever which, is a macro scale phenomenon. Therefore, the value of deflection is 

used to quantify the interaction between the tip and sample.  
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As for the description of the tip-sample interactions, the Lennard-Jones potential 𝑈𝐿−𝐽.6 

is usually introduced: 

𝑈𝐿−𝐽(𝑟) = 𝑈0 [−2 (
𝑟0

𝑟
)

6

+ (
𝑟0

𝑟
)

12

] 

Here r is the tip-surface distance, r0 the tip-surface distance at which the potential 

reaches its minimum, and U0 is the minimal value of the potential. By taking the 

derivative of the potential over distance, the force between tip and surface can be 

obtained from the above equation. Figure 2-2 graphically displays the relationship 

between tip-surface force and distance. In general, there are two regimes where 

different forces will dominate. At a very small distance (a few angstrom), a strong 

repulsive force appears between the tip and the sample atoms (which scales as r -12 in 

the above equation). The force originates from the exchange interactions due to the 

overlap of the electronic orbitals at atomic distances. 
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Figure 2-2. Tip-surface force as the function of tip-surface distance (figure was 

optimized for better illustration from reference 2). 

 

When the repulsive force is dominant, the tip is said to be in “contact” with the sample. 

As the tip moves away from the surface, a polarisation interaction between atoms 

results in attraction between the tip and the sample surface (van der Waals).  

 

Based on the type(s) of interactions involved, there are three main working modes for 

AFM: contact mode (distance < 0.5 nm), non-contact mode (0.5~2 nm) and tapping 

mode (1~10 nm). In contact mode, the tip is kept constant on the surface in the repulsive 

zone. Contours are measured using the feedback loop signal which is tuned to keep the 

cantilever at a constant position/force. For non-contact mode, the tip oscillates at the 

resonant frequency of the cantilever (about 100-400 kHz) and the oscillation amplitude 

(< 10 nm) is kept constant. As the tip approaches the surface, the van der Walls force 

acts to decrease resonant frequency which is then measured by the system. The 
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frequency deviation is then used to make an image of the sample. Non-contact mode 

exploits the r -6 dependence of tip-surface force interaction in the 𝑈𝐿−𝐽  expression.  

 

Tapping mode is a combination of both contact and non-contact modes. Similar to non-

contact mode, the cantilever is driven to oscillate up and down near its resonance 

frequency. The oscillation is achieved by a small piezoelectric element attached to the 

AFM tip holder. The amplitude of the oscillation varies between a few nm to 200 nm. 

The frequency and amplitude of the driving signal are kept constant so that the 

amplitude of oscillation should be the same if there is no interaction between the tip 

and surface. When the tip approaches the surface, it will “lightly” tap the surface which 

causes a decrease in oscillation amplitude. The amplitude is used for the feedback, and 

the vertical adjustments of the piezo scanner are recorded as the height information. 

  

Benefitting from the oscillating contact, tapping mode can achieve an improved lateral 

resolution（~5nm）compared to non-contact mode, but without damaging a “soft” 

organic/biological surface as contact mode would. As is illustrated in Figure 2-3, 

contact mode might damage the surface structure while non-contact mode has a lower 

resolution. Tapping mode benefits from the elimination of friction forces and 

preventing the tip from being “trapped” by surface structures. 
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Figure 2-3. Comparison of AFM working modes (figure was optimized for better 

illustration from reference 2). 

 

Beyond surface topography, other characteristics such as electrical and mechanical 

properties can be acquired simultaneously at the nanoscale. For instance, electrical 

characteristics such as conductivity can be measured by using a conductive tip. On the 

other hand, AFM can record the elasticity and the viscosities of samples ranging from 

inorganic materials to living cells and membranes. Moreover, due to the versatility of 

such methodology, AFM provides possibilities of nano-manipulation by forcing 

intended contact. By forcing the tip ‘hard’ contact with the surface, nanolithography 

can be achieved.   As a result, AFM becomes unique in the sense that it allows the user 

to modify and manipulate objects while measuring the interaction forces at the 

nanoscale.  
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2.2 Spectroscopic methods 

2.2.1 Absorption spectroscopy 

2.2.1.1 Steady-state absorption spectroscopy 

As a physical phenomenon, the absorption of electromagnetic radiation happens when 

the matter (the absorber) takes up the photon energy from the incident light, which will 

result in the gradually reduced light intensity as it propagates through the medium. 

Essentially, photons that match the available energy gaps presented in the matter will 

be absorbed and the corresponding molecules of the absorber will be excited, while the 

rest of the photons are transmitted through the absorber. Consequently, important 

information on the band structures of tested materials can be revealed by their specific 

absorption spectra, and the technique serves as an efficient tool for determining 

components and structures of materials. 

 

From an experimental point of view, one needs to pass the light through the sample and 

to measure the light intensity before (Iin) and after (Iout) the sample to determine the 

absorption (as indicated in Figure 2-4). Then, the relevant values of the sample could 

be calculated as: 

𝑇 =
𝐼𝑜𝑢𝑡

𝐼𝑖𝑛
 

𝐴 = − log 𝑇 = 𝜀𝑐𝑙 

where 𝑇 is defined as the transmittance, 𝐴 the absorbance or optical density (OD). If 

the density of light absorbing molecules is expressed in molar concentration 𝑐, the 

absorbing characteristic as molar extinction coefficient 𝜀 and the optical path as 𝑙 (as 

labelled in Figure 2-4), then the absorbance 𝐴 can be expressed by their product. 
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Figure 2-4. The light absorption process of a sample. The intensities of the incident 

light 𝐼𝑖𝑛 and the light passed the sample 𝐼𝑜𝑢𝑡 together describe the absorption of this 

sample. 

 

Technically speaking, to obtain the absorption spectrum, the measurements must be 

repeated in the expected wavelength range by tuning the light source from one 

wavelength to another with small steps (which decides the wavelength resolution). As 

a result, this underlines three major requirements for the absorption spectroscopy 

instrument. Firstly, one needs a source providing monochromatic light which can be 

tuned easily in a wide range. Secondly, a detector is required to measure the intensities, 

Iin and Iout. Finally, some optical components are needed to connect different parts 

together (including the sample).7 A schematic optical scheme of such device is 

presented in Figure 2-5. 
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Figure 2-5. The schematic illustration of the absorption spectroscopy device. Such 

device is composed of three basic sections: firstly, a source of monochromatic light 

which can be tuned easily in a wide range; secondly, a detector is required to measure 

the intensities, Iin and Iout; thirdly, some optical components connecting different parts 

together (as indicated in the figure as L1, L2 and L3). 

 

As can be seen there is only one photodetector in the scheme. To measure the light 

intensity before and after the sample the measurements must be done twice: first time 

without the sample to obtain Iin and the second time with the sample to obtain Iout. Note 

that for our first measurement, “without the sample” essentially means the use of a 

reference sample which considers absorptions of the cuvette, the solvent and 

attenuation factors such as reflection. In this case, with the two acquired measurements, 

the absorption of the sample of interest (tested molecules/particles etc.) will be obtained. 

 

The light detection part in the scheme consists of a photomultiplier tube (PM) detector 

and a meter. The actually detected signal is the PM output voltage U, which is 

proportional to the light intensity on the PM entrance, 𝑈 = 𝑠 ∗ 𝐼, where 𝑠 is the voltage 
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sensitivity of the detector. Therefore, the transmittance 𝑇 can be obtained from the PM 

output voltages of the two measurements U1 and U2: 

𝑇 =
𝑈2

𝑈1
=

𝐼𝑜𝑢𝑡

𝐼𝑖𝑛
 

In a typical experiment, the whole spectrum is first measured without the sample, giving 

the spectrum U1(λ). Then the spectrum is measured with the sample to yield the 

spectrum U2(λ). Finally, the transmittance or absorbance is calculated from these two 

spectra and will be presented to the instrument user directly. The first measured 

spectrum U1(λ), is commonly known as the baseline and the measurements of the 

baseline can be acquired once for a series of samples.  

 

2.2.1.2 Transient absorption spectroscopy (TAS) 

In order to study the detailed kinetics and mechanisms of physical events occurring on 

the time scales from nanosecond to femtosecond range, transient absorption 

spectroscopy (TAS) was developed with the help of ultrafast laser technologies.8 

Depending on the time resolution of the TAS setup, one can investigate non-radiative 

relaxation of higher electronic states (femtoseconds), vibrational relaxations 

(picoseconds) and radiative relaxation of excited singlet state (typically on nanoseconds 

time scale). As a result, TAS has the capability to trace the intermediate states in a 

photo-chemical reaction; energy or charge transfer process; conformational changes, 

thermal relaxation, fluorescence processes etc..8–13 Importantly, compared with time-

resolved fluorescence spectroscopy, TAS allows one to investigate the evolution of 

non-emissive states of the studied system. 
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In a typical TAS measurement, a fraction of the sample molecules is promoted to an 

electronically excited state by means of an excitation pulse (the pump). A weak probe 

pulse (i.e., a pulse that has such a low intensity so that multiphoton/multistep processes 

are avoided during probing) will be sent through the sample with a time delay τ with 

respect to the pump pulse. After passing the sample, the probe beam reaches the 

spectrometer composed of a monochromator and a photon detector where the transient 

absorption spectra will be recorded as a function of time (Figure 2-6 a). 

 

A schematic description of the sample’s electronic states during the TAS measurement 

can be found in Figure 2-6 b. Different events occur among the ground state (G) and 

excited states (A, B), with the application of a single-wavelength pump laser or the 

white light probe as a function of time (t). In the absence of photoexcitation, most 

species are in the ground state (G). When t < 0, before the pump laser excitation arrives, 

the incident probe beam is on the sample and the detector records the intensity of the 

ground state (G) absorption resulting in the spectrum Abs (t < 0). At t = 0, the pump 

pulse reaches the sample and creates a high, non-equilibrium population in the excited 

state A. After the pump excitation, as t > 0, another spectrum Abs (t > 0) is obtained. 

In this spectrum, a decrease in the ground state absorption (G → A) occurs because 

more ground state molecules were “pumped up” (promoted) to excited states, which is 

known as the ground state bleach (depletion). Additionally, a new component due to 

the excited state absorption (A → B) is also observed in the spectrum. 
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Subsequently, by subtracting the absorption spectrum of the sample in the ground state 

(before pump, t < 0) from the absorption spectrum of the excited sample (after pump, 

t > 0), a difference absorption spectrum is then generated as (ΔAbs or ΔA): 

∆𝐴𝑏𝑠(𝑡) = 𝐴𝑏𝑠(𝑡 > 0) − 𝐴𝑏𝑠(𝑡 < 0) 

A series of these transient absorption spectra could be acquired by changing the time 

delay τ between the pump and the probe and recording the corresponding ΔA spectrum 

at each time delay. Consequently, a ΔA profile as a function of τ and wavelength λ, i.e., 

a ΔA (λ, τ), reflecting the dynamic processes occurring in the system under study, is 

obtained.  
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Figure 2-6. (a) The schematic depiction of the transient absorption spectroscopy setup 

and (b) a schematic example of how the difference absorption spectrum (ΔA) is 

generated [figure (b) was optimized based on schematics from Edinburgh Instruments 

Ltd. for better illustration]. 

 

In general, a ΔA spectrum contains contributions from various processes:14  

(1) The first contribution is known as the ground state bleach. As a fraction of the 

molecules has been promoted to the excited state through the action of the pump pulse, 
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the number of molecules in the ground state is decreased (depleted) (as shown in Figure 

2-6 b). Therefore, the ground-state absorption in the excited sample is less than that in 

the non-excited sample. Consequently, a negative signal in the ΔA spectrum is observed 

in the region of ground state absorption, as schematically indicated in Figure 2-7 (red 

dashed line).  

 

Figure 2-7. Main contributions to a ΔA spectrum: ground state bleach (red dashed 

line), stimulated emission (green dotted line), excited-state absorption (blue solid line) 

and sum of these contributions (thick black solid line) (figure was optimized for better 

illustration from reference 14). 

 

(2) The second contribution could be the stimulated emission. For a two-level system, 

the Einstein coefficients for absorption from the ground to the excited state (A12) and 

stimulated emission from the excited to the ground state (A21) are identical. Thus, upon 

population of the excited state, stimulated emission to the ground state will occur when 

the probe pulse passes through the excited sample. Stimulated emission happens only 

when transitions are optically allowed and has a spectrum that follows the fluorescence 
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spectral features of the excited chromophore, i.e., it is usually Stokes shifted with 

respect to the ground-state bleach. Stimulated emission results in an increase of light 

intensity on the detector, corresponding to a negative ΔA signal, as schematically 

indicated in Figure 2-7 (green dotted line). 

 

(3) The third contribution could be the excited-state absorption. Upon excitation with 

the pump pulse, optically allowed transitions from the excited (populated) states of a 

chromophore to higher excited states may exist in certain wavelength regions, and 

absorption of the probe pulse at these wavelengths will occur. Consequently, a positive 

signal in the ΔA spectrum might be observed in the region of excited-state absorption 

(Figure 2-7, blue solid line). Note that the intensity of the probe pulse is considerably 

weak throughout the measurement that the excited-state population is not affected 

substantially by the excited-state absorption process.  

 

(4) Another possible contribution to the ΔA spectrum might come from product 

absorption. After excitation of the investigated system, reactions may happen which 

result in a transient or a long-lived molecular state, e.g. triplet states, charge-separated 

states, and isomerized states. As a result, the absorption of such a (transient) product 

will appear as a positive signal in the ΔA spectrum. A ground-state bleach will be 

observed at the wavelengths where the chromophore on which the product state resides 

has a ground-state absorption.  

 



60 
 

2.2.2 Fluorescence spectroscopy 

After being electronically excited, substances might release the energy via the emission 

of light that is a process known as luminescence. A fast luminescence process that 

occurs typically within the nanosecond time scale is fluorescence, which is due to the 

rapid emission of photons from excited singlet states. As a result, in addition to 

exploiting controlled fluorescence as the non-destructive way to track/analyse 

(bio)molecules,15 the fluorescence spectra of materials can also provide information 

such as electronic band gap size (HOMO-LUMO gap) of samples.16 Moreover, together 

with the growing utilization of Förster resonance energy transfer (FRET, also known 

as fluorescence resonance energy transfer) to detect biomolecule (e.g. proteins, DNA) 

interaction/configuration and monitor nanoparticle related assembly/disassembly, 

molecular fluorescence has become a popular tool in biology and nanoscience.17–19 

 

The experimental arrangement of fluorescence measurement equipment is 

schematically illustrated in Figure 2-8. The fluorometer (steady-state fluorescence 

measurement system) is composed, in the order of processes, by a source of excitation 

that can be a lamp with the monochromator (e.g. Xenon flash lamp) or laser(s) (e.g. 

