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Abstract

In this thesis, we address the problem of Fine-grained Incident Video Retrieval (FIVR)

using video similarity learning methods. FIVR is a video retrieval task that aims to

retrieve all videos that depict the same incident given a query video – related video

retrieval tasks adopt either very narrow or very broad scopes, considering only near-

duplicate or same event videos. To formulate the case of same incident videos, we

define three video associations taking into account the spatio-temporal spans captured

by video pairs. To cover the benchmarking needs of FIVR, we construct a large-scale

dataset, called FIVR-200K, consisting of 225,960 YouTube videos from major news

events crawled from Wikipedia. The dataset contains four annotation labels according

to FIVR definitions; hence, it can simulate several retrieval scenarios with the same

video corpus. To address FIVR, we propose two video-level approaches leveraging

features extracted from intermediate layers of Convolutional Neural Networks (CNN).

The first is an unsupervised method that relies on a modified Bag-of-Word scheme,

which generates video representations from the aggregation of the frame descriptors

based on learned visual codebooks. The second is a supervised method based on Deep

Metric Learning, which learns an embedding function that maps videos in a feature

space where relevant video pairs are closer than the irrelevant ones. However, video-

level approaches generate global video representations, losing all spatial and temporal

relations between compared videos. Therefore, we propose a video similarity learning

approach that captures fine-grained relations between videos for accurate similarity

calculation. We train a CNN architecture to compute video-to-video similarity from

refined frame-to-frame similarity matrices derived from a pairwise region-level simil-

arity function. The proposed approaches have been extensively evaluated on FIVR-

200K and other large-scale datasets, demonstrating their superiority over other video

retrieval methods and highlighting the challenging aspect of the FIVR problem.
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Chapter 1

Introduction

Contents

1.1 Fine-grained Incident Video Retrieval . . . . . . . . . . . . . . . . 1

1.2 Aims and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Thesis contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1 Fine-grained Incident Video Retrieval

1.1.1 Problem statement and motivation

Video retrieval is a very important yet highly challenging problem that is exacerbated

by the massive growth of social media applications and video sharing platforms. At

the moment, YouTube reports more than two billion users, and approximately 500

hours of video content is uploaded every minute1. As a result of the uncontrolled

number of videos published in platforms, such as YouTube, it is very common to find

multiple videos about the same incident (e.g., terrorist attack, plane crash), which are

either near-duplicates of some original video or simply depict the same incident from

different viewpoints or at different times. Being able to efficiently retrieve all videos

around an incident of interest is essential for numerous applications ranging from copy

1https://www.youtube.com/yt/press/statistics.html
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1.1. Fine-grained Incident Video Retrieval

Figure 1.1: Video retrieval paradigm.

detection for copyright protection [25, 67] to event reconstruction [16, 85, 29] and news

verification [54, 109].

In this thesis, we study a certain type of video retrieval, i.e., search by example,

which can be formulated as follows: given a query video, retrieve all videos in a

database that are related to the query. More precisely, a video retrieval system has to

assess the relation of the query with all database videos and return a list of retrieved

videos ranked based on their relatedness to the query. In the ideal scenario, all the

related videos would be placed at the top ranks of the returned list, followed by the

unrelated ones. However, there are several meanings and interpretations regarding

related videos. In this specific line of research, the main measure considered to judge

whether videos are related or not is the content-based similarity. To this end, the main

challenge in the current problem setting is the definition of a pairwise function that

calculates the content-based similarity between two videos and assigns higher scores

to related pairs and lower to unrelated ones. Figure 1.1 illustrates an overview of the

video retrieval paradigm.

However, different cases of the video retrieval problem pose different requirements.

This leads to a variety of notions regarding the association between two videos and

whether they are considered related to each other. For example, in the copyright

protection problem, given a query video, only videos containing nearly identical copies

2



1.1. Fine-grained Incident Video Retrieval

of the video should be retrieved. In this scenario, similar videos from the same incident

(e.g., from different angles, locations, or time intervals) should be considered irrelevant

and not be retrieved by the system. However, tasks such as journalistic investigations

around an incident pose different requirements. In this scenario, the retrieval of videos

from the same incident is of great importance. Being able to efficiently and accurately

retrieve i) videos that originate from the same video source (duplicate videos) and ii)

videos that capture the same incident from different viewpoints and at different times

would be of great value for such tasks. In this thesis, we denote the overall problem

as Fine-grained Incident Video Retrieval (FIVR) and construct a large scale dataset

to simulate it. FIVR offers a single framework that contains several retrieval tasks as

special cases, which derive based on the relation between videos that capture the same

incident.

There are several application areas where the FIVR problem can prove relevant.

A number of such relevant retrieval applications are presented in [27]. For example,

news media analysis and reporting would greatly benefit from an effective solution

to the FIVR problem. In a recent work, journalists from the New York Times [16]

managed to reconstruct the timeline of the Las Vegas shootings based on content

from both amateur and police videos that had been captured during the incident. In

another relevant work, the research group Forensic Architecture [85] created a 3D video

of the Grenfell Tower fire to help understand how the disaster unfolded. Moreover,

Gao et al. [29] developed an approach that automatically processes a set of collected

web videos and generates a short video that summarizes the storyline of an event.

Other application scenarios and use cases that may benefit from solutions to the FIVR

problem include safety and security applications [100, 93, 78], e.g., abnormal human

behavior detection, crowd physical motion detection, forensic analysis of CCTV video.

Such applications could considerably benefit from methods that, given a query video,

retrieve similar videos based on the different definitions of FIVR association. Also, an

adaptive video retrieval method that could be configured based on the various aspects

3



1.1. Fine-grained Incident Video Retrieval

of the problem would facilitate such applications. The EU projects In Video Veritas

(InVID)2 and WeVerify3 have recognised this need and put effort on that topic in order

to facilitate the multimedia verification.

In this thesis, we address two fundamental associations between similar videos: a)

duplicate videos and b) videos of the same incident. By duplicate videos, we refer

to videos that have been captured by the same camera and depict exactly the same

scene but may have undergone some visual transformations (e.g., brightness/contrast,

colour, recompression, noise addition, cropping). The second type of similar videos

that we consider are videos capturing the same incident. This category may be split

into subcategories: a) videos that depict the same incident scene from complementary

viewpoints, and b) videos that capture the same incident at different time intervals.

In particular, two videos in the first category must have at least one video segment

where there is temporal overlap between the depicted incident. Videos in the second

subcategory need to depict the same incident but do not need to have temporal overlap.

Also, the videos in the former subcategory must contain distinct visual cues, which are

apparent to humans, linking two videos. However, in the latter subcategory, such cues

are not mandatory to exist, and the association of two videos can be inferred through

other modalities, e.g., audio signals, metadata. Moreover, even though additional

modalities can be proven particularly useful in order to tackle FIVR, in this work, we

focus exclusively on visual information processing and do not consider multi-modal

solutions, which can be future work.

The particular use-case that we are mainly interested in is the retrieval of videos

derived from breaking news events. In such scenarios, all video associations mentioned

above are present, and hence all related videos have to be retrieved for practical applic-

ations. More precisely, in breaking news events, several eyewitness videos capturing

the particular incident are recorded by the people involved. Such videos are usu-

2http://www.invid-project.eu/
3https://weverify.eu/
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Query
Video

Duplicate Complementary Incident
Scene Scene Scene

Figure 1.2: Examples of queries and retrieved associated videos from FIVR-200K.

ally reposted several times by users in social media or broadcasted by news outlets

worldwide. As a result, several near-duplicate versions of the same video are gener-

ated on the web, and hence, their retrieval is of critical importance. Moreover, since

many people are involved in breaking news events, there are many versions of videos

capturing the same incident. Such videos are captured by different devices and are

naturally from different angles or at different time intervals, but they still derive from

the same incident. Therefore, their retrieval could be of high value depending on the

application, e.g., news verification. Figure 1.2 illustrates several query examples from

breaking news events with their related videos based on the different video associations

accepted in FIVR.
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1.1.2 Challenges and assumptions

There is a variety of retrieval tasks and definitions in the multimedia community in

relation to the FIVR problem. These vary with respect to the degree of similarity

that determines whether a pair of videos are considered related, and range from Near-

Duplicate Video Retrieval (NDVR) with very narrow scope where only almost identical

videos are considered positive pairs [134], to very broad definitions, such as Event-

based Video Retrieval (EVR), where videos from the same event [99] or with the same

semantics [13] are labelled as related. However, there does not seem to be a strong

consensus among researchers about which videos are considered near-duplicate videos

and none of the existing definitions addresses the retrieval of same incident videos.

