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Abstract

This thesis deals with several closely related, but subtly different problems in the area

of sequential stochastic optimisation. A joint property they share is the online con-

straint that is imposed on the decision-maker: once she observes an element, the deci-

sion whether to accept or reject it should be made immediately, without an option to

recall the element in future. Observations in these problems are random variables, which

take values in either R or in Rd, following known reasonably well-behaving continuous

distributions.

The stochastic nature of observations and the online condition shape the optimal se-

lection policy. Furthermore, the latter indeed depends on the latest information and is

updated at every step. The optimal policies may not be easily described. Even for a

small number of steps, solving the optimality recursion may be computationally demand-

ing. However, a detailed investigation yields a range of easily-constructible suboptimal

policies that asymptotically perform as well as the optimal one. We aim to describe both

optimal and suboptimal policies and study properties of the random processes that arise

naturally in these problems.

Specifically, in this thesis we focus on the sequential selection of the longest increasing

subsequence in discrete and continuous time introduced by Samuels and Steele [55], the

quickest sequential selection of the increasing subsequence of a fixed size recently studied

by Arlotto et al. [3], and the sequential selection under a sum constraint introduced by

Coffman et al. [26].
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Chapter 1

Introduction

This dissertation deals with several Markov decision problems. In these problems the

decision-maker is faced with a task of choosing the course of action at each step of a

finite or an infinite time horizon while unravelling more information. Each decision is

immediate and terminal. The stochastic nature of the information forces the decision-

maker to think probabilistically when assessing what the best course of action is.

In general, Markov decision problems involve optimising an objective function, some-

times subject to constraints added to the informational constraints above. A key paradigm

used in the study of sequential optimisation problems is dynamic programming. In

essence, it describes the solution to the optimisation task by breaking it down into

smaller sub-tasks until the sub-task in focus is trivial. The value functions, measuring

the optimal expected reward at each step, are then recovered by recursive calculation.

In this work we focus on the maximisation and minimisation problems subject to the

online constraint. At each step of the selection process, the decision-maker is to choose

between obtaining an immediate reward but reducing the sample of future admissible

observations and forfeiting the immediate reward in hopes of maximising the future

expected payoff. For example, a big part of this thesis is dedicated to the problem of

choosing the longest increasing subsequence from a finite sequence of random variables

13



Chapter 1. Introduction 14

[55]. In this case the goal is to maximise the value function, which is the expected

length of the selected subsequence. Observing each consequent element of the sequence,

the decision-maker may choose to keep the element, thus immediately incrementing the

length of the subsequence by one but constraining the future choices to be larger than

this element. Alternatively, she may decide to discard the element without the possibility

of retrieval. Finding the right balance between these lies at the heart of the optimisation

problem.

The longest increasing subsequence problem is intimately connected with a range

of well-known Markov decision problems. One example is the much-studied stochastic

bin-packing problem [26]. Noticing the equivalence between the uniform case of the bin-

packing problem and the longest increasing subsequence made the distributional results

derived in the latter’s study directly applicable to the former. Although the equivalence

breaks for other distributions, it is not unreasonable to conjecture that similar limiting

theorems hold for the more general bin-packing problem.

Like many other dynamic programming problems, results obtained in the study of

the longest increasing subsequence are often used by computer scientists in the analysis

of algorithms. One such example is the application to sorting algorithms. Specifically,

to the instances when an ‘almost’ sorted list is required to be built dynamically, and the

longest increasing subsequence takes a role of a ‘sortedness’ measure [34, 46, 62].

Our research answers several main questions:

� How does the optimal value function behave in the long run? This is a

natural question in the context of Markov decision problems since most of the opti-

mality recursions do not accept a closed-form solution. We significantly refine the

existing asymptotic expansions in several sequential selection problems by virtue

of a comparison method.

� Are there any ‘good’ suboptimal strategies that are easy to describe?

The optimal strategies are often computationally complex and challenging to de-
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scribe. One way of assessing their performance is by comparing it to the perfor-

mance of more accessible suboptimal strategies. Throughout this work we assess

the value functions of the suboptimal strategies introduced in the literature and

construct new well-performing suboptimal selection policies.

� Given the stochastic nature of the decision problems in focus, what are

the statistical properties of the reward? This question concerns the dis-

tributional properties of the total reward as a random variable. We considerably

improve the asymptotic estimates of the variance via deriving the equations for the

second moments of the total reward functions and subjecting them to the asymp-

totic comparison method. To obtain the central limit results, we reformulate the

decision problems as optimisation of the control function of a piecewise determin-

istic Markov process and compare its asymptotic behaviour to that of a renewal

process.

� What are the limiting properties of the stochastic processes arising in

the Markov decision problems? The last major topic tackled in this work

is the functional convergence of the random processes in the sequential longest

increasing subsequence selection. Working directly with the infinitesimal genera-

tor of the suitably scaled running maximum and length processes, we prove the

functional convergence while navigating around the singularities at the end of the

horizon. We explicitly compute the cross-covariance matrix of the limiting two-

dimensional process and show that the weak convergence holds for a particular

class of suboptimal strategies.

1.1 Overview of the key definitions and concepts

For a more convenient and enjoyable readthrough, in this section we lay out the main

concepts appearing throughout the whole dissertation in an informal fashion. A technical

definition of each concept is given separately before each respective chapter, as definitions
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vary slightly from one problem to another.

The elements X1, X2, . . . of a (possibly infinite) random sample are referred to as

items, atoms, or observations. By an admissible observation we mean an item whose size

fits the current optimisation constraint, e.g. in the increasing subsequence problem it

has to be larger than the latest selection.

In every dynamic programming problem, the optimality equation plays a central role.

Often in the literature related to online selection problems, it is referred to as the Bellman

equation in honour of R.E. Bellman, who formalised the optimality principle [11]. An-

other essential concept in optimisation problems is the value function; this measures the

optimal expected value of the objective function given the current state of the problem,

e.g. in the increasing subsequence selection, it is the expected length of a subsequence

given the last selection size and the number of remaining observations. The optimality

equation defines the value function of the problem.

Several types of selection policies are frequently referred to in this work. Naturally,

first is the optimal policy; this is the policy that achieves the optimisation goal, e.g. the

maximal expected length of the selected subsequence, or the minimum expected time

to select a subsequence of a specific size. Clearly, in each problem the optimal policy is

intrinsically related to the optimality equation.

The name of the class of suboptimal policies speaks for itself. Often the performance

of suboptimal policies is used to derive a lower bound to the optimal performance since

the former are usually easier to work with.

The policies described in this work are of the threshold type: at any given point in

time, the decision-maker accepts an observation if its size is within a specified interval.

We call this interval an acceptance interval, or an acceptance window, and the function

measuring the size of this interval — a threshold function.

We differentiate between types of selection policies based on the form of the threshold
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function. The first and most straightforward type is a stationary policy. Its threshold

functions remain constant, i.e. they do not depend on the last selection size or the

remaining length of the sample. Stationary policies are the simplest in terms of definition,

but, as we shall subsequently see, can be very powerful.

Another more general class of Markovian policies are variable-threshold policies.

Threshold functions of a policy with a variable threshold are dependent on both the

latest selection size and the time of the current observation. As we will learn later, the

optimal policy belongs to the class of variable-threshold policies.

1.2 The problems in focus and motivation

In Chapter 2 we present several vital lemmas that form a basis for our asymptotic com-

parison method. The method is potent in the context of the Markov decision problems

and is applied repeatedly throughout this dissertation. On a high level, the asymptotic

comparison method is based on the idea of sandwiching the solution to the optimality

equation between two carefully chosen approximating functions that satisfy correspond-

ing inequalities. The optimality equations’ inherent properties allow us to compute

highly refined asymptotic expansions of the optimal value functions via multiple itera-

tions of the method applied with more precise approximating functions. Moreover, the

method does not rely on properties specific to the optimal value function equations but

instead utilises tools applicable to a broader range of near-optimal selection strategies.

In Chapter 3 we consider several Markov decision problems in the discrete-time set-

ting. The optimisation problem in the focus of Section 3.1 can be stated as follows:

the decision-maker aims to maximise the expected length of an increasing subsequence

selected from a finite random sample in an online fashion. In the sequel we distinguish

between two versions of the problem: a discrete-time problem, where the selection is com-

menced from a sample of a fixed size n ∈ N; and a continuous-time problem where the

observations arrive with unit-rate Poisson process over a horizon of fixed length t ∈ R+.
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Traditionally, these problems are studied separately; however, an intimate connection

between the two is always noted in the literature. Our results highlight this connection

once again. We substantially refine the asymptotic expansions of the optimal value func-

tion with the help of the comparison method. Morever, the comparison method is also

utilised for assessing the expected performance of a suboptimal selection policy which is

not far from optimality.

In Section 3.2 we turn to a closely related problem of minimising the expected sample

size required to choose an increasing subsequence of fixed size k ∈ N. Although the

comparison method is not directly applicable to the optimality recursion in the quickest

selection problem, a similar approach proves to be fruitful. Considerably refining the

existing asymptotic estimates of the optimal performance, we construct several well-

performing suboptimal selection policies.

In Section 3.3 we study a so-called stochastic bin-packing problem, where the goal is to

choose as many elements from a random sample subject to a sum constraint. Once again

appealing to the comparison method, we obtain a significantly more accurate asymptotic

estimate of the value function.

In Chapter 4 we turn to the continuous-time problems. In Section 4.1 we focus

on the increasing subsequence selection from a sequence of d-dimensional observations.

Transforming the optimality equation into a convolution-type equation, we represent the

selection problem in terms of a piecewise deterministic Markov process. Combining the

comparison method with classical coupling argument, we obtain an extremely precise

asymptotic estimate of the value function that goes beyond the O(1)-term and compute

the asymptotic expansion of the variance of the length of the increasing subsequence.

Moreover, utilising the renewal-type behaviour of the transformed Markov process, we

show a distributional convergence of the length of the selected subsequence to a normal

random variable.

In Section 4.2 we discuss the implications of the results of Section 4.1 to the more
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classical one-dimensional problem. We extend the results to a certain class of subop-

timal selection policies specific to the one-dimensional setting and perform numerical

simulations.

We dedicate Section 4.3 to the continuous-time stochastic knapsack or the bin-packing

problem. By applying the methods from Section 4.1 to the bin-packing, we derive precise

asymptotic expansions of the mean and the variance of the number of packed items, and

obtain a central limit theorem. Section 4.4 follows the same steps in the context of the

continuous-time interval parking problems.

Finally, in Chapter 5 we investigate the limiting behaviour of the running maximum

process X(t) and the last selection process L(t) in the continuous-time longest increas-

ing subsequence selection. Working our way around the singularities near t = 1, we

prove that the joint process (X(t), L(t)) converges to a Gaussian diffusion consisting of

a Brownian bridge and an Ornstein-Uhlenbeck process. Explicitly calculating the cross-

covariance matrix, we derive the functional limits for the compensators and demonstrate

how our results add clarity to Bruss and Delbaen’s [20] functional central limit theorem.

Since this dissertation is comprised of investigations of several problems, a review

of existing results is completed for each problem separately at the beginning of the

respective section. However, in the rest of the introductory chapter, we survey the

literature related to the classical discrete-time increasing subsequence problem, which is

the main focus of our manuscript.

1.3 The offline setting

We refer to an optimisation problem with a fully observable horizon as an offline problem.

The offline variant of the longest increasing subsequence problems is Ulam’s question first

posed it in [61] as an example of an exercise that is appropriate to be approached with the

Monte-Carlo simulation method. We briefly go through the important contributions here;

however, the detailed account of the developments in the longest increasing subsequence
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can be found, for example, in [54].

The first successful attempt at an analytic investigation was published by Hammersley

in his seminal paper [35]. Firstly, using the Erdős-Szekeres theorem, he proved that

for any permutation σn ∈ Sn, the length of the longest ascending subsequence of a

permutation of n numbers l(σn) satisfies

l(σn) >
√
n, for all n ≥ 2.

Picking a permutation σn uniformly at random, define Ln to be the expected length of

its longest subsequence Ln := E l(σn). Via an ingenious use of the planar Poisson process

and subadditivity, Hammersley proved that lim
n→∞

l(σn)/
√
n exists, and, moreover,

Ln√
n

p→ c, n→∞,

where c is an absolute constant. Indeed, through symmetry it is clear that the length of

a descending subsequence has the same statistical properties. Thus, from now on in this

work, we will only consider increasing subsequences.

In 1977, Logan and Shepp [41] and Vershik and Kerov [63] independently obtained

the following result

l(σn)√
n
→ 2, as n→∞. (1.1)

Alternative methods were used to obtain (1.1) in [1, 38, 56].

The next considerable refinement was achieved by Odlyzko and Rains [50], who

showed that the following limit exists

lim
n→∞

Ln − 2
√
n

n1/6
= c1

and conjectured that the constant c1 ≈ −1.758 based on the numerical simulations.
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Finally, the investigation culminated in Baik, Deift and Johansson’s result [8]

Ln = 2
√
n+ c1n

1/6 + o(n1/6), n→∞,

where the value of a constant c1 = −1.77108 . . . is obtained by numerically solving the

Painlevé II equation. Furthermore, they showed the following surprising convergence in

distribution

lim
n→∞

P
(
l(σn)− 2

√
n

n1/6
≤ x

)
= FTW (x), for all x ∈ R,

where FTW (x) is the cumulative distribution function of the Tracy-Widom probability

law, which was first introduced in work related to the random matrix theory [60].

1.4 The online setting

When it comes to online selection problems, we study the properties of subsequences

selected by a non-anticipating policy from a sequence of random items X1, X2, . . . , Xn

sampled independently from a known, reasonably well-behaved continuous distribution

F . In contrast to the Ulam-Hammersley problem, the sequence is revealed one item at

a time, and the decision to accept or reject Xi at time i is immediately terminal.

1.5 The longest increasing subsequence selection in dis-

crete time

In 1981, Samuels and Steele [55] introduced the classical problem of online selection of

the longest increasing subsequence. The decision-maker in their setup is sequentially

inspecting elements from a finite random sample X1, . . . , Xn, where Xi ∼ F are inde-

pendent. Suppose the i-th observation is of size x ∈ R+; then, intending to construct

the longest possible increasing subsequence, the decision-maker has to decide whether to

accept the item, restricting all future selections to be larger than x, or to reject the item,
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without the possibility of recall. Any continuous distribution F can be translated into

Uniform[0, 1] with a monotone transformation; thus, it is sufficient to assume without

loss of generality that Xi ∼ Uniform[0, 1]. From now on we adhere to this assumption,

though acknowledging the instance when useful properties were derived by Arlotto et al.

[4] in their investigation of the case of exponentially distributed random variables.

Let vn : N→ R+ be the maximal expected length of an increasing subsequence chosen

in an online fashion. Samuels and Steele obtained the following asymptotic result

vn ∼
√

2n, as n→∞. (1.2)

Notation. Here and hereafter, the asymptotic equivalence relation ∼ is used for asymp-

totic expansions written without estimate of the remainder, e.g.

f(t) ∼ f1(t) + f2(t) + · · ·+ fk(t), as t→∞,

means that fi+1(t) = o(fi(t)) for 1 ≤ i < k.

The asymptotic (1.2) was obtained in three steps. Firstly, the square-root order was

established using subadditivity, similarly to Hammersley’s argument in [35]. Secondly,

a simple suboptimal strategy was used to obtain a lower bound on vn. Finally, deriving

certain regularity conditions of the solution to the optimality equation, a sufficient lower

bound was proved.

Comparing (1.1) and (1.2), we can see that the ratio 2 :
√

2 reflects the advantage of

a ‘prophet’ with a full overview of a sequence X1, . . . , Xn over the rational but nonclar-

voyant ‘gambler’ learning the sequence and making decisions in real time. A surprising

feature is that this ratio is finite. For comparison, a naive decision-maker selecting every

successive record obtains an expected length of the subsequence
∑n

i=1 1/i ∼ log n, which

is much more modest than both the prophet and the gambler (see [22] for details on

record sequences).
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Another significant discovery is Samuels and Steele’s suboptimal selection policy that

chooses every consecutive item within
√

2/n above the latest selection. Remarkably, this

simple policy achieves (1.2).

In subsequent work the asymptotics (1.2) were refined as

√
2n+O(log n) ≤ vn ≤

√
2n, n→∞. (1.3)

We should note that the log-remainder term here on the left is negative. The upper

bound first appeared in the context of Bruss and Robertson’s study [21] of the maximal

expected number of elements whose sum does not exceed a specified value. Later, this

upper bound was obtained in a completely different fashion in Gnedin’s investigation

[33] of online selection from a sample of random size.

The O(log n)-term in the lower-bound was first hinted at by Bruss and Delbaen’s

result obtained in the study of the continuous-time version of the problem [19]. This

continuous-time analogue of Samuels and Steele’s original problem is the main focus

of Chapter 3. Although the two problems are very similar, Bruss and Delbaen’s lower

bound was not immediately applicable to vn. A bridge between the two problems was

constructed by Arlotto et al. [4]; they derived the lower bound for vn and used it to

prove the central limit theorem for the length of an optimally chosen subsequence Ln,

√
3 {Ln −

√
2n}

(2n)1/4
d−→ N (0, 1), as n→∞.

The tightest lower-bound on vn known today was derived by Arlotto et al. [5]

√
2n− 2 log n− 2 ≤ vn.

To narrow the gap, Arlotto et al. assessed a considerably more involved online selec-

tion policy, which has the size of acceptance interval dependent on both the number of

remaining observations n − i and the size of the last selection. Based on an extensive
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numerical simulation, Arlotto et al. also suggested that their policy is, in fact, within a

constant off optimality.



Chapter 2

Asymptotic comparison

In this chapter we present the key lemmas forming a basis of our method of asymptotic

comparison. This method proves to be very powerful when applied in the context of

several sequential selection problems, and we use it on numerous occasions throughout

this thesis.

We utilise the comparison method to approximate asymptotically the solutions to

difference and differential equations satisfying particular monotonicity properties. The

procedure is reminiscent of a familiar method of successive estimation of the solution

to the differential equations (see, for example, [18], Section 9.1). The following lemmas

should cover most of our needs.

We will consider sequences of functions fn : D→ R on some set D with sup
z∈D
|fn(z)| <

∞, so each fn is bounded for n = 0, 1, . . .. For every n ≥ 0, z ∈ D let Gn+1(f0, . . . , fn)(z)

be a functional possessing the following properties

(i) Shift-invariance: Gn+1(f0 + c, . . . , fn + c)(z) = Gn+1(f0, . . . , fn)(z) + c for any

constant c,

(ii) Monotonicity: if f̂0 ≥ f0, . . . , f̂n ≥ fn, thenGn+1(f̂0, . . . , f̂n)(z) ≥ Gn+1(f0, . . . , fn)(z).

25
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For example, we will consider the optimality equation in the longest increasing sub-

sequence problem. With

Gn+1(fn)(z) := zfn(z) +

∫ 1

z
max{fn(x) + 1, fn(z)}dx

and D := [0, 1], the equation becomes fn+1(z) = Gn+1(fn)(z), f0(z) = 0. The operator

Gn satisfies both conditions (i) and (ii). It satisfies the former inherently from definition

and the latter by monotonicity of the value functions specific to the problem. Intuitively,

the shift-invariance indicates that if we were to shift the starting number of selections

by a constant, the resulting sequence of value functions would shift precisely by this

constant.

Now, suppose space D is equipped with size functions gn : D→ R. We may say (n, z)

is sufficiently large meaning that gn(z) > c for suitable constant c. We do not require

z → gn(z) to be bounded for given n, so sufficiently large may refer to small n. The role

of function gn(z) is to determine the range of limit regimes for (n, z) as n→∞.

Definition 1. For a given space D equipped with a size function gn(z), we say that a

sequence of functions (fn) is locally bounded from above if

sup
(n,z):gn(z)≤c

fn(z) <∞,

for every c > 0, locally bounded from below if (−fn) is locally bounded from above, and

locally bounded if |fn| is locally bounded from above.

Assume we have a sequence of functions f0, f1, . . ., such that

(a) fn(z) are locally bounded,

(b) fn+1(z) = Gn+1(f0, . . . , fn)(z) for all n ≥ 0, z ∈ D.

The idea is to compare a solution to (b) to a sequence asymptotically satisfying an

analogous inequality. This is where the monotonicity property (ii) comes into play. In
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simplest terms, it ensures that if an approximating sequence f̂n is above fn, it will

continue growing at least as quickly as fn.

Lemma 1. Suppose a sequence of functions f̂0, f̂1, . . . is locally bounded from below and

f̂n+1 satisfies f̂n+1 ≥ Gn+1(f̂0, . . . , f̂n)(z) when (n, z) is sufficiently large. Then, the

difference fn(z)− f̂n(z) is bounded from above uniformly for all n and z. Similarly, if f̂n

are locally bounded from above and f̂n+1 ≤ Gn+1(f̂0, . . . , f̂n)(z) when (n, z) is sufficiently

large, then fn(z)− f̂n(z) is bounded from below uniformly for all n and z.

Proof. Adding a constant if necessary and using the shift-invariance property (i) of the

functional, we can reduce to the case f̂n(z) > 0.

If the claim of the lemma is not true, then for every constant c > 0 we can find n0, z0

such that fn0+1(z0)− f̂n0+1(z0) > c. Choose the minimal such n0 = n0(c), then

fj(z) ≤ f̂j(z) + c for j ≤ n0, z ∈ D.

From assumption (a) and local boundedness of (fn) one can deduce n0 = n0(c)→∞ as

c→∞. To that end, observe that

fn0+1(z0) > f̂n0+1(z0) + c > c.

Since (fn) are locally bounded, we have gn0+1(z0) ≥ fn0+1(z0) ≥ c, so we can choose

c large enough to achieve Gn0+1(f̂0, . . . , f̂n0)(z0) < f̂n0+1(z0). Therefore, appealing to

shift invariance, we obtain

Gn0+1(f̂0 + c, . . . , f̂n0 + c)(z0) = Gn0+1(f̂0, . . . , f̂n0)(z0) + c ≤ f̂n0+1(z0) + c < fn0+1(z0).

However, by the choice of n0, z0 and the monotonicity property (ii), we have

fn0+1(z0) = Gn0+1(f0, . . . , fn0)(z0) ≤ Gn0+1(f̂0, . . . , f̂n0)(z0),
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which is a contradiction. The second part of the lemma can be proved analogously.

To derive similar results for the differential equations, we first need to prove the

following elementary lemma.

Lemma 2. Suppose f ∈ C1(R+) satisfies lim sup
t→∞

f(t) = ∞. Then there exists an arbi-

trarily large x > 0, such that for some t

(a) f(s) < f(t) = x for 0 ≤ s ≤ t,

(b) f ′(t) > 0.

Proof. Let g(t) := max
s∈[0,t]

f(s) be the running maximum of f(t). For x > f(0) let

l(x) = min{t : g(t) = x}, r(x) = max{t : g(t) = x},

which are well defined because g is nondecreasing and by the assumption satisfies g(t)→

∞ as t → ∞. So l(x) ≤ r(x) and f(r(x)) = f(l(x)) = x. If neither f ′(l(x)) > 0, nor

f ′(r(x)) > 0, then g′(t) = 0 for l(x) ≤ t ≤ r(x). Now if the latter holds for all sufficiently

large x, then g′(t) = 0 for all large enough t, but this is only possible if f is bounded

from above, which is a contradition.

Now, consider functions f ∈ C1[0,∞) and suppose a functional Izf = Iz(f |[0,z])

possesses the following properties

(i) Shift-invariance: Iz(f + c) = Izf for any constant c,

(ii) Monotonicity: if f̂(s) ≥ f(s) for all 0 ≤ s ≤ z, then Iz f̂ ≥ Izf .

For functions f satisfying the equation f ′(z) = Izf , we have the following result.

Lemma 3. Let the function f be a solution to f ′(z) = Izf and suppose f̂ satisfies

f̂ ′(z) ≥ Iz f̂ for all sufficiently large z. Then sup
z∈R+

(f(z) − f̂(z)) < ∞. Likewise, if
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f̂ ′(z) ≤ Iz f̂ for all sufficiently large z, then inf
z∈R+

(f(z)− f̂(z)) > −∞.

Proof. Assume to the contrary that f̂ ′(z) ≥ Iz f̂ for z > z0 but the difference f(z)− f̂(z)

is not bounded from above. Then, by Lemma 2, we can find a constant c large enough

to achieve that z1 := min{z : f(z) = f̂(z) + c} satisfies z1 > z0 and f ′(z1) > f̂ ′(z1). By

the properties (i) and (ii) of the operator I, we have

f ′(z1) = Iz1f ≤ Iz1(f̂ + c) = Iz1 f̂ ≤ f̂ ′(z1).

However, this is a contradiction since f ′(z1) > (f̂ + c)′(z1) = f̂ ′(z1). The second part of

the lemma is argued similarly.

For example, we will consider equations of the form

f ′(z) =

∫ z

0
(f(z − y) + 1− f(z))+ µ(z,dy),

where µ(z, dy) is some probability measure. Lemma 3 is then applied with

Izf :=

∫ z

0
(f(z − y) + 1− f(z))+ µ(z, dy)

and a suitable choice of an approximating function f̂ .
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Discrete-time selection problems

3.1 The longest increasing subsequence selection

We formalise now the definitions of main concepts and the notation used in this chapter.

Let Xi, i = 1, . . . , n be independent distributional copies of X ∼ Uniform[0, 1].

Definition 2. An online selection policy is a collection of stopping times τ = (τ1, τ2, . . .)

(i) adapted to the sequence of sigma-fields Fi = σ{X1, X2, . . . , Xi}, 1 ≤ i <∞,

(ii) satisfying τ1 < τ2 < . . ..

An online policy τ is called admissible in the increasing subsequence problem if it also

satisfies

(iii) Xτ1 < Xτ2 < . . . .

Definition 3. Let us set τ0 := 0 and Xτ0 := 0, and let {hm(z) : 1 ≤ m ≤ n} be

a sequence of threshold functions satisfying hn−i(z) ≤ 1 − z for all i = 0, . . . , n − 1,

where z is the size of the last selection made so far. Then, a threshold policy, uniquely

characterised by its corresponding threshold functions, is an online selection policy, which

30
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has its stopping times defined recursively as

τj = min
{
τj−1 < i ≤ n : Xi ∈

[
Xτj−1 , Xτj−1 + hn−i+1(Xτj−1)

]}
with the convention that min ∅ =∞. Clearly, for a threshold policy to be admissible, its

threshold functions must be positive.

A somewhat cumbersome stopping times notation above defines a simply described

selection strategy that at time i when n− i observations remain to be inspected and the

size of the last selection is z, accepts the observation Xi if and only if it falls within the

acceptance interval

z ≤ Xi ≤ z + hn−i+1(z).

Depending on the form of the threshold functions, we differentiate between the types of

threshold policies.

Definition 4. A threshold policy is stationary if its threshold functions are of the form

hn−i(z) = min{c, 1− z} for all i = 0, . . . , n− 1, where c is a fixed constant.

Definition 5. Let v
(h)
n−i(z) : [0, 1] → R+ denote the expected length of an increasing

subsequence built by a threshold policy with threshold functions hn−i(z). We call v
(h)
n−i

the value functions of this threshold policy.

Definition 6. Let Ln(τz) be the number of selections made by an admissible policy

τz. Then, the optimal value function vn(z) is defined by taking a supremum over all

admissible policies vn := sup
τz

ELn(τz).

We mark the value functions of suboptimal threshold policies with a superindex

indicating the corresponding threshold functions. In contrast, the optimal value functions

have no superindex.
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3.1.1 The optimality equation

Assume we have n+ 1 elements remaining to inspect and the last selected element so far

is of size z. Then, the optimality equation is a recursion [4, 5, 55]

vn+1(z) = z vn(z) +

∫ 1

z
max {vn(x) + 1, vn(z)} dx, v0(z) = 0. (3.1)

We record here a trivial fact that v1(z) = P(X1 ≥ z) = 1−z and note the shift-invariance

of the solution: vn(z) + c also satisfies (3.1) for any constant c.

The intuition behind (3.1) is as follows. At the current state of selection, with prob-

ability z the next observed item is inadmissible, therefore leaving the expected length

at vn(z). On the other hand, if the observation is admissible, then the dynamic pro-

gramming principle prescribes the decision-maker to choose whatever provides a larger

expected length of a sequence: keeping the item and thus increasing the length by 1, or

discarding it and thus leaving it at vn(z) by the optimal continuation. Averaging over

the uniformly distributed observation yields the integral on the right-hand side of (3.1).

Observe that vn(z) can also be viewed as the maximum expected length of an increasing

subsequence chosen from N items, with N
d
= Bin(n, 1− z) (see Gnedin [33], p. 945 and

Samuels and Steele [55], p. 1083).

Let hn(z) : [0, 1]→ [0, 1] be the solution to

vn(z + x) + 1 = vn(z) (3.2)

if vn(z) > 1, and hn(z) = 1 − z otherwise. The value function vn(z) is monotonically

decreasing in z. This can be shown by the following coupling argument. Assume we have

z1 < z2 and wish to compare vn(z1) to vn(z2). In the problem with the last selection

size z1, the class of admissible policies includes all of the admissible policies in the more

restrictive case with the last selection size z2. Moreover, there are additional admissible

policies in the former case that are not available in the latter. Thus, referring to the
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Definition 6, we can conclude that vn(z1) ≥ vn(z2) ([4], Lemma 3 provides a technical

proof of the monotonicity based on the analysis of the optimality equation). Therefore,

the integrand in (3.1) is equal to vn(x)+1 on the interval [z, z+hn(z)]. On the remaining

interval [z + hn(z), 1], the integrand assumes value vn(z).

This provides the form of the optimal selection policy: accept the observation x if

it falls into the acceptance window [z, z + hn(z)]. From (3.2) it can be seen that the

acceptance window is updated dynamically with every observation. Thus, the optimal

policy indeed belongs to the class of policies with a variable acceptance window, and

we call functions hn(z) the optimal threshold functions. Note, the equation (3.2) has

a solution only when vn(z) > 1. This has a logical interpretation: when vn(z) ≤ 1,

the decision-maker should select every admissible observation whatever its value as this

provides the largest expected payoff.

3.1.2 Asymptotic expansion of the optimal value function

In the sequel we work directly with the optimality equation (3.1) to refine the expansion

(1.2). The plan is to exploit the asymptotic comparison method, for which we laid the

foundation in Chapter 2.

Given a sequence of continuous functions fn : [0, 1] → R+ introduce a forward-

difference operator ∆ and an integral operator P acting on fn(z) as

∆fn(z) := fn+1(z)− fn(z), Pfn(z) :=

∫ 1

z
(fn(x) + 1− fn(z))+dx,

respectively. With this notation, the optimality equation (3.1) assumes the form

∆vn(z) = Pvn(z), v0(z) = 0. (3.3)

We specialise Lemma 1 to obtain the following corollary.

Corollary 1. If for n(1−z) large enough, ∆fn(z) > Pfn(z), then the difference vn(z)−
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fn(z) is bounded from above uniformly in n and z. Likewise, if ∆fn(z) < Pfn(z) when

n(1− z) is large, then vn(z)− fn(z) is bounded from below uniformly in n and z.

Proof. The result is obtained by applying Lemma 1 with Gn+1(fn)(z) := fn(z)+Pfn(z),

and the size function gn(z) := n(1− z).