Nd:YAG laser), a sample stage and an adjustable single wavelength detector (similar 

to the detector in absorption measurement, consisting of a monochromator, and 

photomultiplier and a meter). Other components may be needed to connect the parts 

together and optimize the measurement quality (e.g. filters are applied in the light 

source and detector section as labelled by F1 and F2 in Figure 2-8). After the incident 

light has been generated with the desired wavelength, the radiation is collected and 

focused on the sample. Subsequently, the material is excited by the striking of incident 

light, and the fluorescence signal is collected by another lens in the direction which is 
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perpendicular to that of the incident light (to minimize the stray light interference), 

towards the monochromator input. The final output will be the read from the meter of 

the detector. 

 

Figure 2-8. (Top and right) schematic illustration of a steady-state fluorescence 

measurement setup, and (bottom left) the emission spectra of three commonly used 

cyanine chromophores (Cy2, Cy3, Cy5) (emission spectra credit: Stratech, Inc). 

 

Fluorescence spectral data are generally presented as emission spectra, where the 

fluorescence emission intensity is plotted versus wavelength. Emission spectra vary 
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widely and are dependent upon the chemical structure of the fluorophore and the solvent 

in which it is dissolved. As an example, Figure 2-8 shows the emission spectra of Cy2 

(cyanine), Cy3 (indocarbocyanine) and Cy5 (indodicarbocyanine), with corresponding 

fluorescence peaks at 510 nm, 570 nm and 670 nm, respectively. 

 

2.3 Electrophoresis 

2.3.1 Gel electrophoresis (GE) 

Since its discovery in 1807 by Peter Ivanovich Strakhov and Ferdinand Frederic Reuss, 

electrophoresis has evolved into an extensively used laboratory technique to separate 

charged macromolecules by their size or binding affinity.20 The underlined principle of 

electrophoresis is that charged molecules move at different rates under the same 

uniform applied electric field based on their sizes. Molecules (e.g. DNA, proteins etc.) 

are frequently associated with positive or negative charges when dispersed in aqueous 

solutions. With the presence of an electric field, these charged molecules will move 

towards the electrode of opposite charge because of the electrostatic interaction. The 

whole process happens in a porous matrix made of agarose or polyacrylamide gel. A 

typical gel electrophoresis setup is illustrated in Figure 2-9. The agarose gel block sits 

within a tank of buffer that provides the stable electrolyte environment for the running 

of the gel. The samples are then placed in wells at one end of the gel block and an 

electrical current will pass across the gel upon the application of the electric field. If the 

sample molecules are negatively charged in buffer solution (e.g. DNA), they will move 

toward the positive electrode. 
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Figure 2-9. Schematic illustration of a typical agarose gel setup 

(image credit: Genome Research Limited). 

 

Several factors are concerned with the relative mobility of the individual molecules. 

The most important include the net charge, charge/mass ratio, shape, and size of the 

molecules; the temperature, porosity and viscosity of the matrix through which the 

molecule migrates. 

 

If a mixture of electrically charged molecules is placed in an electric field of field 

strength E, they will freely move towards the electrode of opposite charge. However, 

different molecules will move at quite different and individual rates depending on the 

physical characteristics of the molecule and on experimental system used. The velocity 

of movement, ν, of a charged molecule in an electric field E depends on variables 

described by: 
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𝑣 =
𝐸𝑞

𝑓
 

where f is the frictional coefficient and q is the net charge of the molecule.21 The 

frictional coefficient describes the frictional resistance to molecule mobility and 

consequently a number of factors such as mass of the molecule, its degree of 

compactness, buffer viscosity and the porosity of the matrix in which the experiment is 

performed will all contribute to the final separation quality. The net charge is 

determined by the number of positive and negative charges in the molecule. For 

instance, DNA has a particularly uniform charge distribution since a phosphate group 

confers a single negative charge per nucleotide, resulting in a highly predictable net 

charge value according to its sequence length. The above equation means that, with 

similar size, molecules will move faster as their net charge q increases, the electric field 

E strengthens and as f decreases. Molecules of similar net charge separate due to 

differences in frictional coefficient while molecules of similar mass/shape may differ 

widely from each other in net charge. Consequently, it is possible to achieve high 

resolution separation by gel electrophoresis. 

 

2.3.2 Dielectrophoresis (DEP) 

Different from conventional electrophoresis where a uniform electric field is applied 

for charged molecules, dielectrophoresis (DEP) causes the motion of neutral particles 

by the application of a non-uniform electric field. On the basis of the study by Herbert 

Pohl in the 1950s,22,23 DEP has emerged as an important technique for the manipulation 

of micro- and nano-sized particles in recent years.24–26 
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Dielectrophoresis occurs when a polarizable particle is suspended in a non-uniform 

electric field. The particles will be polarized in the presence of electric field and the 

poles will experience forces in opposite directions. The total force applied on the 

particles should be zero in a uniform electric field. However, when the field is non-

uniform, the dipole will experience a total force, causing the movement of the particles 

(Figure 2-10). The relative polarizability of the particle and medium decides the 

orientation of the dipole. As a result, the direction of the force is dependent on field 

gradient rather than field direction, and DEP will occur in AC as well as DC electric 

fields; polarization (and hence the direction of the force) will depend on the relative 

polarizabilities of particle and medium.  

 

Figure 2-10. The polarized particle in a uniform electric field (left) and a non-uniform 

electric field (right) (figure was optimized for better illustration from reference 26). 

 

The expression for the time-average DEP force (acting on a spherical particle) is given 

by: 

𝐹𝐷𝐸𝑃 = 2𝜋𝑅3𝜀𝑚𝑅𝑒[𝐶𝑀(𝜔)]∇𝐸2  
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with 

𝐶𝑀(𝜔) = (
𝜀𝑝

∗ − 𝜀𝑚
∗

𝜀𝑝
∗ + 2𝜀𝑚

∗
) 

where R is the particle radius, m is the permittivity of the suspending medium,  

represents the gradient operator, E is the electric field amplitude (rms), ReCM( ) is 

the real part of the Clausius-Mossotti factor (CM) that is related to the effective 

polarizability of the particle. Note that m
* and p

* are the complex permittivity of the 

medium and particle respectively, which could be expressed as: 

𝜀∗ = 𝜀 −
𝑗𝜎

𝜔
 

with   as the conductivity,   the permittivity and   the angular frequency of the 

applied electric field. 

 

The frequency-dependence of ReCM( ) indicates that the force acting on the particle 

varies with the frequency. The magnitude of ReCM( ) also varies depending on 

whether the particle is more or less polarizable than the medium. If ReCM( ) is 

positive, then particles move to regions of  highest field strength (positive DEP); the 

converse is negative DEP where particles are repelled from these regions. Hence, not 

only the manipulation (movement) of particles is possible but also the separation of 

mixed samples with varied permittivity can be achieved. By careful construction of the 

electrode geometry which creates the electric field, it is possible to create electric field 

morphologies so that potential energy minima are bounded by regions of increasing 

electric field strengths. In such electrodes, particles experiencing positive DEP are 

attracted to the regions of highest electric field (typically the electrode edges, 

particularly where adjacent electrodes are close), whilst particles experiencing negative 

DEP are trapped in isolated field minima. As the relative polarizabilities of the particle 
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and medium are frequency-dependent, varying the energizing signal and measuring the 

way in which the force changes can be used to determine the electrical properties of 

particles as well. 

 

Notably, in addition to applying DEP for the manipulation of nanoparticles such as gold 

nanoparticles,27 the manipulation and separation of CNTs were also realized by 

customizing the related DEP parameters (e.g. electrode shape and configuration, 

electric field frequency and strength, suspending medium etc.).28–30 For instance, in 

2003 researchers have developed a method to separate metallic SWCNTs from 

semiconducting ones using AC DEP,28 based on the different relative dielectric 

constants of the two species with respect to that of the solvent (Figure 2-11). 

  

Figure 2-11. The application of DEP for the manipulation and separation of CNTs. (a) 

Illustration of the experimental DEP setup for the manipulation of CNTs. (b) The 

Rayleigh scattered light from the DEP deposited CNTs suggests the fine alignment 

obtained.28 
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Chapter 3  

 

Constructing Multiplexed Photo-

Responsive Nano-Devices: The Dual 

Role of DNA-Wrapped SWCNT 

 

 

 

3.1 Introduction 

 

By synergistically combining the individual properties of more than one nanoscale 

component, novel features of hybrid structure assemblies represent a key motivation 

for making future functional nanomaterials.1–7 Among the potential applications of 

these hybrid structures, photodetection is a typical example where the nanodevice 

converts incident photons into an electrical signal. Devices based on these novel hybrids 

will pave the way towards next-generation photodetectors with not only improved 

performance but also merits including nanoscale dimensions and potential flexibility.8–

18 

 

For a photodetection device based on hybrid structures, efficient electron-hole pair 

separation and charge carrier transport are essential.19 Among the hybrid structures for 
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optoelectronic applications, CNT based hybrids are of particular interest because the 

presence of CNTs greatly improves the charge mobility and facilitates the charge 

transfer at the heterointerface with other active components in the hybrids, so that the 

device efficiency can be promoted: these advantageous features are granted by the high 

surface area, outstanding electrical and electronic properties of CNTs.20,21 

Consequently, CNTs can serve as promising building blocks for the construction of 

nanoarchitectures of next generation optoelectronic devices for such applications.1,22–26 

Meanwhile, inorganic semiconducting quantum dots (QDs) are very appealing 

components to be assembled with CNTs since they hold a broad absorption band and 

high tunability of band gap according to their sizes and compositions.17,27–29 

 

As a result, researchers have been trying to fabricate devices based on hybrids from 

CNTs and QDs for next generation optoelectronic applications. In this regard, CdS and 

CdSe have been widely employed to fabricate systems exhibiting photoresponses to 

green/blue light in the visible spectrum.27,30–32 Istvan et al. synthesized CdS-SWCNT 

hyrbids in THF and methanol, and investigated the electron transfer from CdS to 

SWCNT by transient absorption spectroscopy (TAS).30 A similar electron transfer 

process was proposed for CdSe-CNT heterostructures in a study carried out by 

Liangbing Hu et al., where hybrids were assembled on surface from DMF solutions  

employing CdSe QDs pre-functionalized with a pyrene derivative.31 Moreover, 

researchers revealed that amine molecules were able to mediate the doping of SWCNTs, 

giving them the capability to tune the photoresponse of fabricated CdS-CNT hybrid 

devices.32 Similarly, PbS was employed, allowing for the extension of the 

photoresponse into the red and near infrared (NIR) regime.28,33–37 Defa Wang et al. 

fabricated photovoltaic devices based on PbS-CNT hybrids made from oleyamine 



74 
 

capped PbS QDs and pre-functionalized MWCNTs.34 Fast photoresponse was further 

obtained in PbS-CNT based devices fabricated with pulsed laser ablation techniques.35 

Additionally, multiple exciton generation (MEG) was observed in PbS-CNT hybrids 

highlighting their potential for high performance optoelectronic applications.36 

 

Given the demonstrated photoresponses of these hybrids, challenges remain as the 

hybrid synthesis and device fabrication approaches still unavoidably involve at least 

some of the following aspects: i) the use of organic solvents during in the hybrid 

assembly process due to the extreme hydrophobicity of CNTs; ii) the chemical 

functionalization of CNT surfaces, potentially compromising the nanotubes’ electronic 

properties; iii) the use ligands around the QDs to prevent their aggregation, to the 

detriment of an efficient charge transfer between the QDs and the CNTs; iv) the 

fabricated devices are typically made of unaligned/disordered composite (e.g. spin 

coated films), which hinders their further controlled miniaturization down to the 

nanoscale; v) only one type of hybrid is implemented in the device so that the potential 

of multiplexed wavelength responses in a single nanodevice is not exploited. 

 

On the other hand, assembly approaches by exploiting some specific template for the 

construction of nanohybrids have gained more attention in recent years, as they often 

represent facile and effective bottom-up strategy operating in solutions. For instance, 

DNA was demonstrated to be the template for the growth of metal nanoparticles (NPs) 

or efficient assembly of heterostructures with inorganic nanoparticles and hybrid 

nanowires with semiconducting materials.38–42 Moreover, some pre-functionalized 

CNTs were also proved to template hybrid structures with NPs.31,43 Importantly, DNA-
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wrapped CNTs (DNA-CNTs), with the ideal combination of desired CNT features 

(preserved electronic properties, one-dimensionality) and great water dispersity,44 

could be the promising templating candidate to construct CNT based semiconducting 

nanohybrid structures in aqueous solutions and this possibility has yet to be explored. 

 

Herein, by employing DNA-CNTs as the well-dispersed one-dimensional templates,44 

we present a facile strategy to assemble in aqueous solution different QD-CNT 

heterostructures, organize them (DNA-CNTs and the templated QD-CNT hybrids) in 

nanoscale devices, and exploit their photoinduced electrical response at different 

wavelengths for the construction of multiplexed chips. We developed the same one-pot 

assembly method to grow CdS or PbS QDs along the sidewall of the nanotube templates, 

directly in aqueous solution. The morphology of DNA-CNT template and the assembly 

of CdS-DNA-CNT/PbS-DNA-CNT hybrid nanostructures was confirmed by atomic 

force microscopy (AFM), while their organization between pre-patterned 

nanoelectrodes was achieved via dielectrophoresis (DEP). This approach allowed us to 

fabricate multiplexed nanoscale devices, that we tested for their photoresponse to blue 

(405 nm), green (532 nm) and red (650 nm) light on probe station. 

 

Intriguingly, the photoinduced electrical response features indicated different processes 

within the devices, depending on: i) whether the template surface is decorated by 

inorganics and ii) the exact inorganic material employed, i.e. CdS or PbS. By comparing 

the devices’ photo-responsive performances in ambient conditions (in air) and in 

vacuum, a photo-induced molecular desorption process was suggested for the DNA-

CNT and CdS-DNA-CNT devices. Meanwhile, further investigations on the excited-
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state behaviour of the hybrids via TAS indicated the charge transfer between excited 

SWCNT and PbS QDs within the PbS-DNA-CNT heterostructures. Significantly, the 

two mechanisms in our devices revealed two roles of DNA-CNTs which both conceive 

valuable potential for future applications: as the photo-responsive device itself and as 

the effective template to construct CNT based photo-responsive hybrids. The strategy 

we developed is of general applicability for the controlled fabrication of CNT-based 

multiplexed photo-responsive optoelectronic hybrid systems and devices. 