Additionally, solving the most general case of video retrieval (e.g., EVR) does not

guarantee an optimal, or even satisfactory, solution for the more fine-grained cases (e.g.,

NDVR). Hence, in this thesis, we attempt to address these issues by providing solid

definitions for all types of associations between videos related to the FIVR problem

and setting up a unified framework for benchmarking the proposed methods under

different retrieval settings.

Although there are a few video collections that capture different aspects of this

problem, all are limited in different ways. For example, such relevant datasets include

CC WEB VIDEO [134], VCDB [51], and EVVE [99]. The first two datasets have been

collected and annotated for the problem of near-duplicate/copy detection problems,

whereas the last one for the problem of event retrieval. The CC WEB VIDEO dataset

has been used for NDVR since it comprises a number of queries that correspond

to particular video subsets containing multiple near-duplicates. However, its volume

is relatively small (i.e., 12,790 videos) and contains only 24 queries. Also, it lacks

challenging distractors; thus, simple methods achieve close to perfect results. The

VCDB [51] dataset has been compiled for partial copy detection. The main issue with

this dataset is that only a limited number of videos have been annotated, i.e., there are
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only 528 videos in the core dataset. The EVVE [99] simulates the event-based video

retrieval problem. The definition used to determine related videos is very broad. A

pair of videos is not required to have spatial and temporal consistency in order to be

labelled as positives, so long they capture the same event, i.e., a happening that can

be re-occurring or not. Also, the dataset contains annotation only for the videos from

the same event and not for near-duplicate cases.

Moreover, the research community has invested considerable effort in the devel-

opment of video retrieval methods. Several approaches have been proposed in the

literature of the related retrieval fields, which can be roughly classified into three cat-

egories based on the level of similarity considered for video ranking, i.e., (i) video-level,

(ii) frame-level, and (iii) filter-and-refine similarity.

The methods in the first category aggregate/pool frame-level features into a single

video-level representation on which subsequently one can calculate a similarity meas-

ure [134, 113, 30, 77, 115]. These methods are very fast due to the compact size of

the video representation, but they disregard the spatial and temporal structure of the

visual similarity, as the aggregation of features is influenced by clutter and irrelev-

ant content. This leads to worse performance in comparison to the methods of the

other two categories. The methods in the second category extract frame-level fea-

tures from videos and attempt to take into account the temporal sequence of frames

in the similarity computation [119, 25, 99, 11, 28]. Such approaches lead to a signi-

ficant performance gain due to the fine-grained comparison between the two videos.

Their major drawback is that they are computationally expensive due to the extensive

video comparison; thus, the querying process is significantly slower than the video-level

methods. This might be impractical depending on the application scenario, e.g., for

online retrieval systems where the similarity of newly submitted queries can not be

pre-computed. In the third category, researchers sought for hybrid approaches by com-

bining a video- and a frame-level approach in a single framework in a filter-and-refined
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scheme [134, 122, 22, 138]. Typical methods first compare videos based on a video-level

approach to filter the irrelevant cases and then refine the similarity estimation based

on a computationally expensive frame-level approach. These methods offer a balance

between retrieval performance and computational speed. However, they usually are

not able to squeeze the full potential of the employed frame-level approach due to the

erroneous filtering of relevant video.

Yet another limitation of the methods in the literature is the lack of flexibility, in

a sense that they return only almost exact copies of the input videos, and in some

cases, they are not catered for the specific requirements of the problem (e.g., when

a user needs to look for partial-duplicates or videos from different viewpoints). Such

property is essential in the case of the FIVR problem. Another issue of many state-

of-the-art methods is that they adopt a dataset-specific approach: the same dataset

is used for both development and evaluation. This leads to specialized solutions that

typically exhibit poor performance when used in different video collections. Finally, a

considerable limitation of the recently proposed methods is that they do not consider

the spatio-temporal structure of video similarity. The exploitation of such information

for similarity calculation results in significant performance improvement.

1.2 Aims and objectives

In this thesis, we aim to formally introduce the Fine-grained Incident Video Retrieval

(FIVR) problem and address it with an efficient and accurate video retrieval method.

While the task of video retrieval has presented much progress during the last years,

it remains a timely topic with open research questions and practical application. As

briefly discussed in the previous subsections, there are several related definitions pro-

posed by the retrieval community. In addition, the performance of state-of-the-art

video retrieval systems cannot be considered satisfactory, especially in FIVR settings,

which highlights the difficulty of this problem and the need for developing novel ap-
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proaches in this field. The challenge in building an ultimate solution for the FIVR

problem is to: offer flexibility with respect to the definition of what are relevant videos,

achieve very high precision and recall scores, and at the same time, provide the pos-

sibility for scalable indexing of massive multimedia collections and have low response

times. Nevertheless, our goal in this work focuses on retrieval performance rather

than computational time and scalability. Therefore, we aim to build an as accurate as

possible retrieval system that is able to achieve very high retrieval performance.

Our first objective is to collect and annotate a challenging dataset that will serve

the benchmarking needs for different variants of the problem of FIVR. To accurately

represent the problem, this dataset is composed of user-generated videos related to a

large number of real-world events. The events are selected to be of the same nature

for the collected videos to be visually similar and thus to include more challenging dis-

tractors in the dataset. Moreover, a number of videos have been selected as benchmark

queries. We set up a principled process to find queries that have several duplicates

and videos from the same incident, which serve as relevant video cases. At the same

time, there should also be many visually similar distractor videos from different events

to make the retrieval of relevant videos more challenging.

The second objective of this research is to develop effective video retrieval approaches

for FIVR. Motivated by the excellent performance of deep learning in a wide variety

of multimedia problems, we develop video retrieval approaches that incorporate deep

learning and can be used in different application scenarios. Initially, we focus on the

development of a video-level approach, which provides a fast solution for retrieval tasks.

We first build a method that does not need labelled data, and as a result, it can be

applied to any video corpus. However, the developed approach has several limitations,

i.e., volatile performance on unseen data, hard to be retrained with new videos, and

does not provide flexibility with respect to FIVR definitions. Thus, we develop a

supervised solution that is based on a learning scheme that gives the opportunity to
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be trained in various scenarios. Finally, to significantly improve the system’s retrieval

performance, we propose a frame-level approach based on video similarity learning.

This approach considers both the spatial (intra-frame) and temporal (inter-frame)

structure of the visual similarity in order to assign a similarity score between two

compared videos.

1.3 Thesis contributions

Our contributions are:

• The formalization of the FIVR problem and a large-scale dataset that covers

its benchmarking needs, which we call FIVR-200K. We provide formal defini-

tions for three types of video associations between related videos, i.e., duplicate,

complementary, and incident scene videos, considering the spatio-temporal spans

captured by videos. The dataset comprises of 225,960 videos from YouTube col-

lected based on major news events from recent years crawled from Wikipedia.

Additionally, 100 videos are selected to serve as queries selected based on an

automatic pipeline that estimates the suitability as a benchmark of the videos

in the dataset. The dataset contains four annotation labels derived based on

FIVR definitions; thus, the benchmarked methods can be evaluated in various

retrieval settings using the same video corpus. We also conduct a comprehens-

ive experimental study comparing state-of-the-art approaches implemented with

handcrafted and deep features. The study highlights the challenging aspect of

the collected dataset and the difficulty of the FIVR problem.