We apply Corollary 1 to compare vn(z) with a sequence of suitable test functions.

With every iteration we choose an approximating function that refines the asymptotic

expansion of vn(z).

Notation. Because we work with the expansions of vn(z) when (n, z) is large enough,

introduce for convenience n̂ := n(1− z).

To obtain the principal asymptotics, consider the test function

v(0)n (z) := γ0
√
n(1− z) = γ0

√
n̂,

where γ0 ∈ R+ is a parameter. Expanding for large n̂, we obtain

∆v(0)n (z) ∼ γ0
1− z
2
√
n̂
. (3.4)

On the other hand, using the change of variable y := (x− z)/(1− z), we can write the

integral as

Pv(0)n (z) = (1− z)
∫ 1

0

(
γ0
√
n̂− n̂y − γ0

√
n̂+ 1

)
+

dy

= (1− z)
∫ h

(0)
n (z)

0

(
γ0
√
n̂− n̂y − γ0

√
n̂+ 1

)
dy,

where h
(0)
n (z) is the solution to

γ0
√
n̂(1− x)− γ0

√
n̂+ 1 = 0.
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For n̂→∞, we have

h(0)n (z) ∼ 2

γ0
√
n̂
, n̂→∞. (3.5)

Using Taylor expansion in y around 0 to estimate the integrand yields

1− γ0
√
n̂
y

2
+O(n̂−1/2);

hence, integrating and using (3.5), we arrive at

Pv(0)n (z) ∼ 1− z
γ0
√
n̂
, n̂→∞. (3.6)

The match between (3.4) and (3.6) occurs for γ0 =
√

2; therefore, we have, for n(1− z)

large enough,

∆v(0)n (z) > Pv(0)n (z), when γ0 >
√

2,

∆v(0)n (z) < Pv(0)n (z), when γ0 <
√

2.

Applying Corollary 1, we see that

lim sup
n(1−z)→∞

(vn(z)− γ0
√
n(1− z)) <∞.

In light of this,

lim sup
n(1−z)→∞

vn(z)√
n(1− z)

≤ γ0, for γ0 >
√

2.

Consequently,

lim sup
n(1−z)→∞

vn(z)√
n(1− z)

≤
√

2. (3.7)

A parallel argument with γ0 <
√

2 yields

lim inf
n(1−z)→∞

vn(z)√
n(1− z)

≥
√

2. (3.8)
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Combining (3.7) with (3.8), we obtain

vn(z) ∼
√

2n(1− z), n(1− z)→∞.

For a better approximation we consider the test function

v(1)n (z) =
√

2n(1− z) + γ1 log (n(1− z) + 1)

with γ1 ∈ R. We choose log (n̂+ 1) over log n̂ to avoid the annoying singularity at 0.

The forward difference becomes

∆v(1)n (z) =
√

2n(1− z)

((
1 +

1

n

)1/2

− 1

)
+ γ1 log

(
1 +

1

n(1− z) + 1
+

1

n

)
.

Using Taylor expansion with a remainder yields

∆v(1)n (z) =
1− z√

2n̂
+ γ1

1− z
n̂+ 1

+O(n̂−3/2), n̂→∞. (3.9)

On the other hand, using a substitution y = (x− z)/(1− z) it can be deduced that

Pv(1)n (z) =

= (1− z)
∫ 1

0

(√
2n̂
(

(1− y)1/2 − 1
)

+ γ1 log (n̂(1− y) + 1)− γ1 log (n̂+ 1) + 1
)
+

dy

= (1− z)
∫ h

(1)
n̂

(z)

0

(√
2n̂
(

(1− y)1/2 − 1
)

+ γ1 log (n̂(1− y) + 1)− γ1 log (n̂+ 1) + 1
)

dy,

(3.10)

where h
(1)
n (z) solves

√
2n̂
(

(1− y)1/2 − 1
)

+ γ1 log (n̂(1− y) + 1)− γ1 log (n̂+ 1) + 1 = 0. (3.11)
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For n̂→∞,

h(1)n (z) =

√
2

n̂
−
(

1

2
+ 2γ1

)
1

n̂+ 1
+O(n̂−3/2). (3.12)

Actually, we only need the first term of (3.12) to obtain the expansion of Pv(1)n (z) with the

desired accuracy. This is down to the fact that order O(n̂−1)-term in (3.12) contributes

only O(n̂−3/2) to Pv(1)n (z). Indeed, keeping n̂ as a parameter, let us view the integral on

the third line of (3.10) as a function of its upper limit

I(h) := (1− z)
∫ h

0

(√
2n̂
(

(1− y)1/2 − 1
)

+ γ1 log

(
n̂(1− y) + 1

n̂+ 1

)
+ 1

)
dy.

In view of (3.11), h1 := h
(1)
n (z) is a stationary point of the integrand. Expanding at h1

with a remainder we get for some ζ ∈ [0, 1]

I(h1 + ε)− I(h1) = I ′(h1) ε+ I ′′(h1 + ζε)
ε2

2

= (1− z)

( √
2n̂

2
√

1− (h1 + ζε)
− γ1

1− (h1 + ζε)

)
ε2

2
.

Now, letting n̂→∞ and setting ε := O(n̂−1) we obtain

I(h1 + ε)− I(h1) = O(n̂−3/2),

as claimed. In light of this, integrating and expanding we obtain

Pv(1)n (z) ∼ 1− z√
2n̂
−
(
γ1 +

1

6

)
1− z
n̂+ 1

, n̂→∞. (3.13)

Expansions (3.9) and (3.13) match at γ1 = −1/12. Thus, another application of Corol-

lary 1 gives us the refinement

vn(z) ∼
√

2n(1− z)− 1

12
log (n(1− z)), n(1− z)→∞.
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We need one more iteration to bound the remainder. Consider the test functions

v(2)n (z) =
√

2n(1− z)− 1

12
log (n(1− z) + 1) + γ2

1√
n(1− z) + 1

, γ2 ∈ R.

For n̂→∞, we obtain the expansion

∆v(2)n (z) ∼ 1− z√
2n̂
− 1− z

12(n̂+ 1)
+

1− z
(n̂+ 1)3/2

(
−γ2

2
− (1− z)

√
2

8

)
, (3.14)

uniformly in z ∈ [0, 1), and, with some more effort, for the integral operator

Pv(2)n (z) ∼ 1− z√
2n̂
− 1− z

12(n̂+ 1)
+

1− z
(n̂+ 1)3/2

(
γ2
2

+
35
√

2

144
−
√

2

4

)
. (3.15)

Since z ∈ [0, 1), we have

−γ2
2
−
√

2

8
≤ −γ2

2
− (1− z)

√
2

8
< −γ2

2
. (3.16)

Appealing to (3.14), (3.15) and the first inequality in (3.16), we conclude that for large

n(1− z)

∆v(2)n (z) > Pv(2)n (z), for γ2 ≤
√

2

144
−
√

2

8
;

hence, by Corollary 1, vn(z)− v(2)n (z) for such γ2 is bounded from above. On the other

hand, exploiting the second inequality in (3.16), we derive that for large n(1− z)

∆v(2)n (z) < Pv(2)n (z), for γ2 ≥
√

2

144
;

thus, by Corollary 1 vn(z) − v(2)n (z) for such γ2 is bounded from below. However, since

the last term of v
(2)
n (z) is already bounded, it follows readily that

vn(z) =
√

2n(1− z)− 1

12
log (n(1− z)) +O(1), n(1− z)→∞. (3.17)

The main result of this section is the special case of (3.17) with z = 0.
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Theorem 1. The maximum expected length of an increasing subsequence chosen in an

online fashion vn = vn(0) satisfies

vn =
√

2n− 1

12
log n+O(1), n→∞. (3.18)

Theorem 1 refines the most recent expansion (1.3) significantly. However, our compar-

ison method does not anywhere use the initial condition v0(z) = 0. Thus, the expansion

is limited by order of the effect of the shift in the initial condition, which is indeed O(1).

3.1.3 A variable-threshold policy

As was demonstrated in the previous section, the optimal selection strategy is the

variable-threshold policy with threshold functions hn−i+1(z) solving

vn−i(z + x) + 1 = vn−i(z), vn−i(z) > 1.

However, there are good policies that can be defined more simply. For example, the

stationary policy of Samuels and Steele [55] has constant threshold functions independent

of the remaining sample size. It accepts every observation that exceeds the last selection

by no more than
√

2/n. Setting threshold functions h̃n−i+1(z) := min{
√

2/n, 1 − z}

for all i = 1, 2, . . . , n describes this strategy completely. The minimum ensures that the

policy is feasible.

Remarkably, this uncomplicated policy achieves asymptotic optimality up to the lead-

ing order term of the expected performance. The intuition behind the choice of this

acceptance interval can be demonstrated by working out the mean-constraint bound on

vn. From Definition 3 it follows that

vn = E
n∑
i=1

1 (Xi ∈ [Zi−1, Zi−1 + hn−i+1(Zi−1)]) =
n∑
i=1

Ehn−i+1(Zi−1), (3.19)

where Zi is the last selected element at observation i, with the convention Z0 = 0.
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Moreover, we have

E (Zi − Zi−1|Zi−1) =
(hn−i+1(Zi−1))

2

2
;

thus, taking the expectation and telescoping gives

1

2

n∑
i=1

E
(

(hn−i+1(Zi−1))
2
)

= EZn ≤ 1, (3.20)

where the last bound comes as a trivial consequence of the state space of Zn. How-

ever, (3.20) is a relaxation of the more restrictive constraint Zn ≤ 1 in the increasing

subsequence selection. Thus, solving the optimisation problem of the form

n∑
i=1

ϕi → max, subject to
n∑
i=1

ϕ2
i ≤ 2, (3.21)

where ϕi is a sequence of variables with ϕi ≥ 0, i = 1, . . . , n yields an upper bound for

vn. The unique solution ϕ∗i =
√

2/n, i = 1, . . . , n with the corresponding optimal value
√

2n is easily obtained via convex optimisation.

By Jensen’s inequality,

(Ehn−i+1(Zi−1))
2 ≤ E (hn−i+1(Zi−1))

2 ;

therefore, given (3.20), the sequence of variables yi = Ehn−i+1(Zi−1), i = 1, . . . , n is a

feasible solution to the optimisation problem (3.21). So, from (3.19),

vn ≤
√

2n. (3.22)

Note, the optimal solution ϕ∗i was used by Samuels and Steele as a value for the threshold

functions of their stationary policy. A delicate point here is that the constant threshold

functions may not fit the feasiblity constraint hn−i(z) ≤ 1 − z. One needs to consider

a greedy selection policy for when the feasibility constraint is violated by the constant
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threshold.

A considerably more sophisticated policy was introduced by Arlotto et al. [5]. In

contrast to the stationary policy of Samuels and Steele, the acceptance window here is

variable. The acceptance criterion for this policy is

z < x ≤ z + hn−i+1(z),

where

hn−i+1(z) = min

{√
2(1− z)
n− i

, 1− z

}
for i = 1, . . . , n. (3.23)

Observe that normalising (3.23) leads to the acceptance condition

0 <
x− z
1− z

<

√
2

(n− i)(1− z)
,

i.e. the threshold functions are similar to Samuels and Steele’s with one exception:

Arlotto et al. used the expected number of remaining admissible observations (n −

i)(1− z) in the calculation of threshold functions.

The value functions corresponding to Arlotto et al.’s policy satisfy the recursion

v
(h)
n+1(z)− v

(h)
n (z) =

∫ z+hn(z)

z

(
v(h)n (x)− v(h)n (z) + 1

)
dx, v

(h)
0 (z) = 0.

By virtue of Lemma 1, this equation can be analysed analogously to (3.3), leading to

the same expansion as in (3.17)

v(h)n (z) =
√

2n(1− z)− 1

12
log n(1− z) +O(1).

Taken together with (3.17) this settles the conjecture in [5].

Theorem 2. As n gets large, the policy with threshold functions (3.23) has the expected
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performance v
(h)
n = v

(h)
n (0) satisfying

|vn − v(h)n | = O(1), n→∞.

3.2 The quickest increasing subsequence selection

We now turn to the quickest selection problem studied recently by Arlotto et al. [3]. In

contrast to Samuels and Steele’s problem, Arlotto et al. asked to find the minimum ex-

pected time βk to choose a k-long increasing subsequence from an infinitely long sequence

of random observations in an online fashion. Reformulating the goal as minimising the

expected size of the random sample required to choose a said sequence highlights a

natural duality to the Samuels-Steele problem.

Via an analytical tour de force, Arlotto et al. [3] obtained the following bounds on

the optimal value function

k2

2
≤ βk ≤

k2

2
+O(k log k), for all k ≥ 2, (3.24)

and the following asymptotic expansion for the variance, as k →∞,

Var(τk) =
k3

3
+O(k2(log k)α), for all α > 2.

The quickest selection problem of Arlotto et al. [3] is equivalent to a special case of the

sum constraint problem of Chen et al. [24] with the uniformly distributed observations

and a unit sum constraint (see Example 2 on p. 541 for the k2/2 asymptotics and

Mallows et al. [43] for a multidimensional extension). So the principal asymptotics k2/2

can be read off from this earlier work. Coffman et al. [26] in Section 6 showed that the

same asymptotics k2/2 also occur in the offline quickest selection problem.

Definition 7. Fix z ∈ (0, 1). The optimal value function βk(z) in the quickest selec-

tion problem is the minimal expected size of the sample required to select a monotone
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subsequence of length k with items above z only.

Note that βk = βk(0). In stopping time notation the optimal value function βk =

infτ Eτk, where the infinum is taken over all admissible online selection policies τ .

Definition 8. Let hk−i, 0 ≤ hk−i ≤ 1 be a sequence of threshold functions. An online

selection policy in the quickest selection problem is called self-similar if it amounts to the

following rule: when at some stage there are k − i items yet to be chosen and the last

selection value is z, then the observation of size x should be selected if and only if

0 <
x− z
1− z

< hk−i.

Earlier, in the study of closely-related selection of a k-long subsequence as quickly

as possible under a fixed sum constraint, Chen et al. [24] demonstrated the necessary

asymptotic conditions for the stationary strategy to be optimal up to the term of principal

order. Chen et al.’s threshold functions h̃k satisfy h̃k ∼ 2/k and result in the expected

time of selection β
(h̃)
k ∼ k2/2, k → ∞. In Section 3.2.5 we explicitly construct a quasi-

stationary selection policy that meets these criteria.

Our quasi-stationary policy from Section 3.2.5 has two regimes. A second more

conservative regime kicks in once the running maximum crosses a certain barrier. This

is reminiscent of a two-stage selection strategy described in the proof of Theorem 9 in

[26] in context of the quickest selection under a sum constraint.

3.2.1 The optimality equation

The inter-arrival times between consecutive items that fall in [z, 1] are independent and

distributed geometrically with success probability (1 − z). Therefore, with a minute

thought we see that the value function βk(z) satisfies the identity

βk(z) =
βk

1− z
(3.25)
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in the problem with k choices to make. Arguing by induction on k = 1, 2, . . . we arrive

at the recursive optimality equation

βk+1 = 1 + Emin

{
βk+1,

βk
1−X

}
, (3.26)

where the initial condition is β1 = 1 and X is uniform on [0, 1]. With k + 1 items to

choose, the next observation increments the total time by 1 no matter if it is selected or

discarded, thus explaining the unit increment on the right-hand side. The second term

on the right-hand side is dictated by the optimality principle, which requires us to choose

an action that minimises the expected time. The options are: skip the observation X,

thus leaving the expected time of selection unchanged at βk+1, or accept the observation

X, thus selecting the increasing subsequence from a thinned sequence of items above X.

Referring to the identity (3.25), one can obtain the second term in (3.26).

Lemma 4. The optimal value function βk satisfies the recursive equation

βk+1 − βk − βk log

(
βk+1

βk

)
= 1, (3.27)

initialised with β1 = 1.

Proof. We have βk/(1 − x) ≤ βk+1 if and only if x ≤ 1 − βk/βk+1 =: hk. Thus, it is

optimal to choose the observation X only when X ≤ hk. From this we can rewrite (3.26)

as

βk+1 = 1 + (1− hk)βk+1 +

∫ hk

0

βk
1− x

dx, β1 = 1.

Integrating and permuting yields (3.27).

The optimal strategy is self-similar. If at stage j some k items are yet to be chosen,

the last selection was z, and the observed item is Xj = x then the item should be selected

if and only if

0 <
x− z
1− z

< hk.



Chapter 3. Discrete-time selection problems 45

Arlotto et al. derived (3.24) by analysing the optimality recursion in the following

form ([3], Lemma 3)

βk+1 = min
t∈[0,1]

(
1

t
− βk

t
log (1− t)

)
, β1 = 1. (3.28)

The recursion (3.28) is, in fact, equivalent to the recursion (3.27). Indeed, we find that

the minimising value of t = t∗ satisfies

log (1− t∗) =
1

βk
− t∗

1− t∗
. (3.29)

Substituting (3.29) into (3.28) yields the optimal solution t∗ = 1 − βk/βk+1. Plugging

the optimal solution into (3.28) and rearranging gives (3.27).

Arlotto et al. also proved that the function k → βk is convex and the optimal

threshold functions satisfy

hk =
2

k
+O(k−2 log k), k →∞. (3.30)

3.2.2 Preparation for the asymptotic analysis

The quickest selection problem is a decision problem with infinite horizon. Still, a version

of the comparison method turns out to be useful here too. In this section we develop

the tools necessary to apply the ‘comparison-like’ approach to (3.27).

Recursion (3.27) possesses several useful analytical properties. To begin with, define

a function G : R2
+ → R as

G(x, y) := y − x− x log
y

x
.

In terms of G, (3.27) becomes

G(βk, βk+1) = 1, β1 = 1. (3.31)
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Recursion (3.31) taken together with the condition

1 = β1 < β2 < . . .

defines the sequence βk uniquely, as seen from the next lemma. For x ≥ 0 define g(x) as

a solution to

G(x, g(x)) = 1.

This function g(x) has two branches, and we are interested in the upper branch.

Lemma 5. The function g has a branch that lies entirely in the domain D = {(x, y) :

x+ 1 < y, x > 0}.

Proof. Calculating the partial derivatives

∂G

∂x
= log

x

y
,

∂G

∂y
= 1− x

y
,

we see that, if G(x0, y0) = 1, then, by the Implicit Function Theorem, in the vicinity of

(x0, y0) there is a uniquely defined function g(x) with

g′(x) = −∂G
∂x

/
∂G

∂y
=
− log (x/y)

1− x/y

provided x0 6= y0. If, furthermore, 0 < x0 < y0, then this function has derivative

g′(x) > 1, since

− log z > 1− z, for 0 < z < 1,

where z = x/y. Thus, if there is one such point (x0, y0) ∈ D, then there is a branch

g(x) : R+ → R+ with (x, g(x)) ∈ D.
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In particular, we can pick (x0, y0) = (1, y0), where y0 = 3.146 . . . solves

y − log y = 2.

Note that g(0+) = 1, but g′(0+) =∞.

From now on we only consider the branch of g(x) defined in Lemma 5. In these terms

βk+1 = g(βk), β1 = 1.

That is, the sequence of optimal value functions βk is obtained as iterations of g, starting

with β1 = 1. So β2 = g(1), β3 = g(g(1)), etc. We wish to find now the asymptotic

behaviour of g for large x.

Lemma 6. A function g(x) possesses the following asymptotic expansion

g(x) = x+
√

2x+
2

3
+

√
2

18
√
x

+O(x−1), x→∞. (3.32)

Proof. Dividing both sides of G(x, y) = 1 by x yields

y

x
− 1− log

y

x
=

1

x
.

Note that taking limits on both sides gives

lim
x→∞

y

x
= 1 + lim

x→∞
log

y

x
, where y = g(x).

Performing a change of variables

z =
y

x
− 1, w =

1

x
,
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we arrive at

z − log (1 + z) = w. (3.33)

Because lim sup y/x < ∞ and a = 1 is the unique solution to a = 1 + log a, we may

conclude that

y

x
→ 1.

In light of this, we may investigate (3.33) in the vicinity of z = w = 0. The function w(z)

is analytic within a unit circle. Thus, expanding a logarithm yields a series representation

of w(z)

w(z) =
z2

2
− z3

3
+
z4

4
− . . . . (3.34)

Since w′(0) = 0, the inverse function has an algebraic branch point at 0 of order 1 (see

[45] for definition). The inverse z(w) is representable as Puiseux series in powers of w1/2,

with coefficients that can be calculated recursively. From the first two terms of series

(3.34) we obtain

z(w) =
√

2w1/2 +O(w).

Plugging z(w) =
√

2w1/2 + a0w + o(w), where a0 is a constant coefficient, into (3.34)

yields

√
2a0w

3/2 − 2
√

2

3
w3/2 +O(w2) = 0,

which provides us with a refinement

z(w) =
√

2w1/2 +
2

3
w +O(w3/2).

Another iteration of the method with z(w) =
√

2w1/2 + 2
3w + a1w

3/2 + o(w3/2), a1
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constant, results in the expansion

z(w) =
√

2w1/2 +
2

3
w +

√
2

18
w3/2 +O(w2).

Translating this back in terms of variables x, y, we obtain the desired asymptotic expan-

sion

y = g(x) = x+
√

2x+
2

3
+

√
2

18
√
x

+O(x−1), x→∞.

Suppose now that (xk) is a sequence of iterations

xk+1 = g(xk), k = 1, 2, . . .

with some x1 > 0. Since xk+1 > xk + 1, we have xk+1 > x0 + k, and so xk → ∞, as

k →∞. Thus,

xk+1 = xk +
√

2xk +
2

3
+ o(1), k →∞. (3.35)

To derive the leading asymptotic term from (3.35) we only need

xk+1 − xk ∼
√

2xk, as k →∞. (3.36)

The idea is to compare xk with a solution of the analogous differential equation

f ′(x) =
√

2f(x),

which satisfies

∫ f(t+1)

f(t)

du√
2u

= 1. (3.37)
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Equation (3.37), in turn, yields

√
2f(t+ 1)−

√
2f(t) = 1.

An application of the mean value theorem leads to

√
2xk+1 −

√
2xk =

xk+1 − xk√
2x̃k

,

where xk < x̃k < xk+1. Hence,

xk+1 − xk√
2xk+1

≤
√

2xk+1 −
√

2xk ≤
xk+1 − xk√

2xk
.

Recalling that limk→∞ xk+1/xk = 1 and the asymptotics (3.36), we obtain

√
2xk ∼ k, k →∞,

and, therefore,

xk ∼
k2

2
. (3.38)

The recursion xk+1 = g(xk) is shift-invariant because any consequent term xk+1 of the

sequence is a function of xk only, independent of k. Thus, we are interested in how the

shift in the initial condition affects the sequence for large k.

Lemma 7. For any sequence (xk) solving the recursion G(xk, xk+1) = 1, it holds that

|xk − βk| = O(k), k →∞.

Proof. If x1 = β1 the sequences are identical and the assertion trivial. We shall examine

the case x1 > β1 only, as the opposite case is treated similarly.

Given the monotonicity of g(x), we have that xk > βk for all k ∈ N. Thus, it suffices
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to prove that there exists a positive constant c such that xk − βk ≤ ck for all k.

Since βk is an increasing sequence, we can find a finite k0 such that βk0 > x1. Having

identified the point of the inequality change k0, we know that, by monotonicity of g(x),

the elements βk0+1, βk0+2, . . . dominate x2, x3, . . . respectively. Observe that

βk0 = β1 +

k0∑
i=1

∆βi.

Hence, comparing xk to the shifted sequence yields

xk −

(
βk +

k+k0∑
i=k

∆βi

)
< 0, for all k.

Whence the upper bound

xk − βk <
k0∑
i=1

∆βi.

The asymptotic expansion (3.35) together with (3.38) implies ∆βk = O(k); therefore,

allowing us to choose c = k0.

Before stating an analogue of Lemma 1, we need to highlight the following mono-

tonicity property of G.

Lemma 8. Let 0 < u < v. If G(u, v) > 1 and u > x, then v > g(x). Analogously, if

G(u, v) < 1 and u < x, then v < g(x).

Proof. From

g′(u) =
− log (u/v)

1− u/v
> 0

we have g(u) > g(x). Then, G(u, g(u)) = 1 and G(u, v) > 1 imply v > g(u) by

monotonicity of G that follows from

∂G

∂v
= 1− u

v
> 0.
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Hence v > g(x). The second part of the lemma can be proved by a symmetric argument.

Now, we state and prove the analogue of Lemma 1 in the quickest selection problem.

Lemma 9. Let (xk) be an increasing sequence such that G(xk, xk+1) > 1 (or, equiva-

lently, xk+1 > g(xk)) for all sufficiently large k. Then for some constant c > 0

βk − xk < ck, k ∈ N.

Similarly, if G(xk, xk+1) < 1 (or, equivalently, xk+1 < g(xk)) for all sufficiently large k,

then for some c > 0

xk − βk < ck, k ∈ N.

Proof. Assume to the contrary that for arbitrarily large c0 ∈ R+ there exists k0 ∈ N

such that

βk − xk < c0k, for k < k0,

βk − xk ≥ c0k, for k ≥ k0.
(3.39)

Choosing c0 large ensures xk > g(xk) for k ≥ k0.

Now, it is easy to see that βk0 < xk0 leads to a contradiction with the second inequality

in (3.39); thus, we only consider the case βk0 > xk0 . Introducing a sequence yk that

satisfies G(yk, yk+1) = 1 and yk0 = xk0 , we have

xk > yk, k ≥ k0 + 1. (3.40)

Moreover, by Lemma 7, there exists a positive constant c1 such that

βk − yk < c1k, k ∈ N.
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Let c2 := c0 ∨ c1. Then we can find a k1 ≤ k0, k1 ∈ N such that

βk − xk ≥ c2k, k ≥ k1, (3.41)

and

βk − yk < c2k, k ∈ N.

Recalling (3.40) yields

xk > βk − c2k, k ≥ k0 + 1,

which contradicts (3.41). The second part of the lemma can be proved similarly.

With this result in our toolbox, we are fully equipped to refine the asymptotic ex-

pansion of βk.

3.2.3 Refined asymptotic expansion of the optimal value function

The order of the next term of expansion of βk is readily suggested by the upper bound

in (3.24). However, to strengthen the hypothesis, we provide a heuristic argument based

on the natural duality between this problem and the original problem of selecting the

longest increasing subsequence.

Firstly, let us lay out the duality in mean-constraint bounds. Recall the upper bound

(3.22) derived by relaxing the optimisation constraint to the mean-constraint. The anal-

ogous approach was also applied to the quickest selection problem ([3], Section 3.1)

yielding a dual inequality

βk >
k2

2
.

We are taking a step further in exploring the connection between the two problems.
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Obtaining the asymptotic inverse of (3.18) suggests that

βk =
k2

2
+
k log k

6
+O(k), as k →∞.

Thus, heuristics hint at the refinement of order O(k log k). In view of this, we choose

the first approximating sequence x
(0)
k

x
(0)
k :=

k2

2
+ ω0k log k,

where ω0 is a parameter. Recalling the expansion (3.32), we obtain

g(x
(0)
k ) = x

(0)
k +

√
2x

(0)
k +

2

3
+O(k−1) =

k2

2
+ ω0k log k + k + ω0 log k +

2

3
+ o(1),

as k →∞. Therefore,

x
(0)
k+1 − g(x

(0)
k ) = −1

6
+ ω0 + o(1), k →∞.

Straightforwardly it follows that, for k large enough,

x
(0)
k+1 > g(x

(0)
k ), when ω0 >

1

6

x
(0)
k+1 < g(x

(0)
k ), when ω0 <

1

6
.

(3.42)

Combining the inequalities (3.42) with Lemma 9 produces the following result

Corollary 2. As k →∞,

βk ∼
k2

2
+
k log k

6
. (3.43)

To bound the remainder, we need only one more successive approximation. Choose
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a test function of the form

x
(1)
k =

k2

2
+
k log k

6
+ ω1(log k)2,

where ω1 is a constant. On the one hand, we have, as k →∞,

x
(1)
k+1 =

k2

2
+
k log k

6
+ k + ω1(log k)2 +

log k

6
+

2

3
+

2ω1 log k

k
+O(k−1).

On the other hand, taking all four terms of expansion (3.32),

g(x
(1)
k ) =

k2

2
+
k log k

6
+ k + ω1(log k)2 +

log k

6
+

2

3
+
ω1(log k)2

k
− (log k)2

72k
+O(k−1).

Hence,

x
(1)
k+1 − g(x

(1)
k ) > 0, when ω1 <

1

72
,

x
(1)
k+1 − g(x

(1)
k ) < 0, when ω1 >

1

72
.

Recall that the shift in the initial condition of the optimality recursion (3.27) results

in the order O(k) change to the solution. Since the comparison to the approximating

sequence (x
(1)
k ) provides a refinement of smaller order, we may bound the remainder in

the expansion (3.43).

Theorem 3. The minimum expected time required to select an increasing sequence of

length k satisfies the following asymptotic expansion

βk =
k2

2
+
k log k

6
+O(k), k →∞. (3.44)

Corollary 3. The optimal threshold hk satisfies the following refined asymptotic expan-

sion

hk =
2

k
− log k

3k2
+O(k−2), k →∞. (3.45)
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Proof. Unfortunately, the direct computation of hk = 1 − βk/βk+1 from (3.44) does

not yield meaningful results due to the O(k) remainder in the expansion. However, [3],

Lemma 7 provides an asymptotic expression for the optimal threshold functions in terms

of the optimal value function

hk =

√
2

βk
(1 +O(k−1/2)), k →∞. (3.46)

Using the one-term asymptotic expansion βk ∼ k2/2, Arlotto et al. computed that

hk = 2/k +O(k−2 log k), k →∞. Plugging in the refined asymptotics (3.44) into (3.46)

and applying binomial theorem leads to the more refined expansion (3.45).

3.2.4 Numerical approximation of the O(k)-term

The comparison method adapted to the quickest increasing subsequence is not geared

to capture the term resulting from the shift in the initial condition (the O(k)-term in

3.44). However, it is of interest to check if numerical simulations can be used to make

an educated guess.

With some help of SciPy’s implementation of Brent’s root-finding method (see [17],

Chapter 3 for reference), we computed the sequence (βk), k = 1, . . . , 106 in Python by

initialising the sequence with β1 = 1. For k = 2, . . . , 106, βk was approximated by finding

the root of the equation

G(βk−1, x)− 1 = 0, subject to x > βk−1.

Define a residual function

R(k) := βk −
(
k2

2
+
k log k

6

)
.

We plot below the fruitful results of the simulation.
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(a) Small values of k (b) Large values of k

Figure 3.1: βk in comparison to the one-term and the two-term expansions of itself

(a) Small values of k (b) Large values of k

Figure 3.2: Residual functions for different values of k

As expected, from Figures 3.1a and 3.1b we see that the leading term asymptotically

dominates the lower order terms. Looking at Figures 3.2a and 3.2b, the residual R(k)

appears to be linear in k, at least for k ≥ 4. This is in line with the remainder term in

the expansion (3.44). Approximating the slope of R(k) with a linear regression gives the

relation of the form R(k) = rk with r = −1.5558.