 

3.2 Hybrid assembly 

We first wrapped and dispersed (7,6) chirality enriched semiconducting SWCNTs with 

single-strand DNA (ssDNA) through sonication in aqueous solution (see scheme in 

Figure 3-1a).44 In brief, (7,6) enriched SWCNTs were wrapped by single-strand (ss) 

DNA [(GT)20] in 0.1M NaCl solution under 60 min sonication to form the DNA-CNTs. 

The undispersed CNTs and residues (amorphous carbon etc.) were removed by keeping 

only the supernatant after 90 min centrifugation at 16000 g. The supernatant solution 

was then dialysed against MiliQ H2O overnight. The DNA-CNT aqueous solution can 

then be stored under 4°C as stock solution for further device implementation. 

 

To assemble PbS-DNA-CNT hybrids, the prepared aqueous solutions containing DNA-

CNT templates were subject to a facile one-pot two-step procedure: i) addition of Pb2+ 

into the DNA-CNT solution and overnight incubation; ii) addition of S2- to the solution 

and overnight incubation (as shown in Figure 3-1a). In detail, the stock DNA-CNT 

solutions were diluted 10x with MiliQ H2O. To every 10 L of diluted DNA-CNT 
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solution, 25 L of H2O and 10 L of 5 mM Pb2+ [dissolved from Pb(NO3)2] were added 

and the solution was incubated at 4°C overnight; to the incubated solution was then 

added 10 L of 5 mM S2- (dissolved from Na2S) and subject to overnight incubation. 

The incubated solution was dialysed against MiliQ H2O for 3 h. The incubated 

solutions were dialyzed against MiliQ H2O for 3 h and the PbS-DNA-CNT hybrids 

were then ready for device implementation and further investigations. 
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Figure 3-1. Assembly scheme and AFM characterization. (a) schematic illustration of 

DNA-CNT preparation and PbS-DNA-CNT hybrid assembly from DNA-CNT templates 

in aqueous solution; (b-d) AFM characterizations of the (b) DNA-CNT, (c) PbS-DNA-

CNT hybrid and (d) DNA-CNT mixed directly with preformed PbS QDs. The height 

profiles follow the corresponding red dashed lines in every AFM picture above it, 

indicating the typical sizes of the samples. 
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Prepared solutions were cast on muscovite mica to investigate their morphological 

properties at the nanoscale via atomic force microscopy (AFM); this was done on both 

the original DNA-CNTs and the templated assembly of PbS-DNA-CNT hybrids: see 

Figure 3-1 b and Figure 3-1 c for representative AFM images. The DNA-CNT has a 

typical diameter of c.a. 1.4 nm (Figure 3-1b), while in the assembled PbS-DNA-CNT 

hybrid QDs can be observed along the sidewall of the DNA-CNT templates exhibiting 

a typical size of (4 ± 1) nm (Figure 3-1c). Moreover, the AFM height profiles following 

the lengths of DNA-CNT and PbS-DNA-CNT also indicated the attachment of PbS 

along the DNA-CNT templates (Figure 3-2 and Figure 3-3). 
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Figure 3-2. Height profile along the length of DNA-CNT. Top: AFM image of DNA-

CNT; bottom: height profile along the length of the shown DNA-CNT (the dashed line 

indicates the average height of 1.4 nm). 
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Figure 3-3. Height profile along the length of PbS-DNA-CNT. Top: AFM image of PbS-

DNA-CNT hybrid; middle: height profile along the length of the shown PbS-DNA-CNT 

(the dashed line indicates the DNA-CNT average height of 1.4 nm); bottom: additional 

AFM image showing the successful assembly of PbS QDs along DNA-CNTs. 
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The AFM data strongly suggests that the direct assembly of PbS QDs along the DNA-

CNT templates was successfully achieved in aqueous solution; it is reasonable to 

assume this to be the result of efficient seeding of Pb2+ along the templates via Coulomb 

interaction between the metal cations and the negatively charged DNA phosphate 

backbone in H2O, similar to what was observed on -DNA.39 This templating effect 

was further confirmed with the AFM images of DNA-CNT templates mixing directly 

with preformed PbS QDs (i.e. Pb2+ and S2- were sequentially added into pure H2O 

instead of the solution containing DNA-CNTs, and afterwards pristine DNA-CNTs 

were then added into the solution of preformed PbS QDs). In this case, before having 

the chance to interact with negatively charged DNA-CNTs, the metal cations in solution 

were depleted by reacting with S2- to form PbS. Consequently, as shown in Figure 3-

1d, the DNA-CNT from this sample exhibited a diameter of typical pristine DNA-CNT 

template (c.a. 1.2 nm) and the sidewall were not decorated by QDs (see Figure 3-4 for 

profile along the length of the sample). 
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Figure 3-4. Height profile along the length of DNA-CNT mixed directly with preformed 

PbS QDs. Top: AFM image of DNA-CNT; bottom: height profile along the length of 

the shown DNA-CNT (the dashed line indicates the average height of 1.4 nm). 
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3.3 Device implementation and performance features 

3.3.1 Device implementation 

In order to organize the DNA-CNTs and Pb-DNA-CNT heterostructures in device 

configurations, we cast the solutions on pre-patterned nanoelectrodes and immobilized 

the hybrids between these electrodes with a dielectrophoretic technique similar to what 

we have previously demonstrated with aptamer-CNT hybrids and metal-filled CNT 

hybrids.45,46 In the AFM images representing the typical device configurations (Figure 

3-5), small bundles of the aligned DNA-CNTs and PbS-DNA-CNT hybrids can be 

observed which are estimated to be consist of no more than 353 DNA-CNTs and 322 

PbS-DNA-CNT hybrids. 

 

 

 

 



85 
 

 

Figure 3-5. On the same chip, DNA-CNTs and assembled PbS-DNA-CNT hybrids were 

sequentially aligned between pre-patterned nanoelectrodes (400 nm gap) via 

dielectrophoresis (DEP) in less than 30s. The AFM images with height profiles along 

the corresponding dashed lines of typical (a) DNA-CNT device and (b) PbS-DNA-CNT 

device are shown here. The chip was connected to an electrical measurement setup and 

the real-time device performance could then be monitored with laser source turned on 

and off. 

 

The estimation of the DNA-CNT or PbS-DNA-CNT hybrids quantities between 

nanoelectrodes is based on the AFM profile data of the devices (Figure 3-5). The 

representative height profiles of the DNA-CNT/PbS-DNA-CNT bundles between the 

electrodes are shown below the AFM images. The area integration of the bundle profile 

was calculated to be 544 nm2 for DNA-CNT device and 2292 nm2 for PbS-DNA-CNT 

device (indicated as shadowed areas under the height profiles in Figure 3-5 a, b). 
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Considering the rigidity of DNA-CNTs and PbS-DNA-CNTs with the average 

diameters of 1.4 nm and 3 nm respectively (radius of 0.7 nm and 1.5 nm, respectively), 

it is reasonable to assume every DNA-CNT or PbS-DNA-CNT hybrid has an effective 

cross section area of at least ADNA-CNT = π*(0.7)2  1.54 nm2 or APbS-DNA-CNT = π*(1.5)2 

 7.1 nm2 (π = 3.14). The number of DNA-CNTs or PbS-DNA-CNTs in the bundle can 

then be simply estimated as NDNA-CNT = 544/1.54  353 or NPbS-DNA-CNT = 2292/7.1  

322. Note that this number should be the upper limit of the quantities in the bundles 

since the profiles are assumed to be 100% occupied by DNA-CNTs or the hybrids. 

 

To investigate the photoresponsive properties of the prepared devices, we performed 

real-time measurement of the current through the source (s) and drain (d) electrodes (Isd) 

with a constant voltage (Vsd, 1 V). Lasers of different wavelengths were cast on the 

devices to monitor the photoresponses of them. 

In detail, electrical measurements were performed using a probe station (PS-100, 

Lakeshore) equipped with a semiconducting parameter analyser (Keithley, 4200SCS) 

at room temperature. The analyser recorded the current through the devices (Isd) where 

a constant voltage (1 V) was applied to the source and drain electrodes. After the current 

was stable, lasers of different wavelength (650nm, 532nm and 405nm) were cast onto 

the devices. After a duration of c.a. 20 s, the lasers were turned off. We repeated this 

process to test the reproducibility of the devices. 
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3.3.2 Photoresponsive performances 

In ambient conditions, after illuminating the DNA-CNT device with 405 nm laser, an 

Isd decrease as great as 60% was immediately observed; the current recovered gradually 

after switching off the laser (Figure 3-6 a), which took c.a.200 s to reach 80% of the 

initial current level (the relative real-time current is reported as I/I0 for better illustration 

of current change, I represents the absolute real-time current value and I0 equals to the 

mean current value before the first laser illumination upon the device). For the 

implemented DNA-CNT device, the results demonstrated an improved photo-

responsive performance compared to what was previously observed by Li et al. in spin-

coated films of CdS-CNTs where CdS QDs were believed to interact with CNTs and a 

current change of 20% with a corresponding recovery time of about 200 s was 

obtained.32 
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Figure 3-6. Photoinduced electrical responses (405 nm laser applied) and wavelength 

dependence test of the devices in ambient conditions. (a, b) real-time photoinduced 

electrical response with laser turned on and off from (a) DNA-CNT device and (b) PbS-

DNA-CNT device; (c, d) wavelength dependence test with sequential illuminations by 

red (650 nm), green (532 nm) and blue (405 nm) light for (c) DNA-CNT device and (d) 

PbS-DNA-CNT device. The current is reported here as I/I0 for better illustration of 

current change, I represents the absolute real-time current value and I0 equals to the 

mean current value before the first laser illumination upon the device. 

 

For PbS-CNT hybrids, an opposite and faster photoresponse was observed, i.e. a sharp 

current increase in 1 s with laser illumination and a sharp decrease in 1 s upon switching 

off the light source (Figure 3-6 b). Notably, this photo-induced current contributed to 
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more than 100% increase in the device’s measured Isd and the photoresponse cycle was 

highly repeatable. 

 

The wavelength dependence of our devices was tested with 650 nm, 532 nm and 405 

nm lasers sequentially. For DNA-CNT device, no obvious response to red light (650 

nm) was observed while responses (drop in current) to green (532 nm) and blue (405 

nm) light were recorded (Figure 3-6 c). This correlation trend between the 

photoresponse and incident light wavelength is in accordance with the π-plasmon 

absorption of CNTs47,48. As a result, it is reasonable to attribute its wavelength 

dependence to the CNT π-plasmon absorption. 

 

For the PbS-DNA-CNT based device, we observed a photoresponse to all three 

wavelengths (i.e. 650 nm, 532 nm, 405 nm) with similar magnitude (Figure 3-6 d). In 

fact, both the DNA-CNTs and the PbS QDs absorb strongly at 650 nm, 532 nm and 405 

nm (Figure 3-7, Figure 3-8), which suggests that the excitation of DNA-CNTs/PbS 

QDs could be one potential event behind the photoresponse of PbS-DNA-CNT system. 
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Figure 3-7. Absorption spectrum of DNA-CNTs. 

 

 

Figure 3-8. Absorption spectrum of PbS QDs. 
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Notably, very different photo-responsive features (current change direction, speed, and 

wavelength dependence) between DNA-CNT and PbS-DNA-CNT devices may reflect 

some key differences in the photo-induced exited state dynamics of the corresponding 

systems. Importantly, by organizing DNA-CNT and assembled PbS-DNA-CNT 

nanohybrids that work in varied photo-inducible wavelength ranges on the same chip, 

we have fabricated a nanodevice with multiplexed sensing capability. 

 

3.4 Further investigations 

To further understand the main mechanisms behind the observed photoresponses, we 

carried out more investigations on the corresponding systems. All the above-mentioned 

performances of the devices were acquired in ambient conditions (i.e. in air). In order 

to see whether the presence of air played a role in the photo-responsive behaviors of 

our devices, we tested the photoresponses in a vacuum chamber (10-6 bar). Interestingly, 

for DNA-CNT devices, a drop in the current was again obtained upon light illumination 

but the current recovery after switching the light off was no longer observed (Figure 

3-9 a).  

 

In the meantime, we monitored the current dependence on gate voltage of DNA-CNT 

device and found that it displayed typical p-type features [Figure 3-9 b, gate 

dependence features of the devices were measured with gate bias sweeping mode (-10 

V to 10 V) to record the source-drain current (Isd) versus gate bias (Vg)]. The p-type 

behavior of DNA-CNT is caused by the adsorbed electron withdrawing molecules (e.g. 

oxygen) on the CNT surface.49,50 As a result, a photo-induced molecular desorption 

model was suggested to best describe the mechanism behind the DNA-CNT 
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photoresponses, which was previously observed from devices based on chemical vapor 

deposition (CVD) grown SWCNTs.51 In brief, due to the π-plasmon absorption of 

CNTs, the oxygen molecules previously adsorbed to DNA-CNT were removed 

(molecular desorption) from the CNT surface upon light illumination, returning 

electrons back into the CNT. Given the p-type nature of the conducting DNA-CNT, this 

electron injection leads to the population decrease of the holes (the major charge 

carriers) in the CNTs, resulting in the decrease in device conductivity (drop in current). 

Additionally, the wavelength-dependent features of DNA-CNT device have been 

positively correlated to the optical absorption of π-plasmon in CNTs,47 where a bigger 

drop in current has corresponded to a stronger absorption. This is in line with the model 

in which the π-plasmon of the CNTs are responsible for the molecular desorption.51 

Significantly, this photo-responsive feature based on the molecular desorption 

mechanism highlights the potential of DNA-CNTs in light-gas correlated sensing 

applications, with the merits of efficient dispersion and manipulation in aqueous 

solutions. 
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Figure 3-9. Photoinduced electrical response tests in vacuum (10-6 bar) and gate 

dependence measurements. (a) photoresponse of DNA-CNT device in vacuum (405 nm 

laser applied); (b) Isd-VG curve of DNA-CNT device; (c) photoresponse of PbS-DNA-

CNT device in vacuum (405 nm laser applied); (d) Isd-VG curve of PbS-DNA-CNT 

device. 

 

In terms of the PbS-DNA-CNT device, no obvious change in photoresponse features 

was observed in vacuum as compared to that in air (Figure 3-9 c). Meanwhile, the 

device also displayed p-type gate dependence as was the case for DNA-CNT device 

(Figure 3-9 d). It is important to note that the device was no longer conductive after 

removing SWCNTs in the hybrids by oxygen plasma (OP) (Figure 3-10). This confirms 

the role of SWCNTs as the 1D conductive pathway in the PbS-DNA-CNT device.  
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Figure 3-10. AFM and conductivity comparison of the same PbS-DNA-CNT device 

before and after the oxygen plasma (OP) treatment. (a) AFM image of the device before 

OP treatment; (b) AFM image of the device after OP treatment; (c) conductivity of the 

device before and after the OP treatment. 