• Two video-level approaches that generate global video representations which fa-

cilitate fast retrieval. In contrast to the common practice in video retrieval

literature that used handcrafted features, we employ deep learning features ex-

tracted from intermediate layers of Convolutional Neural Networks (CNNs) to

build both of our approaches. For the first method, we propose an unsupervised

approach that is a variation of the traditional Bag-of-Words (BoW) scheme.
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It employs a layer aggregation technique that leads to improved retrieval per-

formance. To overcome several limitations of the BoW approach (e.g., volatile

performance on unseen data), we build a second method based on a supervised

solution that leverages Deep Metric Learning (DML). A significant benefit of

the DML scheme is that it gives the opportunity to be trained in various scen-

arios; hence, it provides us with the required flexibility with respect to the FIVR

definition.

• A Video Similarity Learning (ViSiL) method that considers fine-grained spatio-

temporal relations between the compared videos that offers accurate similar-

ity estimation. In contrast to the current methods in the state-of-the-art that

disregard the spatial or temporal structure of videos during similarity calcu-

lation, we propose a method that considers such information, which leads to

significant performance improvement. More precisely, the method consists of

two carefully crafted components for frame-to-frame and video-to-video simil-

arity calculation. For the first component, we build a function that takes into

consideration region-to-region pairwise similarities during similarity computa-

tion. For the second component, we train a network that analyses the frame-to-

frame similarity matrices and captures the temporal structure of the frame-level

similarity to robustly establish high similarities between relevant videos. Our

proposed method demonstrates significant performance gain on several video

retrieval problems.

Our methods have been extensively evaluated on FIVR-200K and other large-scale

datasets, demonstrating their superiority over other video retrieval methods and on a

large number of video retrieval tasks. Additionally, our experimental study highlights

the challenging aspect of the FIVR problem. However, we do not evaluate the scaling

of our approaches in massive datasets with millions of videos; hence, this remains open

for future research.
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1.4 Structure of the thesis

In Chapter 2, we review the related literature in research fields related to the FIVR

problem, and we provide an outline of the major trends in these fields. We present the

existing definitions regarding the different types of video associations and the related

research field. Then, the video retrieval approaches are classified based on the level that

video similarity is calculated, and the most indicative approaches from each category

are discussed. Finally, we present the evaluation datasets that are traditionally used

as benchmarks.

In Chapter 3, we introduce the FIVR problem, where we provide the definitions

for the related videos and the considered associations. We present all the underlying

processes for the collection, annotation, and query selection built for the composition of

the large-scale FIVR-200K dataset. Also, we benchmark a variety of visual descriptors

and aggregation techniques that have been used by the state-of-the-art, including our

proposed video-level approaches.

In Chapter 4, we present the two proposed video-level methods, BoW and DML ap-

proach, where the process for the generation of global video representations is explained

in detail. Also, the feature extraction from the intermediate CNN layers is described.

A comprehensive evaluation is reported with several settings of the proposed methods.

In Chapter 5, we introduce the proposed ViSiL approach. We provide an in-depth

explanation and analysis for the fundamental functions for frame-to-frame and video-

to-video similarity calculation and learning. Moreover, we describe the setup for the

training of the network. A comprehensive experimental study is conducted on four

video problems and six datasets.

The thesis concludes with Chapter 6, where we summarize the findings of the ex-

perimental studies and present our conclusions on the progress of the ongoing work.

Moreover, we identify some problem aspects where there is still space for further re-
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search and draw directions for future work.
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FIVR and Related Work

in Video Retrieval

Contents
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In this chapter, we review some of the most representative works in the literat-

ure of video retrieval, focusing on the research fields related to FIVR, such as Near-

Duplicate Video Retrieval (NDVR). We aim to cover state-of-the-art studies in these

fields, present the existing definitions of related videos, highlight the limitations of ex-

isting methods and provide a comprehensive view of the research areas for the topics

addressed in this thesis. The chapter has been divided into three sections aiming to

place FIVR with respect to the existing retrieval problems, highlight weaknesses of ex-

isting approaches, and show how the proposed approaches in this thesis can go beyond

the state-of-the-art. Section 2.1 covers the definition and the related research fields in

the literature. Section 2.2 presents a variety of video retrieval approaches, classified

based on the level of video similarity calculation. Finally, Section 2.3 summarizes the
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Figure 2.1: Venn diagram that illustrates the relationship between FIVR and other
related retrieval tasks with respect to the considered types of association between
related videos. VCD stands for Video Copy Detection, NDVR for Near-Duplicate
Video Retrieval, FIVR for Fine-grained Incident Video Retrieval, EVR for Event-
based Video Retrieval, and CBVR for Content-Based Video Retrieval.

existing evaluation datasets that are traditionally used as a benchmark to measure the

performance of the proposed video retrieval methods.

2.1 Definition and related retrieval tasks

Video retrieval is a very challenging problem and has attracted increasing research

interest in recent years. Several variations of the video retrieval paradigm have been

proposed in the literature. In this section, we provide the existing definitions for four

related research problems. Figure 2.1 illustrates the relationship of the related retrieval

problems to FIVR with respect to the considered types of association between related

videos.

Near-Duplicate Video Retrieval (NDVR) is the most closely related research field to

FIVR. The scope of NDVR is the retrieval of near-duplicate videos (NDVs). However,

there does not seem to be a strong consensus among researchers about which videos

are considered NDVs. There is a variety of definitions and interpretations, as pointed

out in [81, 107]. The representative and predominant definitions are those proposed

in Wu et al. [134] and Shen et al. [106]. These vary with respect to the level of
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resemblance that determines whether a pair of videos are considered to be NDVs. Wu

et al. [134] adopted the most narrow scope among the definitions. In essence, NDVs

were considered only those that are identical or approximately identical videos, i.e.,

close to being exact duplicates of each other, but different in terms of file format,

encoding parameters, minor photometric variations, editing operations, length, and

other modifications. By contrast, the definition in Shen et al. [106] extended this to

videos with the same semantic content but different in various aspects introduced dur-

ing capturing time, including photometric or geometric settings, e.g., different camera

viewpoint and setting, lighting condition, background. Yet, both definitions are relat-

ively narrow, considering only near-duplicate cases, and does not cover the retrieval of

the same incident videos adequately.

Additionally, Video Copy Detection (VCD) [69] is closely related to NDVR and, as

a result, to FIVR. The definition of video copies in VCD is very close to the one of

NDVR, yet it is slightly narrower. Videos derived from the same source video and

differing only with respect to photometric or geometric transformations are considered

as copies based on Law-To et al. [69]. Also, the objective of a VCD approach is to

identify the copied videos and detect the particular video segments that have been

copied. Thus, the proposed VCD solutions might be inapplicable to video retrieval

settings. A comprehensive overview of VCD approaches is provided in [130].

Another related research field is the Event-based Video Retrieval (EVR) problem.

The problem was formulated in terms of definition and dataset by Revaud et al. [99].

The objective of this problem is the retrieval of the videos that captures the same

event. However, the definition of the same event videos is very broad, including videos

that have either spatial or temporal relationships. Based on our definition provided

in Chapter 3, two videos are considered related when they originate from the same

spatio-temporal span, i.e., have to be spatially and temporally related. Hence, the

proposed definition and dataset do not serve our needs.
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Content-Based Video Retrieval adopts the broadest definition among the ones in

the literature. The problem was introduced in Basharat et al. [13] and considered

that two videos are related when they depict the same semantic concept, which may

occur under different illumination, appearance, scene settings, camera motion, etc. For

example, videos that illustrate a person riding a bicycle are considered related, even

if there are variations such as different viewpoints, sizes, appearances, bicycle types,

and camera motions.

At this point, one may wonder whether a solution to the most general problem would

ultimately solve all other narrower problems. However, solving the most general case

of video retrieval (e.g., CBVR) does not guarantee an optimal, or even satisfactory,

solution for the more fine-grained cases (e.g., FIVR or NDVR). For example, a solution

built to generate global video representations that finely encode the videos based on

the depicted concepts would have a very competitive performance for CBVR. However,

it would fail in a more fine-grained scenario such as NDVR, where there are long near-

duplicate videos with only short overlapping content. In this case, the videos depicting

the same concept would distract the retrieval process, whose goal is to retrieve only

the near-duplicates. Thus, a specialized solution that processes the videos in frame-

level would be more suitable. On the other hand, a rigorous system that detects only

near-duplicate content would not work for more general cases, where the objective is

to retrieve videos with more abstract relations. To this end, we do not search for a

universal solution that solves all retrieval problems at once.