3.2.5 A quasi-stationary policy

In this section, we construct a simple quasi-stationary policy that, as k grows large,

has the expected time of selection matching βk up to the leading term of expansion.
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We call it quasi-stationary because it has a second more conservative selection mode

with a narrower acceptance window. However, the threshold functions in both regimes

are independent of the remaining number of elements to be chosen, analogously to the

stationary policy introduced by Samuels and Steele [55] in the longest increasing subse-

quence problem.

We define our policy by choosing the threshold functions h̃i(z), i = 1, . . . k

h̃i(z) =


η, if z < 1− a(k)− η,

a(k)
k , if z ≥ 1− a(k)− η,

where

η =
2(1− a(k))

k(1 + a(k))

and the function a(k) : R+ → [0, 1] is monotone decreasing in k. We fix a(k) in the

sequel.

The policy acts in two regimes. Firstly, we accept every consecutive observation

within η above the last selected item. Secondly, when the last selection size gets above

1 − a(k) − η, we abandon the initial rule and accept all admissible elements within an

acceptance window of size a(k)/k. This is similar to the two-stage selection strategy

used by Coffman et al. in the proof of Theorem 9 in [26].

The choice of η is inspired by the asymptotics of the optimal threshold (3.30). How-

ever, choosing 2/k exactly leads to a problem: with high probability the selection process

will cross the 1 − η barrier, while there are O(k1/2) elements yet to choose. Loosely

speaking, as k gets large, the selection process with a constant window is governed by

the central limit theorem. Although the expectation of the sum of k random variables

distributed uniformly on [0, 2/k] is 1, it has a standard deviation of O(k−1/2). A way to

overcome this issue is to decrease the threshold size so that the probability of reaching
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the barrier is low, but keep it large enough so that the expected time of selection re-

mains unchanged up to the terms of a lower order. The task narrows down to choosing

a suitable a(k).

The value function β
(h̃)
k corresponds to the expected performance of our quasi-stationary

policy in the rest of this section.

Theorem 4. The quasi-stationary policy with threshold functions h̃i(z) is asymptotically

optimal up to the leading term of the value function expansion, i.e.

β
(h̃)
k ∼ k2

2
, as k →∞.

Proof. Let (Zj)j∈N denote the last selection process of the quasi-stationary policy. In-

troduce a hitting time ξ of the barrier 1− a(k)− η

ξ := inf{j : Zj > 1− a(k)− η},

where we follow the convention inf ∅ =∞. Moreover, let the stopping time ρ be defined

as

ρ := ξ ∧ k.

In this notation, we can write β
(h̃)
k out as follows

β
(h̃)
k = Eτρ + E(τk − τρ)+. (3.47)

Before the barrier is hit, the inter-selection times are independent and distributed iden-

tically as Geom(η), hence

Eτρ =
Eρ
η

;
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moreover, by Wald’s identity

Eρ <
1− a(k)− η

η/2
.

Consequently,

Eτρ <
k2(1 + a(k))2

2(1− a(k))
− k(1 + a)

(1− a)
. (3.48)

The second expectation in (3.47) is bounded by the expected time of selection in case

the barrier is hit. Thus,

E(τk − τρ)+ ≤ P(ρ < k) E(τk|ρ < k).

A rough upper-bound on E(τk|ρ < k) suffices for our purposes

E(τk|ρ < k) <
k2

a(k)
; (3.49)

it follows from computing an expected time to select all k elements with a constant

window a(k)/k. To get a grip on P(ρ < k) we first notice that

P(ρ < k) = P (Zk > 1− a(k)− η) .

Introduce a renewal sequence (Sj) with inter-arrival times distributed uniformly on [0, η].

For j < ρ, this sequence is equivalent in distribution to the gaps between consecutive

selections Zj+1 − Zj |ρ < j. In light of this, we can write

P(ρ < k) = P

 k∑
j=1

Sj ≥ 1− a(k)− η

 . (3.50)



Chapter 3. Discrete-time selection problems 61

Since we have

µ = E

 k∑
j=1

Sj

 =
kη

2
,

we can write the probability on the right-hand side of (3.50) in terms of µ as

P

 k∑
j=1

Sj ≥ 1− a(k)− η

 = P

 k∑
j=1

Sj ≥ (1 + ε)µ

 ,

where ε = a(k)−2/k. The probability in focus can be estimated from above by applying

the Chernoff-Hoeffding inequality (see, for example, [12] for details)

P

 k∑
j=1

Sj > (1 + ε)µ

 ≤ exp

(
−kε

2

2

)
. (3.51)

Thus, choosing a(k) := k−1/2+ε, 0 < ε < 1/2 makes sure the probability in (3.51) has an

exponentially decreasing upper-bound

P

 k∑
j=1

Sj > (1 + ε)µ

 ≤ exp

(
−k

2ε

2

)
+O(exp (k−1/2+ε)). (3.52)

With a(k) finally fixed, from an upper bound (3.48) we have

Eτρ <
k2

2
+O(k3/2+ε). (3.53)

Taking together (3.49), (3.52) and (3.53) yields

β
(h̃)
k <

k2

2
+O(k3/2+ε). (3.54)

A sufficient lower-bound on β
(h̃)
k follows from the inequality

β
(h̃)
k = Eτk ≥ E(τk|ρ > k) =

k2(1 + a(k))

2(1− a(k))
.
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Plugging in the expression for a(k) yields

β
(h̃)
k ≥ k2

2
+O(k3/2+ε), k →∞. (3.55)

At last, combining (3.54) with (3.55) leads to

β
(h̃)
k =

k2

2
+O(k3/2+ε), k →∞,

and the result of Theorem 4 follows immediately.

3.2.6 A self-similar policy

We shall construct next a suboptimal self-similar policy to closer approach optimality.

Recall that a selection policy is self-similar if it chooses the observation of size x if and

only if

0 <
x− z
1− z

< hk.

Let β
(h)
k be the value functions of such strategy; then, decomposing at the first arrival

yields

β
(h)
k+1 = 1 + E

(
β
(h)
k+1 1

(
X > hk+1

)
+

β
(h)
k

1−X
1
(
X ≤ hk+1

))
.

Computing the integral and rearranging yields

β
(h)
k+1hk+1 + β

(h)
k log(1− hk+1) = 1.

This is an inhomogeneous linear recursion, which can be solved explicitly in terms of

hk’s by the method of variation of constants.

Introduce a self-similar suboptimal selection policy with thresholds

hk :=
2

k + 1
, k ∈ N. (3.56)

Note that hk < 1 for k > 1, thus β
(h)
k < ∞ for all k. The recursion defining the value
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functions β
(h)
k becomes

β
(h)
k+1 = akβ

(h)
k + bk, β

(h)
1 = 1, (3.57)

where

ak =

(
k

2
+ 1

)
log

(
1 +

2

k

)
, bk =

k

2
+ 1 .

The homogeneous equation (3.57) has the general solution of the form

yk+1 = a1 . . . ak y1.

Taking two terms in the expansion of the logarithm we get

ak = 1 +
1

k
+O

(
1

k

)
,

which readily implies

yk ∼ cy1k, k →∞,

for some constant c > 0. We see that yk is about linear in the initial value y1. Likewise,

because the general solution is the sum of a particular solution and the general solution to

the homogeneous equation, if we replace the initial value β
(h)
1 = 1 in the inhomogeneous

equation by β
(h)
1 + θ, θ ∈ R the corresponding solution will change by about θck.

On the other hand, the equation (3.57) possesses inherent monotonicity properties

required to apply the asymptotic comparison method (since ak > 0). Checking that a

test function satisfies the appropriate inequality for k > k0, we adjust the initial value

(resulting in the O(k) deflection) for this k0 to apply comparison in the already familiar

way. We state without proof the counterpart of Lemma 9.

Lemma 10. If a sequence (yk) is such that yk+1 > akyk + bk for k large enough, then

β
(h)
k − yk < ck. Similarly, if a sequence (yk) is such that yk+1 < akyk + bk for k large

enough, then β
(h)
k − yk > ck.
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Following the usual procedure, we choose test functions of the form

yk = d0k
2 + d1k log k + d2 log k, d0, d1, d2 ∈ R.

The computation consists of three successive refinements, which we display explicitly in

Appendix A.1. Matching coefficients and observing that the last term of yk is of order

o(k), we obtain

β
(h)
k =

k2

2
+
k log k

6
+O(k).

This result, together with the expansion (3.44), allows us to obtain the following theorem.

Theorem 5. The self-similar strategy with threshold functions (3.56) has the value func-

tions β
(h)
k satisfying

|βk − β
(h)
k | = O(k), k →∞.

3.3 The selection under a sum constraint

The problem in focus of this section was first introduced by Coffman et al. [26] as

a simplistic model for processes arising in storage optimisation. Having been studied

extensively, it is also referred to in the literature as stochastic knapsack and stochastic

bin packing problem. The decision-maker observes the sequence Xi ∼ F, i = 1, . . . , n

of positive independent identically distributed random variables one at a time. Aiming

to select as many elements as possible, she has to decide whether to keep the current

observation or discard it without the possibility of recall (an online constraint). Another

binding constraint is that the sum of selected Xi’s cannot be larger than a given constant

C > 0. One can think of Xi’s as sizes of the objects that are to be efficiently packed into

a one-dimensional storage unit of capacity C.

Let vn(C) be the maximal expected number of elements selected under the constraints

stated above. Having made some fairly unrestrictive assumptions about the distribution
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law F (x) of Xi’s, Coffman et al. derived the following asymptotic

vn(C) ∼ γ∗0(Cαn)1/(α+1), as n→∞, (3.58)

where

γ∗0 =

(
A

(
α+ 1

α

)α)1/(α+1)

and the constants A and α come from the assumption that F (x) ∼ Axα, as x→ 0. The

result above was derived in two steps: first, the upper-bound was obtained using Cher-

noff estimates [25]. Second, the lower-bound was derived by investigating a suboptimal

selection policy with constant thresholds. This result was later generalised to arbitrary

continuous distributions by Rhee and Talagrand [53].

Boshuizen and Kertz [15] studied a strongly related ‘smallest fit’ problem, where the

question is how many order statistics of a fully-known sample {X1, . . . Xn} can one fit

into a knapsack of capacity C (this problem was first formulated by Bruss and Robertson

[21]). The prophet with a full overview of a sequence in Coffman et al.’s bin-packing

problem would pack the smallest items into the knapsack to maximise the number of

items packed. Using this parallel Boshuizen and Kertz showed the joint convergence

in distribution of the suitably normalised optimal offline count and a number of items

packed by a good threshold policy in the online bin-packing.

Stanke [58] studied a multidimensional variant of the bin-packing problem. He derived

the principal asymptotics of the maximal expected number of items packed by studying

a multidimensional stationary policy with a simplicial section as an acceptance region.

Arlotto and Xie [6] studied the ‘regret’ size of the decision-maker playing by the

online rules after discovering the whole sequence. Moreover, the number of observations

in their setup is not deterministic — the items arrive according to a known Bernoulli

process over n periods — and each selection yields a fixed positive reward r. Imposing

fairly unrestrictive regularity conditions on the distribution F , they prove that the regret
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size is at most of the order O(log n).

To complete the literature review, we should mention a few other common variations

of the knapsack problem. Assuming each selection occupies a unit space and yields

random rewards leads to a famous multisecretary problem of Cayley [23]. Inversely,

assuming equal rewards and random item sizes formulates the uniprocessor scheduling

problem of Baruah et al. [9]. Finally, considering both selection and reward sizes to

be stochastic constitutes to, among many other variants, the multisecretary problem of

Nakai [49].

Our assumptions about the probability distribution of Xi’s are based on Coffman et

al. [26], but slightly more restrictive due to the technical reasons that become apparent

later on. We consider F (x) that admits an expansion F (x) ∼ Axα+Bxα+1+o(xα+1), as

x→ 0, where A,α > 0 are positive real numbers. An example of such F is a Beta(α, β)

distribution.

3.3.1 The optimality equation

Let vn(C) : R+ → R+ be the optimal value functions under the capacity C and the

sample size n. Following the reasoning outlined in [26], we provide an intuitive derivation

of the optimality equation

vn+1(C) = (1− F (C)) vn(z) +

∫ C

0
max {vn(C), 1 + vn(C − x)} dF (x). (3.59)

The decision-maker observes an element of size x when there are n more observations

to be examined. The first term on the right-hand side of (3.59) comes from the possi-

bility that the observed element violates the capacity constraint C. This happens with

probability 1 − F (C). The second term is dictated by the optimality principle. If x is

admissible, then we must choose whatever is larger: discarding the observation, which

results in the expected value of vn(C), or accepting the observation, which results in the

expected value of 1 + vn(C − x).



Chapter 3. Discrete-time selection problems 67

As was the case in the increasing subsequence selection, the optimality equation (3.59)

is invariant to the shift in the initial condition. That is, the optimal value function

corresponds to the natural initial condition v0(C) = 0, but any function of the form

vn(C) + const is a solution too.

Define a threshold function hn(C) as

hn(C) :=


C, if vn(C) ≤ 1,

unique solution to

vn(C) = vn(C − x) + 1, 0 ≤ x ≤ C, if vn(C) ≥ 1.

The value functions vn(C) are monotone increasing; thus, the uniquness of hn(C) is

guaranteed. With this in mind, the optimality equation (3.59) can be written as

vn(C) = (1− F (hn(C))) vn(C) +

∫ hn(C)

0
(1 + vn(C − x)) dF (x), v0(C) = 0.

Therefore, the optimal selection policy in the bin-packing problem is of threshold type.

3.3.2 Asymptotic expansion of the optimal value function

The analytical approach to the optimality equation based on Lemma 1 proves to be

fruitful in this problem too. Let us write the optimality recursion (3.59) in a more

suggestive form

vn+1(C)− vn(C) =

∫ C

0
(vn(C − x) + 1− vn(C))+ dF (x). (3.60)

With a help of Lemma 1, we are able to apply the asymptotic comparison method to

obtain the approximate solution to (3.60) when the size function gn(z) := Cαn is large

enough.
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Denote the operator on the right-hand side of (3.60) by K

Kvn(C) :=

∫ C

0
(vn(C − x) + 1− vn(C))+ dF (x).

We proceed now with the successive approximations method established in the earlier

sections. Let us try functions of the form

v(0)n (C) = γ0 (Cαn)1/(α+1), γ0 ∈ R+. (3.61)

First, let us investigate the asymptotic behaviour of the forward difference operator. For

convenience introduce n̂ := Cαn and write

∆v(0)n (C) = γ0(C
α(n+ 1))1/(α+1) − γ0(Cαn)1/(α+1)

= γ0n̂
1/(α+1)

((
1 +

Cα

n̂

)1/(α+1)

− 1

)

=
Cαγ0
α+ 1

n̂−α/(α+1) +O(n̂−(2α+1)/(α+1)), n̂→∞, (3.62)

where the result comes from a straightforward application of the binomial theorem.

Second, by monotonicity of v
(0)
n (C) in C, the operator K can be written as

Kv(0)n (C) =

∫ h
(0)
n (C)

0
(v(0)n (C − x) + 1− v(0)n (C)) dF (x),

where h
(0)
n (C) is the unique solution to

v(0)n (C − x) + 1 = v(0)n (C). (3.63)

Now, from (3.61) and (3.63), one can compute

h(0)n (C) =
C(α+ 1)

αγ0
n̂−1/(α+1) +O(n̂−2/(α+1)), n̂→∞.
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Hence,

Kv(0)n (C) =

∫ h
(0)
n (C)

0

(
γ0n̂

1/(α+1)

((
1− x

C

)α/(α+1)
− 1

)
+ 1

)
dF (x)

∼
∫ h

(0)
n

0

(
− γ0α

(α+ 1)C
n̂1/(α+1)x+ 1

)
Aαxα−1dx

∼ AC
α(α+ 1)α−1

γα0 α
α

n̂−α/(α+1), n̂→∞.

(3.64)

Combining (3.62) with (3.64), one can see that, for Cαk large enough,

∆v(0)n (C) > Kv(0)n (C), if γ0 > γ∗0 , and

∆v(0)n (C) < Kv(0)n (C), if γ0 < γ∗0 .

An application of Lemma 1 yields

vn(C) ∼ γ∗0 (Cαn)1/(α+1), as Cαn→∞.

Clearly, for any fixed C > 0, Cαn→∞ as n→∞; therefore, the central result (3.58) of

[26] follows from the above.

Let us move on to a more precise approximation

v(1)n (C) = γ∗0 n̂
1/(α+1) + γ1(C) log (n̂+ 1).

There are two things to note here. Firstly, because the forward difference is taken with

respect to n but the expansions are calculated in n̂, the log-term coefficient depends on

C. Secondly, taking n̂+ 1 instead of n̂ helps us avoid the singularity at 0.

On the one hand, as n̂→∞,

∆v(1)n (C) ∼
(

A

αα(α+ 1)

)1/(α+1)

Cαn̂−α/(α+1) +
Cαγ1(C)

(n̂+ 1)
. (3.65)
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On the other hand,

Kv(1)n (C) =

∫ h
(1)
n (C)

0
(v(1)n (C − x)− v(1)n (C) + 1) dF (x), (3.66)

where h
(1)
n (C) solves

v(1)n (C − x)− v(1)n (C) + 1 = 0.

By direct computation we find

h(1)n (C) =
C(α+ 1)

αγ∗0
n̂−1/(α+1) +O(n̂−2/(α+1)), n̂→∞. (3.67)

Since h(1)(C) is a stationary point of the integrand in (3.66), it is enough to consider the

principal term of (3.67) to obtain

Kv(1)n (C) ∼
(

A

αα(α+ 1)

)1/(α+1)

Cαn̂−α/(α+1)

+

(
−αγ1(C)− Aα− 2BC(α− 1)

2Aα(α+ 2)

)
Cα

(n̂+ 1)
, n̂→∞. (3.68)

Consider

γ∗1(C) := − Aα− 2BC(α+ 1)

2Aα(α+ 1)(α+ 2)
.

Introduce functions

f(C) := −Aα− 2(B + ε)C(α+ 1)

2Aα(α+ 1)(α+ 2)
, g(C) := −Aα− 2(B − ε)C(α+ 1)

2Aα(α+ 1)(α+ 2)

with parameter ε > 0. Comparing (3.65) to the last line of (3.68), one can deduce

∆v(1)n (C) > Kv(1)n (C), if γ1(C) = f(C), and

∆v(1)n (C) < Kv(1)n (C), if γ1(C) = g(C).
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Thus, taking limits as ε→ 0 and applying Lemma 1 yields

vn(C) ∼ γ∗0(Cαn)1/(α+1) + γ∗1(C) log (Cαn), as Cαn→∞. (3.69)

One should notice that the second term in the asymptotics of F (x) contributed to the

expansion (3.69) via the log-term. This forced us to make a more restrictive assumption

regarding the distribution law of Xi’s. As in [26], only the leading term assumption on

F was needed for the principal asymptotics of the value function.

Theorem 6. As n → ∞, the maximal expected number vn(C) of items packed into a

knapsack of capacity C in an online fashion assumes the following asymptotic expansion

vn(C) = γ∗0(Cαn)1/(α+1) + γ∗1(C) log n+O(1).

Proof of Theorem 6. Finally, consider one more approximating function

v(2)n (C) = γ∗0 n̂
1/(α+1) + γ∗1(C) log (n̂+ 1) +

γ2

(n̂+ 1)1/(α+1)
.

We have

∆v(2)n (C) ∼ Cαγ∗0
α+ 1

n̂−α/(α+1) +
Cαγ∗1(C)

(n̂+ 1)
+O(n̂−(α+2)/(α+1)), n̂→∞. (3.70)

On the other hand,

Kv(2)n (C) =

∫ h
(2)
n

0
(v(2)n (C − x)− v(2)n (C) + 1) dF (x), (3.71)

where h
(2)
n (C) solves

v(2)n (C − x)− v(2)n (z) + 1 = 0.

With F (x) = Axα +Bxα+1 + o(xα+1), x→ 0, we need a two-term expansion of h
(2)
n (C)
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as n̂→∞; namely,

h(2)n (C) ∼ C(α+ 1)

αγ∗0
n̂−1/(α+1) − C(α+ 1)

αγ∗0
2

(
γ∗1(C) (α+ 1) +

1

2α

)
(n̂+ 1)−2/(α+1).

(3.72)

Now, plugging(3.72) into (3.71) yields

Kv(2)n (C) ∼ Cαγ∗0
α+ 1

n̂−α/(α+1) +
Cαγ∗1(C)

(n̂+ 1)
+ o(n̂−1), n̂→∞. (3.73)

From (3.70) and (3.73), for n̂ large enough, there exist constant γ̃2 and γ̂2 such that

∆v(2)n (C) > Kv(2)n (C), if γ2 > γ̃2,

∆v(2)n (C) < Kv(2)n (C), if γ2 < γ̂2.

Lemma 1, then, implies that the difference vn(C)− v(2)n (C) is bounded from above when

γ2 > γ̃2, and is bounded from below when γ2 < γ̂2 respectively. Since the third term of

v
(2)
n (C) is of order o(1), we have

vn(C) = γ∗0(Cαn)1/(α+1) + γ∗1(C) log (Cαn) +O(1), Cαn→∞.

Absorbing the Cα term in the logarithm into the remainder yields the result of the

theorem.

3.3.3 Connection to the longest increasing subsequence selection

Coffman et al. [26] observed that the online selection of the longest monotone sub-

sequence problem is a special case of the selection under a sum constraint with the

distribution law of Xi’s taken to be Uniform[0, 1] and the sum constraint set to C = 1.

The equivalence can be proved by transforming the optimality equation (3.59) into the
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optimality equation (3.3). Indeed, one can write 3.59 with the F (x) = x as follows

∆vn(C) =

∫ C

0
(vn(C − x) + 1− vn(C))+dx =

∫ C

0
(vn(y) + 1− vk(C))+dy, (3.74)

where the second equality follows immediately by a straightforward substitution of the

variable. With C = 1, equation (3.74) precisely matches the optimality equation in

Samuels and Steele’s longest monotone subsequence problem. However, Steele [59], Sec-

tion 5 emphasised the interest in an explicit coupling between the two problems without

resorting to the comparison of the optimality recursions (see [32] for this coupling in

continuous time). We build this connection below.

We define the running maximum process (X
(τ )
i ), i = 0, . . . , n driven by a given online

selection policy τ in the increasing subsequence selection to be a non-decreasing jump

process with the initial condition X
(τ )
0 = 0 and the state space [0, 1]. The sequence of

jumps (τk, xk) forms an increasing chain in the partial order in two dimensions.

Similarly, we define the partial sum process (S
(τ̃ )
i ), i = 0, . . . , n driven by an online

selection policy τ̃ in the bin-packing problem to be a non-decreasing jump process with

the initial condition S
(τ̃ )
0 = 0 and the state space [0, 1].

For the running maximum (X
(τ )
i ), we define an invertible random transformation

ϕX(τ) of {x ∈ Z : 0 ≤ x ≤ n}× [0, 1], which maps τ to an online selection policy τ̃ in the

bin-packing problem with the same path X(τ ) = S(τ̃ ). This transformation is defined

iteratively.

At each step j = 0, . . . , n we shall have {x ∈ Z : 0 ≤ x ≤ n} × [0, 1] and its duplicate

obtained by a measure-preserving πj with π0 being the identity. Start with the two

identical copies of the strip and a fixed path of the running maximum X(τ ). If a jump

occurs at step j > 0, the strip πk({x ∈ Z : j ≤ x ≤ n} × [xj−1, 1]) is subjected to

a change, which is comprised of cutting at height xj − xj−1 horizontally and placing

part πk({x ∈ Z : j ≤ x ≤ n} × [xj−1, xj ]) atop of πk({x ∈ Z : j ≤ x ≤ n} × [xj , 1])



Chapter 3. Discrete-time selection problems 74

while preserving the orientation. Then, the mapping πj+1 is the composition of πj and

this surgery, and we may define ϕX(τ) as the composition of all πk’s. The transformation

ϕX(τ) sends the sequence of selections (τk, xk) to (τk, xk−xk−1), thus mapping the online

selection policy τ to τ̃ .

Given the equivalence between the two problems, from Theorem 6 we can obtain

the asymptotic expansion of the value function ṽn in the longest increasing subsequence

problem.

Corollary 4. The maximum expected length of a monotone subsequence that can be

achieved by an online selection ṽn satisfies

ṽn = vn(1) =
√

2n− 1

12
log n+O(1), as n→∞.

The asymptotic expansion above is of course in agreement with the result of Theorem

1, but the equivalence breaks for F other than uniform.



Chapter 4

Continuous-time selection

problems

In this chapter we study a poissonised variant of the longest increasing subsequence

problem. This variant was first mentioned by Samuels and Steele in [55], where they

exploited it to prove the existence of the limit lim
n→∞

vn/
√
n.

Suppose a sequence of independent random marks with given continuous distribution

is observed at times of the unit-rate Poisson process. Each time a mark is observed, it

can be selected or rejected, with every decision becoming immediately final. What is the

maximum expected length v(t) of increasing subsequence which can be selected over a

given horizon t in an online fashion?

It is more convenient to work with the optimality equation in the poissonised selection

problem since it is, in fact, a differential equation rather than a difference equation.

Moreover, a stronger invariance property of the model results in a value function v(t)

depending on a single parameter, as compared to vn(z) in the discrete problem. The

remaining horizon (t− s)(1− x) here corresponds to the expected number of admissible

observations (n− i)(1− z) in the discrete-time problem.

75
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In this chapter, by applying the comparison method, we derive refined asymptotic

expansions of the expected value and the variance of the length of the longest increasing

subsequence. We then represent the problem in terms of a controlled piecewise deter-

ministic Markov process with decreasing paths. And, finally, with the aid of a renewal

approximation, we give a novel proof of a central limit theorem for the length of the in-

creasing subsequence selected under either the optimal strategy or a strategy sufficiently

close to optimality.

We work in the setup first investigated by Baryshnikov and Gnedin [10], where the

observations are d-dimensional vectors (for some fixed d ∈ N). However, at the end of

the chapter we discuss the implications for the more popular special case d = 1.

4.1 Multidimensional setting and the optimality equation

The d-dimensional problem was introduced by Baryshnikov and Gnedin [10]. Their main

asymptotic result is

v(t) ∼ α∗1t1/(d+1), as t→∞, (4.1)

with

α∗1 =
(d+ 1)

(d+ 1)!1/(d+1)
.

They also showed that the optimal value function in the discrete-time multidimensional

problem has the same leading term of the asymptotic expansion. Moreover, they built

a stationary strategy that achieves the optimality up to the principal order term in the

discrete-time setting.

To build a multidimensional setting, we must first formalise useful notation and

terminology. Bold symbols, from now on, represent d-dimensional vectors, bodies or

stochastic processes with state spaces in Rd. Most importantly, x ∈ [0, 1]d denotes a

d-dimensional vector (x(1), . . . , x(d)). In line with this convention, 0 and 1 denote the
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all-zero and all-unit d-dimensional vectors, respectively.

Definition 9. For d-dimensional vectors x and y we define relation x < y component-

wise: x < y if and only if x(i) < y(i) for all i = 1, . . . , d.

Definition 10. For d-dimensional vectors x,y, and z we define vector addition and

subtraction operations as follows

z = x± y = (z(1), . . . , z(d)), where z(i) = x(i) ± y(i) for all i = 1, . . . , d.

Definition 11. For d-dimensional vectors x,y, x < y, we call a d-dimensional interval

{z : x < z < y} a box and denote it by [x,y].

We also need to slightly adjust the formal definition of an online policy for the pois-

sonised setup.

Definition 12. Let (X1, T1), (X2, T2), . . . be the atoms of a unit-rate Poisson point

process, where T1 < T2 < . . . are the arrival times. An online selection policy in the

continuous-time increasing subsequence selection problem is a collection of stopping times

τ = (τ1, τ2, . . .) satisfying

(i) each τi is adapted to (X1, T1), (X2, T2), . . .,

(ii) each τi assumes values in the set {Tj},

(ii) τ1 < τ2 < . . .,

(iii) Xτ1 <Xτ2 < . . ..

Let Π be a random scatter of points in [0,∞) × [0, 1]d spread according to a homo-

geneuous Poisson point process with Lebesgue measure as intensity. The event (s,x) ∈ Π

that Π has an atom at (s,x) is interpreted as an item x being observed at time s. A

sequence of atoms (s1,x1), . . . , (sk,xk) is said to be increasing if s1 < · · · < sk and

x1 < · · · < xk. We think of the configuration of points in a finite box Π|[0,s]×[0,1] as of
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information available to the decision-maker at time s ≥ 0. The task is to maximise the

expected length v(t) of an increasing sequence over online selection strategies adapted

to the aforementioned information.

Now, let x be the last selection at time s and let the function p(x) : [0,1]→ [0, 1] be

the Euclidian volume of the box [x,1]

p(x) =
d∏
i=1

(1− x(i)).

Then, from mapping the box [(t− s), t]× [x,1] on [0, (t− s) p(x)]× [0,1], it becomes ap-

parent that the rest of selection can be represented as selecting an increasing subsequence

from a Poisson process with intensity (t−s)p(x). Thus, the optimal value function on the

rest of selection is v((t− s) p(x)). To derive the optimality equation, we recall the steps

laid out in [10]. Suppose the first mark x is observed shortly after the start of the process

at time s ∈ [0, h]. If x is selected, the mean length of selected subsequence gained by

the optimal continuation is 1 + v((t− s)p(x)). If x is rejected, the optimal continuation

yields v(t− s). The dynamic programming principle prescribes to select x if and only if

1 + v((t− s)p(x)) ≥ v(t− s), so the better action gives max{1 + v((t− s)p(x)), v(t− s)}.

Integrating over a random variable uniformly distributed on [0, 1]d, we obtain a recursion

v(t) = (1− h) v(t) + h

∫
[0,1]

max{v(tp(x)) + 1, v(t)} dx+ o(h).

Taking the limit as h→ 0 on both sides yields

v′(t) =

∫
[0,1]

(v(tp(x))− v(t) + 1)+ dx, (4.2)

complemented with the initial condition v(0) = 0. One should note that (4.2) has a

break point at α ∈ R+, where v(α) = 1; but, since we will be dealing mostly with

asymptotics as t gets large, we can ignore this for now.

The dependence of the optimal value function on one parameter allows us to reduce
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the d-dimensional integral in (4.2) to a one-dimensional integral by making a substitution

p(x) = 1− ξ

v′(t) =

∫ 1

0
(v(t(1− ξ))− v(t) + 1)+

|log (1− ξ)|d−1

(d− 1)!
dξ, (4.3)

Finally, as means to complete a brief introduction, we provide here the definition of

the analogue of a threshold policy in the multidimensional setup.

Definition 13. A Markovian selection policy in a multidimensional continuous-time

selection problem is an online selection policy that accepts an observation (s,x) ∈ [0, t]×

[0, 1]d if and only if x ⊂ y + D(t, s,y), where y is the last selected item (with y = 0

if no items were accepted). The d-dimensional region D(t, s,y) is called an acceptance

region or an acceptance window.

4.1.1 Suboptimal selection policies and the mean-constraint upper bound

From (4.2) and (4.3), it is clear that to solve the optimisation problem one needs to

apply a Markovian selection policy with the acceptance window defined recursively as

D(t, s,y) = {x ∈ [0,1] : v((t− s) p(y + x)) + 1 ≥ v((t− s) p(y))}.