 

Consequently, a mechanism that differs from molecular photodesorption model is 

suggested for this system. Since an increase in current was observed upon light 

illumination, an electron transfer from CNT to attached PbS QDs is the most likely 
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event, considering the p-type nature of the devices. We then probed the excited state 

behaviors of DNA-CNT and PbS-DNA-CNT hybrids via TAS at 1152 nm 

[corresponding to the E11 transition of (7,6) chirality SWCNTs] and with a pump at 650 

nm. As is presented in Figure 3-11, after 650 nm excitation, the PbS-DNA-CNTs 

exhibit a slower bleaching recovery compared to that of DNA-CNTs.  

 

Figure 3-11. Excited state lifetime investigations of DNA-CNTs and PbS-DNA-CNT 

hybrids (pump at 650 nm). Normalized transient absorption kinetics of PbS-DNA-CNTs 

and DNA-CNTs at 1152 nm are shown [corresponds to the E11 transition of the (7,6) 

SWCNTs] and the solid lines are the kinetic fits (see Supporting Information for details). 

The inset shows the energy band positions of SWCNT and PbS QDs in the system. 

 

We analysed the bleaching recovery of DNA-CNT and PbS-DNA-CNT hybrids from 

the acquired TAS data with a biexponential kinetics model: 

𝐴𝑏𝑠(𝑡)𝜏 = 𝐴1𝑒−𝑡 𝜏1⁄ + 𝐴2𝑒−𝑡 𝜏2⁄  
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where 𝑡 is time, 𝐴 is amplitude, and 𝜏 is the decay lifetime.  

The average lifetimes of the samples were calculated from the weighted average of the 

two lifetimes: 

〈𝜏〉 = ∑ 𝐴𝑖𝜏𝑖
2

2

𝑖=1

∑ 𝐴𝑖𝜏𝑖

2

𝑖=1

⁄  

The obtained values from the kinetic analysis are displayed in Table 1. 

 𝐴1 𝜏1 

(ps) 

𝐴2 𝜏2 

(ps) 

〈𝜏〉 

(ps) 

DNA-CNT 2.712±0.286 0.055±0.005 0.166±0.021 1.777±0.536 1.198 

PbS-DNA-

CNT 

9.090±1.357 0.032±0.002 0.252±0.009 3.058±0.283 2.228 

Table 1. Lifetimes and amplitudes of the bleaching recovery of DNA-CNT and PbS-

DNA-CNT hybrids calculated from the fitting with biexponential kinetics. 

 

The averaged lifetimes were calculated to be 2.2 ps and 1.2 ps for PbS-DNA-CNTs and 

DNA-CNTs, respectively. This evidence strongly indicates an electron transferring 

pathway from the excited CNT to PbS QDs, contributing to the slower recovery of the 

CNT ground state. The suggested event also agrees with the reported energy band 

positions of SWCNTs and PbS as shown in the inset of Figure 3-11, where a net 

electron transfer is energetically allowed when CNTs are excited.52,53 
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3.5 General applicability: DNA-CNT templated CdS-

DNA-CNT hybrids 

To prove that our one-pot assembly method exploiting DNA-CNT as the template is of 

general applicability, we have also assembled CdS-DNA-CNT hybrids with the same 

approach simply by changing Pb2+ to Cd2+ during the assembly procedure (see Figure 

3-12 and Figure 3-13 for AFM characterizations). The assembled CdS-DNA-CNT 

hybrids were then implemented into nanodevice (Figure 3-14) and displayed similar 

photo-responsive/wavelength dependence features as were observed in DNA-CNT 

devices (Figure 3-15, Figure 3-16).  

 

In terms of further investigations, compared with DNA-CNT devices, similar 

observations were acquired for CdS-DNA-CNT counterparts (i.e. no clear current 

recovery after switching off the light when the testing condition was changed to vacuum 

and p-typed gate-dependence features: Figure 3-17, Figure 3-18). Additionally, no 

clear evidence suggesting the effective electron transfer between excited CdS QDs and 

CNTs was obtained from the comparison of excited state absorptions of DNA-CNTs 

and CdS-DNA-CNT hybrids (Figure 3-19, Figure 3-20). We expected a change in 

bleaching recovery kinetics if there was electron transfer when the CNTs were in 

contact to excited CdS QDs. As presented in Figure 3-20, after 405 nm excitation, no 

obvious difference in the bleaching recovery between CdS-DNA-CNTs and DNA-

CNTs was observed. 
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Consequently, the above-mentioned observations indicated that the molecular 

photodesorption was likely to be the dominant process accountable for the photo-

responsive features of CdS-DNA-CNT device, instead of the previously suggested 

electron transfer model for CdS-CNT systems in air.32 Moreover, the successful 

assembly of CdS-DNA-CNT hybrids demonstrates that the DNA-CNT based 

templating approach is of general applicability for similar materials compatible with 

aqueous solutions. 
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Figure 3-12. AFM image of a typical assembled CdS-DNA-CNT hybrid. The height 

profile follows the corresponding red dashed line in the AFM image above it, indicating 

a typical size of 5 nm. 
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Figure 3-13. Height profile along the length of CdS-DNA-CNT. Top: AFM image of 

CdS-DNA-CNT hybrid; bottom: height profile along the length of the shown CdS-DNA-

CNT (the dashed line indicates the DNA-CNT average height of 1.4 nm). 
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Figure 3-14. AFM of a typical CdS-DNA-CNT device on chip (top) and height profile 

along to the dashed line shown in the image (bottom). 
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Figure 3-15. Photoresponse of CdS-DNA-CNT device (405 nm laser applied) in 

ambient conditions. 
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Figure 3-16. Wavelength dependence test with sequential illuminations by red (650 

nm), green (532 nm) and blue (405 nm) light for CdS-DNA-CNT device in ambient 

conditions. 
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Figure 3-17. Photoresponse of CdS-DNA-CNT device in vacuum (405 nm laser 

applied). Note that there is no obvious recovery in current after switching off the laser. 

  

 

Figure 3-18. Gate dependence of CdS-DNA-CNT device (Isd-VG curve), indicating its 

p-type polarity. 
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Figure 3-19. Absorption spectrum of CdS QDs. Note that CdS QDs absorb at 405 nm. 

 

 

Figure 3-20. Excited state lifetime investigations of DNA-CNTs and CdS-DNA-CNT 

hybrids (pump at 405 nm). Normalized transient absorption kinetics of CdS-DNA-CNTs 
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and DNA-CNTs at 1152 nm are shown [corresponds to the E11 transition of the (7,6) 

SWCNTs]. 

 

3.6 Conclusion 

We have demonstrated the successful construction of a multiplexed photo-responsive 

chip from DNA-CNTs, PbS-DNA-CNT and CdS-DNA-CNT hybrids (Figure 3-21), 

and investigated the key mechanisms behind the corresponding photoresponses. In brief, 

a facile one-pot strategy of assembling PbS-DNA-CNT and CdS-DNA-CNT 

nanohybrids with DNA-CNTs as the effective one-dimensional templates has been 

achieved. Benefiting from the effective use of electrostatic interactions between metal 

cations and negatively charged DNA-CNT sidewall, CdS and PbS QDs were grown 

directly along the sidewall of these DNA-CNT templates in aqueous solutions with 

sequential addition of metal cations and S2-, which was confirmed by AFM. By 

organizing both DNA-CNTs and assembled hybrids on the same pre-patterned chip via 

dielectrophoresis (DEP), we fabricated our nanoscale devices with multiplexed 

detection capability. With their nanoscale dimensions, devices have achieved 

photoresponses of more than 100% current change within 1 s. Additionally, very 

different photoresponses were observed and these were explained by different 

mechanisms of device operation, which were confirmed by us from further electrical 

(photoresponse measurement in vacuum and gate dependence test) and excited state 

lifetime (TAS measurement) investigations.  
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Figure 3-21. The construction of multiplexed photo-responsive device from aqueous 

solutions of DNA-CNTs and templated PbS-DNA-CNT/CdS-DNA-CNT hybrids. 

 

Two vital roles of DNA-CNTs were revealed: i) the suggested photo-induced molecular 

desorption process for DNA-CNT device highlights the potential of DNA-CNTs for the 

construction of light-gas correlated sensing devices; ii) DNA-CNTs can be the effective 

templates for the assembly of varied CNT-inorganic nanohybrid materials in aqueous 

solutions. This strategy opens the way in the design of optoelectronic devices with a 

general applicability and multiplexed sensing potential. 
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3.7 Materials and methods 

Hybrids assembly 

In brief, (7,6) enriched SWCNTs (Sigma Aldrich) were wrapped by single-strand DNA 

[ssDNA, (GT)20] (Integrated DNA Technologies, Inc) in 0.1M NaCl (Fisher Scientific) 

solution under 60 min sonication (VWR basin sonicator, Model USC300TH) to form 

the DNA-CNTs. The undispersed CNTs and residues (amorphous carbon etc.) were 

removed by keeping only the supernatant after 90 min centrifugation at 16000 g 

(Biofuge pico D-37520, Heraeus Instruments). The supernatant solution was then 

dialysed (Thermo Fisher Scientific, Slide-A-Lyzer™ MINI Dialysis Device, 20K 

MWCO) against MiliQ H2O overnight. The DNA-CNT aqueous solution can then be 

stored under 4°C as stock solution. 

To assemble the CdS/PbS-DNA-CNT hybrids, the stock DNA-CNT solutions were 

diluted 10x with MiliQ H2O. To every 10 L of diluted DNA-CNT solution, 25 L of 

H2O and 10 L of 5mM M2+ (Cd2+ or Pb2+ dissolved from Cd(NO3)2 or Pb(NO3)2, 

Sigma Aldrich) were added and the solution was incubated at 4°C overnight; the 

incubated solution was then added 10 L of 5mM S2- (dissolved from Na2S, Sigma 

Aldrich) and subject to overnight incubation. The incubated solution was dialysed 

against MiliQ H2O for 3 h. The incubated solutions were dialyzed against MiliQ H2O 

for 3 h and the CdS-DNA-CNT or PbS-DNA-CNT hybrids were then ready for device 

implementation and further investigations. 

 

AFM characterization 

Topography analysis of the SWCNT molecular junctions were imaged with a Bruker 

Dimension Icon atomic force microscope (AFM) with ScanAsyst Air tips (tip radius 12 
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nm) in tapping mode with 512 samples per line and a scan rate of 1.2 Hz. The sample 

solutions were deposited onto freshly cleaved mica discs, rinsed with water and dried 

before AFM measurement.  

The height/size analysis were carried out with the use of Nanoscope Analysis (Bruker, 

V 1.5), Gwyddion (V 2.56) and ImageJ (V 1.52p).  

 

Device fabrication 

Gold electrodes was fabricated by our collaborators, following the protocol reported in 

our previous publication [1]. A drop of dialysed DNA-CNT or CdS/PbS-DNA-CNT 

hybrids solution (5µL) was cast on the gold electrodes. AC voltage was applied to the 

electrode with a Vp-p of 6 V at a frequency of 400KHz. After a duration of 30s, the 

voltage was turned off as enough DNA-CNTs or CdS/PbS-DNA-CNT hybrids had been 

immobilised between the gold electrodes. Subsequently, the electrodes were rinsed with 

water and blow-dried for AFM characterization and electrical measurement. 

 

To prepare multiplexed platform for photodetection, we immobilised DNA-CNT, CdS-

DNA-CNT and PbS-DNA-CNT hybrids on the same chip via dielectrophoresis (DEP). 

Briefly, we first cast DNA-CNT solution on the electrodes and applied AC voltage. 

DNA-CNTs would be only immobilised between electrodes where AC voltage was 

applied. Subsequently, CdS-DNA-CNT and PbS-DNA-CNT hybrids solutions were 

cast on the same chip, followed by application of AC voltage between electrodes which 

had not been used previously. Thus, DNA-CNT, CdS-DNA-CNT and PbS-DNA-CNT 

hybrids were all immobilised separately on the same chip. 

 

Electrical measurement 
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Real time measurement 

Electrical measurements were performed using a probe station (PS-100, Lakeshore) 

equipped with a semiconducting parameter analyser (Keithley, 4200SCS) at room 

temperature. The analyser recorded the current through the devices (Isd) where a 

constant voltage (1V) was applied to the source and drain electrodes. After the current 

was stable, lasers of different wavelength (typically, 650nm, 532nm and 405nm) were 

cast onto the devices. After a duration of 20 s, the lasers were turned off. We repeated 

this process for more than 30 cycles to test the reproducibility of the devices. 

Gate dependence measurement 

Gate dependence features of the devices were measured with gate bias sweeping mode 

(-10 V to 10 V) to record the source-drain current (Isd) versus gate bias (Vg). In addition 

to measurement in dark, to investigate the influence of light illumination, we also cast 

the laser on the devices while measuring the gate dependence features of the devices. 

 

Plasma treatment 

Plasma treatment of the devices was conducted in a plasma cleaner (Harrick PDC-32G-

2, 18 W). In brief, devices based on assembled hybrids were put into the vacuum 

chamber of plasma cleaner and undergone 5 s plasma treatment. AFM characterization 

and conductivity test (Isd-Vsd) were carried out for devices before and after the plasma 

treatment (Figure 3-10).  

Specifically, we compared the AFM images and electrical conductivities of the same 

CdS-CNT hybrid device before and after the OP treatment that will selectively oxidize 

the DNA-CNTs within the hybrids. After 5 s OP treatment, the fine wire-like structures 

found in the AFM image of the same device before OP treatment were no longer 

observed, leaving only the isolated particle shaped material between nanoelectrodes 
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(Figure 3-10 a, b). Additionally, the conductivity of the device had decreased for more 

than 10 times after the OP treatment and fell below the minimum effective sensitivity 

of the analyser equipment (Figure 3-10 c).  This confirms the role of SWCNTs as the 

1D conductive pathway in our devices. 