2.2 Video retrieval approaches

Based onThe video retrieval approaches can be classified based on the level of similarity

considered to determine the video ranking into video-level (Section 2.2.1), frame-level

(Section 2.2.2) and filter-and-refine similarity (Section 2.2.3)
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Figure 2.2: Overview of video-level approaches. After the feature extraction, the
frame-level features are combined into a global video representation through an ag-
gregation scheme or a hashing function, which is used for similarity calculation.

2.2.1 Video-level similarity

Video-level approaches have been developed to deal with web-scale retrieval. In such

approaches, videos are usually represented with a global signature, such as an aggreg-

ated real-value feature vector or a binary hash code. The video similarity is computed

based on the global video representations. Figure 2.2 provides an overview of a typical

video-level approach.

A common process to generate a global video representation is by the combination

of visual features extracted from video frames into a single feature vector. The global

representations derive from the application of an aggregation/pooling function, and

the video similarity is usually calculated based on Euclidean distance, cosine similarity,

or Jaccard similarity. Several research works have employed this similarity calculation

scheme [134, 82, 106, 103, 43, 59, 48, 30, 31, 71, 143, 70]. Wu et al. [134] intro-

duced a simple approach for the video signature generation. They extracted HSV

features from the video keyframes and averaged them to create a single vector. The

distance between two video signatures was computed based on their Euclidean dis-

tance. Huang et al. [43] employed Principal Component Analysis (PCA) [133] over

the colour histograms of the video frames and generated a video representation model
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called Bounded Coordinate System (BCS). The scaling and rotations of the BCS vec-

tors were considered for the similarity calculation between two videos. Shang et al.

[103] introduced compact spatio-temporal features based on Local Binary Patterns

(LBP) [145], called STF-LBP, to represent videos and constructed a modified inverted

file index based on a Bag-of-Word (BoW) scheme [18]. These spatio-temporal features

were extracted based on a feature selection and w -shingling scheme, which uses sets of

unique n-grams, each of which is composed of consecutive visual words. They adopted

Jaccard similarity to rank videos. Cai et al. [18] presented a large-scale BoW ap-

proach by applying a scalable K-means clustering technique on the color correlograms

[41] of a sample of frames and using inverted file indexing [111] for the fast retrieval of

candidate videos. They used cosine similarity to measure the similarity between two

candidate videos. Kim et al. [59] propose a video fingerprint based on region binary

patterns, which is robust against rotation and flipping transformations. They extract

two complementary region binary patterns from several rings in keyframes, which are

combined into a single video fingerprint used to measure similarity. Jiang et al. [48]

extracted frame representations from the fully connected layer of a CNN, which are

aggregated to a video-level signature by applying global average pooling. The Euc-

lidean distance measures the similarity between videos. Goa et al. [30, 31] extracted

a video imprint for the entire video based on an alignment procedure of CNN fea-

tures that exploits the temporal correlations and removes feature redundancies across

frames. They sum-aggregate the entire video imprint to extract a global vector and

use cosine similarity to measure similarity. Lee et al. [71] proposed a deep learning

architecture that maps videos based on their audio-visual content, onto an embedding

space that preserves video-to-video relationships. They experimented with different

fusion schemes to combine video and audio features. Videos were ranked based on

the dot product of the video embeddings, and the network was trained by optimiz-

ing the triplet loss function. In [70], they extended their work by building a training

scheme based on hierarchical graph clusters, which are used for negative sampling and
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pseudo-classification labeling.

A popular direction is the generation of a hash code for the entire video. Similar

to the real-value approaches, video hashing methods apply a hashing function that

aggregates the video information and generates a binary hash code for the entire

video. The Hamming distance is utilized as a similarity measure. Many video hashing

methods have been proposed in the literature [113, 114, 91, 77, 35, 34, 55, 115, 112,

90, 73, 141]. Song et al. [113] presented an approach for Multiple Feature Hashing

(MFH) based on an unsupervised method that employed multiple frame features (i.e.,

LBP and HSV features) and learned a group of hash functions that map the video

frame descriptors into the Hamming space. The video signatures were generated by

averaging the keyframe hash codes. They extended their approach in [114] by including

information of the frame groups into the objective function, so as to introduce temporal

information in the learning process of the hash functions, which led to a marginal

performance increase. Hao et al. [35] combined multiple frame features to learn a

group of mapping functions by minimizing the difference of the probability distribution

of frame adjacencies between the original and embedded Hamming space based on the

Kullback-Leibler (KL) divergence. They extended their work in [34] by employing

t-distribution to generate relaxed hash codes. Jing et al. [55] proposed a supervised

hashing method called Global-View Hashing (GVH), which utilized relations among

multiple features of video keyframes. They projected all features into a common space

and learned multi-bit hash codes for each video using only one hash function. Liong

et al. [77] employed a CNN architecture to learn binary codes for the entire video and

trained it end-to-end based on the pair-wise distance of the generated hash codes and

video class labels. Song et al. [115] built a self-supervised video hashing system, able to

capture the temporal relation between frames using an encoder-decoder scheme based

on a Recurrent Neural Network (RNN). The network is trained with reconstruction loss

on the encoder-decoder setup and a neighborhood loss that enforces the preservation of

the neighborhood structure. Nie et al. [90] proposed a supervised hashing scheme that
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jointly learns multiple hashing functions that preserve the global and local structures

of multiple features in the Hamming space. A multi-bit hash function is learned based

on generalized eigenvalue decomposition that learns multiple hash functions within a

single step. Li et al. [73] proposed a neighborhood attention mechanism which focuses

on useful content in video frame conditioned with the neighborhood information. They

employed an RNN-based reconstruction scheme to implement neighborhood attention,

which learns a hashing function that maps similar videos to similar binary codes.

Finally, Yuan et al. [141] proposed the central similarity, which is a global similarity

metric, that encourages the hash codes of similar data pairs to approach a common

center and those for dissimilar pairs to converge to different centers. They trained

end-to-end a CNN network with a hashing layer by optimizing their central similarity,

in order to generate video hash codes.

To sum up, video-level approaches capture the overall video information and facil-

itates video indexing and searching due to the compact video representation. Thus,

video querying is very fast in such methods. However, the loss of local information

in the video-level global signature has a considerable impact on the performance of

such approaches [134, 22, 11, 64, 62, 104], making it difficult to distinguish two irrel-

evant videos with similar content. Hence very different videos may have similar global

signatures, which may result in misleading decisions. These methods are typically

outperformed by the ones of the other two categories. Also, methods that use deep

learning, either for feature extraction or generation of global video representation, were

limited by the time that we conducted research for this thesis. Besides, only a few

recent works proposed supervised learning solutions [77, 71, 70] for the video retrieval

problem. Supervised solutions provide flexibility with respect to the definition of re-

lated videos and offer a more robust solution when applied on unseen data. Finally,

deep learning methods [70, 73, 141] achieve the best results among video-level methods

in the related video retrieval fields.
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To this end, in this thesis, we build one unsupervised and one supervised video-

level method based on global features that leverage deep learning and outperform the

state-of-the-art of video-level methods with a significant margin (Chapter 4). The first

method is an unsupervised approach based on a BoW scheme [111]. We extract global

frame representations for the video frames from the intermediate layers [124, 146]

of a pretrained CNN. Then, we devise two aggregation schemes, i.e., a vector and

a layer aggregation, to generate global video representations. Our approach shares

many similarities with the method presented in [18] since both of them employ global

frame representations and generate global video representations from BoW. However,

in contrast to [18], we use CNN features. At the time of publication, it was the first

time that such features were successfully employed in the context of the related video

retrieval tasks. Moreover, the layer aggregation is a modified version of the traditional

BoW, where multiple codebooks are utilized to map the feature vector extracted from

the CNN layers into multiple visual words. This modification leads to a significant

performance increase. The second method is a supervised approach that employs Deep

Metric Learning (DML). Again, we utilize the same features from intermediate CNN

layers concatenated in the channel dimension. We train a Deep Neural Network (DNN)

to approximate an embedding function that maps videos to a feature space where the

related videos are closer than the irrelevant ones. We train our network with triplet

loss function and a triplet-generation process based on hard negative examples. At the

time of publication, the DML scheme had been employed in other similar computer

vision problems, e.g., image retrieval [128, 95], face recognition/retrieval [101], but

not in one of the related fields, being a recent trend in state-of-the-art by the time of

writing [77, 71, 11, 64, 70, 141, 104]. Therefore, our main novelty is the adaptation of

the DML pipeline to the domain of video processing.
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Figure 2.3: Overview of frame-level approaches. After the feature extraction, global
frame representations are generated, and a frame-to-frame similarity calculation step is
performed, or a spatio-temporal representation is extracted. Then, temporal alignment
is applied that assesses the video similarity.