The acceptance region can be regarded as a multivariate control variable for the running

maximum, which is a right-continuous Markov process Y = (Y (s), 0 ≤ s ≤ t) starting

with Y (0) = 0, with piecewise constant paths increasing by positive jumps. At time s

in state y a transition occurs at a rate equal to the Euclidian volume of D(t, s,y), and,

given that Y jumps, the increment Y (s)− Y (s−) is uniformly distributed in D.

Intuitively, a large acceptance window steers Y from 0 to about 1 in just a few

jumps. On the other hand, a small acceptance window makes the jumps rare, so the

time resource expires before a substantial number of selections is made. The optimal

acceptance region D yields the maximal expected number of jumps v(t).
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Analogously to the one-dimensional case, a stationary strategy in the multidimen-

sional problem has the acceptance region of the form D̃(t, s,y) = D̃(t), depending

neither on the time of observation nor on the running maximum, as long as Y does not

reach the state y such that y + D̃(t) 6⊂ [0, 1]d. An example of the stationary strategy

that achieves the maximal expected length up to the principal-order term was demon-

strated by Baryshnikov and Gnedin [10]. This strategy involves choosing all subsequent

observations (s,x) that satisfy

x− y ∈ Σ̃, where Σ̃ = {z ∈ [0, 1]d : z(1) + . . .+ z(d) ≤ δ(t)},

where they set δ(t) := ((d + 1)!/t)1/(d+1). Their choice of simplex as the shape for the

stationary acceptance region hinged on the fact observed on p. 264 of [10], which we

prove in details in the following lemma. We should note here that Stanke [58] showed

the simplex to be the solution to a dual problem, while studying the selection of multidi-

mensional vectors under a sum constraint. More specifically, he showed that the simplex

is the shape maximising the volume for a given constraint on the maximal coordinate of

the barycentre.

Lemma 11. Of all bodies of fixed volume that lie in the positive orthant, the maximal

coordinate of the barycentre is minimal for a coordinate simplex.

Proof. First, recall that the standard coordinate simplex Σ ⊂ Rd+ is the convex hull

of 0 and d basis vectors. The volume of Σ is 1/d! and the barycenter coordinates are

((d+ 1)−1, . . . , (d+ 1)−1).

Let ‖x‖p denote the lp norm of x ∈ Rd; in particular, ‖x‖∞ = maxi |x(i)|. In gen-

eral, under a body we shall mean a measurable set E ⊂ Rd+ of finite Lebesgue measure

(volume). In integral form, the volume and the barycentre of E are

∫
E

dx and

∫
E xdx∫
E dx

,
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respectively, where dx is the element of Lebesgue measure and x ∈ Rd is the identity

function. Since we take the volume as a constraint, minimising the maximal coordinate

of the barycentre is equivalent to the following variational problem:

∥∥∥∥∫
E
xdx

∥∥∥∥
∞
→ min, subject to

∫
E

dx =
1

d!
, E ⊂ Rd+. (4.4)

We have ‖z‖1 ≤ d ‖z‖∞, with equality sign when |z1| = . . . = |zd|; thus, to prove that Σ

is the solution to (4.4), it is sufficient to show that Σ solves

∥∥∥∥∫
E
xdx

∥∥∥∥
1

→ min, subject to

∫
E

dx =
1

d!
, E ⊂ Rd+. (4.5)

Next, we observe that for both (4.4) and (4.5) it is sufficient to consider only star-shaped

sets E with an apex at 0. We appeal to the intuitive proof that if some points are not

seen from the origin, the barycentre can be moved closer to 0 by transporting some mass

along the rays to fill in the holes. Similarly, it suffices to focus on star-shaped domains

which have a nontrivial intersection with every positive ray.

Introduce the polar coordinates r = ‖x‖, s = x/ ‖x‖ for all x 6= 0, where s varies over

S+, the intersection of the unit sphere with the positive orthant. In polar coordinates,

a star-shaped domain has the form

E = {(r, s) : 0 < r ≤ ρ(s)}

form some function ρ : S+ → R+. In particular, ρ(s) = 1/ ‖s‖1 corresponds to Σ,

because the equation r ‖s‖1 = 1 in Euclidian coordinates translates to ‖x‖1 = 1.

The volume and the barycentre can be represented in the integral form as

V (ρ) =

∫
S+

(ρ(s))dσ(ds) and m(ρ) =
1

V (ρ)

∫
S+

s(ρ(s))d+1σ(ds)

respectively, where the second integral involves the identity function s = (s(1), . . . , s(d)),
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and σ(ds) denotes the (d−1)-dimensional spherical Lebesgue measure with normalisation

∫
S+

σ(ds) =
πd/2

Γ(d/2 + 1) 2d
. (4.6)

Therefore, (4.5) can be reduced to

‖V (ρ)m(ρ)‖1 → min, subject to V (ρ) =
1

d!
,

where the function ρ : S+ → R+ belongs to Ld+1(S+, σ). The problem has Lagrange

function

L(ρ, η) =

∫
S+

[(ρ(s))d+1 ‖s‖1 − η(ρ(s))d] σ(ds).

Hence, for η > 0, L(ρ, η) is uniquely minimised at

ρ(s) =
ηd

(d+ 1) ‖s‖1 .
(4.7)

To have V (ρ) = 1/d!, we choose η = (d + 1)/d, in which case (4.7) corresponds to the

standard coordinate simplex. This completes the proof of the asserted extremal property

of Σ.

The solution to (4.5) can be stated as a solution to an isoperimetric inequality

d∑
i=1

∫
E
x(i)dx ≥ d(d!)1/d

d+ 1

(∫
E

dx

)(d+1)/d

, E ⊂ Rd+,

where equality is achieved only for a coordinate simplex cΣ, c > 0. For star-shaped

regions, this is the same as the inequality

d∑
i=1

∫
S+

s(i)(ρ(s))d+1σ(ds) ≥ d (d!)1/d

d+ 1

(∫
S+

(ρ(s))d+1σ(ds)

)(d+1)/d

.

Note, however, that with normalisation (4.6) the traditional (d−1)-dimensional spherical

volume measure is not σ, but rather is proportionate σ̃ = dσ. If integration with σ̃ is
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used, the constant in the inequality above should be replaced with

d(d−1)/d(d!)1/d

d+ 1
.

Now, let us get back to the increasing subsequence selection. Set the acceptance region

of a stationary policy D(t) := Σ̃. Up to the first instance when the last selection

y is such that y + D(t) 6∈ [0, 1]d, the running maximum process Y coincides with a

compound Poisson process S, characterised by the jump rate V (D) and the [0,D]-

uniform distribution of increments. For t → ∞, V (D) → 0 but tV (D) → ∞. The

number of jumps of S over the time horizon t is asymptotic to tV (D), and the number

of jumps until S passes the state s : s +D 6∈ [0, 1]d is asymptotic to 1/m(1)(D) (note

that by symmetry any coordinate i = 1, . . . , d can be picked). By monotonicity of

tV (D) and 1/m(1)(D) in δ(t), the maximum tV (D) ∧ 1/m(1)(D) is achieved precisely

at δ(t) = ((d + 1)!/t)1/(d+1). This strategy maintains a balance between increasing on

the marks and time scales so that the running maximum Y fluctuates roughly about the

main diagonal of [0, 1]d.

Now, as to the compound Poisson process S controlled by D(t), the expected number

of jumps is equal to

d+ 1

(d+ 1)!1/(d+1)
t1/(d+1).

We show that the upper-bound on v(t) can be obtained by comparing S to the optimal

chain with a weaker mean-value constraint. To that end, consider an online problem

of selecting marks from the Poisson random measure in the unbounded domain [0, t] ×

[0,∞)d, but with the restriction that the next observation (s,x) may be selected if and

only if 0 < x−y ≤ 1, where y is the state of the running maximum at the time instance

s. Set the objective to maximise the number of selections subject to the constraint that

the sum of the mean coordinates of the last selection does not exceed d.

Clearly, every strategy with selections made from [0, t] × [0, 1]d is also admissible

in the extended scenario. In the extended scenario, the observations that satisfy the
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constraint arrive as a unit-rate Poisson process independent of the selected marks. If y

is the last selection made before time s, the next (if any) observation is y + ξ, where

ξ
d
= Uniform[0, 1]d and independent of the previous marks. Let (si, ξi) be the increasing

sequence of observation times of these marks and ξi their associated uniform variables.

The decisions at time si whether to accept or reject the observation can be represented

by an indicator function adapted to the Poisson random measure within [0, si]× [0,∞)d.

The task comes down to choosing suitable acceptance regions Σi

E

(∑
i

1 (ξi ∈ Σi)

)
→ max, subject to E

∑
i

d∑
j=1

1 (ξi ∈ Σi) ξ
(j)
i

 ≤ d.
The optimal solution is Σi = Σ∗, where Σ∗ is the shape maximising the volume given

the constraint on the sum of the coordinates of the barycentre. Finding the correct

shape is precisely the variational problem solved by Lemma 11; therefore, the shape of

the region we seek is the coordinate simplex. All that left is to work out the side δ∗ of

the simplex. Restating the optimisation problem in terms of Σ∗ we obtain

tV (Σ∗)→ max, subject to tV (Σ∗)m(1)(Σ∗) ≤ 1,

where the new constraint is obtained by noting that the barycentre of a coordinate

simplex has coordinates equal along all axes. The constraint yields the optimal solution

δ∗ = δ(t). Hence, the selected chain has the distribution equivalent to the compound

process S; therefore, the following upper-bound follows.

Lemma 12 (Mean-constraint bound). The maximal expected length of an increasing

subsequence that can be selected from d-dimensional elements in continuous-time setting

v(t) satisfies the upper bound

v(t) ≤ (d+ 1)

(d+ 1)!1/(d+1)
t1/(d+1), t ≥ 0.
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4.1.2 Refined asymptotic expansion of the optimal value function

Before we apply the comparison method to obtain a refined asymptotic expansion of

v(t), we linearise the optimality equation (4.3). Set µ(z, y) to

µ(z, y) := zd−1 (1− y/z)d |log(1− y/z)|d−1 .

With the change of variables u(z) := v(zd+1), the optimality equation (4.3) becomes

u′(z) = (d+ 1)zd
∫ z

0
(u(z(1− ξ)1/(d+1))− u(z) + 1)+

| log (1− ξ)|d−1

(d− 1)!
dξ, u(0) = 0.

Now, substituting z(1− ξ)1/(d+1) =: z − y yields a convolution-type equation

u′(z) =
(d+ 1)d+1

(d− 1)!

∫ z

0
(u(z − y)− u(z) + 1)+ µ(z, y)dy, u(0) = 0. (4.8)

Note that using the monotonicity property of the integrand, we can rewrite (4.9) as

u′(z) =
(d+ 1)d+1

(d− 1)!

∫ θ(z)

0
(u(z − y)− u(z) + 1) µ(z, y)dy, (4.9)

where 
θ(z) = z, for u(z) ≤ 1,

θ(z) solves u(z − y)− u(z) + 1 = 0, otherwise.

(4.10)

Equation (4.9) is a special case of the more general equation

w′(z) =
(d+ 1)d+1

(d− 1)!

∫ θ(z)

0
(w(z − y) + r(z)− w(z))µ(z, y)dy, w(0) = b, (4.11)

where r(z) and θ(z) are given functions on [0,∞), 0 < θ(z) ≤ z, and b is a constant.

Apart from more general inhomogeneous term and initial condition, a major difference

between (4.9) and (4.8) is that the integrand need not be sign-definite, nor should θ(z)

be a zero of the integrand.
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Let I be the integral operator acting on functions g ∈ C1[0,∞) as

Ig(z) :=
(d+ 1)d+1

(d− 1)!

∫ θ(z)

0
(g(z − y)− g(z) + 1)µ(z, y)dy.

In this notation equation (4.8) becomes u′ = Iu, u(0) = 0. We will now compare the

solution to (4.8) with various test functions.

Let u1(z) := α1z, α1 ∈ R+. We have u′1(z) = α1 and, with θ1(z) := 1/α1,

Iu1(z) =
(d+ 1)d+1

(d− 1)!

∫ θ1(z)

0
(u1(z − y) + 1− u1(z))µ(z, y)dy → (d+ 1)d

αd1 d!
, z →∞.

The match α1 = (d + 1)d/(αd1 d!) occurs at α1 = α∗1 := (d + 1)/(d + 1)!1/(d+1); thus, by

Lemma 3, lim sup
z→∞

(u(z) − u1(z)) < ∞ for α1 > α∗1 and therefore lim sup
z→∞

u(z)/z ≤ α∗1.

Likewise, the second part of the lemma yields lim inf
z→∞

u(z)/z ≥ α∗1. These bounds imply

u(z) ∼ α∗1z, which corresponds to the principal-term asymptotics (4.1) from [10].

We try next functions u2(z) := α∗1z + α2 log(z + 1), α2 ∈ R (we take log(z + 1) and

not log z to avoid the unpleasant singularity at 0). Solving u2(z− y) + 1−u2(z) = 0, for

large z we get expansion

θ2(z) ∼
1

α∗1
− α2

α∗1
2(z + 1)

. (4.12)

We may proceed with only the first term in (4.12) since the second makes a negligible

O(z−2) contribution to Iu2(z). This is confirmed by the following lemma.

Lemma 13. Let ε(t) = o(θ2(z)). Then, adding ε(z) to θ2(z) results in O(ε2)-order shift

in Iu2(t).

Proof. Let us define a function I(x) which takes the upper limit of the integral as an

argument

I(x) =
(d+ 1)d+1

(d− 1)!

∫ x

0
(u2(z − y)− u2(z) + 1) µ(z, y)dy.
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Expanding I into Taylor series around θ2 yields for some ξ ∈ [0, 1]

I(θ2 + ε)− I(θ2) = I ′(θ2)ε+ I ′′(θ2 + ξε)
ε2

2
.

The first term on the right-hand side vanishes since θ2 is the stationary point of the

integrand. For the second term, we expand the integrand into series as z →∞,

(u2(z − y)− u2(z) + 1) µ(z, y) = (1− α∗1) yd−1 +O(z−1).

Now, using this expansion and the expansion (4.12), we can show that

I ′′(θ2 + ξε)
ε2

2
= (1− α∗1)(d− 1)(θ2 + ξε)d−2

ε2

2
= O(ε2).

With Lemma 13 proved, we use the one-term expansion θ2 ∼ 1/α∗1, z →∞, to obtain

Iu2(z) ∼ α∗1 −
(
dα2 +

d(d+ 1)

2(d+ 2)

)
1

z + 1
, z →∞.

With u′2(z) = α∗1 + α2/(z + 1), the match between u′2(z) and Iu2(z) occurs at α∗2 =

−d/(2(d + 2)). It follows readily from Lemma 3 that (u(z) − α∗1z)/(log (z + 1)) → α∗2;

that is

u(z) ∼ α∗1z + α∗2 log z, z →∞.

To further refine the approximation, we try

u3(z) := α∗1z + α∗2 log (z + 1) +
α3

z + 1
, α3 ∈ R. (4.13)

This time we actually need to calculate I up to the order O(z−2)-term. Recalling Lemma
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13, one needs to obtain a two-term expansion

θ3(z) ∼
1

α∗1
− α∗2
α∗1

2(z + 1)
, z →∞. (4.14)

Expanding the integrand and integrating, we get

Iu3(z) ∼ α∗1 +
α∗2
z

+ d

(
α∗2 −

(d2 + d+ 1)(d+ 1)!1/(d+1)

6(d+ 2)2(d+ 3)
+ α3

)
1

z2
, z →∞.

To match with

u′3(z) ∼ α∗1 +
α∗2
z
− α∗2 + α3

z2
, z →∞,

we must choose

α3 := α∗3 − α∗2,

where

α∗3 =
(d2 + d+ 1)(d+ 1)!1/(d+1)

6(d+ 3)(d+ 2)2(d+ 1)
.

Taking α3 bigger or smaller than α∗3 − α∗2 enables us to sandwich u. However, our

comparison method based on Lemma 3 only yields

u(z) = α∗1z + α∗2 log z +O(1), z →∞, (4.15)

since the third term in (4.13) is already bounded. A different approach will be applied

to show convergence of the O(1) remainder.

4.1.3 A piecewise deterministic Markov process

By the self-similarity of the continuous-time problem, if y is the running maximum

at time s, the distribution of the number of selections to follow only depends on the

process past through (t − s)p(y). This suggests merging the running maximum and

the observation time into one parameter and studying its evolution. Adopting z :=

((t− s)p(y))1/(d+1) as a state variable and introducing an intrinsic time variable will

lead us to a nearly homogeneous Markov process which we denote Z.



Chapter 4. Continuous-time selection problems 89

Let θ : R+ → R+ be a function such that 0 < θ(z) ≤ z; introduce, for z ≥ 0, a

normalising factor

λ(z) :=

∫ θ(z)

0
µ(z, y) dy ∼ θ(z)d

d
− θ(z)d+1

2z
+O(z−2), z →∞.

The following rules define a piecewise deterministic Markov process Z on [0,∞) with

continuous drift component and random instantaneous jumps:

(i) the process decreases continuously with unit speed,

(ii) the jumps are negative and occur at rate

(d+ 1)d+1

(d− 1)!
λ(z), for z > 0,

(iii) if a jump from state z occurs, the jump size has density µ(z, y) dy with support

[0, θ(z)],

(iv) the process terminates upon reaching 0.

We denote Z|z0 this process starting in position z0. The range of Z|z0 can be constructed

from the set of arrivals of an inhomogeneous marked Poisson process Π with intensity

(ii) and marks distributed as in (iii). The following occupancy procedure is similar to

many familiar parking, packing, and scheduling models in applied probability. With each

occurrence z of Π marked y relate interval (z − y, z]. Now, moving right-to-left from z0

create a non-overlapping configuration by leaving the rightmost (z1−y1, z1] in its position

and removing all other intervals that overlap this one, then proceed this way to the left

of z1−y1 until reaching 0. The process Z|z0 crosses each (zj−yj , zj ] by jump, and drifts

through the rest of [0, z0]. A location z ∈ (0, z0) is called a jump point if z ∈ {zj , j ≥ 1},

a gap point if z ∈ ∪j(zj − yj , zj ], and a drift point otherwise. For the corresponding path

of Z|z0, there is a unique way to introduce the time variable in agreement with rule (i).

Specifically, the time when Z|z0 reaches z is equal to the Lebesque measure of the set of
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drift points within [z, z0]. The path is naturally decomposed in cycles, each comprised of

a drift interval and a jump interval in the right-to-left succession. The rightmost cycle

is (z1 − y1, z1] ∪ (z1, z0], and the lefmost cycle has only a drift interval.

To connect to the increasing subsequence problem fix horizon t and let Y be the

running maximum process under some Markovian strategy. Let

Z̃(s) := ((t− s)p(Y (s)))1/(d+1), s ∈ [0, t],

which is a drift-jump process decreasing from t1/(d+1) to 0, with negative jumps ∆Z̃(s) =

Z̃(s) − Z̃(s−) at times of selection. Figure 4.1 illustrates the correspondence for the

special case d = 1.

(a) The running maximum and Z̃(s)2 (b) A path of Z̃(s)2

Figure 4.1: Transformation of Y to Z̃

We wish to replace the observation time s by an intrinsic time parameter associated

with drift. To that end, first note that the decay of Z̃ due to the drift is a strictly

increasing continuous process

σ(s) := t1/(d+1) − Z̃(s) +
∑
s′≤s

∆Z̃(s′).

For σ← the inverse function to σ, define the time-changed process

Z(q) := Z̃(σ←(q)), q ≤ σ(t). (4.16)
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Process Y over horizon t = zd+1 has the same number of jumps as Z|z. This reduces

the optimal selection problem with horizon t to choosing a control function θ with the

objective to maximise the expected number of jumps of Z|t1/(d+1).

Denote Nθ(z) the number of jumps of the process Z|z steered by given function θ

(0 < θ(z) ≤ z), and let uθ(z) := ENθ(z). With probability (d+ 1)d+1/(d−1)!λ(z)dz the

process moves from a small vicinity of z to z − y, with y sampled from the density in

(iii), in which case the expected number of jumps is equal to uθ(z − y) + 1. Otherwise,

the process drifts through to z − dz. This decomposition readily yields equation

u′θ(z) =
(d+ 1)d+1

(d− 1)!

∫ θ(z)

0
(uθ(z − y) + 1− uθ(z))µ(z, y)dy, uθ(0) = 0, (4.17)

which is a special case of (4.11) derived earlier in the context of the running maximum

Y .

In purely analytic terms, for any fixed z, maximising uθ(z) over admissible θ is the

problem of calculus of variations. The solution is θ = θ∗, defined implicitly by equations

(4.8) and (4.10).

We shall assume throughout that θ is bounded and differentiable. That the optimal

θ∗ is bounded can be seen at this stage of our analysis from (4.10) and (4.15).

The asymptotic comparison method based on Lemma 3 works for (4.17) smoothly.

In particular, for

θ0(z) := 1/α∗1 ∧ z,

we obtain the same expansion as (4.15). Complementing this technique, we will adopt

some ideas from the potential theory for Markov processes.

The decreasing sequence of jump points of Z|z0 is an embedded Markov chain with

terminal state 0. Let Uθ(z0, ·) be the occupation measure on [0, z0] counting the expected

number of jump points, in particular Uθ(z, [0, z]) = uθ(z). Denote p(z0, z), for 0 ≤ z ≤ z0

the probability that z is a drift point, in particular p(z0, z0) = p(z0, 0) = 1. There is a
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jump point within dz only if z does not belong to a gap, hence the occupation measure

has a density which factorises as

Uθ(z0, dz) =
(d+ 1)d+1

(d− 1)!
λ(z) p(z0, z) dz, 0 ≤ z ≤ z0.

Lemma 14. There exists a pointwise limit p(z) := lim
z0→∞

p(z0, z), which satisfies

|p(z0, z)− p(z)| < ae−α(z0−z), 0 < z < z0,

with some positive constants a and α.

Proof. The proof is by coupling. Choose constant θ big enough to have sup θ(z) < θ.

Fix z < z0 < z1 with z > 2θ (the latter assumption does not affect the result). Consider

two independent processes Z0 and Z1 with Z0
d
= Z|z0, Z1

d
= Z|z1. Define Z ′ by running

the process Z1 until it hits a drift point ξ of Z0, then from this point on switch over to

running Z0. Such a point ξ exists since both processes have a gap adjacent to 0. By the

strong Markov property, Z ′ has the same distribution as Z1. If the coupling occurs at

some ξ ∈ [z, z0], the point z is of the same type (drift or jump) for both Z ′ and Z0.

The coupling does not occur within [z, z0] only if Z0 and Z1 have no common drift

points within these bounds. Given that y > z is a drift point, the probability that the

drift interval covering y extends to the left over y−θ is at least π, for some constant π > 0.

This follows since the length of drift interval dominates stochastically an exponential

random variable with rate supλ(z) (d+ 1)d+1/(d−1)! <∞. In particular, the rightmost

drift interval, adjacent to z0, is shorter than θ with probability at most 1−π, in which case

the rightmost cycle is shorter than 2θ. Given ξ is not in the first cycle, the probability

that ξ is not in the second is again at most 1 − π, in which case also the second cycle

is shorter than 2θ. Continuing so forth we see that ξ /∈ [z, z0] with probability at

most (1 − π)k for k = b(z0 − z)/(2θ)c. This readily implies an exponential bound

|p(z0, z) − p(z1, z)| < ae−α(z0−z), uniformly in z1 > z0. Sending z0 → ∞ we see that
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p(z0, z) is a Cauchy sequence, whence the claim.

In the terminology of random sets, p(z0, ·) is the coverage function (see [47], p. 23) for

the range of Z|z0. As z0 →∞, the range converges weakly to a random set Z ⊂ [0,∞),

comprised of infinitely many intervals separated by gaps. Indeed, let A(z0, z) ≤ z be the

maximal point of the range of Z|z0 within [0, z] for z ≤ z0. The coupling argument in

the lemma also shows that A(z0, z) has a weak limit A(z), which is sufficient to justify

convergence of the range intersected with [0, z], due to the Markov property. By Sheffé’s

lemma Uθ(z0, ·) converges weakly to some Uθ, which is the occupation measure for the

point process of left endpoints of intervals making up Z.

4.1.4 The reward processes

Suppose each jump point of Z|z is weighted by some location-dependent reward r. Let

wθ,r(z) be the total expected reward accumulated by Z|z controlled by θ. Now, in

addition to (4.11), we also have an integral representation of wθ,r(z) as the average over

the occupation measure,

wθ,r(z) =

∫ z

0
r(y)Uθ(z, dy) =

(d+ 1)d+1

(d− 1)!

∫ z

0
r(y)λ(y) pθ(z, y)dy. (4.18)

Lemma 15. For an integrable function r, the solution to (4.11) has a finite limit

ρθ,r := lim
z→∞

wθ,r(z) =
(d+ 1)d+1

(d− 1)!

∫ ∞
0

r(y)λ(y)pθ(y) dy. (4.19)

If |r(z)| = O(z−β) as z →∞ for some β > 1 then |wθ,r(z)− ρθ,r| = O(z−β+1).

Proof. Since p(z0, z)λ(z) < θ the existence of the limit follows from (4.18), (4.19) and

Lemma 14 by the dominated convergence. The convergence rate is estimated by splitting
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the difference as

ρθ,r − wθ,r(z) =
(d+ 1)d+1

(d− 1)!

∫ z/2

0
r(y)λ(y)(pθ(z, y)− pθ(y)) dy

+
(d+ 1)d+1

(d− 1)!

∫ ∞
z/2

r(y)λ(y)pθ(y) dy,

where the second integral is of the order O(z−β+1) while the first is of the lesser order

O(e−αz/2) by Lemma 14.

4.1.5 Convergence of the O(1)-term

We are ready to derive finer asymptotics. Let

r(z) :=
(d+ 1)d+1

λ(z)(d− 1)!

∫ θ

0
(u(z − y)− u(z) + 1)

∂µ(z, y)

∂z
dy.

Differentiating (4.8) and keeping an account of (4.10), we obtain

u′′(z) =
(d+ 1)d+1

(d− 1)!

∫ θ∗(z)

0
(u′(z − y) + r(z)− u′(z))µ(z, y)dy, u′(0) = 0. (4.20)

Since θ∗(z) = z for small z, this has a simple pole at 0, but the singularity is compensated

in (4.18), so Lemma 15 and (4.15) ensure that

u′(z) = α∗1 +O(z−1). (4.21)

With (4.21) at hand, expanding the solution to (4.10) we get

θ∗(z) =
1

α∗1
+O(z−1).

Replacing θ∗ by 1/α∗1 in (4.8) incurs remainder of smaller order O(z−2) because θ∗(z) is

the stationary point of the integral viewed as a function of the upper bound. Recalling

that u2 (with α2 = α∗2) satisfies u′2(z) = Iu(z)+O(z−2), for the difference w = u−u2 we

obtain equation (4.11) with r(z) = O(z−2), hence u(z)−u2(z) by Lemma 15 approaches
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a finite limit at rate O(z−1) as z →∞. This proves an expansion

u(z) = α∗1z + α∗2 log z + c∗ +O(z−1), z →∞ (4.22)

with some constant c∗.

Our methods are not geared to identify c∗, because the initial value u(0) = 0 was

used nowhere, but changing it to u(0) = b (which is resorting to a selection problem with

terminal reward b) will result in adding b to c∗. Nevertheless, with some more effort it

is possible to go beyond O(1). Let us first estimate the local variation of u′.

Lemma 16. For fixed h > 0, as z →∞

sup
0≤h≤h

|u′(z + h)− u′(z)| = O(z−2).

Proof. Using the integral representation (4.18) of u′ with r(z) = O(z−2), write

u′(z + h)− u′(z) =

∫ z+h

z
r(y) p(z + h, y)λ(y) dy +

∫ z

0
|p(z + h, y)− p(z, y)|λ(y) r(y) dy.

The first integral is obviously O(z−2) uniformly in h ≤ h. By Lemma 14, the second is

estimated as

c

∫ z

0
e−α(z−y)(y2 + 1)−1dy = O(z−2)

using Laplace’s method.

The lemma applied to the right-hand side of (4.20) gives u′′(z) = O(z−2). In (4.9) we

replace θ∗ by 1/α∗1, expand u(z − y)− u(z) = −yu′(z) +O(z−2) and integrate to obtain

with some algebra

u′(z) = α∗1 +
α∗2
z

+O(z−2).
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Expanding similarly in (4.10) we get a finer formula for the optimal control function

θ∗(z) =
1

α∗1
− α∗2
α∗1

2z
+O(z−2), z →∞, (4.23)

in accord with (4.14). Since u′3(z) = Iu3(z) +O(z−3) the difference w = u− u3 satisfies

(4.11) with r(z) = O(z−3); hence, invoking Lemma 15, we obtain u(z) − u3(z) = ĉ +

O(z−2) for some constant ĉ. This must agree with (4.22), therefore ĉ = c∗. Thus we

have shown that the following result holds true.

Theorem 7. For the optimal process, the control function θ∗ satisfies (4.23), and the

expected number of jumps has the expansion

u(z) = α∗1 z + α∗2 log z + c∗ +
α∗3
z

+O(z−2), z →∞. (4.24)

To appreciate the effect of the second term in (4.23) it is helpful to consider control

functions of the kind

θ(z) ∼ 1

α∗1
+
γ

z
, z →∞. (4.25)

Theorem 8. For control functions of the form (4.25),

uθ(z) = α∗1z + α∗2 log z + c1 (4.26)

+

(
dα∗1α

∗
2γ +

dα∗1
3γ2

2
+

(3d3 + 13d2 + 4d+ 4)(d+ 1)!1/(d+1)

24(d+ 2)2(d+ 3)(d+ 1)

)
1

z
+O(z−2),

where c1 is constant (uθ(0) contributes linearly to c1).

Proof. The explicit calculation of the expansion (4.26) can be found in Appendix A.2.

Constant c1 in (4.26) does not exceed c∗ in (4.24), but the relation between the

z−1-terms can be the opposite.
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4.1.6 The variance expansion

For Nθ(z), the number of jumps of Z|z driven by θ, let w(z) = E(Nθ(z))
2 be the second

moment. This function satisfies

w′(z) =
(d+ 1)d+1

(d− 1)!

∫ θ(z)

0
(w(z − y)− w(z) + (1 + 2u(z − y))) µ(z, y)dy, (4.27)

complemented with the initial condition w(0) = 0. By integrating the inhomogeneous

term, this can be reduced to the form (4.11), with r(z) of the order of z. Applying

Lemma 3 we compare w with various test functions.

We shall consider first the case of optimal θ = θ∗. It is an easy exercise to see

that w(z) ∼ (α∗1z)
2, hence the leading term in the integrand is −2α∗1

2yz + 2α∗1z, which

vanishes at y = 1/α∗1. For this reason the O(z−2) remainder in (4.23) will contribute

to the solution only O(1), and not O(log z) as one might expect. Using this fact and

(4.23), it is possible to match the sides of the equation by selecting coefficients of the

test function

ŵ(z) = 2z2 + a1z log z + a2z + a3(log z)2 + a4 log z,

achieving that the difference w(z) − ŵ(z) satisfies an equation of the type (4.11) with

r(z) = O(z−2 log z). Then applying Lemma 15, w(z) − ŵ(z) ∼ c1 + z−1 log z. The

calculations presented in Appendix A.3 culminated in

w(z) ∼ (α∗1z)
2 + 2α∗1α

∗
2z log z + (α∗4 + 2α∗1c

∗) z + (α∗2 log z)2 +

(
α∗5 −

c∗d

d+ 2

)
log z + c2,

where

α∗4 =
2

(d+ 2)(d+ 1)!1/(d+1)
, α∗5 = − d3 − 3d− 1

3(d+ 2)2(d+ 3)
.