 

Transient absorption spectroscopy 

Samples were interrogated using visible pump, near IR probe transient absorption 

spectroscopy. The pump pulses were generated using an optical parametric amplifier 

system (TOPAS Prime Niruvis – Light Conversion), pumped by a 2.5 W, 800 nm, 40 

fs duration, 1 kHz repetition rate laser. This pulse was generated using a commercially 

available Ti:Sapphire regenerative amplification laser system (Spitfire Ace PA – 

Spectra Physics) seeded by a Ti:Sapphire oscillator laser (MAITAI – Spectra physics) 

pumped by two 100 ns, 30 W pulsed laser at 532 nm (Ascend – Spectra Physics). The 

TOPAS system generated pulses at 405 and 650 nm with an average power of ~5 mW, 

pulse duration of 40 fs and repetition rate of 1 kHz. These beams were attenuated with 

a neutral density filter and focused onto the sample using a CaF2 lens to achieve the 

fluences described. The probe pulse was generated using a second optical parametric 

amplifier (TOPAS-C – Light Conversion) pumped by a 1.7 W, 800 nm beam, generated 

by the same regenerative amplifier as described above. This second TOPAS system 

output 1600 nm, 40 fs pulses with an average power of ~100 mW and a repetition rate 

of 1 kHz. This pulse was attenuated by a neutral density filter and then focused using a 

CaF2 (50 mm focal length) lens onto a sapphire crystal 2 mm thick to generate a super 

continuum spanning from ~1100-1400 nm. This super continuum pulse was focused by 

a second 50 mm focal length CaF2 lens and then focussed onto the sample using a six-

inch focal length unprotected gold off-axis parabolic mirror where it intercepted the 



112 
 

pump beam. A delay between the pump and probe pulses, Δt, was generated by delaying 

the probe beam using an unprotected gold retroreflector mounted on a 500 mm delay 

stage. Samples were placed into a one-millimetre quartz cuvette through which the two 

beams crossed at relative crossing angle of ~5o. The probe light was collected using a 

commercially available IR spectrometer (IHR320 – Horiba). The pump beam was 

chopped by a mechanical chopper (Thorlabs) at 500 Hz so that every other probe pulse 

passed through photoexcited sample. Transient absorption spectra at various delay 

times, Δt, were generated by comparing the signal at the detector between pumped and 

unpumped probe pulse pairs. 
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Chapter 4  
 

DNA-Powered Stimuli-Responsive CNT 

Junctions 

 

 

 

4.1 Introduction 

The construction of junctions between SWCNTs1–5 has been investigated for the 

fabrication of nanoelectronic devices,6–8 including the use of SWCNTs as 

nanoelectrodes in molecular transport junctions and single molecule investigations.2,9–

14 Different methods have been explored for junction formation;1,4,5,15 in this context, 

the controlled assembly of linear (end-to-end) junctions through in-solution 

approaches1,2,16–18 is particularly desirable for the low-cost (solution processable) 

fabrication19–21 of carbon nanotube-based devices.12,14 Nevertheless, although different 

technologically-relevant nanomaterials have been designed to respond to changes in the 

surrounding medium,22,23 the assembly of reversibly reconfigurable end-to-end 

SWCNT junctions in-solution has yet to be demonstrated; this would allow the facile 

fabrication of CNT-based stimuli-responsive molecular systems and devices. 

 

In this regard, deoxyribonucleic acid (DNA) is an interesting biopolymer for the 

implementation of dynamic behavior in nanomechanical architectures16,18 because of 

its well-known chemistry (i.e., several modifications are available for the attachment of 
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functionalities or nanoparticles) and the ability to act as an actuator that responds to a 

number of different stimuli, depending on its nucleotide sequence. Several studies 

reported the use of DNA as the molecular material for the construction of designed 

nano-objects24,25 or as a scaffold for the assembly of nanoparticles with precise spatial 

arrangement.26,27 Furthermore, various response mechanisms to different stimuli were 

demonstrated to be available for the activation of the dynamics of specific DNA 

sequences, including strand-displacement,28 ligand−aptamer complex formation,29 

noncanonical base-pairing,30 and 3D motif formation (e.g., G-quadruplex and i-

motif).31,32 

 

Herein, we present a strategy for the controlled assembly of stimuli-responsive end-to-

end SWCNT junctions in aqueous solution, employing DNA as a molecular linker: the 

dynamic behavior of the junctions is controlled by the interaction of the DNA specific 

sequences with selected external stimuli. As a proof of concept, we fabricated linear 

assemblies of individual DNA-wrapped SWCNTs by their end-functionalization with 

two partly complementary (vide infra) azido-modified single strands of DNA. The 

strands can hybridize to form a partial duplex under neutral pH conditions, thus forming 

SWCNT junctions. The formed junctions were disassembled by changing the pH of the 

solution from 7 to 5, via the formation of a more stable i-motif structure at acidic pH, 

hence destabilizing the DNA partial duplex linking the nanotubes. The individual 

SWCNTs were then subjected to neutral pH, to restore the DNA duplex junctions, thus 

demonstrating the reversibility of the system. Additionally, we extended the study 

demonstrating the construction of dynamic SWCNT junctions that operate via the 

strand-displacement mechanism. The approaches developed in this study allowed us to 

obtain reconfigurable end-to-end SWCNT junctions, as indicated by morphological 
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analysis [atomic force microscopy (AFM)] and further supported by time-dependent 

fluorescence characterizations. The ability to switch the coupling between single 

SWCNT segments, forming individual junctions, is of great importance for their future 

implementation in nano- and molecular-electronic smart systems and devices.13,33–35 

 

4.2 End functionalization of CNT with DNA 

HiPco SWCNTs were dispersed as-purchased in aqueous solution via DNA (single-

stranded) wrapping36,37 [see section 4.4]. The noncovalent wrapping of DNA around 

the nanotubes allows both the dispersion of the carbon nanotubes in biocompatible 

aqueous solutions and the protection of their sidewalls, leaving the nanotube ends 

available for further functionalization.1,2,9,10 

 

The solution containing the DNA-wrapped SWCNTs was mixed with methanol at a 

1:20  water-methanol final ratio (v/v); this solution was divided into two aliquots, and 

while DNA sequence (1) was added to the first aliquot, DNA sequence (2) was added 

to the second one (all DNA sequences used in this study are listed in Table 4-1 in 

section 4.4). DNA sequences (1) and (2) are 5′-azido-modified oligonucleotide strands 

that include in their sequences a cytosine-rich (C-rich) or guanine-rich (G-rich) domain, 

respectively, that are partially complementary to one another. In order to covalently 

functionalize the ends of the nanotubes with DNA, the two solutions were UV-

irradiated with a medium pressure immersion mercury lamp (emitting predominantly 

at 365 nm, Photochemical Reactors Ltd) to promote the formation of reactive nitrene 

groups, which in proximity of the free-SWCNT-tips form aziridine photoadducts by a 

cycloaddition reaction38–40 (Figure 4-1). After centrifugal filtration to remove the 

unreacted excess of (1) and (2) and subsequent re-dispersion of the modified nanotubes 
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in aqueous solution, (1)-functionalized SWCNTs, A1, and (2)-functionalized SWCNTs, 

A2, were obtained. This functionalization procedure generates SWCNTs that are 

covalently and region-specifically linked to the DNA strands: specifically, the 

SWCNTs carry single DNA molecules at the nanotube ends.2 

 

 

Figure 4-1. End functionalization of DNA-wrapped SWCNT. The DNA-CNT solutions 

were UV-irradiated for 10 min with a 400W medium pressure immersion mercury lamp 

(emitting predominantly at 365 nm, Photochemical Reactors Ltd). 

 

To quantify the amount of azido-DNA that reacted with A1 and A2, the concentration 

of DNA in the filtered solutions was estimated by spectrophotometry: absorbance 

readings were taken at 260 nm. The initial concentration of either (1) and (2) before 

UV irradiation was 2 μM, whereas the concentration of the removed, unreacted DNA 

in the filtered solution was found to be equal to 0.19 and 0.17 μM for (1) and (2), 

respectively (see Figure 4-2). Although most of the DNA seemed to have reacted, a 

direct quantification of the DNA coupled to the SWCNT ends is, at the moment, still 

under investigation. As the DNA wrapping protects the nanotube sidewalls, leaving 
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only the tube ends available for further functionalization, this method provides a facile 

one-step strategy for the selective functionalization of SWCNT termini. 

 

Figure 4-2. (a) UV absorbance spectrum of azido-modified G-rich DNA solution in the 

filtered solution. Estimated concentration in the supernatant: 0.17 μM; extinction 

coefficient: 301,800 L/(mole·cm). (b) UV absorbance spectrum of azido-modified C-

rich DNA solution in the filtered solution. Estimated concentration in the supernatant: 

0.17 μM; extinction coefficient: 285,000 L/(mole·cm). 
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4.3 DNA-powered CNT junction assembly/disassembly  

4.3.1 Junction labelling 

The aforementioned A1 and A2 were then employed as the building blocks for the 

formation of DNA-linked SWCNT junctions. In particular, (1) and (2) can hybridize at 

neutral pH forming a partial DNA duplex (calculated Tm = 34 °C). In order to direct the 

assembly of SWCNTs junctions, A1 and A2 were mixed with equal amounts at pH = 7 

in a buffer solution [containing 2 mM 3-(N-morpholino)propanesulfonic acid (MOPS) 

and 400 mM NaCl]; this leads to junction formation via DNA hybridization that results 

in the duplex (1)/(2) as shown in Figure 4-3. 

 

 

Figure 4-3. SWCNT junction formation. 

 

Both (1) and (2) contain different domains: a domain that forms the DNA partial duplex 

(1)/(2) and a thymine-rich region. By mixing the so-formed junctions with a biotin-

modified adenine-rich (3) DNA sequence, which is complementary to the thymine-

region, we could introduce biotin functionalities at the site of the junction formation. 

The presence of the biotin between the two SWCNT segments in the junctions was then 

exploited to label the junction site via the addition of streptavidin that strongly and 
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specifically interacts with biotin (for additional details on the biotin-labeled junction in 

the presence of streptavidin, see Figure 4-4). This allowed us to then unequivocally 

locate the site of the junction formation via AFM imaging, hence, further demonstrating 

the successful linking of A1 and A2. For this purpose, we drop-cast low-coverage films 

of SWCNTs at pH = 7 on mica, then drop-cast a 500 nM streptavidin solution, and after 

washing off the streptavidin excess with distilled water, the substrate was imaged by 

AFM. Figure 4-5 shows the representative AFM images and respective height profiles 

of the streptavidin-labeled SWCNT junctions, corresponding to the expected nanotubes 

and protein sizes: this confirms junction formation. It is worth mentioning that although 

at the junction point two biotin-labeled oligonucleotides are hybridized, it is assumed 

that only one streptavidin can bind to the site because of steric hindrance; this 

assumption is confirmed by AFM analysis of the junctions (see Figure 4-5). Note that 

both straight and bent junctions are presented in our AFM images. This is likely to be 

an effect of the physisorption of the SWCNT junctions from solution to surfaces, as 

previously observed by us and others.1,16 

 

Figure 4-4. In situ Streptavidin-Biotin labelling of the junction. 
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Figure 4-5. AFM characterizations of the Streptavidin-Biotin labelled SWCNT 

junctions. 
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4.3.2 Real-time monitoring of stimuli-responsivity  

4.3.2.1 pH as the stimulus 

At neutral pH, (1) is available for duplex formation and consequently can hybridize 

with its complementary (2), forming nanotube junctions. Conversely, when the pH of 

the solution is acidic (pH = 5), (1) forms an energetically-favorable intercalated motif 

structure (i-motif),31,41,42 leading to the disassembly of the DNA-linked SWCNT 

junctions. This behavior can then be exploited for the pH-controlled 

assembly/disassembly of SWCNT junctions. 

 

To further prove the successful pH-controlled assembly/disassembly of SWCNT 

junctions, time-dependent fluorescence analysis of the nanostructures was performed. 

We mixed A1 and A2 in equal amounts at pH = 7 in a solution containing 2 mM MOPS 

and 400 mM NaCl, as previously described, to form the junctions and added a quencher 

(Q)-modified DNA sequence (4), which is complementary to the thymine-domain and 

binds at the junction site. We then added to this solution a cyanine 3 (Cy3)-modified 

DNA (5), which is partially complementary to (2). Figure 4-6 shows the pH-controlled 

mechanism of the SWCNT−DNA junction assembly/ disassembly, in the presence of 

the quencher and fluorophore labels (4) and (5), respectively. 
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Figure 4-6. Scheme of the dynamic junction assembly/disassembly exploiting pH as the 

stimulus. 

 

At pH = 7, (5) is free in solution as (2) is not available due to the junction formation via 

a more stable (1)/(2) duplex structure; when the pH is decreased from 7 to 5, the 

disassembly of the junction frees (2) in A2, allowing it to hybridize with (5); this in turn 

results in the quenching of Cy3 because of its proximity to Q on the terminal ends of 

A2 (see Figure 4-6). The sequences (4) and (5) were designed to position the Q and 

Cy3 functionalities at a specific separating distance. From geometric considerations of 

the DNA molecule, we calculated the distance separating Cy3 and the quencher in the 

duplex structure (2)/(4)/(5) to be equal to 1.7 nm. This results in the efficient quenching 

of the fluorescence emission at pH = 7, whereas at pH = 5, the large separating distance 

between Cy3 and the quencher in the single-strand (5) and duplex (2)/(4) results in the 

inefficient quenching of the fluorophore. We monitored this change in fluorescence in 

real time, by varying the pH from 7 to 5 in multiple cycles, and recording the 
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fluorescence emission of Cy3, as shown in Figure 4-7. This allowed us to confirm the 

reversible pH-dependent assembly/disassembly of the DNA−SWCNTs. It should be 

noted that the incremental drift in the fluorescence intensity is likely due to the slow 

aggregation and precipitation of the SWCNTs; this results in a time-dependent 

proportional decrease in optical density of the mixture and increased collected emission 

from the fluorophore. Additionally, small deviations are observed due to the manual 

operation and by small volume additions of concentrated acid/base. To prove that the 

quenching effect of the carbon nanotubes on the fluorophores is not significant, we 

performed the same experiments in the absence of SWCNTs (see Figures 4-7). 
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Figure 4-7. Top: Real-time fluorescence changes of the pH-controlled DNA−SWCNT 

junctions. The fluorescence emission of Cy3 is monitored while reversibly varying the 

pH between 7 and 5 in multiple cycles. High fluorescence emission corresponds to the 

formed DNA− SWCNT junctions at pH = 7 [where Cy3-modified strand (5) is free in 

solution], whereas low fluorescence emission corresponds to the separation of the 

DNA−SWCNT junctions at pH = 5 [where the Cy3-functionalized (5) is quenched by 

the quencher-modified strand (4)]. Bottom: Real-time fluorescence changes of the pH-

switch system in absence of SWCNTs. The fluorescence emission of Cy3 is monitored 

while reversibly varying the pH between 7 and 5, in multiple cycles. 
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4.3.2.2 DNA as the stimulus 

In order to explore the versatility of the approach developed here, we extended our 

studies by inducing the disassembly of SWCNT junctions with a different stimulus. A 

fuel DNA sequence (SD1), a DNA sequence that activates the disassembly process, 

was designed to be capable of destabilizing the DNA duplex forming the SWCNT 

junction, via strand-displacement.28,43 Upon addition of the designed fuel DNA strand 

(SD1) to the DNA-linked SWCNT junctions solution at neutral pH, strand (2) is 

displaced from duplex (1)/(2) by (SD1), resulting in a new duplex (1)/(SD1) and free 

strand (2). To make this new system reversible, we introduced an anti-fuel DNA strand 

(SD2), a DNA sequence that reactivates the assembly process, which promotes the 

recovery of the assembly of A1 and A2 by a second strand-displacement event (Figure 

4-8). This was confirmed by time-dependent fluorescence measurements. 
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Figure 4-8. Scheme of the dynamic junction assembly/disassembly exploiting DNA as 

the stimulus. 