2.2.2 Frame-level similarity

In the case of frame-level approaches, the video similarity is determined by the com-

parison between individual video frames or sequences. Typical frame-level approaches

calculate the similarity between videos based on frame-to-frame or spatio-temporal

similarity functions. Figure 2.3 provides an overview of a typical frame-level approach.

Methods that employ frame-to-frame similarity calculation usually extract global

representations for video frames and then employ temporal alignment algorithms to

compute similarity at the video-level. Some typical methods are [21, 140, 119, 25, 132,

80, 51, 58, 52, 129, 86, 76, 74, 104]. Tan et al. [119] proposed a graph-based Temporal

Network (TN) structure generated through keypoint frame matching. They embed-

ded temporal constraints into a network structure and formulated the partial video

alignment problem into a network flow problem. The similarity between two compared

videos was calculated based on the longest path in the generated temporal network.

Douze et al. [25] proposed an approach to align matched frames by means of a tem-

poral Hough transform. They extracted SIFT [83] and CS-LBP [37] descriptors based

on Hessian-Affine regions [88], to create a BoW codebook [111] for Hamming Embed-

ding with weak geometric consistency [45]. Using post-filtering, they verified retrieved
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matches with spatio-temporal constraints and devised the so-called Temporal Hough

Voting (THV). Several recent works have employed modifications of the two aforemen-

tioned approaches for the problem of partial-copy detection, combining it with CNN

features [52, 129, 40]. Jiang et al. [52] employed a pre-trained CNN to extract global

features for the video frames, and they also trained another CNN with pairs of image

patches that captures the local information of frames. They experimented with TN

and THV in order to detect the copied video segments. Wang et al. [129] proposed a

compact video representation by combining features extracted from pre-trained CNN

architectures with sparse coding to encode them into a fixed-length vector. To determ-

ine the copied video segments, they constructed TNs based on the Euclidean distance

between the extracted features. Hu et al. [40] trained a siamese architecture consisting

of a CNN+RNN with contrastive loss function and employed TNs to calculate video

similarity. Another popular solution is based on Dynamic Programming (DP) [22, 79].

Such works calculated the similarity matrix between all frame pairs and extracted the

diagonal blocks with the largest similarity. To increase flexibility, they also allowed

limited horizontal and vertical movements. In some recent works, Guzman-Zavaleta

et al. [32] trained a reinforcement learning system for video copy detection. They

developed a decision strategy by adapting the Q-learning algorithm [131] to detect the

boundings of the overlapping segments. Liang et al. [74] proposed an unsupervised

teacher-student set up to train a feature extraction CNN on the target dataset. They

developed an algorithm to assess the similarity between the query and database videos

based on the most similar database frames to the query ones. Finally, Shao et al. [104]

proposed a temporal context aggregation framework for video representation learning

that captures long-range temporal information between frame-level features. They use

the transformer architecture [127], which is based on self-attention mechanism, and

train it with contrasting learning. They evaluate their network in both video-level

and frame-level settings, achieving their best performance with the use of Chamfer

Similarity, proposed in our work.
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Another line of research considers spatio-temporal video representation and match-

ing to improve the performance by exploiting not only the spatial information of frames

but also the temporal relations to generate video representations and calculate similar-

ity. Indicative spatio-temporal works include [42, 144, 98, 99, 135, 94, 149, 11, 28, 72, 3].

In some early works, Huang et al. [42] proposed a one-dimensional Video Distance Tra-

jectory (VDT) to monitor the continuous changes of consecutive frames with respect to

a reference point, which is further segmented and represented by a sequence of compact

signatures called Linear Smoothing Functions (LSFs). They measured video similarity

with a scheme that extends edit distance, which was applied to the extracted repres-

entations. Wu and Aizawa [135] proposed a self-similarity-based feature representation

called Self-Similarity Belt (SSBelt), which derived from self-similarity matrices. They

measure video similarity via coarse histogram matching of the video representations

and a refinement step based on flip-invariant feature representations. A popular direc-

tion is to use the Fourier transform in a way that accounts for the temporal structure of

video similarity [99, 94, 11, 136]. Revaud et al. [99] proposed the Circulant Temporal

Encoding (CTE) that encodes the frame features in a spatio-temporal representation

with Fourier transform and thus compares videos in the frequency domain based on the

properties of circulant matrices. Poullot et al. [94] introduced the Temporal Match-

ing Kernel (TMK) that encodes sequences of frames with periodic kernels that take

into account the frame descriptor and timestamp. A score function was introduced

for video matching that maximizes both the similarity score and the relative time off-

set by considering all possible relative timestamps. Baraldi et al. [11] built a deep

learning layer component based on TMK and set up a training process to learn the

feature transform coefficients in the Fourier domain using a triplet loss that takes into

account both the video similarity score and the temporal alignment. Finally, some

recent works [28, 72, 3] employ deep learning to solve the problem of the detection of

overlapping video segments. Feng et al. [28] developed an approach based on cross

gated bilinear matching for video re-localization. They employed C3D features [125]

25



2.2. Video retrieval approaches

and built a multi-layer recurrent architecture that matches videos through attention

weighting and factorized bilinear matching to locate related video parts. Li et al.

[72] built multiple two-class classifiers based on a 3D-CNN architecture for video copy

detection. They trained several binary classifiers that constitute a parallel classifica-

tion model that detects different video transformations. Finally, Abobeah et al. [3]

proposed a bi-directional attention model for video alignment. They extracted CNN

features aggregated with location-aware VLAD [84], and then built a bidirectional

Long Short-Term Memory (bi-LSTM) [39] weighed with an attention mechanism [102]

to automatically detect the starting and ending point of the overlapping segments

between two videos.

Overall, the frame-level similarity approaches extract fine-grained information from

videos, leading to a significant performance increase in comparison to video-level meth-

ods. Their major drawback is that they are computationally expensive due to the

extensive comparison of all video frames or sequences of video pairs; thus, the retrieval

process is significantly slower than the video-level matching approaches. Additionally,

a promising direction is exploiting better the spatial and temporal structure of videos

in the similarity calculation [25, 51, 52, 3]. However, recent approaches either focus

on the spatial processing of frames and completely disregard temporal information

[86, 76, 74], or consider global frame representations (essentially discarding spatial

information) and then consider the temporal alignment among such frame repres-

entations [11, 28, 74]. None existing work proposes spatio-temporal solutions that

considered both the spatial structure of frames and temporal structures of videos.

In this thesis, we attempt to overcome these limitations and propose a frame-to-

frame method that considers fine-grained spatio-temporal relation of videos during

similarity computation (Chapter 5). We devise a novel frame-to-frame similarity cal-

culation scheme that captures similarities at the region level, which leads to significant

performance improvement. Also, we build a supervised video-to-video similarity cal-
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culation scheme that analyses the frame-to-frame similarity matrix through a CNN

network, which robustly establishes high similarities between video segments of the

compared videos. Some works in the state-of-the-art proposed approaches with the

utilization of similar frame-to-frame similarity matrices [22, 79]. These solutions are

not capable of capturing a large variety of temporal similarity patterns due to their

rigid aggregation approach. By contrast, the proposed approach learns the similarity

patterns with a CNN subnet that operates on the similarity matrix between the frame

pairs. However, since computational efficiency is not our primary goal in this work, the

proposed method does not address the main disadvantage of frame-level methods in

comparison to video-level ones, which is the high computational time. Yet, it achieves

state-of-the-art performance on several retrieval tasks and datasets.