From this and (4.22), for Var(Nθ∗(z)) = w(z)− u2(z) we obtain

Var(Nθ∗(z)) = α∗4z + α∗5 log z + c3 +O
(
z−1 log z

)
, z →∞.
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with c3 := c2 − (c∗)2 − 2α∗1α
∗
3. In fact, the value of c∗ in (4.22) impacts c2 but not c3,

because the latter is invariant under shifting u(0).

For the general control functions, the variance is very sensitive to the behaviour of θ.

The convergence θ(z)→ 1/α∗1 alone does not even ensure that O(z) is the right order for

Var(Nθ(z)). In Appendix A.4 we compute the variance expansion for control functions

satisfying (4.25)

Var(Nθ(z)) ∼ α
∗
4z +

(
−2− 7d− 25d2 + 7d3 + 3d4

12(d+ 1)(d+ 2)(d+ 3)
− 2d(d+ 1)γ

(d+ 1)!2/(d+1)(d+ 2)

)
log z.

(4.28)

4.1.7 Central limit theorem for the number of jumps

If the control function θ(z) approaches a constant for large z, the process Z afar from

0 is almost homogeneous. This suggests approximating the path of Z by a decreasing

renewal process with two types of decrements corresponding to drift intervals and gaps.

In this section we denote N(z) the number of jumps of Z|z with some control function

satisfying

θ(z) =
1

α∗1
+O

(
z−1
)
, hence λ(z) =

∫ θ(z)

0
µ(z, y)dy =

θ(z)d

d
+O(z−1), z →∞. (4.29)

Denote Jz the size of the generic gap having the right endpoint z, with density

P(Jz ∈ dy) =
µ(z, y)

λ(z)
, 0 ≤ y ≤ θ(z),

and let Dz be the size of the generic drift interval with survival function

P(Dz ≥ y) = exp

(
−
∫ z

z−y

(d+ 1)d+1

(d− 1)!
λ(s) ds

)
, 0 ≤ y ≤ z. (4.30)

The size of the generic cycle with the right endpoint z can be written as

Dz + Jz−Dz ,
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where Dz and the family of variables J· are independent, and we set J0 = 0.

For large z, the expected values of Jz and Dz are about equal, suggesting that about

a half of [0, z] is covered by drift and another half is skipped by jumps. This resembles

the behaviour of the stationary selection process [10] in the Poisson setting, where the

balance is kept on two scales.

It is useful to see how the mean sizes of gaps and drift intervals depend on θ = θ(z):

EJz ∼
θ

d+ 1
− d θ2

2(d+ 1)(d+ 2)z
, EDz ∼

d (d− 1)!

(d+ 1)d+1θd
+

d2 (d− 1)!

2(d+ 1)d+1θd−1z
.

For θ as in (4.29), the mean size of a cycle is

E(Jz +Dz) =
1

α∗1
− α∗2
α∗1

2z
+O(z−2),

regardless of the O(z−1) term in (4.29). This expansion explains why the second term in

(4.24) is O(log z) (but falls short of explaining the coefficient α∗2), and why the suboptimal

strategy in Theorem 7 is O(1) from the optimum.

From the convergence of parameters (4.29), it is clear that as z →∞

Dz
d→ (d+ 1)!1/(d+1)

(d+ 1)2
E, Jz

d→ (d+ 1)!1/(d+1)

d+ 1
B,

and, observing the joint convergence of (Dz, Jz−·), also that

Dz + Jz−Dz
d→ (d+ 1)!1/(d+1)

(d+ 1)2
E +

(d+ 1)!1/(d+1)

d+ 1
B, (4.31)

where E
d
= Exponential(1) and B

d
= Beta(d, 1) are independent.

The weak convergence (4.31) of cycle sizes suggests that the behaviour of N(z) for
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large z can be deduced from that of a renewal process with the generic step

H :=
(d+ 1)!1/(d+1)

(d+ 1)2
E +

(d+ 1)!1/(d+1)

d+ 1
B

which has moments

µ := EH =
(d+ 1)!1/(d+1)

d+ 1
, σ2 := Var(H) =

2(d+ 1)!2/(d+1)

(d+ 1)3(d+ 2)
.

Specifically, for the renewal process R(z) := max{n : H1 + · · · + Hn ≤ z}, with Hj ’s

being i.i.d. replicas of H, we have the familiar CLT

R(z)− zµ−1

σµ−3/2
√
z

d→ N (0, 1),

and one can expect that the same limit holds for N(z). This line should be pursued with

care, because local discrepancies may accumulate on the large scale and bias centring or

even the type of the limit distribution.

Our search of the literature on nonlinear renewal theory to cover the situation of

interest showed that the most relevant work is due to Cutsem and Ycart [27]. Their

setting of lattice processes is easy to modify, but the argument in [27] has a gap and, in

fact, the main result fails without additional assumptions (see a remark below). In the

approach taken here, we amend some details of their method of stochastic comparison.

To that end, with initial state z →∞, we focus on the cycles that lie within some range

[z, z], where the truncation parameter z is properly chosen to warrant approximation of

the whole process.

Notation. For two random variables X and Y , the stochastic dominance relation X <st.

Y means P(X ≥ a) ≤ P(Y ≥ a) for all a.
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Replacing the variable rate in (4.30) by constant yields the bounds

(
(1 + c/z0)

−1 (d+ 1)!1/(d+1)

(d+ 1)2
E

)
∧ (z − z0) <st. Dz ∧ (z − z0)

<st. (1− c/z0)−1
(d+ 1)!1/(d+1)

(d+ 1)2
E.

Furthermore, observe that the survival function of Jz is

P(Jz > x) =
1

λ(z)

∫ θ(z)

x
µ(z, y)dy, 0 ≤ x ≤ θ(z). (4.32)

Let I(x) be the integral in (4.32) represented as a function of the upper limit. Then we

have

∂P(Jz > x)

∂θ
=
I ′(θ)λ(z) + I(θ)λ′(z)

(λ(z))2
, 0 ≤ x ≤ θ(z).

Calculating the derivatives with respect to θ(z) yields

I ′(θ) = µ(z, θ).

Furthermore, for large enough z we have I ′(θ) = µ(z, θ) > 0; thus, ∂P(Jz > x)/∂θ > 0.

Whence, from (4.29),

(1 + c/z0)
−1 (d+ 1)!1/(d+1)

d+ 1
B <st. Jz <st. (1− c/z0)−1

(d+ 1)!1/(d+1)

d+ 1
B, z ≥ z.

From these estimates follow stochastic bounds on the cycle size

((1 + c/z)−1H)∧ (z− z) <st (Dz + Jz−Dz)∧ (z− z) <st (1− c/z)−1H , z ≥ z. (4.33)

Setting the bounds (4.33) in terms of multiples of the same random variable H is conve-

nient in combination with the obvious scaling property: for k > 0, R(k ·) is the renewal

process with the generic step kH. Let N(z, z) be the number of cycles of Z|z, which fit
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completely within [z, z]. As in [27], from (4.33) we conclude that

R ((z − z)(1− c/z))) <st N(z, z) <st R ((z − z)(1 + c/z))) , z ≥ z. (4.34)

Letting z →∞ then z →∞, and appealing to R(z)/z → µ−1 a.s., (4.34) implies a weak

law of large numbers for N(z),

N(z)

z

d→ 1

µ
, z →∞. (4.35)

We aim next to show the CLT for N(z). To that end, we choose z = ω
√
z, where ω > 0

is a large parameter. Start with splitting

N(z)− zµ−1 = (N(z, z)− (z − z)µ−1) + (N(z)−N(z, z)− zµ−1),

where N(z)−N(z, z) counts the cycles that start in [0, z]; this component is annihilated

by the scaling, since by (4.35)

N(z)−N(z, z)− zµ−1
√
z

d→ 0,

and the same is true with
√
z replaced by bigger

√
z. For the leading contribution due

to N(z, z) we obtain using dominance (4.34) and the CLT for R(z)

P
(
N(z, z)− (z − z)µ−1

σµ−3/2
√
z

≤ x
)
≥ P

(
R((z − z)(1 + c/z))− (z − z)µ−1

σµ−3/2
√
z

≤ x
)

=

P
(
R((z − z)(1 + c/z))− (z − z)(1 + c/z)µ−1

σµ−3/2
√
z

+
(z − z)c
ωzµ−1/2σ

≤ x
)

→ 1− Φ

(
x− c

ωσµ−1

)
,

as z →∞. Letting ω →∞

lim sup
z→∞

P
(
N(z)− zµ−1

σµ−3/2
√
z
≤ x

)
) = lim sup

z→∞
P
(
N(z, z0)− zµ−1

σµ−3/2
√
z

≤ x
)
≥ 1− Φ(x).
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The opposite inequality is derived similarly.

Theorem 9. For a control satisfying θ(z) ∼ 1/α∗1, the following central limit theorem is

satisfied

Nθ(z)− α∗1z
(α∗4z)

1/2

d→ N (0, 1), z →∞.

Remark. The renewal-type approximation for decreasing Markov chains on N using

stochastic comparison appeared in [27]. However, their Theorem 4.1 on the normal

limit for the absorption time fails without additional assumptions on the quality of

convergence of the step distribution. For instance, if the decrement in position z > 8

assumes values 1 and 2 with probabilities 1/2 ± 1/ log z, the mean absorption time is

asymptotic to 2z/3, with the remainder being strictly of the order z/ log z, therefore

not annihilated by the
√
z scaling. The error in [27] appears on the bottom of p. 996,

where the truncation parameter (m, a counterpart of our z) is assumed independent of

the initial state. Recently Alsmeyer and Marynych [2], also concerned with the lattice

setting, suggested conditions on the rate of convergence of decrements in some probability

metrics to ensure the normal approximation of the absorption time.

Remark. It is of interest to look at the properties of the random set Z which,

intuitively, describes an infinite selection process. This limit object can be interpreted

in the spirit of the boundary theory of Markov processes: the state space [0,∞) has a

one-point compactification - the entrance Martin boundary - approached as the initial

state of Z|z tends to ∞. Applying the coupling argument as in Lemma 14 one can show

that, at a large distance from the origin, Z behaves similarly to a stationary alternating

renewal process, with uniformly distributed gaps and exponential drift intervals. The

coverage probability and the occupation measure satisfy p(z)→ 1/2 and U([0, z]) ∼ α∗1z,

z →∞. Korshunov [40] studied increasing Markov processes on reals which at a distance

from the origin behave similarly to renewal processes, but reverting the direction of time,

required to adapt this work in our setting, does not seem straightforward.
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4.1.8 Summary of the results

Translating back into the terms of the original problem, we gather and state the main

results of this chapter. Let L(t) be the length of the increasing subsequence chosen by

the optimal selection policy from a sequence of d-dimensional items over a horizon [0, t].

Theorem 10. The following asymptotic results hold as t→∞:

(i) The expected length of the optimally chosen subsequence satisfies

EL(t) = γ∗1t
1/(d+1) + γ∗2 log t+ c∗ +

γ∗3
t1/(d+1)

+O(t−2/(d+1)),

where

γ∗1 =
(d+ 1)

(d+ 1)!1/(d+1)
, γ∗2 = − d

2(d+ 2)(d+ 1)
, γ∗3 =

(d2 + d+ 1)(d+ 1)!1/(d+1)

6(d+ 3)(d+ 2)2(d+ 1)
.

(ii) The variance of the length has the asymptotic expansion

Var(L(t)) ∼ γ∗4t1/(d+1) + γ∗5 log t+ c3,

where

γ∗4 =
2

(d+ 2)(d+ 1)!1/(d+1)
, γ∗5 = − (d3 − 3d− 1)

3(d+ 1)(d+ 2)2(d+ 3)
.

(iii) Then the following convergence in distribution holds

L(t)− γ∗1t1/(d+1)

(γ∗4t
1/(d+1))1/2

d→ N (0, 1).

Interestingly, as was also highlighted in [10], γ1∗ ∼ e, as d→∞. This coincides with

the asymptotics of the length of the longest increasing subsequence inside the sequence

of d-dimensional items [13], indicating that the advantage of a prophet over the decision-
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maker uncovering the observations one-by-one diminishes with the number of dimensions

d.

4.2 The one-dimensional setting

Samuels and Steele’s [55] one-dimensional problem was the primary focus in the litera-

ture. In this section, we provide an overview of the latest developments in this classical

problem and specialise our multidimensional results for the case d = 1.

The value function v(t) := EL(t) in the one-dimensional setup satisfies an integro-

differential optimality equation

v′(t) =

∫ 1

0
(v(t(1− y))− v(t) + 1)+dy, v(0) = 0,

which does not seem to admit a closed-form solution. Samuels and Steele [55] found

the leading asymptotics v(t) ∼
√

2t, where the order was identified by Hammersley’s

subadditivity method. Bruss and Delbaen [19] combined a thorough analysis of the

optimality equation with martingale methods to derive much tighter estimates

√
2t− log(1 +

√
2t) + c̃ < v(t) <

√
2t, (4.36)

(with explicit c̃) and to show that similar bounds hold for the variance VarL(t). In

another paper Bruss and Delbaen [20] extended this technique to obtain a functional

limit theorem for fluctuations of the shape of selected subsequence, showing in particular

that the distribution of
√

3 (L(t)−
√

2t)/(2t)1/4 converges to normal. This result and a

substantial refinement of (4.36) follow readily from the special case d = 1 of Theorem

10. Moreover, unlike [19, 20], we do not rely on the concavity of the value function v(t),

but rather use tools well-suited to the analysis of a wider class of near-optimal strategies,

including a continuous-time analogue of the adaptive strategy from [5].
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4.2.1 The suboptimal selection strategies

To solve the optimisation problem, it is sufficient to consider a relatively small class

of strategies defined recursively by means of an acceptance window ψ(t, s, y) satisfying

0 ≤ ψ(t, s, y) ≤ 1− y for 0 ≤ s ≤ t <∞ and for y ∈ [0, 1].

Definition 14. A threshold strategy is an online selection policy that accepts an obser-

vation (s, x) ∈ [0, t]× [0, 1] if and only if

0 < x− y ≤ ψ(t, s, y),

where y is the last (hence the highest) mark selected before time s, with the convention

that y = 0 if no selections have been made. We call function ψ(t, s, y) a threshold

function.

For instance, the greedy strategy has the largest possible acceptance window

ψ(t, s, y) = 1− y.

The strategy selects the sequence of records [22], which has the expected length given

by the exponential integral function

Ein(t) =

∫ t

0

1− e−s

s
ds ∼ log t, t→∞.

The greedy strategy is optimal for t ≤ 1.345 . . ., when the expected number of records

is not bigger than 1.

Bruss and Delbaen [19] also studied a class of suboptimal policies, which they called

‘graph rules’. One of the examples of a graph rule is the policy selecting all records

under the main diagonal s = t. This policy achieves the
√
t-order performance but falls

short of the optimal with the value function satisfying vg(t) ∼
√
πt/2, t→∞.

Next by the complexity is the family of stationary strategies, which have acceptance
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window of the form ψ(t, s, y) = δ(t)∧(1−y), depending neither on the time of observation

nor on the running maximum Y , as long as Y does not overshoot 1− δ(t).

In the one-dimensional setting, the analogue of the stationary strategy driven by the

acceptance region Σ̃ is the stationary strategy with ψ̃(t, s, y) = (1 − y) ∧
√

2/t. This

strategy maintains a balance between increasing on the marks and time scales so that

the running maximum Y fluctuates about the linear function s/t, and both resources are

exhausted almost simultaneously. Let L
ψ̃

(t) be the length of increasing sequence chosen

by this stationary strategy. We may represent L
ψ̃

(t) as a minimum of two independent

renewal processes: R0(t) with a generic step H0
d
= Uniform[0,

√
2/t] and R1(t) with

a generic step H1
d
= Exponential(

√
2/t). By a well-known central limit theorem for

renewal processes, we have, as t→∞,

R0(t)−
√

2t

(2t)1/4
d→ ξ1, and

√
3(R1(t)−

√
2t)

(2t)1/4
d→ ξ2,

where ξ1 and ξ2 are independent standard normal variables. This leads to the following

result.

Lemma 17. The length of an increasing subsequence selected by the stationary policy

with the acceptance window ψ̃(t) satisfies the following distributional convergence

√
3
L
ψ̃

(t)−
√

2t

(2t)1/4
d→ η, t→∞, (4.37)

with η = ξ1 ∧ (ξ2/
√

3).

Nadarajah and Kotz [48] provided exact formulae for moments of Z
d
= min{Z1, Z2},

where Z1 ∼ N (µ1, σ
2
1), Z2 ∼ N (µ2, σ

2
2) are independent normal random variables

EZ = µ1Φ

(
µ2 − µ1

θ

)
+ µ2Φ

(
µ1 − µ2

θ

)
− θφ

(
µ2 − µ1

θ

)
EZ2 = (σ21 + µ21)Φ

(
µ2 − µ1

θ

)
+ (σ22 + µ22)Φ

(
µ1 − µ2

θ

)
− (µ1 + µ2)θφ

(
µ2 − µ1

θ

)
,
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where θ =
√
σ21 + σ22 − 2ρσ1σ2 and ρ is the correlation coefficient of Z1 and Z2. Special-

ising the formulae above yields Eη = −
√

2/π and Var(η) = 2−2/π. For comparison, the

simulated paths of the running maximum process of the greedy policy and a stationary

policy driven by ψ̃ are demonstrated on Figure 4.2.

(a) Running maximum process of the greedy
strategy

(b) Running maximum process of the stationary

strategy with ψ̃(t, s, y) = (1− y) ∧
√

2/t

Figure 4.2: Running maximum process realisations for t = 102

4.2.2 Summary of the results in one-dimensional setting

One of the convenient properties of the one-dimensional setting is the representation of

the optimal policy as self-similar.

Definition 15. A self-similar selection policy is a threshold policy with the control func-

tion of the form

ψ(t, s, y) = (1− y)ϕ((t− s)(1− y)) (4.38)

for some ϕ : [0,∞)→ [0, 1].

With self-similarity the connection between the running maximum Y and the trans-

formed process Z(·) is more apparent. Identifying the drift rate and jump distribution

reveals that (4.16) in one-dimensional case is the process Z|
√
t, with θ found by matching

the jump rates as

4λ(z) = 2zϕ(z2).

This connection opens up the possibility to extend the results of Theorem 10 to a certain
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class of suboptimal self-similar selection policies. Let Lϕ(t) be the length of an increasing

subsequence selected by a self-similar strategy with the acceptance window of the form

(4.38).

Theorem 11. (i) The optimal strategy has the acceptance window of the form (4.38)

with

ϕ∗(t) =

√
2

t
− 1

3t
+O(t−3/2), t→∞,

and outputs an increasing subsequence with expected length

EL(t) =
√

2t− 1

12
log t+ c̃∗ +

√
2

144
√
t

+O(t−1), t→∞, (4.39)

and variance

Var(L(t)) ∼
√

2t

3
+

1

72
log t+ c4 +O(t−1/2 log t). (4.40)

(ii) The strategy with ϕ(t) :=
√

2/t ∧ 1 outputs an increasing subsequence with the

expected length

ELϕ(t) =
√

2t− 1

12
log t+ c5 +

√
2

72
√
t

+O(t−1), t→∞,

and variance

Var(Lϕ(t)) ∼
√

2t

3
+

1

24
log t+ c6 +O(t−1/2 log t), t→∞.

(iii) If ϕ(t) ∼
√

2/t+O(t−1), then a central limit theorem holds:

√
3
Lϕ(t)−

√
2t

(2t)1/4
d→ N (0, 1), t→∞.

The selection strategy in (iii) is the analogue of Arlotto et al.’s [5] O(log n)-optimal

policy in the discrete-time problem, which was studied in detail in Section 3.1.3. Arlotto
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t ELϕ(t)
√

2t
√

2t− log t/12

10 3.63 4.472 4.28
100 13.012 14.1421 13.7584
1000 43.369 44.721 44.146
2000 62.074 63.246 62.612
3000 76.125 77.46 76.792
4000 87.992 89.443 88.752
5000 98.546 100 99.29
6000 108.099 109.545 108.896
7000 117.017 118.322 117.584
8000 125.141 126.491 125.742
9000 132.737 134.164 133.405
10000 139.855 141.421 140.654

Table 4-A: MC simulation to approximate ELϕ(t)

et al. approximated the value functions vn numerically for n = 1, . . . , 105 and used the

outcome as a basis for the conjecture that their policy is within O(1) off optimality. We

followed a similar path in the continuous-time setting. To obtain the approximations of

ELϕ(t) presented in Table 4-A, we performed a Monte Carlo simulation of the selection

process with 106 simulations for every given horizon. The approximation of the value

function converges to the two-term expansion of Lϕ(t) very quickly. However, chances to

capture the constant c5 via numerical simulation are slim, as one needs an unreasonably

large horizon t to start filtering out the log-term contribution.

Both the stationary strategy, driven by ψ̃(t, s, y) = (1−y)∧
√

2/t, and the self-similar

strategy in (ii) have running maximum processes fluctuating around the main diagonal.

However, the running maximum paths of the stationary strategy are more dispersed,

which is demonstrated on Figure 4.3.

The instance of part (c) for the optimal strategy was proved in [20]; this can be

compared with the distributional limit (4.37) for the stationary strategy.

Bruss and Delbaen [20] used concavity of v to prove the bounds

v(t)

3
≤ Var(L(t)) ≤ v(t)

3
+

1

(β −
√

2β) 6
√

2
log

t

β
+ 2,



Chapter 4. Continuous-time selection problems 111

(a) Running maximum process of the stationary

strategy with ψ̃(t, s, y) = (1− y) ∧
√

2/t

(b) Running maximum process of the self-similar
strategy with ϕ(t) :=

√
2/t ∧ 1

Figure 4.3: Running maximum process realisations for t = 105

(for t no too small), where v(β) = 2. For large t, the logarithmic term in the lower bound

has coefficient −1/36 (as is seen from (a)) and in the upper bound at least 0.55 (as can

be shown by estimating β). These bounds can be compared with the coefficient 1/72 in

part (a).

4.2.3 Connection to the discrete-time problem

Arlotto et al. [4] stressed that the deep relation between the discrete-time and poissonised

sequential decision models is yet to be understood. The setting with Poisson arrivals

can be related to the fixed-n problem by allowing the length of the observed sequence

to be used in decision strategies. However, despite the apparent similarity, translating

results from one model to the other is not automatic since the information flows are very

different.

Arlotto et al. [4] proved the information bound

v(n) ≤ vn, n ∈ N,

by applying an optimal policy from the poissonised problem in the discrete-time setting

and using the concavity of vn. Independently, Samuels and Steele [55] and Baryshnikov
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and Gnedin [10] derived the asymptotic equivalence

vn ∼ v(n), n→∞,

by doing the reverse (in fact, Baryshnikov and Gnedin [10] proved it for the multidi-

mensional increasing subsequence). However, extending their analysis to include the

lower-order terms of expansion seems to be a challenging task.

In this dissertation we treated the two problems separately. Hence, combining the

results of Theorems 1 and 11(i) confirms a strong connection between the two problems.

Corollary 5. The discrete-time and continuous-time increasing subsequence selection

problems have value functions satisfying

sup
n→∞

|vn − v(n)| <∞.

4.3 The selection under a sum constraint

The stochastic knapsack problem discussed in Section 3.3 has a continuous-time ana-

logue. Let non-negative observations Xi
d
= Beta(α, 1) with F (x) = Axα, A, α > 0 arrive

with a unit-rate homogeneous Poisson process. The objective now is to pack as many

items as possible into a one-dimensional knapsack of capacity C over the time horizon t.

To preserve the convenient self-similarity property of the problem, we assume that

Xi ∈ [0, C] leading to A = C−α. The self-similarity is crucial for representing the problem

in terms of piecewise deterministic Markov process and the consequent renewal approx-

imation. However, a refined optimal value function expansion could be obtained for a

much wider class of distributions — similarly to the discrete-time setup in Section 3.3

— albeit without going beyond the O(1)-term. The restricted distribution assumption

also gives way to the equivalent results for the class of self-similar suboptimal selection

policies.
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In Bruss and Delbaen [19], Theorem 4.1 they showed that the poissonised bin-packing

problem with standard uniformly distributed observations and a unit capacity is equiv-

alent to the poissonised longest increasing subsequence selection by demonstrating the

equivalence of the optimality equations of the two problems. The equivalence breaks

with non-uniform observations in the bin-packing setup.

We need to slightly adjust the definition of the online policy for the bin-packing case

before deriving the optimality equation.

Definition 16. Let (X1, T1), (X2, T2), . . . be the atoms of a unit-rate Poisson point pro-

cess, where T1 < T2 < . . . are the arrival times. An online selection policy in the

continuous-time bin-packing problem is a collection of stopping times τ = (τ1, τ2, . . .)

satisfying

(i) each τi is adapted to (X1, T1), (X2, T2), . . .,

(ii) each τi assumes values in {Tj},

(ii) τ1 < τ2 < . . .,

(iii) Xτ1 + . . .+Xτj ≤ C.

4.3.1 The optimality equation

Let N(t) = N(t, C) be the number of items packed by the optimal policy over the horizon

t. The optimal value function v(t), then, is v(t) = v(t, C) := EN(t, C). Decomposing at

the first arrival over a small time interval h, we have

v(t, C) = (1− h) v(t− h,C)

+ h

∫ C

0
max{v(t− h,C − x) + 1, v(t− h,C)}dF (x) + o(h).

The first term comes from the probability 1 − h of no arrivals, and the integral term,

which evaluates the expected reward conditional on an arrival, is dictated by the dynamic



Chapter 4. Continuous-time selection problems 114

programming principle. Finally, the probabilities of more than one arrival sum up to

o(h). Rearranging the equation above yields

v(t, C)− v(t− h,C)

h
=

∫ C

0
(v(t− h,C − x)− v(t− h,C) + 1)+dF (x) +

o(h)

h
.

Taking the limit as h→ 0 on both sides leads to a partial integro-differential equation

∂v(t, C)

∂t
=

∫ C

0
(v(t, C − x)− v(t, C) + 1)+dF (x). (4.41)

Now, with the remaining capacity of C − x, the admissible observations arrive with a

thinned Poisson process of rate F (C−x) = (1−x/C)α. Using a time scale transformation

t := t(1− x/C)α results in a bin-packing process over observations arriving with a unit-

rate Poisson process and the original remaining capacity C; thus, we have the following

optimal value function equivalence v(t, C − x) = v(t(1 − x/C)α, C) = v(t(1 − x/C)α).

Substituting this into (4.41) yields the optimality equation

v′(t) =

∫ C

0
((v (t(1− x/C)α)− v(t) + 1)+ dF (x), v(0) = 0.

Performing a substitution x → Cx to map the integration range onto the unit interval

yields

v′(t) =

∫ 1

0
(v(t(1− x)α)− v(t) + 1)+ αx

α−1dx, v(0) = 0. (4.42)

4.3.2 Asymptotic expansion of the value function

In this section we apply the comparison method to obtain the asymptotic estimate of

the solution to (4.42). First, let us transform (4.42) by introducing a function u(z) such

that u(z) := v(zα+1)

u′(z) = α(α+ 1)zα
∫ 1

0
(u(z(1− x)α/(α+1)) + 1− u(z))+x

α−1dx, u(0) = 0.
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Substituting z(1− x)α/(α+1) =: z − y, we obtain a convolution-type equation

u′(z) =

∫ z

0
(u(z − y)− u(z) + 1)+ν(z, y)dy, u(0) = 0, (4.43)

where

ν(z, y) = (α+ 1)2zα−1
(

1− y

z

)1/α(
1−

(
1− y

z

)(α+1)/α
)α−1

.

Define an integral operator I as

Iu(z) :=

∫ z

0
(u(z − y)− u(z) + 1)+ν(z, y)dy.

Choosing suitable test functions, we apply the comparison method based on Lemma

3 to approximate the solution to (4.43). We pick the first proxy function of the form

u1(z) := β1z, β1 ∈ R+, for which u′1(z) = β1. To estimate Iu1(z), note that that

ψ1(z) = 1/β1 solves u1(z − y)− u1(z) + 1 = 0.

Iu1(z) =

∫ ψ1(z)

0
(u(z − y)− u(z) + 1) ν(z, y)dy =

(
α+ 1

αβ1

)α
+O(z−1), z →∞.

By virtue of Lemma 3, we have the main asymptotic

u(z) ∼ β∗1z, z →∞.

where

β∗1 =

(
α+ 1

α

)α/(α+1)

.

We pick the second test function to be of the form u2(z) = β∗1z + β2 log (z + 1), β2 ∈ R.

From

u′2(z) ∼ β∗1 +
β2
z
, Iu2(z) ∼ β∗1 −

(
α+ 1

2(α+ 2)
+ β2

)
1

z
, z →∞,

we obtain u(z) ∼ β∗1z + β∗2 log z, z →∞, where

β∗2 = − 1

2(α+ 2)
.



Chapter 4. Continuous-time selection problems 116

Finally, with the proxy function of the form u3(z) = β∗1z+β∗2 log(z+1)+β3/(z+1), β3 ∈

R, we have u′3(z) ∼ β∗1 + β∗2/z − (β∗2 + β3)/z
2, z →∞, and, for ψ2(z) that solves

u3(z − y)− u3(z) + 1 = 0

we have ψ2(z) ∼ β∗1 − β∗2/(β∗12(z + 1)), z → ∞. With this in mind, expanding Iu3(z)

yields

Iu3(z) ∼ β∗1+
β∗2
z

+

(
αβ∗2 +

(
α+ 1

α

)−α/(α+1) (2− 7α+ 9α2 + α3 + α4)

12α(α+ 2)2(α+ 3)
+ αβ3

)
1

z2
, z →∞.

Since u′3(z) matches with Iu3(z) at

β3 = β∗3 := −
(
α+ 1

α

)−α/(α+1) (2− 9α+ α3)

12α(α+ 2)2(α+ 3)
,

by virtue of Lemma 3 we have

u(z) = β∗1z + β∗2 log z +O(1), z →∞.

Reproducing the argumentation presented in Sections 4.1.3, 4.1.4, and 4.1.5, one can

prove the convergence of O(1)-term and obtain an expansion that goes beyond the con-

stant. That is,

u(z) = β∗1z + β∗2 log z + c∗1 +
β∗3
z

+O(z−2), z →∞. (4.44)

4.3.3 The variance expansion

In terms of u(·) and z, let w(z) := E(N(z))2; then w(z) satisfies

u′(z) =

∫ ψ∗(z)

0
(u(z − y)− u(z) + 1) ν(z, y)dy, (4.45)
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with w(0) = 0. From (4.44), the optimal control ψ(z) expands as

ψ∗(z) =
1

β∗1
− β∗2
zβ∗1

2 +O(z−2), z →∞. (4.46)

Equation (4.45) is in the class of equations covered by Lemma 3. Therefore, we may

obtain the expansion of w(z) via the comparison method. Skipping over the detailed

computation (which be found in Appendix A.5), we obtain, as z →∞,

w(z) ∼ β∗1
2z2 + 2β∗1β

∗
2z log z + (β∗4 + 2β∗1c

∗
1) z + (β∗2 log z)2 +

(
β∗5 +

c∗1
α+ 2

)
log z,

where

β∗4 =
2β∗1

(α+ 1)(α+ 2)
, β5∗ =

1

(α+ 2)2(α+ 3)
.

as z →∞. Recalling Lemma 15, we can prove that the remainder term in the expansion

of w(z) converges to some constant c7 and the order of the next term is O(z−1 log z).