 

Quencher-labeled A1 and A2 were mixed together at pH = 7 with (5); at neutral pH, 

A1 and A2 form SWCNT junctions and the solution is characterized by a high 

fluorescence intensity because of the free Cy3-modified DNA (5) in solution. Upon 

addition of (SD1), the junction is separated and (5) binds to (2), resulting in the 

proximity of Cy3 to Q and the low emission of fluorescence of Cy3. The following 

addition of (SD2) displaces (SD1) from the duplex (1)/(SD1), resulting in the new 

duplex (SD1)/(SD2), and the restoration of the original SWCNT junction via the duplex 

(1)/(2). The concomitant release in solution of the fluorophore-modified strand (5) 

recovers the original high-level fluorescence emission from Cy3 because of the large 

spatial separation from the quencher unit. Upon cyclic sequential addition in solution 
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of (SD1) and (SD2) strands, the reversible assembly and disassembly of the SWCNT 

junctions is demonstrated by the low and high level of emission from Cy3-modified 

strand (5). Although a high level of fluorescence characterizes the free fluorophore 

(formed junction), the proximity of the fluorophore-quencher pair functionalities in the 

separated junctions is characterized by low fluorescence. Figure 4-9 shows the time-

dependent fluorescence changes of the strand-displacement controlled SWCNT 

junction assembly/disassembly system, in the presence of the quencher and fluorophore 

labels (4) and (5). To prove that the quenching effect of the carbon nanotubes on the 

fluorophores is not significant, we performed the same experiments in the absence of 

SWCNTs (see Figures 4-9). 
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Figure 4-9. Top: Real-time fluorescence changes of the strand-displacement controlled 

DNA−SWCNT junctions in the presence of quencher modified oligonucleotide (4) and 

Cy3-modified strand (5). Addition of (SD1) and (SD2) strands, in multiple cycles, 

results in the separation and recovery of the junction assembly, respectively. High 

fluorescence emission corresponds to the free Cy3-modified strand (5) in solution; 

whereas low fluorescence emission corresponds to the quenching of Cy3-(5) upon 

separation of the DNA−SWCNT junctions. Bottom: Real-time fluorescence changes of 

the strand-displacement system in absence of SWCNTs. The fluorescence emission of 

Cy3 is monitored while reversibly adding (SD1) and (SD2) strands, in multiple cycles. 
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4.3.3 Length analysis of junction assembly/disassembly 

To further prove the successful stimuli driven SWNCT junction assembly/disassembly, 

we carried out length analysis based on the AFM images of SWCNTs under varied 

conditions. 

  

The pristine DNA-wrapped SWCNTs had an average length of 131 ± 72 nm as 

determined by AFM analysis (see Figure 10 for a representative image). The 

uncertainty affecting the measured lengths of the nanotube nanostructures was 

estimated by the standard deviation (SD) values associated with the length distributions, 

as they appear in the AFM analysis; this is reported for all distributions (average length 

± SD). 
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Figure 4-10. (a) AFM topographical image and (b) length distribution with fitted curve 

of pristine DNA-wrapped SWCNTs (data size: 413 counts). 

 

To demonstrate the assembly of the SWCNT junctions at pH = 7, dilute solutions were 

cast on muscovite mica and the substrate surfaces were imaged with AFM. We 

performed a statistical analysis of the tube length; the average length of the SWCNT 

junctions after 1 h incubation of A1 with A2 was found to be 184 ± 97 nm (see Figure 

4-11 for a representative AFM image and the related lengths distribution). In line with 
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our previous SWCNT length analysis of junction formation,1,2 the increase in the 

SWCNTs average length from 131 ± 72 (Figure 4-10) to 184 ± 97 nm (Figure 4-11) 

indicates the formation of the junctions at pH = 7. 

 

Figure 4-11. (a) AFM image and (b) length distribution with fitted curve of assembled 

SWCNT at pH 7 (data size: 500 counts). 

 

To demonstrate the disassembly of the SWCNT junctions as a function of pH, we cast 

acidic solutions (pH = 5) on mica and imaged the substrates with AFM. The average 

length of the SWCNT junctions after changing the pH of the solution from 7 to 5 was 
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found to decrease to 148 ± 80 nm (see Figure 4-12), suggesting the separation of the 

jointed SWCNTs upon reducing the pH from 7 to 5. 

 

Figure 4-12. (a) AFM image and (b) length distribution with fitted curve of 

disassembled SWCNT after acidification of the solution to pH = 5 (data size: 409 

counts). 

 

Additionally, to confirm it is these specific DNA sequences exploited here grant the 

system the selective responsivity to pH, we assembled nanotube junctions employing a 

fully-complementary double-stranded DNA (dsDNA) as the linker, which is not 



138 
 

structurally responsive to changes in pH values: Figure 4-13 shows how the average 

length of the junctions does not vary from pH = 7 to pH = 5. 

 

Figure 4-13. AFM images of DNA-linked SWCNTs junctions at pH = 7 (a) and pH = 

5 (b). Length distribution with fitted curves of assembled SWCNTs (c) at pH 7 (data 

size: 228 counts) and (d) after acidification of the solution to pH = 5 (data size: 137 

counts). 

 

As is previously mentioned in section 4.3.2.2, we also introduced a specific DNA strand 

as the stimulus to activate the junction disassembly. Upon addition of the designed fuel 

DNA strand (SD1) to the DNA-linked SWCNT junctions solution at neutral pH, strand 
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(2) is displaced from duplex (1)/(2) by (SD1), resulting in a new duplex (1)/(SD1) and 

free strand (2). AFM images of disassembled SWCNT junctions by strand-

displacement were taken after the addition of (SD1) to the SWCNT junctions: the 

disassembly was confirmed by statistical analysis of the average tube length, which was 

found to be 141 ± 79 nm (see Figure 4-14), in accordance with the results obtained for 

the disassembled junctions at acidic pH (148 ± 80 nm). 

 

Figure 4-14. (a) AFM image and (b) length distribution with fitted curve of 

disassembled SWCNT upon addition of (SD1) to SWCNT junction solution (data size: 

461 counts). 
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4.4 Conclusions 

In summary, we have presented a strategy for the controlled and reversible assembly of 

end-to-end SWCNT junctions under different stimuli. This was achieved by exploiting 

the molecular recognition of DNA complementary sequences employed here as linkers. 

SWCNTs were covalently end-functionalized with azido-modified ssDNA in a one-pot 

reaction, under UV light. SWCNTs assembly was driven by the hybridization between 

complementary DNA strands at the nanotube termini at neutral pH. Employing at the 

junction site a C-rich domain, the reversible assembly/disassembly of SWCNT 

junctions was controlled by varying the pH; this was confirmed by both AFM imaging 

and real-time fluorescence investigations. Additionally, we designed the system for the 

controlled and reversible assembly/disassembly of SWCNT junctions via strand-

displacement. This further demonstrates the versatility of the approach presented here, 

for the dynamic tuning of SWCNT junction formation via different stimuli. The strategy 

presented in this report is of interest for the fabrication of solution-processable and 

stimuli-responsive CNT-based systems, also of higher complexity. This holds great 

potential for the development of optoelectronic devices employing G-rich DNAs as 

active components, and sensing platforms via the use of oligonucleotide aptamer 

sequences, where the CNTs can be employed as switchable nanoelectrodes.13,33,44,45 

 

4.5 Materials and methods 

All DNA strands were purchased from IDT (Integrated DNA Technologies, Inc.). DNA 

strands were processed by desalted purification and functionalized DNA strands were 

processed by HPLC purification. 
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Table 4-1. DNA strands (all sequences are reported from 5’ to 3’) 

(1) Azide-TTT TTT TTT TTT CCC AAT CCC AAT CCC AAT CCC 

(1’) Azide-TTT TTT TTT TTT CAC AAT CAC AAT CAC AAT CAC AAA 

AAA AAA 

(2) Azide-TTT TTT TTT TTT GT GAT TGT GAT TGT GAT TGT G 

(3) Biotin-AAA AAA AAA AAA 

(4) IowaBlackFQ-AAA AAA AAA AAA 

(5) CAATCACA-Cy3 

(SD1) TGG TGG GAT TGG GAT TGG GTG GTA TA 

(SD2) TAT ACC ACC CAA TCC CAA TCC CAC CA 

(GT)20 GTGT GTGT GTGT GTGT GTGT GTGT GTGT GTGT GTGT GTGT 

 

 

Atomic Force Microscopy (AFM) 

AFM analysis of the samples was carried out on a Bruker Dimension Icon in PeakForce 

Tapping mode with ScanAsyst Air tips from Bruker. 

 

SWCNT length analysis 

Length distributions were obtained by image-J 1.51j8 software. Histograms and 

Lognormal curve fitting were generated by OriginPro 2015 (V b9.2.257).  

 

SWCNT dispersion 

SWCNTs were dispersed in water by DNA wrapping according to published 

procedures1. Generally, 1 mL solution containing HiPco nanotube (1 mg/mL; Carbon 
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Nanotechnologies Inc.), DNA oligomer (GT)20 (1 mg/mL) and NaCl (0.1 M, Fisher 

Scientific) was sonicated in an ice water bath for 90 min at a power of 3W (Sonics, 

VC130PB). After sonication, the solution was divided into 0.1 mL aliquots, centrifuged 

for 90 min at 15,000 g to remove insoluble materials, and the supernatant collected. The 

dispersion process (DNA wrapping) not only allows the dispersion of SWCNTs in 

solution, but it also protects the sidewall of the nanotubes and leaves the open ends 

available for further direct functionalization. Then, the solution was drop-cast on 

freshly cleaved muscovite mica disc (Agar Scientific), pre-treated with MgCl2 solution 

(1 M, Sigma Aldrich), incubated for 10 min and characterized by AFM. A statistical 

analysis of the DNA-wrapped SWCNTs length gives an average tube length of 131 ± 

72 nm (Figure 4-10). 

 

SWCNT end-functionalization 

To functionalize SWCNTs, 50 μL of DNA-wrapped SWCNTs were mixed with 

methanol (at a final volume of 1 mL) and divided into two equal aliquots. The first 

aliquot was mixed with (1) (at a final concentration of 2 μM), the second with (2) (at a 

final concentration of 2 μM), and then both UV-irradiated for 10 min with a 400W 

medium pressure immersion mercury lamp (emitting predominantly at 365 nm, 

Photochemical Reactors Ltd). After irradiation, free DNA in the samples was removed 

by 3 min centrifugation at 15,000 g with centrifugal filters (Amicon Ultra 100 kDa, 

Millipore). The centrifugation process was repeated three times and finally the samples 

were re-dispersed in 100 μL NaCl (0.1 M). After centrifugal filtration and re-dispersion, 

(1) end-functionalized SWCNTs (A1) and (2) end-functionalized SWCNTs (A2) were 

obtained. 
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SWCNT junction formation  

Samples (150 μL in volume) at pH = 7 were prepared as follows: 10 μL of A1 and 10 

μL of A2 were mixed in a buffered solution (2 mM MOPS Sigma Aldrich, 400 mM 

NaCl, pH = 7) and incubated for 1 hour at room temperature. 10 μL of the solution was 

drop cast on freshly cleaved muscovite mica disc, pre-treated with 1 M MgCl2 solution, 

incubated for 10 min and characterized by AFM. The statistical analysis of SWCNTs 

after junction formation gives an average length of 184 ± 97 nm. By comparing this 

with the average length of pristine DNA-wrapped SWCNTs (131 ± 72 nm), the increase 

in average length is about 40%, suggesting the formation of end-to-end SWCNT 

junctions. 

 

SWCNT junction labelling 

10 μL of the SWCNT junction solution and (3) (at a final concentration of 100 nM) 

were mixed and incubated for 1 hour at room temperature. After, the solution was drop-

cast on mica (Agar Scientific) pre-treated with MgCl2 solution and incubated for 10 

min. After, 10 μL of streptavidin solution (500 nM, Invitrogen™) was deposited on the 

mica substrate, incubated for 10 minutes, rinsed with MilliQ® water and blown-dried 

with compressed air. 

 

pH-controlled disassembly 

50 μL of the SWCNT junction solution was acidified (pH = 5) by addition of acetic 

acid (10% vol/vol, VWR Chemicals) and incubated for 1 hour at room temperature. 

Then, 10 μL of the solution was drop-cast on freshly cleaved discs of pre-treated mica, 

incubated for 10 min, rinsed with MilliQ® water and blown dry with compressed air. 
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Control experiment 

To confirm the selectivity of the pH system, as a control experiment, we designed a 

new DNA duplex, bridging the SWCNTs, which is not affected by changing in pH. In 

this regard HiPco SWCNTs were covalently functionalized at their terminal ends with 

5’-azido modified oligonucleotide strand (1’), complementary to (2), as previously 

described. As (1’) and (2) can hybridize forming a DNA duplex, (1’)-functionalized 

SWCNTs, A1’, and A2 were employed as constituents for the formation of new DNA-

linked SWCNT junctions. A1’ and A2 were then mixed in equal amounts in a solution 

containing 2 mM MOPS and 400 mM NaCl and incubated for 1 hour. To demonstrate 

the assembly of the new SWCNT junctions is not affected by pH, we imaged the system 

at pH = 7 and at pH = 5 with AFM, and performed a statistical analysis of the average 

tube length. The average length of the SWCNTs junctions was found to be 181 ± 118 

nm at pH = 7 and 183 ± 115 nm at pH = 5 respectively (see Figure 4-13 for 

representative AFM images and the related lengths distributions). This allows us to 

prove the specificity of the pH system, where the tube average length decreases when 

the pH of the solution is changed from 7 to 5. 