2.2.3 Filter-and-refine

To overcome the bottleneck of video-level approaches and to achieve efficient video

retrieval implementations, researchers developed hybrid approaches by combining the

advantages of frame-level and video-level methods.

Typical filter-and-refine methods deploy a video-level method to quickly discard

videos with low similarity scores as they considered irrelevants and then apply on the

remaining videos a frame-level algorithm for refined similarity calculation. One of the

earliest methods is the [134], where the author generated video signatures by averaging

the HSV histograms of keyframes. Then, they applied a hierarchical scheme to filter

out irrelevant videos and apply a computationally heavy similarity scheme based on

local feature descriptors. Zhou et al. [147] proposed a video representation based on

a 3D structure tensor called Adaptive Structure Video Tensor (ASVT) that is used

to calculate similarity based on a Hamming distance extension. For the filtering step,

they devised a dimensionality reduction technique for efficient indexing. Several filter-

and-refine methods in the literature extracts multimodal features from videos [123, 49,

121, 122]. These methods employed various features, i.e., local visual features (SIFT
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[83], SURF [14]), global visual features (DCT [5]), and audio features (WASF [20]).

Also, they used Bag-of-Words (BoW) [111] scheme and Locality Sensitive Hashing

(LSH) [23] for aggregation. Jiang et al. [49] presented a soft cascade framework based

on the hashed features to filter out irrelevant videos. Then, they applied a temporal

pyramid matching algorithm to determine the similarity between video sequences.

Tian et al. [122] extended the multimodal cascading framework, including the concept

of transformation-awareness, copy units, and soft-decision boundary. Moreover, many

researchers combine a video-level BoW scheme as the filtering step with frame-to-frame

similarity calculation as the refinement [22, 79, 6, 148, 75]. Chou et al. [22] proposed

a spatio-temporal indexing structure utilizing index patterns, termed Pattern-based

Index Tree (PI-tree), to filter irrelevant videos. In the refining stage, an Dynamic

Programming scheme was devised to localize near-duplicate segments and to re-rank

results of the filter stage. Yang et al. [138] proposed a multi-scale video sequence

matching method, which gradually detected and located similar segments between

videos from coarse to fine scales. Given a query, they used a maximum weight matching

algorithm to select candidate videos in the coarser scale, and then they extract the

similar video segments in the middle scale. In the fine scale, they used bi-directional

scanning to check the matching similarity of video parts to localize near-duplicate

segments. Zhou et al. [148] extracted spatial and temporal representations for the

video sequences based on CNN features. They organized videos in a BoW scheme and

an inverted file structure [111] for the filtering step. They refine similarity calculation

based on the cosine distance between the extracted features. Finally, Liang et al.

[75] employed a filtering stage based on the concepts depicted in the video frames that

derive from a trained classifier. Then, they measure similarity based on a BoW scheme

that uses CNN features pooled in the temporal dimension.

In this way, filter-and-refine methods take advantage of the fast retrieval of the

video-level approaches to filter a large number of videos, considering them as dissimilar,

and then apply computationally expensive frame-level similarity calculation techniques
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Table 2.1: Comparison of FIVR with existing datasets and retrieval tasks. UGV stands
for User-Generated Videos.

Dataset Queries Videos Hours UGV Task

CC WEB VIDEO [134] 24 12,790 551 X NDVR

UQ VIDEO [113] 24 169,952 N/A X NDVR

SVD [50] 1,206 562,013 2,704 X NDVR

MUSCLE-VCD [69] 18 101 100 7 VCD

TRECVID-CBCD [67] 11,256 11,503 420 7 VCD

VCDB [51] 528 100,528 2,038 X VCD

EVVE [99] 620 102,375 5,536 X EVR

FIVR-200K 100 225,960 7,100 X FIVR

for improved retrieval performance. Such approaches may sacrifice performance for

faster video retrieval. Hence, they offer a balance between speed and accuracy. Yet,

they heavily depend on the performance of the individual video-level and frame-level

approach. Also, the adaptation of the developed methods with a filter-and-refine setup

can be relatively straightforward, e.g., by setting a similarity threshold. Thus, we do

not invest any effort in the development of such a method in this thesis.

2.3 Benchmark datasets

Although there are a few video collections that capture different aspects of this prob-

lem, all of them are limited in different ways. More specifically, related datasets include

CC WEB VIDEO [134], UQ VIDEO [113], SVD [50], MUSCLE-VCD [69], TRECVID-

CBCD [67], VCDB [51] and EVVE [99]. The first three datasets were collected for the

problem of near-duplicate video retrieval, the next three for the video copy detection

problem, and the last one for the problem of event retrieval. The query videos for the

MUSCLE-VCD and TRECVID-CBCD datasets were artificially generated, i.e., the

queries have been synthetically generated with the manual application of predefined

transformations. In contrast, the rest of the datasets contain actual user-generated

videos as queries. Table 2.1 provides an overview of the aforementioned datasets and

associated retrieval tasks.

29



2.3. Benchmark datasets

The most relevant and widely used dataset is the CC WEB VIDEO [134]. The

dataset consists of user-generated videos collected from the Internet. In particular,

it contains a total of 12,790 videos consisting of 397,965 keyframes. The videos were

collected by submitting 24 popular text queries to popular video sharing websites

(YouTube, Google Video, and Yahoo! Video). For every query, a set of video clips

were aggregated, and the most popular video was considered as the query video. Sub-

sequently, all retrieved videos in the video sets were manually annotated by three an-

notators based on their near-duplicate relation to the query video. The near-duplicate

rate of the collected sets ranges from 6% to 93%. On average, 27% of the videos in

each set are considered near-duplicates. The main limitation of the dataset is that

its volume and query set are relatively small (12,790 videos and 24 queries). Also, it

lacks challenging distractors, given that the queries are very different from each other,

resulting in relatively simple approaches achieving close to perfect performance, which

can be misleading.

Several variations of the CC WEB VIDEO dataset have been developed by research-

ers in the NDVR field [103, 113, 18, 22]. To make the NDVR problem more challenging

and benchmark the scalability of their approaches, researchers usually extend the core

CC WEB VIDEO dataset with thousands of distractor videos [113, 22]. The most

well-known and publicly available dataset that has been created through this process

is UQ VIDEO [113]. For the composition of the background dataset, they chose the

400 most popular queries based on Google Zeitgeist Archives from the years 2004 to

2009. Each query was submitted to YouTube, and up to 1,000 video results were

collected. After filtering out videos of duration longer than 10 minutes, the combined

dataset is composed of 169,952 videos (including those of the CC WEB VIDEO) com-

prising 3,305,525 keyframes. The same 24 query videos contained in CC WEB VIDEO

are used for benchmarking. Unfortunately, only the HSV and LBP histograms of the

video keyframes are provided by the authors. Similar to the CC WEB VIDEO, many

outdated approaches report competitive performance, indicating that the dataset is
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not challenging enough.

A recently published dataset is the SVD [50]. This dataset is tailored to cover

the need of NDVR of short videos in particular. It consists of 562,013 short videos

crawled from a large video-sharing website, namely Douyin1. The average length of the

collected videos is 17.33 seconds. The videos with more than 30,000 likes were selected

to serve as queries. Candidate videos were selected and annotated based on a three-

step retrieval process. A large number of probably negative unlabelled videos were also

included to serve as distractors. Hence, the final dataset consists of 1,206 queries with

34,020 labelled video pairs and 526,787 unlabelled videos. The queries are split into

two sets, i.e., training and test set with 1,000 and 206 queries, respectively. However,

the dataset consists of solely short videos that usually are single-shots, which does not

generalize to the retrieval of long untrimmed cases. Also, it includes annotations only

for the near-duplicate video pairs.