Substracting u(z)2 yields

VarN(z) ∼ β∗4z + β∗5 log z + c7 − c∗1
2 − 2β∗3β

∗
1 +O(z−1 log z), z →∞.

The variance VarN(z) is invariant to the change in the initial condition u(0) = 0. Hence,

the constant c∗2 := c7− c∗12− 2β∗3β
∗
1 is independent of c∗1 (although the value of c∗1 indeed

affects c7).

4.3.4 The renewal approximation

Finally, we sketch a proof of a central limit theorem for N(z) based on the renewal-

type approximation. We omit many details of the derivation here; these are described

carefully in Section 4.1.7. Based on (4.43) and (4.46), we approximate the number of

jumps N(z) with the number of renewals of a process with a generic step H := Dz + Jz,

where

Dz
d
=

E

β∗1(α+ 1)
, Jz

d
=

1

β∗1
B,
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with E
d
= Exponential(1) and B

d
= Beta(α, 1). H has the following moments

µ = EH =
1

β∗1
, and σ2 = VarH =

2

β∗1
2(α+ 1)(α+ 2)

.

Hence, for a counting function of the renewal process with a generic step H, we have a

central limit theorem

R(z)− zµ−1

σµ−3/2
√
z

d→ N (0, 1), z →∞, (4.47)

Analogous to Section 4.1.7, carefully dealing with the accumulating discrepancies, we

obtain the distributional convergence

N(z)− β∗1z√
β∗4z

d→ N (0, 1), z →∞.

4.3.5 Summary of the results

Translating back to the original t-horizon setting, we collect all the results obtained in

this section. Let N(t) be the number of items optimally packed into the knapsack of

capacity C.

Theorem 12. As t→∞, the optimal packing policy is self-similar with the acceptance

window of the form ϕ∗(t, y) = (C − y)αδ∗(t(C − y)α), where

δ∗(t) =
α+ 1

β∗1α t
1/(α+1)

−
(
α+ 1

2β∗1
2α2

+
β∗2(α+ 1)

β∗1
2α

)
1

t2/(α+1)
+O(t−3/(α+1)), (4.48)

the number of packed items N(t) has the mean satisfying

v(t) = EN(t) = β∗1t
1/(α+1) +

β∗2
α+ 1

log t+ c∗1 +
β∗3

t1/(α+1)
+O(t−2/(α+1)),

and the variance satisfying

VarN(t) = β∗4t
1/(α+1) +

β∗5
α+ 1

log t+ c∗2 +O(t−1/(α+1) log t).
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Moreover, the following normal convergence holds

N(z)− β∗1z√
β∗4z

d→ N (0, 1).

Specialising Theorem 6 in the discrete-time bin-packing to the distribution F (x) =

(x/C)α with the support [0, C], we see that the two problems are asymptotically similar,

i.e. their value functions satisfy |vt(C)− v(t)| = O(1), t→∞.

4.4 The interval parking

Let D = {(x, y) ∈ [0, 1]2 : x ≤ y} and let P be a homogeneous Poisson point process

on [0,∞) × D with 2×Lebesgue measure as intensity. Let (t1, x1, y1), (t2, x2, y2), . . . be

the atoms of P labelled by increasing the time component t1 < t2 < · · · . The points

(xi, yi) are i.i.d. uniformly in D. We think of (xi, yi) as an interval observed at time

ti, when we have to decide whether to park it into [0, 1], or skip without an option to

retrieve it. Restricting the time horizon to [0, t] (we denote a restricted process by Pt),

our goal is to park as many intervals with the constraint that every consecutive selected

interval should lie completely right-hand side of the last selected interval, e.g. with the

last selected interval [x, y], the next interval that we can choose must belong to [y, 1].

This is known in the literature as Rényi’s parking problem [52]. In his paper he de-

rived the asymptotic ‘mean filling density’, which is known as Rényi’s Parking Constant.

He also derived an asymptotic expansion of the function measuring the ‘filled’ part of

the interval. The latter was later improved by Dvoretzky and Robbins [31]. Many other

papers considered a discrete version of the problem, where the intervals are chosen by

selecting two integer points on a one-dimensional lattice [30, 42, 51, 57, 64]. However,

in this section we are more interested in the number of parked intervals rather than the

filling measure.

Introduce the counting function N(t) that keeps track of the number of intervals
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parked by the optimal selection policy; then a function v(t) : R+ → R+ is defined as

v(t) := EN(t).

We now derive the optimality equation for v(t). Consider the setup with a horizon

t+ h, h > 0. Due to the properties of the Poisson process, with probability 1− h+ o(h)

we expect no arrivals until instant h. On the other hand, a decision has to be made on

the observation (x, y) that arrives with probability h; thus,

v(t+ h) = (1− h) v(t) + 2h

∫ 1

x=0

∫ 1

y=x
max{v(t), v(t(1− y)2) + 1} dxdy + o(h).

Rearranging, dropping the terms of smaller order, and taking limits on both sides as

h→ 0, we obtain

v′(t) = 2

∫ 1

x=0

∫ 1

y=x
(v(t(1− y)2) + 1− v(t))+ dxdy.

Changing the order of integration and integrating with respect to x leads to

v′(t) = 2

∫ 1

0
(v(t(1− y)2) + 1− v(t))+ ydy, (4.49)

which should be accompanied by the initial condition v(0) = 0. Finally, employing substi-

tutions v(t3) := u(z) and z(1−y)2/3 := z−y, we transform (4.49) into a convolution-type

equation

u′(z) = 9

∫ 1

0
(u(z − y)− u(z) + 1)+η(z, y)dy, u(0) = 0, (4.50)

where

η(z, y) = z

(
1−

(
1− y

z

)3/2)(
1− y

z

)1/2
.
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4.4.1 Asymptotic expansion of the optimal value function

To obtain the asymptotic expansion of the solution to (4.50), we employ the asymptotic

comparison method once again. Introduce an operator I acting on C1(R+) as follows

If(z) := 9

∫ 1

0
(u(z − y)− u(z) + 1)+η(z, y)dy

Specialising Lemma 3 yields the following result.

Corollary 6. Suppose g ∈ C1(R+). If the function satisfies g′(z) > Ig(z), at least for

all sufficiently large z, then sup
z≥0

(u(z) − g(z)) < ∞. Likewise, if g′(z) < Ig(z) for all

sufficiently large z, then inf
z≥0

(u(z)− g(z)) > −∞.

Let us try first the test functions of the form u0(z) = α0z, where α0 is a positive

parameter. Firstly, let us inspect the asymptotics of Iu0(z)

Iu0(t) = 9

∫ 1

0
(u0(z − y)− u0(z) + 1)+η(z, y)dy. (4.51)

Setting δ0(z) to be the solution to

u0(z − y) + 1− u0(z) = 0;

rewrite (4.51) as

Iu0(t) = 9

∫ δ0(z)

0
(u0(z − y)− u0(z) + 1) η(z, y)dy. (4.52)

From the definition of δ0(z) it follows that δ0(z) = 1/α0; hence, plugging this into (4.52)

yields

Iu0(z) =
9

4α2
0

+O(z−1), z →∞. (4.53)
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Mathching (4.53) with u′0(z) = α0 leads to

u′0(z) > Iu0(z), α0 >

(
3

2

)2/3

,

u′0(z) < Iu0(z), α0 <

(
3

2

)2/3

.

Thus, an application of Corollary 6 yields the main term of the asymptotic expansion

u(z) ∼
(

3

2

)2/3

z, z →∞. (4.54)

To refine (4.54) let us try proxy functions of the form

u1(z) =

(
3

2

)2/3

z + α1 log (z + 1), α1 ∈ R.

On the one hand, we have

Iu1(z) = 9

∫ δ1(z)

0
(u1(z − y) + 1− u1(z)) η(z, y)dy, (4.55)

where δ1(z) solves

u1(z − y) + 1− u1(z) = 0.

It is not hard to see that δ1(z) = (2/3)2/3+O(z−1), z →∞; hence, plugging the principal

term of δ1(z) into (4.55) results in

Iu1(z) =

(
3

2

)2/3

− 3 + 16α1

8z
+O(z−2), z →∞. (4.56)

To match (4.56) with u′1(z) ∼ (3/2)2/3 + α1/z, z →∞, one needs to choose α1 = −1/8;

therefore,

u(z) ∼
(

3

2

)2/3

z − log z

8
, z →∞.
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Finally, let us examine approximating functions of the type

u2(z) =

(
3

2

)2/3

z − log (z + 1)

8
+

α2

(z + 1)
, α2 ∈ R,

with

u′2(z) =

(
3

2

)2/3

− 1

8z
+

(
1

8
− α2

)
1

z2
+O(z−3), z →∞. (4.57)

To work out the expansion of Iu2(z) up to the required order, we need the two-term

expansion of δ2(z); namely,

δ2(z) =

(
2

3

)2/3

+

(
2

3

)1/3 1

12(z + 1)
+O(z−2), z →∞. (4.58)

Using (4.58) yields an expansion

Iu2(z) ∼
(

3

2

)2/3

− 1

8z
+

(
−1

4
−
(

2

3

)2/3 1

80
+ 2α2

)
1

z2
, z →∞. (4.59)

Comparing (4.57) to (4.59) and using Lemma 3 yields

lim sup
t→∞

[u(t)− u2(t)] <∞, when α2 <
1

8
+

1

240

(
2

3

)2/3

, and

lim inf
t→∞

[u(t)− u2(t)] >∞, when α2 >
1

8
+

1

240

(
2

3

)2/3

.

With the third term of u2(z) being bounded, the following asymptotic expansion holds.

u(z) =

(
3

2

)2/3

z − log z

8
+O(1), z →∞.

Applying the analysis from Sections 4.1.3, 4.1.4, and 4.1.5, one can prove the conver-

gence of the O(1) term to a constant. Subsequently, employing an analogue of Lemma

16, the following refined result can be obtained.
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Theorem 13. As z →∞, the optimal control function satisfies

δ∗(z) =

(
2

3

)2/3

+

(
2

3

)1/3 1

12z
+O(z−2) (4.60)

and the optimal value function satisfies

u(z) =

(
3

2

)2/3

z − 1

8
log z + c∗3 +

(
2

3

)2/3 1

240z
+O(z−2).

4.4.2 The variance expansion

In terms of u(·) and z, let w(z) := EN(z)2; then w(z) satisfies

w′(z) = 9

∫ δ

0
(w(z − y)− w(z) + (1 + 2u(z − y))) η(z, y)dy, (4.61)

with w(0) = 0. We apply the comparison method based on Lemma 3 to obtain the expan-

sion of w(z). Skipping over the detailed computation, which is presented in Appendix

A.6, we obtain

w(z) ∼ 3

2

(
3

2

)1/3

z2−1

4

(
3

2

)2/3

z log z+

(
1

6
+ 2c∗3

)(
3

2

)2/3

z+
(log z)2

64
+

(
1

240
− c∗3

4

)
log z,

as z →∞. Substracting u(z)2 yields

VarN(z) ∼
(

3

2

)2/3 z

6
+

log z

240
+ c∗4, z →∞.

4.4.3 The renewal approximation

Analogously to Section 4.1.7, we investigate the renewal-type behaviour in the left-to-

right packing problem. From (4.60), as z gets large, the control δ(z) approaches a

constant. This suggest, approximating the number jumps N(z) with the number of
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renewals of a process with a generic step H := Dz + Jz, where

Dz
d
=

22/3

35/3
E, Jz

d
=

(
2

3

)2/3

B,

with E
d
= Exponential(1) and B

d
= Beta(2, 1). The moments of H are as follows

µ =

(
2

3

)2/3

and σ2 =
1

9

(
2

3

)1/3

.

Hence, introducing a counting function R(z),

R(z) := max{n : H1 + . . .+Hn ≤ z},

with Hj being i.i.d. replicas of H, we have a central limit theorem

R(z)− zµ−1

σµ−3/2
√
z

d→ N (0, 1), z →∞. (4.62)

Analogous to Section 4.1.7, carefully dealing with the accumulating discrepancies, we

obtain the distributional convergence

(
2

3

)1/3 N(z)− (3/2)2/3z√
6z

d→ N (0, 1), z →∞.

4.4.4 Summary of the results

Translating back to the original t-horizon setting, we collect all the results obtained in

this section. Let N(t) be the number of intervals optimally packed in an online fashion.

Theorem 14. As t→∞, the number of packed intervals has the mean satisfying

EN(t) =

(
3

2

)2/3

t1/3 − log t

24
+ c∗3 +

(
2

3

)2/3 1

240 t1/3
+O(t−2/3),
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and the variance satisfying

VarN(t) =

(
3

2

)2/3 t1/3

6
+

log t

720
+ c∗4 +O(t−1/3 log t).

Moreover, the following normal convergence holds

(
2

3

)1/3 N(t)− (3/2)2/3z

t1/6
√

6

d→ N (0, 1).

4.4.5 The nested system of intervals

In this section we briefly touch upon a closely related problem of nesting as many random

intervals as possible. As in the left-to-right packing, the random intervals arrive with

unit-rate Poisson process. However, this time, if the last selected interval is [x, y], the

next observed interval that we can choose must lie within [x, y]. Decomposing at the

first arrival, one can derive the optimality equation for the maximal expected number of

embedded intervals, v(t)

v′(t) = 2

∫ 1

0

∫ 1

x
(v(t(y − x)2) + 1− v(t))+ dxdy, v(0) = 0.

Now, reduce the right-hand side to a one-dimensional integral by substituting y−x = 1−ξ

v′(t) = 2

∫ 1

0
(v(t(1− ξ)2) + 1− v(t))+ ξdξ, v(0) = 0. (4.63)

The equation (4.63) is identical to (4.49); hence, v(t) must possess the properties outlined

in Theorem 14.

The equivalence of the online left-to-right packing and embedding problems seems

surprising at first glance. However, the explanation lies in the exchangeability of spac-

ings generated by uniform order statistics — the equivalence breaks for non-uniformly

sampled intervals.



Chapter 5

Diffusion approximations in the

longest increasing subsequence

problem

In this chapter we study several stochastic processes that arise naturally in the process

of the longest increasing subsequence selection in continuous time. As we are interested

in the time evolution of the last selection and the number of selections processes, it is

convenient to extend the underlying framework slightly by considering a homogeneous

Poisson random measure Π with intensity ν in the halfplane R+ × R, along with the

filtration induced by restricting Π to [0, t]× R for t ∈ [0, 1].

Recall Definition 14 of the threshold strategy in the continuous-time longest increasing

subsequence selection. For a given control ψ, define X(t) and L(t) to be, respectively,

the last mark selected and the number of marks selected within the time interval [0, t].

The process X = (X(t), t ∈ [0, 1]), which we call the running maximum, is a time-

inhomogeneous Markov process, jumping from the generic state x at rate ψ(t, x) to

another state uniformly distributed on [x, x+ψ(t, x)]. The length process L = (L(t), t ∈

[0, 1]) just counts the jumps of X; hence the bivariate process (X,L) is also Markovian.

127
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Moreover, the conditional distribution of ((X(t), L(t)), t ≥ s) depends on the pre-s

history only through X(s).

In the offline problem, some work was completed on the size of transversal fluctuations

about the diagonal x = t in [0, 1]2. Johansson [38] proved a measure concentration result

asserting that, with probability approaching 1, every longest increasing subsequence

(which is not unique) lies in a diagonal strip of the width of the order ν−1/6+ε. Duvergne,

Nica and Virág [28] recently proved the existence and gave some description of the

functional limit, which is not Gaussian. But for smaller exponent −1/2 < α < −1/6,

Joseph and Peled [29] showed that if the increasing sequence is restricted to lie within

the strip of width ν−α, the expected maximum length remains to be asymptotic to 2
√
ν,

while the limit distribution of the length switches to normal.

To extend the parallels and gain further insight into the optimal selection, we intro-

duce the notation for the scaled and centred versions of running maximum and number

of selection processes Lν(t) and Xν(t):

X̃ν(t) := ν1/4(Xν(t)− t), L̃ν(t) = ν1/4
(
Lν(t)√

2ν
− t
)
, t ∈ [0, 1]. (5.1)

To compare, in the offline problem by similar centring the critical transversal and lon-

gitudinal scaling factors appear to be ν1/6 and ν1/3, respectively. The central result of

this chapter (Theorem 15) is a functional limit theorem which entails that the process

(X̃ν , L̃ν) converges weakly to a simple two-dimensional Gaussian diffusion. In particular,

X̃ν approaches a Brownian bridge. The limit of L̃ν is a non-Markovian process with the

covariance function

(s, t) 7→ 2s(2− t)− (2− s− t) log(1− s)
6
√

2
, 0 ≤ s ≤ t ≤ 1,

which corresponds to a correlated sum of a Brownian motion and a Brownian bridge.

The question about functional limits for Lν(t) and Xν(t) has been initiated by Bruss
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and Delbaen [20]. They employed the Doob-Meyer decomposition to compensate the

processes, and in an analytic tour de force showed that the scaled martingales jointly

converge to a correlated Brownian motion in two dimensions. However, the compensation

keeps out of sight a drift component absorbing much of the fluctuations immanent to

the selection process, let alone that the compensators themselves are nonlinear integral

transforms of Xν . To break the vicious circle one needs to obtain the limit of Xν

under complete control over the centring. Curiously, in the forerunning paper Bruss and

Delbaen mentioned that P.A. Meyer had suggested to them to scrutinise the generator

of the Markov process (Xν , Lν) (see [19], Remark 2.4).

Looking at the generator of (5.1) we shall recognise the limit process without difficulty.

But in order to justify the weak convergence in the Skorokhod space on the closed interval

[0, 1] we will need to circumvent a difficulty caused by pole singularities of the control

function and the drift coefficient at the right endpoint. We shall also discuss related

processes and derive tight uniform bounds on the expected values of Xν and Lν , thus

embedding the moment expansions from Theorem 11 in the functional context.

Notation. We sometimes omit dependence on the intensity parameter ν wherever there

is no ambiguity. Notation X and L will be context-dependent, typically standing for

processes associated with a near-optimal online selection strategy, while X̃ and L̃ will

denote the normalised versions with scaling and centring as in (5.1).

5.1 Selection strategies

Intuitively, the bigger ψ, the faster X and L increase. To enable comparisons of selection

processes with different controls it is very convenient to couple them by means of an

additive representation through another Poisson random measure Π∗, thought of as a

reserve of positive increments. The underlying properties of the planar Poisson process

are translation invariance and spatial independence: Π restricted to the shifted quadrant

(t, x) + R2
+ is independent of Π|[0,t]×R and has the same distribution as the translation
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of Π|R2
+

by vector (t, x). So, letting Π∗ to be a distributional copy of Π, a solution to the

system of stochastic differential equations

dX(t) =

∫ ψ(t,X(t))

0
xΠ∗(dtdx), dL(t) =

∫ ψ(t,X(t))

0
Π∗(dtdx) (5.2)

with initial values X(0) = x0 and L(0) = 0 will have the same distribution as (X,L).

By virtue of the additive realisation through Π∗, the online increasing subsequence

problem is transformed into an online knapsack packing problem [26]. Here, the generic

item of some size x observed at time t (an atom of Π∗) can be either packed or dismissed.

The objective translates as maximisation of the expected number of items added within

the unit time horizon to a knapsack of unit capacity. Note that for the increasing

subsequence problem the (continuous) distribution of marks does not matter, while the

knapsack problem is not distribution-invariant.

Lemma 18. For i = 1, 2 let Xi be selection processes driven by controls ψi. By coupling

via (5.2), each time a process with smaller acceptance window jumps, the other process

also has a jump of the same size.

Proof. Straight from (5.2),

d(X1 −X2) = sgn(ψ1 − ψ2)

∫ ψ1∨ψ2

ψ1∧ψ2

xΠ∗(dtdx),

where for shorthand ψi = ψi(t,Xi(t)).

Conditionally on (X(s), L(s)) = (x, `), the process (X(s + ·) − x, L(s + ·) − `)) has

the same distribution as (X(s,x), L(s,x)), which similarly to (5.2) is given by

dX(s,x)(u) =

∫ ψ(s+u,x+X(s,x)(u))

0
yΠ∗(dudy), dL(s,x)(u) =

∫ ψ(s+u,x+X(s,x)(u))

0
Π∗(dudy).
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Averaging, we obtain formulas for the predictable compensators of X and L

CX(t) :=
ν

2

∫ t

0
ψ2(s,X(s))ds, CL(t) := ν

∫ t

0
ψ(s,X(s))ds, (5.3)

so X − CX , L− CL are zero-mean martingales.

With every control we may further relate a zero-mean martingale

M(t) := L(t) + E{L(1)− L(t)|X(t)} − EL(1) (5.4)

with terminal value L(1) − EL(1). If ψ does not depend on x, L has independent

increments and M(t) = L(t)− EL(t).

By the setup of the problem, the running maximum must satisfy X(1) ≤ 1. In terms

of the control function this translates to the following condition.

Definition 17. A control function ψ(t, x) is called feasible if

0 < ψ(t, x) ≤ 1− x for (t, x) ∈ [0, 1]2.

In the sequel, if not stated otherwise we set X(0) = 0 and only consider feasible

controls.

5.1.1 Principal convergence of the moments

This section follows closely the arguments found in [20], pp. 291-292.

Let

p(t) := EX(t) = ECX(t), q(t) :=
EL(t)√

2ν
=

ECL(t)√
2ν

.

Some general relations between the moments follow straight from formulas for the com-
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pensators (5.3). For shorthand, write ψ = ψ(s,X(s)). We have

0 ≤ E
∫ t

0

(
1±

√
ν/2ψ

)2
ds = t± 2q(t) + p(t),

where the right-hand side in increasing in t. It follows,

p(t)− t ≥ 2 (q(t)− t). (5.5)

Using the Cauchy-Schwarz inequality

(p(t)− t)2 =

(
E
∫ t

0

(
1− ν

2
ψ2
)

ds

)2

≤ E
∫ t

0

(
1 +

√
ν/2ψ

)2
ds E

∫ t

0

(
1−

√
ν/2ψ

)2
ds

= (t+ 2q(t) + p(t))(t− 2q(t) + p(t)). (5.6)

Similarly

(q(t)− t)2 =

(
E
∫ t

0
1 ·
(

1−
√
ν/2ψ

)
ds

)2

≤ t (t− 2q(t) + p(t)) (5.7)

The above relations did not use the feasibility constraint. For feasible control we have

p(1) < 1, hence from (5.5) also q(1) < 1. Since all factors in the right-hand sides of (5.6),

(5.7) are increasing, replacing them by their maximal values at t = 1 we obtain

(p(t)− t)2 < 8(1− q(1)), (q(t)− t)2 < 2(1− q(1)). (5.8)

We say that a strategy ψ = ψν is asymptotically optimal in the principal term if q(1)→ 1,

as ν → ∞, i.e. ELν(1) ∼
√

2ν; in that case (5.8) imply the uniform convergence of the

moments

sup
t∈[0,1]

|p(t)− t| → 0, sup
t∈[0,1]

|q(t)− t| → 0.
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It follows from (4.39) that under the optimal strategy

1− q(1) ∼ log ν

12
√

2ν
, ν →∞. (5.9)

This relation can be called a two-term asymptotic optimality. Whenever this holds, the

general bounds (5.8) imply that both supt∈[0,1] |p(t) − t| and supt∈[0,1] |q(t) − t| can be

estimated as O(
√

log ν/ν1/4). A refinement of the convergence rate will be obtained in

Section 5.6.

5.1.2 The greedy strategy

The greedy strategy, with control ψ(t, x) = 1 − x, outputs the sequence of consecutive

records. The strategy is optimal for ν < 1.34... Statistical properties of records from

the Poisson process is a much-studied subject [22]. It is well known that, as ν increases,

the distribution of L(1) approaches normal with mean and variance both asymptotic to

log ν. Normalisation (5.1) is not appropriate here as most of the records concentrate

near the north-west corner of the unit square (see Figure 4.2a for the simulated paths of

the running maximum corresponding to the greedy selection strategy).

5.1.3 The stationary strategy

We call the strategy with control ψ(t, x) =
√

2/ν stationary. Although not feasible,

the stationary strategy is an important benchmark. Clearly, L is a Poisson counting

process with intensity EL(1) =
√

2ν. Taking general constant control ψ(t, x) =
√
c/ν

with some c > 0 will yield a strategy outputting the mean length
√
{c ∧ (2/c)}ν, which

is maximal for c = 2. In fact, a much stronger optimality property holds: the stationary

strategy achieves the maximum expected length over the class of strategies that satisfy

the mean-value constraint EX(1) ≤ 1. This gives the mean-constraint upper bound

on EL(1) derived in Section 4.2.1 because each feasible strategy meets the mean-value

constraint.
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It is seen from (5.2) that X is a compound Poisson process

X(t) =

√
2

ν

L(t)∑
i=0

Ui ,

where U1, U2, . . . are independent of L, uniformly distributed on [0, 1]. Straightforward

calculation of moments using Wald’s identities yields

EX(t) = t, VarX(t) =
23/2t

3
√
ν
, Cov(X(t), L(t)) = t.

Since (X,L) has independent increments, a functional limit in the Skorohod topology

on D[0, 1] follows easily from the multidimensional invariance principle:

(X̃, L̃)⇒ (W1,W2), as ν →∞,

where ⇒ denotes weak convergence, and the limit process W := (W1,W2) is a two-

dimensional Brownian motion with zero drift and covariance matrix

E{W (t)TW (t)} = tΣ, where Σ :=

2
√
2

3
1√
2

1√
2

1√
2

 (5.10)

So, marginally, W1 and W2 are centred Brownian motions with diffusion coefficients and

correlation, respectively,

σ1 :=
23/4√

3
, σ2 :=

1

21/4
, ρ :=

√
3

2
. (5.11)

Notably,

ρ =
σ2
σ1
,

which implies that the process W satisfies the identity

2W2 −W1
d
= W1, (5.12)
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which has a pre-limit analogue

2L̃− X̃ d
= X̃. (5.13)

Identity (5.13) can be explained by the symmetry of the uniform distribution, Ui
d
= 1−Ui,

which allows us to write

X(t)
d
=

√
2

ν

L(t)∑
i=0

(1− Ui) =

√
2

ν
L(t)−X(t) .

Martingale (5.4) just coincides with naturally centred L.

The correlated Brownian motion has appeared in Bruss and Delbaen [20] (Theorem

4.1), as the limit of (X,L) centred by their compensators CX and CL under the optimal

(feasible) strategy. This connection confirms that the key to the fluctuation problem is

understanding the nature of the drift component.

5.1.4 A feasible version of the stationary strategy

The strategy driven by ψ(t, x) =
√

2/ν ∧ (1− x) is a counterpart of that introduced by

Samuels and Steele in the discrete-time setting [55]. This is a minor modification of the

stationary strategy to meet the feasibility condition. Define the hitting time

τ := inf{t ∈ [0, 1] : X(t) ≥ 1−
√

2/ν}

with the convention inf ∅ = 1. The strategy acts as the stationary before τ , and if τ < 1

proceeds with a greedy selection, so, in essence, the selection process is frozen at time τ .

Using elementary renewal theory arguments, we find asymptotics of the moments

EL(1) ∼
√

2ν − 23/4√
3π

ν1/4, VarL(1) ∼ 23/2

3

(
1− 1

π

)√
ν.

Hence the strategy is asymptotically optimal in the principal term.

Furthermore, by Lemma 17, L̃(1) converges in distribution to 2−1/4{(ξ1/
√

3) ∧ ξ2},

where ξ1, ξ2 are independent N (0, 1). The normalised terminal value X̃(1) is nonpositive,
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and converges in distribution to −23/43−1/2(η)+, where η is another standard normal

variable and (·)+ denotes the positive part. By symmetry of the normal distribution,

the hitting time τ assumes value 1 with probability approaching P(V1(1) < 0) = 1/2,

and otherwise 1− τ is of the order ν−1/4. Comparing with the stationary strategy, one

can see that there is an optimality gap of order ν1/4, which occurs due to a premature

freeze of selection in the event τ < 1.

Note that the moments of terminal values satisfy 1−p(1) ∼ c1ν−1/4, 1−q(1) ∼ c2ν−1/4

with some c1, c2 > 0, while (5.8) overestimates the first as 1− p(1) = O(ν−1/8).

In terms of the normalised running maximum, τ is the time when X̃ hits the straight

line connecting points (0, ν1/4) and (1, 0). Since τ → 1 in probability, (X̃, L̃) has the

same functional limit as under the stationary strategy on every interval [0, 1 − h], for

h ∈ (0, 1). Extending the functional limit to the closed [0, 1] leads to a discontinuity at

t = 1. To capture the jump, it is enough to modify the correlated Brownian motion W

by replacing the terminal value (W1(1),W2(1)) with

(W1(1)− (W1(1))+,W2(1)− (2/
√

3)(W1)+).

5.1.5 Self-similar asymptotically optimal strategies

Recall Definition 15 of a self-similar selection policy which has the control ψ of the form

ψ(t, x) := (1− x) δ(ν(1− t)(1− x)), (t, x) ∈ [0, 1]2 (5.14)

for some function δ : R+ → [0, 1]. Note that such a strategy is feasible and ψν(0, 0) =

δ(ν). The rationale behind this definition is the following. Assuming x to be the run-

ning maximum at time t, the remaining part of the chain should be selected from the

north-east rectangle spanned on (t, x) and (1, 1), and by the optimality principle the

subsequence selected from the rectangle should have maximal expected length. Map-

ping the rectangle onto [0, 1]2 it is readily seen that the subproblem is an independent
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replica of the original problem of optimal selection from the unit square with intensity

parameter ν(1− x)(1− t). The martingale (5.4) assumes the form

M(t) = L(t) + F (ν(1− t)(1−X(t)))− F (ν), (5.15)

where the value function F (analogue of v(t) from Section 4.1), for given control, depends

on one variable

F (ν) := ELν(1), F (0) = 0.

Assumption. From this point on we assume that the selection strategy is self-similar

as defined by (5.14), with function δ having asymptotics

δ(ν) =
√

2/ν +O
(
ν−1

)
, ν →∞. (5.16)

This assumption is central and deserves comments. Whenever ν(1− x)(1− t) is large,

(5.16) implies asymptotics of the control

ψ(t, x) ∼

√
2(1− x)

ν(1− t)
, (5.17)

which shows that near the diagonal x = t the acceptance window is about the same as

for the stationary strategy. Away from the diagonal, the acceptance window is close to

that for the stationary strategy adjusted to the rectangle north-east of (t, x).

It is known from Theorem 11 that the optimal strategy satisfies the asymptotic

expansion

δ∗(ν) ∼
√

2/ν − (3ν)−1 +O(ν−3/2).