 

SWCNT junction disassembly via strand-displacement 

50 μL of SWCNT junction solution was mixed with 2 μL of (SD1) (at a final 

concentration of 100 μM) and incubated for 1 hour at room temperature. Then, 10 μL 

of the solution was drop-cast on freshly cleaved discs of pretreated mica, incubated for 

10 min, rinsed with MilliQ® water and blown dry with compressed air. 

 

Time-dependent fluorescence investigation of pH-switch system 
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Samples (150 μL in volume) for time-dependent fluorescence experiments were 

prepared as follows: 10 μL of A1 and 10 μL of A2 were mixed with (4) (at a final 

concentration of 700 nM) and (5) (at a final concentration of 100 nM) in a buffered 

solution (2 mM MOPS, 300 mM NaCl, pH = 7), and incubated for 1 hour at room 

temperature. Then, the solution was transferred into a plastic cuvette, the fluorophore 

(Cy3) excited at 520 nm and the emission signal collected at 562 nm. The temperature 

was set and maintained at 20°C throughout the whole analysis. The pH of the solution 

was switched between 5 and 7 by sequential additions of 0.6 μL acetic acid (10% 

vol/vol) or 0.75 μL of ammonia solution (1 M, Sigma-Aldrich). 

 

Time-dependent fluorescence investigation of strand-displacement system 

Samples (150 μL in volume) for time-dependent fluorescence experiments were 

prepared as follows: 10 μL of A1 and 10 μL of A2 were mixed with (4) (at a final 

concentration of 700 nM) and (5) (at a final concentration of 100 nM) in a buffered 

solution (2 mM MOPS, 400 mM NaCl, pH= 7), and incubated for 1 hour at room 

temperature. As for the pH-switch system, the fluorophore (Cy3) was excited at 520 

nm into a plastic cuvette and the emission signal collected at 562 nm. The strand-

displacement was carried out by sequential additions of (SD1) or (SD2) at a final 

concentration of 2 μM. 

 

Time-dependent fluorescence investigation of pH-switch system in the absence of 

SWCNTs 

Samples (150 μL in volume) for time-dependent fluorescence experiments were 

prepared as follows: (1) and (2) (both at final concentration of 30 nM ) were mixed with 

(4) (at a final concentration of 700 nM) and (5) (at a final concentration of 100 nM) in 
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a buffered solution (2 mM MOPS, 300 mM NaCl, pH = 7), and incubated for 1 hour at 

room temperature. Then, the solution was transferred into a plastic cuvette, the 

fluorophore (Cy3) excited at 520 nm and the emission signal collected at 562 nm. The 

temperature was set and maintained at 20°C throughout the whole analysis. The pH of 

the solution was switched between 5 and 7 by sequential additions of 0.6 μL acetic acid 

(10% vol/vol) or 0.75 μL of ammonia solution (1 M, Sigma-Aldrich). 

 

Time-dependent fluorescence investigation of strand-displacement system in the 

absence of SWCNTs 

Samples (150 μL in volume) for time-dependent fluorescence experiments were 

prepared as follows: (1) and (2) (both at final concentration of 30 nM ) were mixed with 

(4) (at a final concentration of 700 nM) and (5) (at a final concentration of 100 nM) in 

a buffered solution (2 mM MOPS, 400 mM NaCl, pH = 7), and incubated for 1 hour at 

room temperature. As previously described for the pH-switch system, the fluorophore 

(Cy3) was excited at 520 nm into a plastic cuvette and the emission signal collected at 

562 nm. The strand-displacement was carried out by sequential additions of (SD1) or 

(SD2) at a final concentration of 2 μM. 
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Chapter 5  
 

A Facile Length Sorting Approach for DNA-

wrapped CNTs via Gel Electrophoresis and 

the Application in CNT Junction Assembly 

Analysis 

 

 

 

5.1 Introduction 

Single walled carbon nanotubes (SWCNTs) are one of the most promising building 

blocks for future nanomaterials, and the length of them (or, our ability to control/select 

the length of SWCNTs) essentially determines their actual potential for possible 

applications. The length is the dominant physical dimension of a SWCNT. Certain 

physical processes, such as carrier recombination, are length-dependent;1,2 device 

applications, such as CNT-based scanning probes,3–5 require CNT length control for 

easy and reproducible fabrication; solution-phase CNT assemblies of CNTs on solid 

substrates (e.g. end-to-end CNT junction assembly) will also benefit from CNTs with 

well-defined length (the uniform building block).6 Consequently, the capability to 

obtain a CNT batch with desired length (and with narrower length distribution) is 

pursued by researchers around the world. 

 



152 
 

However, given the tremendous progress that has been made in CNT synthesis, directly 

making CNTs with a particular size remains a major challenge: the current as-produced 

samples still contain CNTs of varied lengths.7 As a result, scientists have been trying 

to seek efficient post-synthetic methods to sort CNTs by their lengths to address the 

length sorting problem. 

 

Many studies have been done on length sorting.7,8 Doorn et al. have first demonstrated 

the possibility to separate as-produced CNTs by length via capillary electrophoresis 

(CE).7 The underlying mechanism of such separations is that the mobility of solution 

phase (the dispersed CNTs in corresponding solutions) is charge and size dependent 

under the applied electric filed. Moreover, an approach of size-exclusion 

chromatography (SEC) has shown the potential for CNT length sorting:9–11 notably, 

Zheng et al. developed a SEC method with high resolution sorting capability.12  

 

However, in many of the reported works, quantification of length variation in obtained 

fractions was absent. Some works did demonstrate control over the average length of 

separated tubes; the length variation within a given fraction, however, was typically 

very broad and could be as high as 80%. In addition, some of the processes reported 

cannot be scaled up for processing large quantities of materials. It is, thus, highly 

desirable to develop a scalable process that can yield CNT fractions of well-defined 

length. 

 

In this context, a facile length sorting approach for DNA-CNTs via agarose gel 

electrophoresis is demonstrated in this chapter. Length sorted CNT fractions could be 

acquired within 2 hours, and the quantity of sorted CNTs should be scaled up by simply 
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increasing the loading well size in the agarose gel block. Moreover, absorption spectra 

of the sorted fractions suggested the potential of chirality separation for DNA-CNTs by 

gel electrophoresis. Additionally, the length sorted DNA-CNTs were further applied in 

a SWCNT molecular junction assembly study, where a single-step chemical strategy 

with diazonium salts was exploited.6 These CNTs of well-defined length helped to 

simplify the AFM analysis of junction assemblies.  

 

5.2 Length sorting of CNTs 

The whole sorting procedure (from pristine DNA-CNTs to the stock of length sorted 

CNT batches) can be divided into three main stages: the preparation, the running, and 

the extraction/purification. 

 

(a) Preparation. 

For the length sorting experiment demonstrated here, HiPco SWCNTs were wrapped 

by (GT)20 single strand DNA under 1 h sonication13 and the as prepared DNA-CNT 

aqueous stock solution was ready for further use.  

First, a 2% (w/v) agarose (Invitrogen™, Thermo Fisher Scientific) gel block was 

prepared with an extended loading well. The 1X TAE buffer (40 mM Tris, 20 mM 

acetic acid, 1mM EDTA, pH 8.6, diluted from 50X TAE by Thermo Scientific) was 

used for the agarose preparation and to fill the tank (Figure 5-1 a). 
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Then, the DNA-CNT stock solution was thoroughly mixed with supplement glycerol 

solution (50% v/v aqueous solution) at a 5:2 volume ratio. Afterwards, the mixed 

solution was loaded into the agarose well (Figure 5-1 a). 

 

(b) Running of gel (sorting of DNA-CNTs). 

The gel electrophoresis was then carried out at an approximate 1 V/cm electric field 

strength for 2 h under ice bath. Since the DNA-CNTs were negatively charged in 

aqueous solution, the DNA-CNTs moved towards the anode (the positively charged 

electrode). During the electrophoresis a wide gray band of DNA-CNTs was formed in 

the agarose gel block, indicating the separation of the DNA-CNTs due to the varied 

moving rates of DNA-CNT species with different sizes (Figure 5-1 b). 

 

(c) Extraction and purification. 

After the sorting is done, the gray band was divided into 3 fractions (F1, F2, F3) 

according to their different distances to the loading site (as this distance is the indication 

of the CNT length distribution in the gel) and put into different dialysis tubings (Snake 

Skin®, a Dialysis Tubing with 10,000 MWCO, Thermo Scientific) each with 6 mL of 

1X TAE buffer inside. The tubings were then sealed at both ends, put back into 

electrophoresis buffer and subjected to electrophoresis under the same conditions as 

mentioned before for 1 h until the nanotubes were extracted from the agarose fractions 

(Figure 5-1 c). 
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Figure 5-1. Schematic illustration of the DNA-CNT length sorting procedure via 

agarose gel electrophoresis. (a) the preparation of gel and the sample loading before 

the running; (b) during the running (sorting of the DNA-CNTs) stage, a gray band 

forms in the gel matrix under the influence of applied electric field, indicating the 

separation of DNA-CNTs; (c) the extraction of the DNA-CNTs from the divided 

fractions of the gel matrix. 

 

Finally, the extracted DNA-CNT fractions were subject to overnight dialysis against DI 

water. The dialyzed solution was then kept as stock solution of length sorted CNTs after 

a syringe filtration step. Additionally, the stock solutions could also be freeze-dried to 
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obtain the length-sorted DNA-CNTs in powder. These as-prepared fraction powders 

could then be dissolved to any desired concentrations for further use. 

 

5.3 Length analysis 

The gel sorted DNA-CNTs were imaged with a Bruker Dimension Icon atomic force 

microscope (AFM) in tapping mode with a 512*512 data point resolution and a scan 

rate of 1.2 Hz. The solutions of pristine DNA-CNTs and sorted fractions (i.e. F1, F2 

and F3) were deposited onto freshly cleaved mica discs, which were pre-treated with 1 

M MgSO4 solution to enhance the DNA-CNT adsorption, rinsed with water and blow 

dried before AFM measurement. 

 

A representative AFM image of pristine DNA-CNTs is shown in Figure 5-2. The 

statistical analysis of pristine DNA-CNTs lengths from all the acquired images 

suggested the average length to be 213 ± 142 nm (mean value ± standard deviation) 

(Figure 5-2). 
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Figure 5-2. A representative AFM image (top) and the length distribution (bottom) of 

the pristine DNA-CNTs (272 DNA-CNTs counted). 
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As for the sorted fractions, a clear difference in length could be observed from the AFM 

images directly, suggesting an ascending trend of average length from F1 to F3 (Figure 

5-3, Figure 5-4, Figure 5-5). The corresponding statistical analysis confirmed this 

observation, where F1, F2 and F3 showed an average length of 66 ± 23 nm, 241 ± 70 

nm and 548 ± 199 nm, respectively. This successful sorting of DNA-CNTs by their 

lengths can be explained by the simple expression of the moving rate ν  of the 

molecule/particle in a gel electrophoresis environment (see Chapter 2, section 2.3.1): 

𝑣 =
𝐸𝑞

𝑓
 

where E is the electric field strength, f is the frictional coefficient and q is the net charge 

of the molecule. Importantly, the frictional coefficient f has a positive correlation to the 

particle size r:  𝑓 ∝ 𝑟. 14 As a result, the bigger the molecule size (here the length of 

DNA-CNTs), the slower it moves in the gel matrix, and vice versa. 

 

Note that the length distribution of the sorted fractions was narrowed down compared 

with that of the pristine DNA-CNTs. Specifically, taking the relative standard deviation 

(standard deviation/mean) as the index, the distribution width has decreased from 66.7% 

to 34.8% of F1, 29.0% of F2 and 36.3% of F3. These narrower distributions again 

confirm the effectiveness of the sorting strategy. 
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Figure 5-3. A representative AFM image (top) and the length distribution (bottom) of 

the sorted fraction 1 (F1; 219 DNA-CNT counted). 
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Figure 5-4. A representative AFM image (top) and the length distribution (bottom) of 

the sorted fraction 2 (F2; 140 DNA-CNT counted). 
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Figure 5-5. A representative AFM image (top) and the length distribution (bottom) of 

the sorted fraction 3 (F3; 216 DNA-CNT counted). 
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5.4 Potential of chirality separation 

In addition to the length analysis with AFM, we investigated the absorption properties 

of the sorted fractions (F1, F2, F3). Intriguingly, some features indicating the 

separation of SWCNT chirality were observed during the comparison of the absorption 

spectra (Figure 5-6). Though SWCNTs of mixed chiralities from pristine DNA-CNTs 

[(GT)20-HiPco] were still present in all fractions, differences in the relative 

concentration of certain species were observed. Specifically, as the spectra are 

normalized at 1130 nm [corresponding to (9,4) and (8,4) species], the relative height of 

peaks at 1150 nm and 1270 nm [corresponding to (7,6), (8,7), (10,5), (9,5) species as 

indicated in then spectra] tend to increase from F1 to F3, suggesting the gradual 

separation of relevant CNT chiralities during the gel sorting. 