Another popular public dataset is the MUSCLE-VCD, created by Law-To et al.

[69]. This dataset was created for the problem of video copy detection. It consists of

100 hours of videos, including Web video clips, TV archives, and movies of different

bitrates, resolutions and video formats. A set of original videos and their corresponding

transformed queries are given for evaluation. Two types of transformation are applied

on the queries: a) ST1: copy of the entire video with a single transformation, where

the videos may be slightly recoded and/or subjected to noise addition; b) ST2: partial

copy of videos, where two videos share one or more video segments. Both transforma-

tions were artificially applied using video-editing software. The transformed videos or

segments were used as queries to search their original versions in the dataset. Due to

its small size and the limited number of transformations applied to the original videos,

this dataset does not serve the needs of large-scale and more general problems such as

FIVR.

1http://www.douyin.com
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The annual TRECVID [1] evaluation included a task on Content-Based Copy De-

tection (CBCD) in years 2008 to 2011. Each year a benchmark dataset was generated

and released only to the registered participants of the task. The TRECVID-CBCD

datasets were constructed following the same process as the MUSCLE-VCD dataset.

The latest edition of the dataset [67] contains 11,503 reference videos of over 420 hours

and 11,256 queries. Query videos are categorized into three types: a reference video

only, a reference video embedded into a non-reference video, and a non-reference video

only. Only the first two types of query videos are copies of videos in the dataset. The

queries were automatically generated by randomly extracting a segment from a data-

set video and imposing a few predefined transformations. The contestants were asked

to find the original videos and detect the copied segment. However, the TRECVID-

CBCD task has not been organized since 2011 due to the near-perfect performance of

the submitted methods. This is misleading since the performance of the same meth-

ods on other user-generated datasets that have been developed for similar problems

is far from satisfactory. This fact reveals that the developed dataset can not simulate

real-world scenarios where an arbitrary number of transformations might have been

applied to the original videos by users.

A more recent dataset that is relevant to our problem is VCDB [51]. It is composed of

videos from popular video platforms (YouTube and Metacafe) and has been compiled

and annotated as a benchmark for the partial copy detection problem. VCDB contains

two subsets, the core and distractor. The core subset contains 28 discrete sets of videos

composed of 528 videos with over 9,000 pairs of partial copies. Each video set was

manually annotated by seven annotators, and the video chunks of the video copies

were extracted. The distractor subset is a corpus of approximately 100,000 distractor

videos, which is used to make the video copy detection problem more challenging. In

total, VCDB contains 100,528 videos amounting to more than 2,000 hours of video. Its

main limitation is that only a limited number of its videos have been annotated (528

videos in the core dataset), so it can not cover the need for large-scale video retrieval.

32



2.3. Benchmark datasets

Another relevant dataset is the EVVE dataset [99], which was developed for the

problem of event video retrieval. The main task of this dataset is the retrieval of all

videos that capture the event depicted by a query video. The dataset contains 13

major events that were provided as queries to YouTube. A total of 2,995 videos were

collected, and 620 of them were selected as queries. Each event was annotated by

one annotator, who first produced a precise definition of the event. In addition to

the videos collected for the specific events, the authors also retrieved a set of 100,000

distractor videos by querying YouTube with unrelated terms. These videos were all

collected before a certain date, which ensures that the distractor set does not contain

relevant events since all EVVE events occurred after that date. Nevertheless, the

definition of the related videos is much broader than the one we consider in FIVR,

and additionally, the dataset contains annotations only for videos from the same event

and not for its near-duplicates.

Finally, there are several relevant video datasets that have been used for content-

based videos retrieval, i.e., Youtube-8M [4], YFCC100M [120], ActivityNet [17], FCVID

[53]. Such datasets contain information regarding a set of classes related to the con-

cepts or actions depicted in the videos. Since they represent the most general video

retrieval scenario and contain only class-level annotation, they are not suitable for our

purpose as they do not cover our requirements for FIVR, and thus, they can not be

exploited.

In conclusion, all of the datasets mentioned above have several limitations. The most

important limitations are: i) Many datasets are saturated and do not pose a challenge

as old and outdated methods achieve near-perfect results (i.e., CC WEB VIDEO,

UQ VIDEO, MUSCLE-VCD, TRECVID-CBCD). ii) Others are relatively small in

size, so they can not simulate large-scale retrieval scenarios (i.e., CC WEB VIDEO,

MUSCLE-VCD, TRECVID-CBCD, VCDB). iii) Some datasets either simulate lim-

ited aspects of the problem (i.e., SVD, MUSCLE-VCD, TRECVID-CBCD) or con-
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sider only very broad definitions to determine the related videos (i.e., EVVE). Finally,

iii) no dataset contains proper annotations that cover the case of the same incident

videos. In short, none of the above datasets can satisfy the requirements posed by the

FIVR problem. For that reason, we built a new large-scale video dataset (FIVR-200K)

according to the FIVR definitions. The dataset consists of videos depicting a variety

of real-world news events, challenging cases of positive video pairs, and a large number

of distractor videos.

2.4 Conclusion, limitations and novelty

In this chapter, we presented the most important works in the video retrieval literature

related to FIVR. We began by discussing the most relevant retrieval tasks, along with

the existing definitions. We continued with the description of several state-of-the-

art works classified based on the level of similarity employed during computation.

We followed with the presentation of the video datasets that have been composed to

simulate relevant retrieval tasks.

We have drawn several conclusions from our literature review. First, the exist-

ing definitions can range from very narrow, i.e., only video copies or near-duplicates

are considered, to very broad, where videos depicting the same semantic concept are

considered related. Also, dealing with the most general problem does not necessar-

ily address the more fine-grained ones. Regarding the retrieval methods, there are

three main categories of methods classified based on the level of the calculated simil-

arity, i.e., video-level, frame-level, and filter-and-refine. For all of the categories, the

most prominent solutions that achieve state-of-the-art results employ deep learning

[28, 148, 74, 3, 75], and especially in deep metric learning settings [115, 11, 70, 141, 104].

Video-level methods are employed mainly in the general aspect of the retrieval prob-

lem, i.e., for CBVR [115, 73, 70, 141]. However, frame-level methods are used to

tackle more fine-grained problems, i.e., VCD [52, 148, 3], NDVR [22, 75, 104], FIVR
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[74, 104], or EVR [94, 11, 104]. Finally, for the simulation of the video retrieval prob-

lem, large-scale datasets with user-generated videos datasets are required. There are

various datasets covering all the related retrieval problems, but none of them can be

employed to simulate FIVR.

To this end, in this thesis, we formulate the FIVR problem, and we build retrieval

approaches that tackle the limitations and go beyond the state-of-the-art, as described

below:

Firstly, since there is no proper definition that covers our problem, we introduce the

FIVR problem with the composition of a large-scale video dataset that has been crafted

and annotated to serve as an evaluation testbed for the benchmarked approaches

(Chapter 3). We propose formal definitions for the association types considered in

the dataset, i.e., near-duplicate videos, videos captured from different viewpoints, and

the same incident videos. The definitions proposed in the field of NDVR ([134] and

[106]) had a significant influence on the formulation of the first two. In the case of the

same incident videos, we considered the EVR definition proposed in [99] for the proper

separation of the two associations. Our main novelty is the definitions of the video

associations for FIVR and the composition of a large-scale dataset that simulates the

problem.

Secondly, at the time of publication of our early work, only limited methods in the

literature of video retrieval employed solutions based on deep learning. Hence, we

present two video-level methods that leverage deep learning (Chapter 4). Our first

method is an unsupervised approach based on a BoW scheme [111]. Our novelty is the

utilization of deep learning features from the intermediate convolutional layers [124,

146], and a layer aggregation scheme for the generation of global video representations.

Our second method is a supervised approach that employs Deep Metric Learning

(DML) to train a network to approximate an embedding function that maps videos

to a feature space where the related videos are closer than the irrelevant ones. Our
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main novelty is the problem formulation for the adaptation of the DML pipeline to

the domain of video retrieval.