A minor adjustment of Theorem 11 shows that if we assume, more generally, the rela-

tion δ(ν) ∼
√

2/ν+β/ν with some parameter β ∈ R, then asymptotic expansions of the

moments (4.39), (4.40) are still valid, with only constant terms depending on β. Using

a sandwich argument based on Lemma 18, one can further show that under the assump-
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tion (5.16) expansions of the moments hold but with constant terms being replaced by

some O(1) remainders. In particular, condition (5.16) ensures the two-term asymptotic

optimality (5.9), equivalent to the asymptotic expansion of the value function,

F (ν) =
√

2ν − 1

12
log(ν + 1) +O(1). (5.18)

We stress that the logarithmic term here (as well as in the counterpart of the variance

formula (4.40)) is not affected by the remainder in (5.16), rather appears due to the

self-similar adjustment of (a feasible version of) the stationary strategy, as incorporated

in (5.17). The impact of the second term in (5.16) on moments of the running maximum

will be scrutinised in Section 5.6.

Approximation (5.17) is not useful when t or x is too close to 1 so that ν(1− t)(1−x)

varies within O(1). To embrace the full range of the variables, for the sequel we choose

β > 1 large enough to meet the bounds

∣∣∣∣∣ψ(t, x)−

√
2(1− x)

ν(1− t)

∣∣∣∣∣ <
β

ν(1− t)
, for (t, x) ∈ [0, 1)× [0, 1). (5.19)

This will be employed along with the bound

ψ(t, x) <
1

ν(1− t)
, for 1− x < 1

ν(1− t)
(5.20)

which follows by feasibility.

5.2 The generators

The selection process in Section 5.1.4 demonstrates one type of possible pathology, caused

by large overshooting the diagonal at times close to t = 1. Nevertheless, under (5.16)

it is not even evident that (X̃, L̃) has a sensible limit in D[0, 1]. A significant technical

difficulty in showing the convergence is the singularity of (5.17) at t = 1. This will be

handled in two steps. First, we bound the time variable away from t = 1 and show
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the convergence of the generators on a sufficiently big space of test functions. Then we

will apply domination arguments to bound fluctuations near the right endpoint, thus

justifying convergence on the full [0, 1].

The processes we consider are not time-homogeneous; therefore, by computing gen-

erators we include the time variable in the state vector. From (5.2), the generator of the

jump process (X,L) is

Lνf(t, x, `) = ft(t, x, `) + ν

∫ ψ(t,x)

0
{f(t, x+ u, `+ 1)− f(t, x, `)}du.

For the processes centred by t we should include −fx − f` in the generator. Then, with

the change of variables

x→ xν−1/4 + t, `→ (`ν−1/4 + t)
√

2ν, ψ̃(t, x) := ν1/4ψ(t, xν−1/4 + t)

we arrive at the generator of (X̃, L̃)

L̃νf = ft − ν1/4(fx + f`) + ν3/4
∫ ψ̃(t,x)

0
{f(t, x+ u, `+ v)− f(t, x, `)}du, (5.21)

where we abbreviate f = f(t, x, `) etc., and

v := (4ν)−1/4 (5.22)

We extend L̃νf by 0 outside the reachable range of (X̃, L̃). Note that the range of X̃(t)

lies within the bounds

−tν1/4 ≤ x ≤ (1− t)ν1/4.

We fix h ∈ (0, 1) and focus on t ∈ [0, 1− h], so achieving uniformly in this range

ψ̃(t, x) = O(ν−1/4), (5.23)
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and for k ≥ 1

ψ̃k(t, x) =

(
2− 2x

ν1/4(1− t)

)k/2
ν−k/4 +O(ν−(k+2)/4), for x ≤ (1− t)ν1/4 − 1

ν3/4(1− t)
(5.24)

as dictated by the bounds (5.19), (5.20).

Now let D be the space of vanishing at infinity functions f ∈ C3
0 ([0, 1] × R2) which

satisfy a rapid decrease property

sup |xkf•(t, x, `)| <∞,

where f• is any derivative of f of the first or second order and k > 0. Set

D>
h,ν := {(t, x, `) : t ∈ [0, 1−h], |x| > ν1/16}, D<

h,ν := {(t, x, `) : t ∈ [0, 1−h], |x| ≤ ν1/16}.

We shall be using that for f ∈ D

lim
ν→∞

sup
D>h,ν

|νkf•(x)| = 0. (5.25)

The integrand in (5.21) expands as

f(t, x+ u, `+ v)− f(t, x, `) = fxu+ f`v +
1

2
fxx u

2 + fx` uv +
1

2
f`` v

2 +R,

where the remainder can be estimated as

|R| ≤ c
3∑
i=0

uiv3−i,

with constant c chosen bigger than the maximum absolute value of any third derivative

of f . Hence for the integrated remainder we have a uniform estimate

ν3/4

∣∣∣∣∣
∫ ψ̃

0
Rdu

∣∣∣∣∣ ≤ ν3/4c
4∑
i=1

ψ̃iv4−i = O(ν−1/4),
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using (5.23), (5.22).

Integrating the Taylor polynomial yields

L̃νf = ft−ν1/4(fx+f`)+ν
3/4

{
1

2
fx ψ̃

2 + f` vψ̃ +
1

6
fxxψ̃

3 +
1

2
fx` ψ̃

2v +
1

2
f``v

2ψ̃

}
+R̃(ν),

where R̃(ν) = O(ν−1/4). Applying (5.25)

lim
ν→∞

sup
D>h,ν

|L̃νf(t, x, `)| = 0. (5.26)

Thus we focus on the range D<
h,ν , where (5.19) and (5.24) can be employed. From (5.19)

−ν−1/4fx + ν3/4
1

2
fxψ̃

2 = − x

1− t
fx +O(ν−1/4).

Observing that in this range |xν−1/4| ≤ ν−3/16 for k > 0 we expand as

ψ̃k(t, x, `) = 2k/2ν−k/4 − 2k/2−1x

1− t
ν−(k+1)/4 +O(ν−(k+1)/4−1/8),

with the remainder estimate being uniform over D<
h,ν . The remaining calculations is a

careful book-keeping using this formula and that the derivatives are uniformly bounded:

−ν1/4f` + ν3/4f`vψ̃ = − x

2(1− t)
f` +O(ν−1/8),

ν3/4
1

6
fxxψ̃

3 =

√
2

3
fxx +O(ν−3/16),

ν3/4
1

2
fx`ψ̃

2v =
1√
2
fx` +O(ν−3/16),

ν3/4
1

2
f``v

2ψ̃ =
1

2
√

2
f`` +O(ν−3/16).

Define an operator

L̃f := ft −
x

1− t
fx −

x

2(1− t)
f` +

σ1
2

2
fxx +

σ2
2

2
f`` + σ1σ2ρfx`,

with σ1, σ2, and ρ given by (5.11).
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Lemma 19. For f ∈ D and h ∈ (0, 1)

lim
ν→∞

sup
(t,x,`)∈[0,1−h]×R2

|L̃νf(t, x, `)− L̃f(t, x, `)| = 0

Proof. The supremum over D>
h,ν goes to zero since by (5.25) the analogue of (5.26) holds

true for L̃. The supremum over D<
h,ν goes to zero by the above expansions.

Operator L̃ is the generator of a Gaussian diffusion process which satisfies the stochas-

tic differential equations

dY1(t) = −Y1(t)
1− t

dt + dW1(t), (5.27)

dY2(t) = − Y1(t)

2(1− t)
dt + dW2(t), (5.28)

with zero initial value, where W = (W1,W2) is the two-dimensional Brownian motion

with covariance Σ introduced in (5.10).

From the equation for the first component (5.27), it is seen that Y1 is a Brownian

bridge

Y1(t) = (1− t)
∫ t

0

dW1(s)

1− s
, (5.29)

with the covariance function Cov(Y1(s), Y1(t)) = σ1s(1− t), 0 ≤ s ≤ t ≤ 1. In particular,

Y1(1) = 0. We shall discuss the second component later on.

The space D is dense in a larger space C3
0 ([0, 1− h]×R2). Since the differentiability

properties of functions are preserved under averaging over normally distributed transla-

tions, D is invariant under the semigroup of Y . Thus by Watanabe’s theorem (see [39],

Proposition 17.9) D is a core of operator L̃. The above Lemma 19 and Theorem 17.25

from [39] now imply weak convergence

(X̃ν , L̃ν)⇒ (Y1, Y2) in D[0, 1− h] (5.30)
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for every h ∈ (0, 1). A closer inspection of the above approximation errors suggests that

the quality of convergence deteriorates as h→ 0.

We encountered the Brownian motion W in connection with the free-endpoint sta-

tionary strategy in Sections 5.1.3 and 5.1.4. Now we see that the variable control (5.17)

causes a drift that, in the ν →∞ limit, forces the running maximum to timely arrive at

the north-east corner of the square.

5.3 Convergence to diffusion: end of the proof

The martingale problem for L̃ is well-posed on the complete interval, and the SDE (5.27)

has a unique strong solution. This suggests extending convergence (5.30) to the full [0, 1].

To that end, we need to monitor the behaviour of L̃νf for t close to 1. Estimates in

Bruss and Delbaen ([20], p. 294) show that X̃ν(1) → 0 in probability, which agrees

neatly with the Brownian bridge limit, but this still does not exclude giant fluctuations

of the pre-limit process near t = 1.

A similar kind of difficulty appears by the martingale approach to the classic problem

of convergence of the empirical distribution function [36, 37]. The proof found in Jacod

and Shiryaev (see [37], p.561) handles the nuisance by exploiting the time reversibility

of the Brownian bridge. Our argument will rely on the self-similarity.

Since (5.30) entails the convergence of finite-dimensional distributions for times t < 1

and ensures that the modulus of continuity behaves correctly over [0, 1 − h], to justify

tightness of X̃ν ’s, and hence their convergence on [0, 1], it will be enough to show that

lim
h→0

lim sup
ν

P

(
sup

t∈[1−h,1]
|X̃ν(t)| > h1/4

)
= 0. (5.31)

Define ξν,h by setting

X̃ν(1− h) = σ1
√
h(1− h) ξν,h.

Since X̃ν(1− h)
d→ Y1(1− h) the distribution of ξν,h is close to N (0, 1) for large ν.
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By self-similarity of the selection strategy, ((Xν(t) − t), t ∈ [1 − h, 1]) has the

same distribution as (h−1(Xνh2(t) − t), t ∈ [0, 1]) with the initial value Xνh2(0) =

ν−1/4σ1
√

(1− h)/h ξν,h, as is seen by zooming in the corner square north-east of the

point (1− h, 1− h) with factor h−1. Changing variable νh2 → ν, (5.31) translates as a

compact containment condition

lim
h→0

lim sup
ν

P

(
sup
t∈[0,1]

|X̃ν(t)| > h−1/4

)
= 0 (5.32)

under the initial value X̃ν(0) =
√

1− h ξν,h.

To verify (5.32) we shall squeeze the running maximum X between X↓ and X↑ whose

normalised versions satisfy the compact containment condition. We force the majorant

and the minorant to live on the opposite sides of the diagonal. Both have independent,

almost stationary increments so that functional limits can be readily identified. For

simplicity we will assume Xν(0) = 0. The general case with Xν(0) of the order ν−1/4

can be handled by the same method.

5.3.1 A majorant

Define process X↑ = X↑ν as the solution to

dX↑(t) =

∫ ψ↑(t)

0
xΠ∗(dtdx) + 1(X↑(t) = t)dt,

X↑(0) = Kν−1/2 for some big enough K > 0, with control

ψ↑(t) :=

√
2

ν
+

β

ν(1− t)
1(t ≤ 1−Kν−1/2)

not depending on x. The process never drops below the line x = Kν−1/2 + t, and

whenever the line is hit the path drifts along it for some time. By the construction,

above the diagonal the process X↑ increases faster than X, and is, in fact, a majorant.

Lemma 20. By coupling via (5.2), X↑ ≥ X a.s.
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Proof. By the virtue of (5.19), (5.20) and definition of ψ↑ we have ψ↑(t, x) > ψ(t, x)

for x > t, t ≤ 1 −Kν−1/2. Hence by Lemma 18, d{X↑(t) − X(t)} > 0 conditional on

X↑(t) > X(t) > t at time t < 1−Kν−1/2.

Initially X↑(0) > X(0), and X↑(t) > 1 > X(t) for t > 1 −Kν−1/2. Hence the only

way the paths can cross is that X overjumps X↑ from some position x < t ≤ X↑(t) at

some time t ≤ 1−Kν−1/2. The latter possibility is excluded because

ψ(t, x) <

√
2

ν

(
1 +

t− x
1− t

)
+

β

ν(1− t)
<

√
2

ν

(
1 +

t− x
2(1− t)

)
+

β

ν(1− t)

≤
√

2

ν
+
t− x
K
√

2
+

β

K
√
ν
< t− x+

K√
ν

for K chosen big enough.

Let

S(t) :=

∫ t

0

∫ ψ↑(t)

0
xΠ∗(dsdx)− t.

This is a process with independent increments, which we can split into two independent

components

S(t) =

(∫ t

0

∫ √2/ν

0
xΠ∗(dsdx)− t

)
+

∫ t

0

∫ ψ↑(t)

√
2/ν

xΠ∗(dsdx).

The mean value of the second part is estimated as

2ν√
ν

∫ 1−K/
√
ν

0

β

ν(1− t)
dt = O

(
log ν√
ν

)
,

and the first is a compensated compound Poisson process. Thus ν1/4S ⇒W1 as ν →∞.

Processes akin to (X↑(t) − t, t ∈ [0, 1]) are common in applied probability [7, 14].

In particular, by the interpretation as the content of a single-server M/G/1 queue, the

positive increments present jobs that arrive by Poisson process and are measured in

terms of the demand on the service time. The downward drift occurs due to the unit



Chapter 5. Diffusion approximations in the longest increasing subsequence problem 146

processing rate when the server is busy. Borrowing a useful identity,

X↑(t)− t = S(t)− inf
u∈[0,t]

S(u),

we conclude on the weak convergence (ν1/4(X↑(t)− t), t ∈ [0, 1]) ⇒ |W1| to a reflected

Brownian motion.

5.3.2 A minorant

This time we define X↓ by (5.2) with control

ψ↓(t, x) =


(√

2
ν −

β
ν(1−t)

)
∧ (t− x), for 0 ≤ t ≤ 1−K/

√
ν,

0, for 1−K/
√
ν < t ≤ 1.

where K is sufficiently large. We can regard this as a suboptimal strategy that never

selects marks x > t. Starting at state 0, the running maximum process stays below the

diagonal throughout, and gets frozen at t = 1 − K/
√
ν. A counterpart of Lemma 20,

X↓ < X a.s., is readily checked.

Switching general β > 0 to β = 0 impacts EX↓(t) by O(ν−1/2 log ν) uniformly in

t ∈ [0, 1]. Indeed, the jumps are bounded by 2/
√
ν, and the expected number of jumps

increases by O(log ν).

Assuming β = 0, the process (X↓(t) − t, t ∈ [0, 1 − Kν−1/2]) is a compensated

compound Poisson process on the negative half-line, with reflection at 0. We have

therefore

(ν1/4(X↓(t)− t), t ∈ [0, 1])⇒ −|W1|.

The rest of this section is dedicated to showing the convergence of the generator acting

on the functions f ∈ D with fx(t, 0) = 0 to the generator of a reflected Brownian motion.
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Computing the generator of the scaled process (ν1/4(X↓(t)− t), t ∈ [0, 1]) yields

L↓νf(t, x) = ft(t, x)− ν−1/4fx(t, x) + ν3/4
∫ ψ↓(t,x)

0
{f(t, x+ u)− f(t, x)}du,

where ψ↓(t, x) = ν1/4 ψ↓(t, xν−1/4 + t). To ensure the desired convergence, we choose

the space D↓

D↓ := {f ∈ C3
0 ([0, 1]× R) : sup |xkf•(t, x)| <∞, fx(t, 0) = 0},

where fx(t, 0) = 0 is a familiar condition for the class of functions that are acted upon

by the generator of a reflected Brownian motion. By Taylor’s theorem

L↓νf(t, x) = ft(t, x) +
σ21
2
fxx(t, x) +O(ν−1/4), (5.33)

uniformly in x ≤ ν−1/4
√

2− βν−3/4(1− t)−1 and 0 ≤ t ≤ 1−K/
√
ν.

Now, for x > ν−1/4
√

2− βν−3/4(1− t)−1 and 0 ≤ t ≤ 1−K/
√
ν,

L↓νf(t, x) = ft(t, x)− ν−1/4fx(t, x) + ν3/4
∫ −x
0
{f(t, x+ u)− f(t, x)}du. (5.34)

Finally, when 1−K/
√
ν < t ≤ 1,

L↓νf(t, x) = ft(t, x)− ν−1/4fx(t, x). (5.35)

Define an operator

L↓f := ft +
σ21
2
fxx(t, x).

Then, from (5.33), (5.34), and (5.35) for functions f ∈ D↓

lim
ν→∞

sup
(t,x)∈[0,1]×R

|L↓νf(t, x)− L↓f(t, x)| = 0.

Analogously to the proof of (5.30), we convince ourselves that D↓ is a core of the operator
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L↓ by observing that averaging over half-normally distributed translations retains the

differentibaility properties of functions.

5.3.3 The length process near termination

Having established the weak convergence of X̃, we wish to estimate fluctuations of L̃

near t = 1. To that end, we aim to verify that

lim
h→0

lim sup
ν

P

(
sup

t∈[1−h,1]
|L̃(t)− L̃(1− h)| > ε

)
= 0. (5.36)

Write s = 1− h and split the difference in (5.36) in three parts

L̃(t)− L̃(s) = ν1/4P1(t)− ν1/4P2(t) + ν1/4P3(t),

where

P1(t) := (2ν)−1/2{M(t)−M(s)},

P2(t) := (2ν)−1/2F (ν(1− t)(1−X(t)))− (1− t),

P3(t) := (2ν)−1/2F (ν(1− s)(1−X(s)))− (1− s).

From (5.18),

lim
ν→∞

sup
z∈[0,1]

ν1/4|(2ν)−1F (νz)− z| = 0.

Using this, definition of X̃ and that |1−
√

1− z| ≤ |z| for z < 1 we obtain

|P2(t)| ≤ |
√

(1− t)(1−X(t))− (1− t)|+

{(2ν)−1/2F (ν(1− t)(1−X(t)))−
√

(1− t)(1−X(t))} ≤∣∣∣∣∣∣(1− t)
√1− X̃(t)

ν1/4(1− t)
− 1

∣∣∣∣∣∣+ sup
z∈[0,1]

|(2ν)−1F (νz)− z| ≤

ν−1/4|X̃(t)|+ sup
z∈[0,1]

|(2ν)−1F (νz)− z| = ν−1/4|X̃(t)|+ o(ν−1/4),
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so from (5.32)

lim
h→0

lim sup
ν

P

(
sup

t∈[1−h,1]
ν1/4|P2(t)| > ε/3

)
= 0. (5.37)

This relation also holds for P3.

For the first part, apply Doob’s maximal inequality

P

(
sup

t∈[1−h,1]
ν1/4|P1(t)| > ε/3

)
≤ 9

2ε2
√
ν

Var{M(1)−M(1− h)}. (5.38)

In terms of the quadratic variation (see [16], Chapter 2)

Var{M(1)−M(s)} = E
∫ 1

s
ν ψ(t,X(t))ϕ(t,X(t))dt,

where

ϕ(t, x) = E{1 + F (ν(1− t)(1− x− Uψ(t, x)))− F (ν(1− t)(1− x))}2

(with U uniform on [0, 1]) is the mean-square size of the generic jump of M . Under the

optimal strategy 0 ≤ ϕ(t, x) ≤ 1 (finer estimates are in [20], Section 4), and from (5.18)

and (5.16) we have a uniform bound |ϕ(t, x)| < c. Whence

Var{M(1)−M(1− h)} < cE
∫ 1

1−h
ν ψ(t,X(t))dt = cE {L(1)− L(1− h)} < c

√
2νh,

the probability in (5.38) is estimated as O(
√
h), and (5.36) follows from this and (5.37).

5.4 The functional central limit theorem

By the domination argument, tightness of (X̃ν , L̃ν) follows on the whole [0, 1], and we

arrive at our main result.

Theorem 15. The normalised running maximum and the length process (5.1) driven by

a control satisfying (5.14) and (5.16) (in particular, under the optimal online selection
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strategy) converge weakly in the Skorokhod space D[0, 1],

(X̃ν , L̃ν)⇒ (Y1, Y2), as ν →∞,

where the limit bivariate process is a Gaussian diffusion defined by the equations (5.27),

(5.28) with zero initial conditions.

We observed already that Y1 is the Brownian bridge (5.29) and from (5.28)

Y2(t) =
Y1(t)

2
− W1(t)

2
+W2(t),

so splitting the martingale part in independent components, we get, explicitly,

Y2(t) =

∫ t

0

(1− t)
2(1− s)

dW1(s) +
1

4
W1(t) +

(
W2(t)−

3

4
W1(t)

)
, (5.39)

which is a sum of a Brownian motion, derived Brownian bridge, and another independent

Brownian motion.

To find the covariance structure, it is convenient to resort to matrix calculations. We

may write the solution to (5.27), (5.28) as

Y (t)T = ea(t)
∫ t

0
e−a(u)dW (u)T ,

where

a(t) := A

∫ t

0

1

1− u
du = A log (1− t), A :=

1 0

1
2 0

 ,

which by the Itó isometry yields

E{Y (s)TY (t)} =

∫ t

0
ea(s)−a(u)Σe(a(t)−a(u))

T
du, 0 ≤ s ≤ t ≤ 1.
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Since A is an idempotent matrix, the exponents are readily calculated as

ea(t) =
∞∑
i=0

Ai(log (1− t))i

i!
= I +A

∞∑
i=1

(log (1− t))i

i!
= I − tA =

1− t 0

− t
2

1

,

e−a(t) = 1 +
t

1− t
A =

 1
1−t 0

t
2(1−t) 1

 .

With a minor help of Mathematica we arrive at the cross-covariance matrix

E{Y (s)TY (t)} =

 2
√
2 s(1−t)
3

2s(1−t)−(1−s) log (1−s)
3
√
2

(1−t)(2s−log (1−s))
3
√
2

2s(2−t)−(2−s−t) log (1−s))
6
√
2

 ,

where 0 ≤ s ≤ t ≤ 1.

The following graphs illustrate the covariance structure of Y (t).

(a) Variance of the component processes (b) Covariance and correlation of the component
processes

Figure 5.1: Covariance structure of Y (t)

The limit length process Y2 is not Markovian since its covariance function does not

satisfy the factorisation criterion (see [44], p. 148). The sum of two first terms in (5.39)

is non-Markovian too.
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5.5 The derived processes

From Theorem 15 follow functional limits for normalised compensators and martingale

(5.4)

ν1/4(CX(t)− t, t ∈ [0, 1]) ⇒ Y1 −W1,

2ν1/4
(
CL(t)√

2ν
− t, t ∈ [0, 1]

)
⇒ Y1 −W1,

√
2ν−1/4M ⇒ 2W2 −W1

d
= W1,

with account of (5.12). A counterpart of (5.13) becomes

L̃− 2X̃ ⇒W1.

Notably, the limit distributions for t = 1 are all the same N (σ21, 0).

For a normalised square-root process

Z̃(t) := ν1/4
(
Z(t)√

2ν
− (1− t)

)

we have Z̃ ⇒ −Y1/2. In Section 4.1.7 we showed that the range of Z at big distance

from 0 can be split in almost independent renewal cycles with distribution close to that

of (E/2 + U)/
√

2, where E and U are independent standard exponential and uniform

variables.

From these limit relations the result of [20] on the joint convergence of normalised

compensated X and L to W easily follows. Bruss and Delbaen also proved the Brownian

limit for the martingale M , which by virtue of M(1) = L(1)−F (ν) led them to the central

limit theorem for the total length L(1).

It is of interest to look at the distributions of the pairs (X(t), CX(t)) and (L(t), CL(t))

to capture dependence between the processes and their compensators. In the ν → ∞

limit these approach the bivariate normal distributions of (Y1(t), Y1(t) − W1(t)) and
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(Y2(t),
1
2(Y1(t)−W1(t))), respectively. Calculation of the covariance matrices is straight-

forward from our previous findings complemented by the formula

Cov(Y1(t),W1(t)) = −σ21(1− t) log(1− t)

obtained by the Itó isometry. For instance

Var {Y1(t)−W1(t)} =
4
√

2

3

(
t− t2

2
+ (1− t) log (1− t)

)
.

(a) Covariance structure of Y1(t) and its compen-
sator

(b) Covariance structure of Y2(t) and its compen-
sator

Figure 5.2: Covariance structure of Y (t) and its compensator

5.6 Convergence of the moments

The weak convergence shown in Theorem 15 combined with the convergence of moments

for the majorant and minorant processes imply by virtue of Pratt’s lemma the expansion

E(X(t)− t)k = ν−k/4 EY k
1 (t) + o(ν−k/4), k ∈ N,

along with a similar expansion for the t-centred moment functions of L/
√

2ν. For k = 1

the leading term vanishes, hence the convergence rate should be higher, as is evidenced

in the instance t = 1 by (5.9). The logarithmic factor in (5.9) results from the optimality
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gap, hence it is of interest to inspect how the gap emerges in the course of selection.

We choose smallest possible constants β− > 0, β+ ≥ 0 to squeeze the control function

in the bounds√
2(1− x)

ν(1− t)
− β−
ν(1− t)

≤ ψ(t, x) ≤

√
2(1− x)

ν(1− t)
+

β+
ν(1− t)

, t, x ∈ [0, 1). (5.40)

The condition (5.19) thus holds with β ≥ max(β−, β+, 1). To motivate introducing two

parameters we note that for the optimal strategy (5.40) holds with β+ = 0 ([20], Equation

(3.5)), and that there is some asymmetry in the upper and lower estimates below.

The following auxiliary result is a special case of Grönwall’s inequality:

Lemma 21. Suppose function f with f(0) = 0 satisfies the integral inequality

f(t) ≤ −
∫ t

0
f(s)

(
1

1− s
+

a

(1− s)2

)
ds+

∫ t

0
g(s)ds, t ∈ [0, 1),

a ∈ R. Then

f(t) ≤ (1− t)e−
a

1−t

∫ t

0

e
a

1−s g(s)

1− s
ds, t ∈ [0, 1). (5.41)

Proof. The linear operator defined by the right-hand side of (5.41) gives a solution to

the associated integral equation. The assertion follows by observing that nonnegative g

is mapped to nonnegative f .

With this result in our toolbox, we are ready to derive improved bounds on p(t) =

EX(t) and q(t) = EL(t)/
√

2ν.

5.6.1 Bounds on p(t)

The upper bound in (5.40) implies

ν

2
ψ2(s, x)− 1 ≤ −x− s

1− s
+

β+
√

2√
ν(1− s)

√
1− x
1− s

+
β2+

2ν(1− s)2
. (5.42)
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Using the elementary inequality
√

1− z ≤ 1− z/2 for z ≤ 1 we obtain

E
√

1−X(t)

1− t
≤ 1− EX(t)− t

2(1− t)
= 1− p(t)− t

2(1− t)
.

Integrating in (5.42) yields

p(t)− t ≤ −
∫ t

0
(p(s)− s)

(
1

1− s
+

b

(1− s)2

)
ds+

∫ t

0
g(s)ds,

where

g(t) =
2b

(1− t)
+

b2

(1− t)2
, b =

β+√
2ν
.

Applying Lemma 21 with f(t) = p(t)− t and a = b we obtain p(t)− t ≤ G(b, t), where

G(b, t) := 1 + b− t− (1 + b)(1− t) exp

(
− bt

1− t

)
.

For small b > 0, this is a concave function, with G(b, t)− 2tb changing sign from + to −

at some point approaching 2/3 as b→ 0. The asymptotic expansion

G(b, t) ∼ 2tb+
(2t− 3t2)b2

2(1− t)
, b→ 0,

holds uniformly, at least for t bounded away from 1; therefore there is an upper bound

G(b, t) < 2bt+ c+b
2, where the constant should be chosen to satisfy

c+ > max
t∈[0,1]

2t− 3t2

2(1− t)
= 2−

√
3.

It follows that

p(t)− t ≤ β+
√

2 t√
ν

+
c+ β

2
+

2ν
, (5.43)

uniformly in t ∈ [0, 1] for sufficiently big ν.

To estimate in the opposite direction, we have from the lemma p(t)− t ≥ G(b, t), this
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time with negative parameter

b = − β−√
2ν
.

Changing the variable to T = (1− t)−1 simplifies analysis, and it is readily checked that

T 7→ T

(
G
(
b, 1− T−1

)
− 2b

(
1− T−1

)
− b2T

)

is a concave function, positive in the range 1 ≤ T < T0, where T0 is such that −b T0

approaches, as |b| → 0, a limit value 1.7933 . . . (the positive root of 1 + x + x2 = ex),

which we replace by smaller
√

2. Thus

p(t)− t ≥ −β−
√

2 t√
ν
−

β2−
2ν(1− t)

, for t ≤ 1− β−
2
√
ν
, (5.44)

provided ν is sufficiently large. But then by monotonicity from (5.44) it follows that

p(t) ≥ p
(

1− β−
2
√
ν

)
≥ 1−

(√
2 + 3

2

)
β−√

ν
, for t > 1− β−

2
√
ν
,

hence in this range of t

p(t)− t ≥ p(t)− 1 > −
(√

2 + 3
2

)
β−√

ν
(5.45)

(also note that the trivial upper bound p(t)− t < 1− t < β−
2
√
ν

might improve upon (5.43)

in this range).

Bounding the second term in (5.44) by its maximum, and combining with (5.45) into

single inequality we obtain an estimate with simpler constant 3 >
√

2 + 3/2

p(t)− t ≥ −3β−√
ν
, t ∈ [0, 1]. (5.46)

Similarly, the second term in (5.43) can be absorbed into the first with a larger constant.
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With the full range t ∈ [0, 1] covered, we have shown that

sup
t∈[0,1]

|p(t)− t| = O

(
1√
ν

)
.

5.6.2 Bounds on q(t)

We turn to q(t) = EL(t)/
√

2ν. For the upper estimate we use (5.5) to obtain an integral

inequality

q(t) = E
∫ t

0

√
ν/2 ψ(s,X(s))ds ≤ E

∫ t

0

(√
1−X(s)

1− s
+

β+√
2ν(1− s)

)
ds ≤∫ t

0

(
1− p(s)− s

2(1− s)
+

β+√
2ν(1− s)

)
ds ≤

∫ t

0

(
1− q(s)− s

(1− s)
+

β+√
2ν(1− s)

)
ds,

then apply Lemma 21 with a = 0 to get

q(t)− t ≤ β+ t√
2ν
. (5.47)

The estimate approaches zero faster than in (5.9), but there is no disagreement since

q(1) < 1. Note that applying (5.5) and (5.43) straight incurs a second term.

For the optimal strategy, (5.40) holds with β+ = 0, thus in this case p(t)− t ≤ 0 and

q(t)− t ≤ 0.

Obtaining the lower bound is more challenging. Under the optimal strategy, the value

function F in (5.15) is concave [19], but under our more general assumptions on ψ this

need not be the case. However, by virtue of (5.18) we may replace F by the concave

function

F̂ (ν) :=
√

2ν − 1

12
log(ν + 1), (5.48)

to obtain an expansion

EL(t) = F̂ (ν)− E{F̂ (ν(1−X(t))(1− t))}+O(1), (5.49)
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where the absolute value of the remainder is bounded uniformly in t and ν by some

constant K only depending on β− and β+.