 

Figure 5-6. Absorption spectra of the sorted fractions (F1, F2, F3) and pristine DNA-

CNTs (GT20-HiPco). The CNT chiral species are labelled on top of the corresponding 

peaks. The spectra are normalized and vertically offset for better comparison. 
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This chirality enrichment/depletion may suggest a correlation between the CNT 

chirality/diameter and length within the pristine (GT)20-HiPco batch, or else some 

electrophoretic mobility related parameters could be the dominant drive(s) behind this 

separation. Heller et al. observed an inverse correlation between length and diameter of 

the gel sorted sodium cholate (SC) dispersed CNTs.15 On the other hand, Vetcher et al. 

proposed a higher electrophoretic mobility of semiconducting DNA-CNT compared to 

metallic ones.16 Moreover, Tanaka et al. reported the separation of metallic and 

semiconducting sodium dodecyl sulfate (SDS) dispersed CNTs within gel matrix and 

attributed this phenomenon to the different affinities between SDS, 

metallic/semiconducting CNTs and the gel matrix.17,18 Based on these reports, the 

dispersing agent (e.g. SC, SDS, DNA) seems to play a major role as different surfactant 

eventually lead to different outcomes. However, it is still difficult to elucidate the 

chirality separation phenomenon observed for our gel sorted DNA-CNTs. For instance, 

the enrichment of (7,6) tubes compared to (9,4) and (8,4) ones from F1 to F3, given 

they are all semiconducting species, suggesting a high chirality sensitivity of the sorting 

that has not been clarified so far. Consequently, due to the varied results and 

explanations, the key mechanism of this chirality separation by gel electrophoresis 

remains unclear. In general, this observation from the gel sorting of DNA-CNTs reveals 

the potential of gel electrophoresis for CNT chirality separation purposes.  
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5.5 Application: optimization of junction assembly 

analysis 

5.5.1 Background 

The ability to control the formation of junctions between SWCNTs and functional 

molecules or nanostructures is of paramount importance for the development of 

SWCNT-based electronics.19,20 To address this challenge, the Palma group has reported 

a single-step chemical strategy for the formation of SWCNT molecular junctions in 

aqueous solution with water-soluble diazonium salts (see Figure 5-7 for the diazonium 

salt used for the junction assembly).6 

In particular, the length sorted DNA-CNTs from the above introduced gel 

electrophoresis strategy were applied into the SWCNT molecular junction assembly, 

easing the analysis and interpretation of junction assembly with corresponding AFM 

data. 
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Figure 5-7. (a) The molecular linker employed in the CNT junction assembly work: 

1,3,5-Tris(4-diazophenyl)benzene and its corresponding UV-vis-NIR absorption in 

water.6 

 

5.5.2 Junction formation analysis 

In order to confirm junction formation after the assembly process, the samples were 

cast on muscovite mica substrates and imaged with atomic force microscope (AFM) 

(Figure 5-8). After being length sorted by gel electrophoresis, the starting SWCNTs 

before reaction had an average length of 264 ± 92 nm: Figure 5-8 a displays a 

representative AFM image and the corresponding SWCNT length histogram. Figure 

5-8 b shows AFM images of linear SWCNT junctions typically obtained employing 

1,3,5-Tris(4-diazophenyl)benzene as the linker at a low concentration (18nM): the 
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average length of the SWCNTs segments was found to increase to 395 ± 155 nm, 

strongly indicating the junction formation.  

 

Figure 5-8. AFM topographical images of:  (a) pristine DNA-wrapped SWCNTs; the 

average length of the SWCNTs was found to be 264 ± 92 nm; (b) linear end-to-end 

SWCNT junctions formed with the molecular linker at 18 nM; the average length of the 

SWCNTs was found to be 395 ± 155 nm as determined from ca. 100 nanotubes.6 

 

The junction formation yield was estimated based on the processed AFM data 

mentioned above. If the total numbers and average lengths of DNA-CNT segments 
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before and after the junction assembly are N0 and L0, N’ and L’, respectively, and Y 

percent of the original N0 DNA-CNTs form the junctions. Given that the original DNA-

CNTs were length sorted with a narrow distribution, to simplify the estimation from the 

AFM data, it is reasonable to assume that all the formed junctions are composed of 2 

original DNA-CNT segments. Hence, from the equations 

𝑁′ ∙ 𝐿′ = 𝑁0 ∙ 𝐿0 

𝑁′ = 𝑁0 ∙ (1 −
𝑌

100
) +

1

2
𝑁0 ∙

𝑌

100
= 𝑁0 ∙ (1 −

𝑌

200
) 

we have 

𝑌 = 200 ∙ (1 −
𝐿0

𝐿′
) 

as the expression of the yield Y. Eventually, by substituting L0 and L’ with 264 nm and 

395 nm, we estimated the final yield of junction formation to be 66.3%. 

 

5.6 Conclusion  

In conclusion, a facile length sorting approach for DNA-CNTs via agarose gel 

electrophoresis has been demonstrated here. After a 2-hour separation process in 2% 

agarose gel, length-sorted DNA-CNT fractions with the relative standard deviation of 

length distribution as low as 29% were obtained, which was confirmed by AFM data 

analysis. Notably, CNT chirality enrichment/depletion among the sorted fractions were 

observed, suggesting the extra potential in chirality separation by the proposed method. 

Moreover, the length-sorted DNA-CNTs were further applied in a SWCNT molecular 

junction assembly study, where a single-step chemical strategy with diazonium salts 
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was exploited.6 Based on these CNTs with well-defined length, the junction assembly 

became obvious via AFM and quantitative analysis of the junction formation yield was 

achieved and simplified. 

 

This method demonstrated in this chapter offers a facile and low-cost strategy for the 

length sorting of CNTs. In addition, the amount of processed CNTs could be simply 

scaled up by extending the loading well size within the agarose gel. 

 

5.7 Materials and methods 

DNA dispersion of carbon nanotubes 

In brief, HiPco SWCNTs (Sigma Aldrich) were wrapped by single-strand (ss) DNA 

[(GT)20] ((Integrated DNA Technologies, Inc) in 0.1M NaCl (Fisher Scientific) solution 

under 60 min sonication (VWR basin sonicator, Model USC300TH) to form the DNA-

CNTs. The undispersed CNTs and residues (amorphous carbon etc.) were removed by 

keeping only the supernatant after 90 min centrifugation at 16000 g (Biofuge pico D-

37520, Heraeus Instruments).  

 

Length sorting of DNA wrapped SWCNTs by gel electrophoresis 

Prepared DNA wrapped SWCNT dispersion was thoroughly mixed with supplement 

glycerol solution (50% v/v aqueous solution) at a 5:2 volume ratio for further loading 

into agarose. The gel electrophoresis was then carried out in a 2% (w/v) agarose 

(InvitrogenTM, Thermo Fisher Scientific) with loaded sample solution using 1X TAE 

buffer (40 mM Tris, 20 mM acetic acid, 1mM EDTA, pH 8.6, diluted from 50X TAE 

by Thermo Scientific) at an approximate 1 V/cm electric field strength for 3 h under ice 
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bath. After the electrophoresis a wide gray band of DNA wrapped CNT was formed in 

the agarose. The band was divided into 3 fractions according to their different distances 

to the loading site (as this distance is the indication of the CNT length distribution in 

the gel) and put into different dialysis tubings (SnakeSkin® Dialysis Tubing with 

10,000 MWCO, Thermo Scientific) each with 6 mL of 1X TAE buffer inside. The 

tubings were then sealed at both ends, put back into electrophoresis buffer and subjected 

to electrophoresis under the same conditions as mentioned before for 2 h until the 

nanotubes were extracted from the agarose fractions. Afterwards, the extracted DNA 

wrapped CNT fractions were to overnight dialysis against DI water and freeze dried for 

24 h to obtain the DNA wrapped CNT fractions in powder. The as-prepared fraction 

powders were then dissolved by 100 mM of NaCl and ready for further junction 

formation processes.  

 

AFM characterization 

Topography analysis of the SWCNT molecular junctions were imaged with a Bruker 

Dimension Icon atomic force microscope (AFM) with ScanAsyst Air tips (tip radius 12 

nm) in tapping mode with 512 samples per line and a scan rate of 1.2 Hz. The sample 

solution of CNT hybrids was deposited onto a piece of freshly cleaved mica disc, which 

was pre-treated with 1 M MgSO4 solution to enhance DNA adsorption, rinsed with 

water and dried before AFM measurement. 

 

The height/length analysis were carried out with the use of Nanoscope Analysis (Bruker, 

V 1.5), ImageJ (V 1.52p) and OriginPro 2015 (V b9.2.257). 
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Chapter 6  
 

Conclusions and Future Challenges  

 

 

 

On the current and upcoming stage of nanomaterials, carbon nanotubes (CNTs) play a 

significant role because of their nanoscale diameter and exceptional thermal, 

mechanical, electrical and electronic properties. Among the various research directions 

concerning CNTs, one central effort is to synergistically combine CNTs with other 

nanoscale components by the construction of CNT-based nano-assemblies or 

nanohybrids. 

 

In this thesis, we first discussed the use of DNA-wrapped single walled carbon 

nanotubes (DNA-CNTs) templates for the assembly of hybrid nanostructures with 

inorganic semiconducting materials and their use in optoelectronic devices (Chapter 

3). In particular, based on the Coulomb interaction between the metal cations and 

negatively charged DNA phosphate backbone in H2O, a facile one-pot two-step 

procedure was introduced where the PbS-DNA-CNT or CdS-DNA-CNT hybrids were 

assembled by simple sequential additions of metal cations (Pb2+ or Cd2+) and S2- in 

aqueous solution. The direct assembly of PbS/CdS QDs along the DNA-CNT templates 

the was confirmed by atomic force microscopy (AFM). Afterwards, both DNA-CNTs 
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and the assembled hybrids were used to fabricate photo-sensing devices that, given their 

nanoscale dimensions, achieve photoresponses of more than 100% current change 

within 1 s. Importantly, by immobilizing different hybrids (i.e. DNA-CNTs, PbS-DNA-

CNTs and CdS-DNA-CNTs) on the same chip via dielectrophoresis (DEP), devices 

exhibiting multiplexed sensing capabilities were realized. Notably, very different 

photoresponses have been observed for devices based on DNA-CNT/CdS-DNA-CNT 

and PbS-DNA-CNT hybrids. These were explained by different mechanisms of device 

operation (i.e. photo-induced molecular desorption model for DNA-CNT/CdS-DNA-

CNT devices and electron transfer model for PbS-DNA-CNT devices), which were 

confirmed by us from further electrical (photoresponse measurement in vacuum and 

gate dependence test) and excited state lifetime (TAS measurement) investigations.  

 

Notably, the role of DNA-CNTs in this study is twofold: i) the suggested photo-induced 

molecular desorption process for DNA-CNT device highlights the potential of DNA-

CNTs for the construction of light-gas correlated sensing devices; ii) DNA-CNTs can 

be the effective templates for the assembly of varied CNT-inorganic nanohybrid 

materials in aqueous solutions. This versatile templated assembly method for the 

construction of inorganic-organic nanohybrids not only realized the direct growth of 

semiconducting QDs along the sidewall of well-dispersed DNA-CNTs in aqueous 

solutions without extra chemical functionalization (thus a non-destructive route that 

preserves the electronic properties of SWCNTs and enhances the charge transfer within 

the heterostructures), but also facilitated the fabrication of multiplexed photo-sensing 

nanodevices. In general, devices based on these novel hybrids will pave the way 

towards next-generation photodetection with outstanding performance and merits 

including nanoscale dimensions and outstanding flexibility. 
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We then presented a straightforward approach for the fabrication of end-to-end 

SWCNT junctions exploiting oligonucleotides as molecular linkers (Chapter 4). 

Specifically, terminal ends of DNA-CNTs were functionalized with azido-modified 

single-strand DNAs (ssDNAs) via an efficient UV activated cycloaddition reaction. 

The two end-functionalized ssDNA strands of pre-designed sequences were partly 

complementary so that they could hybridize to form a partial duplex under neutral pH 

conditions and thus formed the desired SWCNT junctions. Significantly, the self-

assembled junctions were capable to react to specific stimuli (pH and DNA sequence) 

and exhibited reconfiguration potentials by repeated assembly/disassembly under 

varied environmental conditions. This was contributed to the inherent features of the 

designed DNA sequences: the formed junctions disassembled when the solution pH 

changed from 7 to 5, via the formation of an energetically favored i-motif structure at 

acidic pH, hence destabilizing the DNA partial duplex bridging the nanotubes; as the 

individual SWCNTs were then subjected to neutral pH, the DNA duplex reformed as it 

became the more stable configuration under such conditions. Similarly, 

assembly/disassembly were also enabled by the addition of specific ssDNA strands via 

the strand-displacement mechanism. Consequently, the successful assembly of end-to-

end SWCNT junctions with stimuli-controlled reconfiguration potentials were 

confirmed by morphological analysis (AFM) and time-dependent fluorescence 

characterizations. 

 

The strategies developed in this work allowed us to construct reconfigurable end-to-

end SWCNT junctions, which has the potential to provide a step further towards the 
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low-cost fabrication of nanoelectronic devices, including the use of SWCNTs as 

nanoelectrodes in molecular transport junctions and single molecule investigations. In 

addition, the stimuli correlated reconfiguration capabilities demonstrated here is of 

great importance for the future implementation of stimuli-responsive molecular 

systems and nanoscale smart devices. Generally speaking, this work has explored the 

possibility of synergistically combining SWCNT and DNA nanotechnology to produce 

programmed stimuli-responsive SWCNT junctions.  

 

To address the CNT length sorting problem, a length sorting strategy for DNA-CNTs 

via agarose gel electrophoresis is demonstrated (Chapter 5). This facile method of 3 

major stages (i.e. the preparation, the running/sorting, the extraction and purification) 

allowed us to acquire length-sorted DNA-CNT fractions within 2 hours. Every length-

sorted DNA-CNT fraction had its own distinct average length from the others with a 

narrow length distribution (relative standard deviation of length distribution as low as 

29%), which was confirmed by AFM data analysis. In addition, the quantity of 

processed CNTs could be scaled up by simply increasing the loading well size in the 

agarose gel block. Moreover, the gel-sorted DNA-CNTs were further applied in a 

SWCNT molecular junction assembly study, where a single-step chemical strategy with 

diazonium salts was exploited. These CNTs with well-defined length were proved to 

simplify the AFM analysis and the yield estimation of junction assembly. 

 

The method demonstrated in Chapter 5 offers a practical and low-cost facile strategy 

for the length sorting of CNTs. Notably, this is a scalable strategy as the amount of 

processed CNTs could be simply increased by extending the loading well size within 

the agarose gel. 
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In summary, by integrating DNA-CNTs with other active components, we have 

achieved the assembly for organic-inorganic nanohybrids of multiplexed photo-sensing 

capabilities and the reconfigurable SWCNT junctions with stimuli-responsive features. 

The strategies developed in these works contributed to the assemblies of novel CNT 

based functional nanohybrids with the potential to be implemented in next generation 

nanoelectronic devices and single molecular systems. Moreover, a facile and efficient 

method to sort DNA-CNTs by their lengths was demonstrated to address the length 

sorting challenge of CNTs. 

 

CNTs do present substantial opportunities to nanoscience and nanotechnology as well 

as significant challenges for future work in relevant fields. Gaining further control in 

the assembly of CNT based heterostructures will continue to open new possibilities in 

basic science and real-world applications. The strategies to assemble nanocomponents 

(e.g. quantum dots, metal nanoparticles) with CNTs into well-organized structures offer 

the promising direction to approach nanoscale problems and construct novel molecular-

scale systems and devices with advanced electronic, electrical, photophysical features. 

Nevertheless, there are always some ultimate goals in front of us: to realize the self-

assembly and manipulation of defect-free CNT based hybrids at the industrial level by 

simple and effective methods, gain absolute control over CNT length and chirality, and 

be able to directly introduce modifications to any desired sites along the CNT. 

 



 

 