By monotonicity and concavity of F̂ , using Jensen inequality and (5.46) we estimate

E{F̂ (ν(1−X(t))(1− t))} ≤ F̂ (ν(1− t)(1− p(t)) =

F̂

(
ν(1− t)2

(
1− p(t)− t

1− t

))
≤

F̂

(
ν(1− t)2

(
1 +

3β−√
ν(1− t)

))
=

√
2ν(1− t)

√
1 +

3β−√
ν(1− t)

− 1

12
log

{
ν(1− t)2

(
1 +

3β−√
ν(1− t)

)
+ 1

}
<

√
2ν(1− t)

(
1 +

3β−
2
√
ν(1− t)

)
− 1

12
log
(
ν(1− t)2)

)
<

√
2ν(1− t) +

3β−√
2
− 1

12
log ν − 1

6
log(1− t).

Substituting this along with (5.48) into (5.49) we see that, for large enough ν,

EL(t) ≥
√

2ν t+
1

6
log(1− t)−

(
3β−√

2
+K

)
, t ∈ [0, 1]. (5.50)

The logarithmic term makes (5.50) useless for t too close to 1. However, cutting the range

at, say t0 := 1 − 1/
√
ν, we can just employ the monotonicity to squeeze the expected

length as

F (ν) ≥ EL(t) ≥ EL(t0) ≥
√

2ν +
1

12
log ν −

(√
2 +

3β−√
2

+K

)
, t ≥ t0.

For a better overview, we re-write (5.47) as

EL(t) ≤
√

2ν t+ β+ t. (5.51)

Comparing (5.50) with (5.51) it is seen that, uniformly in t ∈ [0, 1−h], the mean selected

length EL(t) is within O(1) from
√

2ν t, the latter being the exact mean length under

the (unfeasible) stationary strategy.
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With some more work we could show an upper bound with two leading terms as in

(5.50) and a remainder uniformly bounded over t < 1− ν−1/4+ε.

5.7 Diffusion approximation in the bin-packing problem

In this section we sketch the potential proof of the functional central limit theorem in

the continuous-time self-similar bin-packing problem from Section 4.3. Suppose that

i.i.d. positive marks arrive by a Poisson process of intensity ν on [0, 1], and that the

marks are sampled from a density satisfying F (x) = Beta(α, 1) with the support [0, C].

The stochastic optimisation task is to maximise the expected number of online selections

under the constraint that their total sum does not exceed given C > 0. From equation

(4.42), it is clear that one can equivalently consider packing into a knapsack of unit

capacity.

Once again we restrict our attention to a relatively small class of distributions as our

functional convergence proof relies heavily on the self-similarity of the optimal selection

policy and the refined asymptotic expansions of the optimal value function obtained in

Section 4.3.

Let Sν(t), Nν(t), t ∈ [0, 1] denote the running sum and the number of packed items

at time t under the optimal self-similar selection policy driven by a control function

ϕ(t, s) = (1 − s) δ(ν(1 − t)(1 − s)α), respectively. Here we study all control functions

satisfying

δ(ν) =
α+ 1

β∗1αν
1/(α+1)

+O(ν−2/(α+1)), ν →∞,

which includes the optimal threshold function (4.48).

We aim to prove the functional convergence of the following normalised processes

S̃ν(t) := ν1/(2(α+1)) (Sν(t)− t) , Ñν(t) := ν1/(2(α+1))

(
Nν(t)

β∗1ν
1/(α+1)

− t
)
.
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For the jump process (S,N)t∈[0,1], we have the generator

Lνf(t, s, n) = ft(t, s, n) + ν

∫ ϕ(t,s)

0
{f(t, s+ y, n+ 1)− f(t, s, n)}αyα−1du.

With the change of variables

s→ sν−1/(2(α+1)) + t, n→ (nν−1/(2(α+1)) + t)β∗1ν
1/(α+1)

and

ϕ̃(t, s) := ν1/(2(α+1)) ϕ(t, sν−1/(2(α+1)) + t), v :=
1

β∗1ν
1/(2(α+1))

,

we have the infinitesimal generator of (t, Z̃ν(t), Ñν(t))

Lνf(t, s, n) = ft − ν1/(2(α+1))(fs + fn)

+ ν1−α/(2(α+1))

∫ ϕ̃(t,s)

0
(f (t, s+ y, n+ v)− f(t, s, n))αyα−1dy.

A fairly long computation replicating the methods of Section 5.2 yields the asymptotics,

as ν →∞,

Lνf(t, s, n) ∼ ft −
s

1− t
fs −

αs

(α+ 1)(1− t)
fn +

σ3
2

2
fss +

σ4
2

2
fnn + ρ0σ3σ4fsn,

where

σ3
2 =

(α+ 1)(α+2)/(α+1)

α1/(α+1)(α+ 2)
, σ4

2 =

(
α+ 1

α

)(α−2)/(α+1)

, ρ0 =
α(3α−1)/(2(α+1))

√
α+ 2

(α+ 1)2α/(α+1)
.

Using this it should be possible to show the functional convergence

(S̃ν , Ñν)⇒ (Y3, Y4), as ν →∞,

in D[0, 1 − h] for every h ∈ (0, 1), where the limit process (Y3(t), Y3(t)) is a Gaussian
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diffusion satisfying the SDE

dY3(t) = −Y3(t)
1− t

dt + dW3(t), dY4(t) = − αY3(t)

c(α+ 1)(1− t)
dt + dW4(t)

with zero initial conditions. Here, (W3,W4) is a two-dimensional centred Brownian

motion with the covariance matrix Σ0 =

 σ3
2 ρ0σ3σ4

ρ0σ3σ4 σ4
2

 .



Chapter 6

Conclusion and outlook

In this manuscript we studied the infamous problem of choosing the longest increasing

subsequence in an online fashion and touched upon some of the related problems. We

significantly improved the existing asymptotic expansions of the mean and variance of

the length of the optimally chosen subsequence, derived important limit theorems for the

underlying stochastic processes, and answered long-standing questions about the form

and statistical properties of a certain class of suboptimal policies.

In the first part of Chapter 3 we worked with the original discrete-time version of

the problem introduced by Samuels and Steele [55]. To refine the asymptotic expansion

of the mean length, in Chapter 2 we developed a method of approximating solutions

to the difference equations satisfying specific monotonicity criteria. This ‘asymptotic

comparison’ method, as we called it, allowed us to methodically obtain finer asymptotics

of the solution to the optimality equation by bounding it from above and below with

suitable test functions. In fact, variations of this method apply to a broad class of

difference and differential equations, and its applications repeatedly appear throughout

the whole dissertation. In particular, we used the asymptotic comparison to approximate

the mean number of selections made by the suboptimal policy proposed by Arlotto et

al. [5]. The resulting expansion confirmed the conjecture of Arlotto et al. that their

162
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suboptimal policy is within a constant off optimality.

The second part of Chapter 3 is dedicated to what may be considered a dual coun-

terpart of the longest increasing subsequence selection, the quickest selection of the

increasing subsequence. This relatively new online optimisation problem was first in-

troduced by Arlotto et al. [3], who derived the principal asymptotics of the optimal

solution. Adapting our asymptotic comparison method to the optimality recursion of

the quickest selection, we obtained an expansion of the optimal solution, which is optimal

up to the order of the term resulting from the shift in the initial condition. Moreover, we

explicitly constructed a stationary and a variable-threshold selection policies that match

the optimal performance up to one and two terms of asymptotic expansion, respectively.

The results fit nicely within the framework developed over the years around the online

selection problems. In particular, the choice of threshold functions for our stationary

policy flows naturally from the commonly known mean constraint upper bound proof

[3]. In the last sections of Chapter 3, we refine the existing expansion of the mean num-

ber of packed items in the sequential bin-packing problem initialised by Coffman et al.

[26], further demonstrating the power of the asymptotic comparison method.

In Chapter 4 we turned our attention to a natural modification of the discrete-time

problem: the poissonised, or the continuous-time variant of the longest increasing subse-

quence problem. This was first introduced as a tool to study the discrete-time problem by

Samuels and Steele [55], and later studied in detail by Bruss and Delbaen [19]. Barysh-

nikov and Gnedin [10] generalised the continuous-time setting by considering a problem

where the selection is commenced from a sample of d-dimensional vectors Xi ∈ Rd, and

the selected chain must increase in all dimensions. Working in this extended setting, we

significantly refined the asymptotic expansions of the mean and variance and proved the

central limit theorem for the optimal length of the increasing subsequence. The main

novelty of our approach is transforming the process L(t) into a piecewise deterministic

Markov process Z(·). Adapting the comparison method to the continuous-time setting,

we significantly refined the asymptotics of the mean optimal length, which allowed us
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to prove the strong similarity between the discrete and the continuous-time cases. And,

with further effort, we were able to refine the expansion beyond the O(1)-term, essen-

tially closing down the study of the asymptotic analysis of EL(t). Specialising our results

to the case d = 1 allowed us to significantly improve Bruss and Delbaen’s estimates of

the VarL(t) and the optimal threshold function ϕ(t). Finally, correcting an inaccuracy in

the proof of Cutsem and Ycart’s [27] renewal-type approximation method, we applied it

to obtain a novel proof of the central limit theorem on L(t). This was derived earlier by

Bruss and Delbaen [20] for the one-dimensional case following a different argument. The

process Z(·) is sandwiched between two renewal processes with increments being a sum of

scaled Beta(d, 1) and Exponential(1) random variables. In addition, in the original prob-

lem, we showed that the same limit theorem holds for all variable-threshold strategies

satisfying ϕ(t) =
√

2/t+O(t−1), t→∞. Although the results obtained in Baryshnikov

and Gnedin’s multidimensional setting are directly applicable to the one-dimensional

setup, the multidimensional framework required a delicate treatment of several impor-

tant differences. For example, in contrast to the original problem, the acceptance window

here is a d-dimensional shape, which we approximated with a standard simplex in the

asymptotic case.

In Sections 4.3 and 4.4, respectively, we demonstrated how the asymptotic comparison

and renewal approximation methods could be applied to the continuous-time bin-packing

and the online interval parking problems. As before, we obtained fairly complete asymp-

totic expansions of the mean and the variance of the number of selections and derived

the central limit theorems.

The study in Chapter 5 is inspired by Bruss and Delbaen’s investigation [20] of the

fundamental random processes arising during the selection of the longest increasing sub-

sequence problem. They utilised the Doob-Meyer decomposition and the martingale

functional central limit theorem to prove the convergence of suitably scaled length and

running maximum processes L(t) and X(t). However, the compensators in their ap-

proach are nonlinear transforms of X(t), which makes the result less informative than
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desired. We, on the other hand, worked explicitly with the generator of a suitably scaled

version of the three-dimensional process (t,X(t), L(t)). We proved the generator con-

vergence, firstly on (0, 1− h), and then, working our way around the singularities close

to 1, proved the weak convergence on the whole of [0, 1]. The resulting limit process is

a two-dimensional Gaussian diffusion consisting of a Brownian bridge and an Ornstein-

Uhlenbeck-like process, which corresponds to a sum of correlated Brownian motion and

a Brownian bridge. We explicitly calculated the cross-covariance matrix of (X(t), L(t))

and showed that the weak convergence holds for any variable-threshold selection strategy

satisfying ϕ(t) =
√

2/t + O(t−1), t → ∞. The study is concluded with the derivation

of mean bounds on L(t) and X(t), which we obtained by directly working with their

respective generators.

As well as answering several fundamental questions, our work opened up possibilities

for further research. The power of the asymptotic comparison method was demonstrated

repeatedly, and there are numerous opportunities to adapt and apply it to other stochas-

tic sequential selection problems. The renewal-type approximation can be generalised to

a wider class of processes, which satisfy the more general form of equation (4.9), i.e. with

a reward function r(z) 6= 1. Finally, the stochastic comparison method we utilised to

prove the functional convergence of (X(t), L(t)) can be adapted to similar online selection

problems. As an example, we sketched a proof of the weak limit in the continuous-time

bin-packing problem in Section 5.7. It is also reasonable to make the conjecture that

similar limit processes can be derived in the discrete-time longest increasing subsequence

problem.



Appendix A

Computation of the asymptotic

expansions

A.1 Asymptotic expansion of β
(h)
k in Section 3.2.6

Let the first test function be of the form y
(0)
k := d0k

2, d0 ∈ R+. Then,

y
(0)
k+1 = d0k

2 + 2d0k + 1,

and

aky
(0)
k + bk = d0k

2

(
k

2
+ 1

)
log

(
1 +

2

k

)
+
k

2
+ 1

= d0k
2

(
k

2
+ 1

)(
2

k
− 2

k2

)
+
k

2
+O(1)

= d0k
2 +

(
1

2
+ d0

)
k +O(1), k →∞.

The expressions above match at d0 = 1/2; hence, by Lemma 10, we have

β
(h)
k ∼ k2

2
, k →∞.
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Now, for the test sequence of the type y
(1)
k := k2/2 + d1k log k, d1 ∈ R, using Taylor

expansion of log we calculate

y
(1)
k+1 =

k2

2
+ k + 1 + d1(k + 1) log k + 1

=
k2

2
+ d1k log k + k + d1 log k +

(
1

2
+ d1

)
+O(k−1), k →∞.

and

aky
(1)
k + bk =

k2

2
+ d1k log k + k + d1 log k +

2

3
+O(k−1 log k), k →∞.

Therefore, Lemma 10 implies

β
(h)
k ∼ k2

2
+
k log k

6
, k →∞.

To bound the remainder of the expansion, we need one more approximation. To that end,

consider functions of the form y
(2)
k = k2/2 + k log k/6 + d2 log k, d2 ∈ R. By computing

the expansions as k →∞

y
(2)
k+1 =

k2

2
+
k log k

6
+ k + (1 + d2) log k +

2

3
+O(k−1),

and

aky
(2)
k + bk =

k2

2
+
k log k

6
+ k +

(
1

6
+ d2

)
log k +

2

3
+

(
−1

9
+ d2

)
log k

k
+O(k−1),

one can see they match for d2 = −1/9. However, the extra term is of order o(k); thus

another application of Lemma 10 yields the final expansion

β
(h)
k =

k2

2
+
k log k

6
+O(k), k →∞.
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A.2 Asymptotic expansion of uθ(z) in Section 4.1.5

Since the O(z−1)-term of θ contributes only O(z−1) to uθ(z), we may proceed with

choosing an approximating function of the form

uθ(z) = α∗1z + α∗2 log (z + 1) + c3 +
α̂

z + 1
, α̂ ∈ R

that satisfies

u′θ(z) = α∗1 +
α∗2
z
− (α∗2 + α̂)

1

z2
+O(z−3), z →∞.

Computing Iuθ(z) as z →∞ yields

Iuθ(z) = α∗1 +
α∗2
z

+
(
− d(d+ 1)2α2γ

(d+ 1)!1/(d+1)
− d(d+ 1)2α∗1

2γ2

2(d+ 1)!1/(d+1)
+ dα∗2 + dα̂

+
(3d3 + 13d2 + 4d+ 4)(d+ 1)!1/(d+1)

24(d+ 2)2(d+ 3)

) 1

z2
+O(z−3).

The expansions above match for

α̂ = dα∗1α
∗
2γ +

dα∗1
3γ2

2
+

(3d3 + 13d2 + 4d+ 4)(d+ 1)!1/(d+1)

24(d+ 2)2(d+ 3)(d+ 1)
− α∗2,

which, in conjunction with Lemma 15, yields the expansion (4.26).

A.3 Asymptotic expansion of w(z) in Section 4.1.6

Let G be the operator on the right-hand side of (4.27)

Gw(z) =
(d+ 1)d+1

(d− 1)!

∫ θ(z)

0
(w(z − y)− w(z) + (1 + 2u(z − y))) µ(z, y)dy,

where θ is the optimal control satisfying

θ(z) =
1

α∗1
− α∗2
α∗1

2z
+O(z−2), z →∞,
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and u is the optimal value function satisfying

u(z) = α∗1z + α∗2 log z + c1 +
α∗3
z

+O(z−2), z →∞.

Our first test function is of the form w0(z) = α∗1z
2 + ζ1z log (z + 1), ζ1 ∈ R with

w′0(z) = 2α∗1
2z + α4 log z +O(1), z →∞.

Computing Gw0(z) yields

Gw0(z) = 2α∗1
2z + (2(d+ 1)α∗1α

∗
2 − dζ1) log z +O(z−1 log z), z →∞.

Matching the coefficients of O(log z)-terms leads to the refinement

w(z) ∼ α∗1
2z2 + 2α∗1α

∗
2z log z, z →∞.

Next approximation is of the form

w1(z) := α∗1
2z2 + 2α∗1α

∗
2z log (z + 1) + ζ2z, α5 ∈ R.

For this test function, we have

w′1(z) = 2α∗1
2z + 2α∗1α

∗
2 log z + (ζ2 + 2α∗1α

∗
2) +O(z−3), z →∞.

Working out the expansion of Gw1(z) for large z yields

Gw1(z) ∼ 2α∗1
2z + 2α∗1α

∗
2 log z +

(
(d+ 1)(2− d)

(d+ 2)(d+ 1)!1/(d+1)
+

2(d+ 1)2c1

(d+ 1)!1/(d+1)
− dζ2

)
.

Matching the coefficients of two expansions yields the consecutive refinement

w(z) ∼ α∗1
2z2 + 2α∗1α

∗
2z log z +

(
2

(d+ 2)(d+ 1)!1/(d+1)
+

2(d+ 1)

(d+ 1)!1/(d+1)
c1

)
z,

= α∗1z
2 + 2α∗1α

∗
2z log z + (α∗4 + 2α∗1c1) z, z →∞.
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We choose the third test function of the form

w2(z) := α∗1
2z2 + 2α∗1α

∗
2z log (z + 1) + (α∗4 + 2α∗1c1) z + ζ3(log (z + 1))2.

To refine the asymptotic expansion of w(z), the following expansions need to be computed

for z →∞

w′2(z) = 2α∗1
2z + 2α∗1α

∗
2 log z + 2α∗1c1 + α∗4 + 2α∗1α

∗
2 +

2ζ3 log z

z
+O(z−2),

Gw2(z) = 2α∗1
2z + 2α∗1α

∗
2 log z + 2α∗1c1 + α∗4 + 2α∗1α

∗
2 +

(
d2(d+ 1)

2(d+ 2)2
− 2dζ3

)
log z

z

+ O(z−1).

The above leads to the expansion

w(z) ∼ α∗1
2z2 + 2α∗1α

∗
2z log z + (α∗4 + 2α∗1c1) z +

d2

4(d+ 2)2
(log z)2, z →∞

= α∗1
2z2 + 2α∗1α

∗
2z log z + (α∗4 + 2α∗1c1) z + (α∗2 log z)2, z →∞.

Finally, we pick the last approximating function to be

w3(z) := α∗1
2z2 + 2α∗1α

∗
2z log (z + 1) + (α∗4 + 2α∗1c1) z + (α∗2 log (z + 1))2 + ζ4 log (z + 1),

which satisfies

w′3(z) = 2α∗1
2z+2α∗1α

∗
2 log z+(2α∗1c1 + α∗4 + 2α∗1α

∗
2)+

2α∗2
2 log z

z
+
ζ4
z

+O(z−3), z →∞.

Expanding Gw3(z) as z →∞ yields

Gw3(z) = 2α∗1
2z + 2α∗1α

∗
2 log z + (2α∗1c1 + α∗4 + 2α∗1α

∗
2) +

2α∗2
2 log z

z

−
(

(d3 − 3d− 1)(d+ 1)

3(d+ 2)2(d+ 3)
+
d(d+ 1)c1
d+ 2

+ dζ4

)
1

z
+O(z−2 log z).
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Matching the O(z−1)-term coefficients yields the final refinement, as z →∞,

w(z) ∼ α∗1
2z2 + 2α∗1α

∗
2z log z + (a∗2 + 2α∗1c1) z + α∗2

2(log z)2

−
(

d3 − 3d− 1

3(d+ 2)2(d+ 3)
+

c1d

d+ 2

)
log z

= α∗1z
2 + 2α∗1α

∗
2z log z + (a∗2 + 2α∗1c1) z + α∗2

2(log z)2 +

(
α∗5 −

c1d

d+ 2

)
log z.

A.4 Asymptotic expansion of wθ(z) in Section 4.1.6

Let G be the operator on the right-hand side of (4.27)

Gwθ(z) =
(d+ 1)d+1

(d− 1)!

∫ θ

0
[wθ(z − y) + (1 + 2uθ(z − y))− wθ(z)] (1− y/z)µ(z, y)dy,

where θ is a control satisfying

θ(z) ∼ 1

α∗1
+
γ

z
, z →∞.

The value function corresponding to θ satisfies the expansion (4.26), as z →∞,

uθ(z) = α∗1z + α∗2 log z + c2

+

(
dα∗1α

∗
2γ +

dα∗1
3γ2

2
+

(3d3 + 13d2 + 4d+ 4)(d+ 1)!1/(d+1)

24(d+ 2)2(d+ 3)(d+ 1)

)
1

z
+O(z−2).

Since the O(z−1)-term of θ contributes to the O(log z)-term of ŵθ, this time we only

need one test function of the form

ŵθ(z) = α∗1
2z2 + 2α∗1α

∗
2z log (z + 1) + (α∗4 + 2α∗1c1) z + α∗2

2(log (z + 1))2 + b0 log (z + 1),

with a parameter b0 ∈ R. The test function ŵθ satisfies, as z →∞,

ŵ′θ(z) = 2α∗1
2z + 2α∗1α

∗
2 log z + (2α∗1c1 + α∗4 + 2α∗1α

∗
2) +

2α∗2
2 log z

z
+
b0
z

+O(z−2 log z).
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Computing Gŵθ(z) yields

Gŵθ(z) = 2α∗1
2z + 2α∗1α

∗
2 log z + (2α∗1c1 + α∗4 + 2α∗1α

∗
2) +

2α∗2
2 log z

z

+
(
− −2− 7d− 25d2 + 7d3 + 3d4

12(d+ 2)(d+ 3)
− c2d(d+ 1)

d+ 2
− 2d(d+ 1)2γ

(d+ 1)!2/(d+1)(d+ 2)

− db0

)1

z
+O(z−2 log z), z →∞.

Combining the two expansions leads to the refined asymptotics of wθ, as z →∞,

wθ(z) ∼ α∗1
2z2 + 2α∗1α

∗
2z log z + (α∗4 + 2α∗1c1) z + α∗2

2(log z)2

+

(
−2− 7d− 25d2 + 7d3 + 3d4

12(d+ 1)(d+ 2)(d+ 3)
− c2d

d+ 2
− 2d(d+ 1)γ

(d+ 1)!2/(d+1)(d+ 2)

)
log z.

The above, together with the expansion of uθ(z), yields (4.28).

A.5 Asymtptic expansion of w(z) in Section 4.3.3

Let the functional If(z) act as

If(z) := (α+ 1)2
∫ ψ(z)

0
(w(z − y)− w(z) + 1 + 2u(z − y)) ν(z, y)dy,

We compare w(z) with various test functions.

It is an easy exercise to see that w(z) ∼ (β∗1z)
2. Let us start with w1(z) := (β∗1z)

2 +

ω1z log z, ω1 ∈ R. Matching w′1(z) = 2β∗1z + ω1 log z +O(1), z →∞ with

Iw1(z) = 2β∗1z +
1

α+ 2
(−β∗1(α+ 1)− αω1(α+ 2)) log z +O(1), z →∞,

yields w(z) ∼ (β∗1z)
2 + 2β∗1β

∗
2z log z, z →∞.

Now, consider w2(z) = (β∗1z)
2 +2β∗1β

∗
2z log z+ω2z with w′2(z) = 2β∗1z+2β∗1β

∗
2 log z+
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2β∗1β
∗
2 + ω2. For such function, we have

Iw2(z) = 2β∗1z + 2β∗1β
∗
2 log z +

2c∗1(α+ 1)(2α+1)/(α+1)

αα/(α+1)
+

(α+ 1)α/(α+1)

αα/(α+1)(α+ 2)

− αω2 +O(z−1 log z), z →∞.

Hence, choosing

ω2 = 2β∗1c
∗
1 +

2β∗1
(α+ 1)(α+ 2)

,

we obtain the next refinement

w(z) ∼ (β∗1z)
2 + 2β∗1β

∗
2z log z + (2β∗1c

∗
1 + β∗4) z, z →∞,

where

β∗4 =
2β∗1

(α+ 1)(α+ 2)
.

We choose the next approximating function to be of the form w3(z) := (β∗1z)
2 +

2β∗1β
∗
2z log z + (2β∗1c

∗
1 + β∗4)z + ω3(log z)2, ω3 ∈ R. First, compute the derivative

w′3(z) = 2β∗1z + 2β∗1β
∗
2 log z + 2β∗1β

∗
2 + 2β∗1c

∗
1 + β∗4 + 2ω3

log z

z
.

Second, expanding the functional Iw3(z) yields, as z →∞,

Iw3(z) = 2β∗1z+2β∗1β
∗
2 log z+2β∗1β

∗
2 +2β∗1c

∗
1 +β∗4 +

(
α+ 1

2(α+ 2)2
− 2αω3

)
log z

z
+O(z−1).

The two expressions match at ω3 = β∗2
2; thus, we arrive at a better estimate

w(z) ∼ (β∗1z)
2 + 2β∗1β

∗
2z log z + (2β∗1c

∗
1 + β∗4) z + (β∗2 log z)2, z →∞.

For the last approximation, consider function w4(z) := (β∗1z)
2+2β∗1β

∗
2z log z+(2β∗1c

∗
1 + β∗4) z+
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(β∗2 log z)2 + ω4 log z, ω4 ∈ R with

w′4(z) = 2β∗1z + 2β∗1β
∗
2 log z + 2β∗1β

∗
2 + 2β∗1c

∗
1 + β∗4 +

2β∗2
2 log z

z
+
ω4

z
.

Expanding Iw4(z) yields

Iw4(z) = 2β∗1z + 2β∗1β
∗
2 log z + 2β∗1β

∗
2 + 2β∗1c

∗
1 + β∗4 +

2β∗2
2 log z

z

+

(
(α+ 1)c∗1
α+ 2

+
α+ 1

(α+ 2)2(α+ 3)
− αω4

)
1

z
+O(z−2 log z), z →∞.

Therefore, matching w′4(z) with Iw4(z) for z large, we obtain, as z →∞,

w(z) ∼ (β∗1z)
2 + 2β∗1β

∗
2z log z + (2β∗1c

∗
1 + β∗4) z + (β∗2 log z)2 +

(
c∗1

α+ 2
+ β∗5

)
log z,

where

β∗5 =
1

(α+ 2)2(α+ 3)
.

A.6 Asymptotic expansion of w(z) in Section 4.4.2

Let G be the integral operator

Gw(z) = 9

∫ δ(z)

0
(w(z − y)− w(z) + (1 + 2u(z − y))) η(z, y)dy,

where δ(z) is the optimal control satisfying

δ(z) =

(
2

3

)2/3

+

(
2

3

)1/3 1

12z
+O(z−2), z →∞,

and u(z) is the optimal value function satisfying

u(z) =

(
3

2

)2/3

z − log z

8
+ c∗3 +

(
2

3

)2/3 1

240z
+O(z−2), z →∞.
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Our first test function is of the form w0(z) = ζ0z
2, ζ0 ∈ R+ with

w′0(z) = 2ζ0z.

Computing Gw0(z) yields

Gw0(z) =

(
9

(
3

2

)1/3

− 4ζ0

)
z +O(1), z →∞.

Matching the coefficients of z-terms yields

w(z) ∼
(

3

2

)4/3

z2, z →∞.

Choose the next proxy function to be of the form

w1(z) = (3/2)4/3z2 + ζ1z log (z + 1), ζ1 ∈ R.

Matching

w′1(z) ∼ 2

(
3

2

)4/3

z + ζ1 log z, z →∞,

with

Gw1(z) = 2

(
3

2

)4/3

z +

(
−21/335/3

8
− 2ζ1

)
log z

Matching the coefficients of O(log z)-terms leads to the refinement

w(z) ∼
(

3

2

)4/3

z2 − 21/332/3

8
z log z, z →∞.

Next approximation is of the form

w2(z) :=

(
3

2

)4/3

z2 − 21/332/3

8
z log (z + 1) + ζ2z, ζ2 ∈ R.
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For this test function, we have

w′2(z) = 2

(
3

2

)4/3

z − 21/332/3

8
log z +

(
−21/332/3

8
+ ζ2

)
+O(z−3), z →∞.

Working out the expansion of Gw2(z) for large z yields

Gw2(z) ∼ 2

(
3

2

)4/3

z − 21/332/3

8
log z +

(
21/332/3

8
+ 21/335/3c∗3 − 2ζ2

)
.

Matching the coefficients of two expansions yields the consecutive refinement

w(z) ∼
(

3

2

)4/3

z2 − 21/332/3

8
z log z +

(
3

2

)2/3(1

6
+ 2c∗3

)
z, z →∞.

We choose the third test function of the form

w3(z) :=

(
3

2

)4/3

z2 − 21/332/3

8
z log z +

(
3

2

)2/3(1

6
+ 2c∗3

)
z + ζ3(log (z + 1))2.

To refine the asymptotic expansion of w(z), the following expansions need to be computed

for z →∞

w′3(z) = 2

(
3

2

)4/3

z − 21/332/3

8
log z +

(
3

2

)2/3(1

6
+ 2c∗3

)
+

2ζ3 log z

z
+O(z−2),

Gw3(z) = 2

(
3

2

)4/3

z − 21/332/3

8
log z +

(
3

2

)2/3(1

6
+ 2c∗3

)
+

(
3

32
− 4ζ3

)
log z

z

+ O(z−1).

The above leads to the expansion

w(z) ∼
(

3

2

)4/3

z2 − 21/332/3

8
z log z +

(
3

2

)2/3(1

6
+ 2c∗3

)
z +

(log z)2

64
, z →∞.

Finally, we pick the last approximating function to be

w4(z) :=

(
3

2

)4/3

z2 − 21/332/3

8
z log (z + 1) +

(
3

2

)2/3(1

6
+ 2c∗3

)
z +

(log (z + 1))2

64

+ ζ4 log (z + 1),
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which satisfies

w′4(z) = 2

(
3

2

)4/3

z− 21/332/3

8
log z+

(
3

2

)2/3(1

6
+ 2c∗3

)
+

log z

32z
+
ζ4
z

+O(z−2), z →∞.

Expanding Gw4(z) as z →∞ yields

Gw3(z) = 2

(
3

2

)4/3

z − 21/332/3

8
log z +

(
3

2

)2/3(1

6
+ 2c∗3

)
+

log z

32z

+

(
1

80
− 3c∗3

4
− 2ζ4

)
1

z
+O(z−2).

Matching the O(z−1)-term coefficients yields the final refinement, as z →∞,

w(z) ∼
(

3

2

)4/3

z2 − 21/332/3

8
z log z +

(
3

2

)2/3(1

6
+ 2c∗3

)
z

+
(log z)2

64
+

(
1

240
− c∗3

4

)
log z.
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