Finally, there is a lack of methods in the literature that exploits both spatial and

temporal structure of video similarity. State-of-the-art methods either focus on the

spatial processing of frames (disregarding temporal information) or build temporal

alignment schemes based on global frame representations (discarding spatial informa-

tion), which are usually not capable of capturing a large variety of temporal similarity

patterns due to their rigid aggregation approach. To this end, to tackle these limit-

ations, we propose a video similarity learning architecture that considers fine-grained

spatio-temporal information during the similarity computation (Chapter 5). We devise

a novel frame-to-frame similarity computation scheme that captures the intra-frame

relations between frames, and we train a CNN network for video-to-video similarity

calculation, which captures the inter-frame relations. Our main novelty is the com-

position of a fine-grained spatio-temporal model for video similarity learning.
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Chapter 3

Fine-grained Incident Video

Retrieval: new problem and dataset
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In this chapter, we formulate the retrieval task of Fine-grained Incident Video Re-

trieval (FIVR). Our objective in FIVR is to retrieve all videos that depict the same

incident given a query video – related video retrieval tasks adopt either very narrow

scopes, considering only near-duplicate videos, or very broad, considering videos from

the same event. To formulate the case of same incident videos, we definite three video

associations, i.e., duplicate, complementary, and incident scene videos, taking into ac-

count the spatio-temporal spans captured by video pairs. We construct and present

a large-scale annotated video dataset to address the benchmarking needs of all such

tasks, which we call FIVR-200K, and it comprises 225,960 videos. To create the data-

set, we devise a process for the collection of YouTube videos based on major news

events from recent years crawled from Wikipedia and deploy a retrieval pipeline for
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Figure 3.1: Examples of a query video (QV) with one complementary scene video
(CSV) and one incident scene video (ISV) on the timeline of an incident. The following
colour coding is used: i) red for QV, ii) green for CSV, and ii) blue for ISV.

the automatic selection of query videos based on their estimated suitability as bench-

marks. We also devise a protocol for the annotation of the dataset with respect to

the four types of video associations defined in FIVR, which facilitates the evaluation

of the benchmarked methods in different retrieval settings using the same dataset –

in contrast to other related datasets that can simulate only a single retrieval scenario.

We also conduct a comprehensive experimental study comparing state-of-the-art ap-

proaches with handcrafted and deep features, highlighting the challenging aspect of

the collected dataset and the difficulty of the FIVR problem.

More precisely, we address two fundamental associations between similar videos: a)

duplicate videos and b) videos of the same incident. By duplicate videos, we refer

to videos that have been captured by the same camera and depict exactly the same

scene, but may have undergone some visual transformations (e.g., brightness/contrast,

colour, recompression, noise addition, cropping). The second type of similar videos

that we consider are videos capturing the same incident. This category may be split

into subcategories: a) videos that depict the same incident scene from complementary

viewpoints, and b) videos that capture the same incident at different time intervals.

In particular, two videos in the first category must have at least one video segment

where there is temporal overlap between the depicted incident. Videos in the second
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subcategory need to depict the same incident but do not need to have temporal overlap.

Figure 3.1 illustrates three example videos that capture the same incident along with

their FIVR associations.

The goal of this chapter is to propose and formulate the Fine-grained Incident Video

Retrieval (FIVR) problem through the composition of a challenging dataset that will

serve the benchmarking needs for different variants of the problem. The main contri-

butions of this work can be summarized in the following:

• The introduction of the Fine-grained Incident Video Retrieval (FIVR) problem

and the definition of different associations between pairs of videos.

• The creation and availability of a large-scale dataset (FIVR-200K)1 consisting

of 225,960 videos, derived from a wide variety of real-wold news events, which

leads to challenging retrieval cases.

• The development of a process for the collection and annotation of videos based

on major news events crawled from Wikipedia and a principled process for the

automatic selection of suitable video queries.

• A comprehensive experimental study comparing five state-of-the-art approaches

implemented with several visual descriptors (handcrafted and deep features).

The chapter is organized as follows: Section 3.1 introduces the necessary notation

and definitions that formulate the FIVR problem. Section 3.2 describes the dataset

construction process, including the video collection, query selection, and video an-

notation. Section 3.3 reports on the results of the experimental study on the dataset.

Section 3.4 concludes the chapter.
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Table 3.1: Background notation and definitions.

Term Description

x an arbitrary video

xi ith scene of x

zxi spatio-temporal span of the ith scene of x

vxi viewpoint of the ith scene of x

hxi incident captured in the ith scene of x

zx spatio-temporal span of the entire video x

vx viewpoints of the entire video x

hx incidents captured in the entire video x

S space of scenes

Z space of spatio-temporal span

V space of viewpoint

H space of incidents

f
function that maps an incident to a unique spatio-
temporal span

g
function that, given a viewpoint, maps a spatio-
temporal span to a scene

3.1 Problem definition

We consider that a real-world incident determines a unique spatio-temporal span, i.e.,

there is a function f : H → Z that maps the incidents from an incident space H to a

continuous spatio-temporal space Z, which can be understood as the specific place and

time interval that an incident takes place. Furthermore, a video can be perceived as the

mapping of the real world to a sequence of two-dimensional raster images with three

colour channels. Additionally, as defined in the field of temporal video segmentation

[33], a video can be decomposed in a sequence of scenes, which are temporal segments

that cover either a single event or several related events taking place in parallel. Thus,

an arbitrary video x with a sequence of n non-overlapping scenes may be denoted as

x = [x1 x2 ... xn], where xi ∈ S and S is the space of scenes. We may also consider a

function g : Z, V → S that maps a real-world spatio-temporal span from space Z and

given a specific viewpoint from space V , where V is the viewpoint space, to a video

scene. Note that knowing functions f and g is not our objective; instead, they are

1http://ndd.iti.gr/fivr/, https://github.com/MKLab-ITI/FIVR-200K
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Table 3.2: Definitions of the different types of associations between video pairs.

Duplicate
Scene Videos
(DSV)

Videos that share at
least one scene (cap-
tured by the same
camera) regardless
of any applied trans-
formation.

Definition 1 : Given a query video q with a number of
n scenes q = [q1 q2 ... qn], spatio-temporal span zq and
viewpoints vq, and a candidate video p with a number
of m scenes p = [p1 p2 ... pm], spatio-temporal span zp

and viewpoints vp, there is a binary function DS(·, ·)
that indicates whether the two videos are DSVs

DS(q, p) =

{
1 ∃i ∈ [1,m] (zpi ⊆ zq ∧ vpi ∈ vq)

0 otherwise
(3.1)

Complemen-
tary Scene
Videos (CSV)

Videos that contain
part of the same
spatio-temporal seg-
ment, but captured
from different view-
points.

Definition 2 : Given a query video q with a number of
n scenes q = [q1 q2 ... qn], spatio-temporal span zq and
viewpoints vq, and a candidate video p with a number
of m scenes p = [p1 p2 ... pm], spatio-temporal span zp

and viewpoints vp, there is a binary function CS(·, ·)
that indicates whether the two videos are CSVs.

CS(q, p) =

{
1 ∃i ∈ [1,m] (zpi ⊆ zq ∧ vpi /∈ vq)

0 otherwise
(3.2)

Incident
Scene Videos
(ISV)

Videos that capture
the same incident,
i.e. they are spa-
tially and tempor-
ally close, but have
no overlap.

Definition 3 : Given a query video q with a number of
n scenes q = [q1 q2 ... qn], spatio-temporal span zq and
incidents hq, and a candidate video p with a number
of m scenes p = [p1 p2 ... pm], spatio-temporal span
zp and incidents hp, there is a binary function IS(·, ·)
that indicates whether the two videos are ISVs.

IS(q, p) =

{
1 ∃i ∈ [1,m] hpi ∈ hq ∧ @j ∈ [1, n] zpj ⊆ zq

0 otherwise

(3.3)

solely used for the proper formulation of our problem.

For the accurate definition of the associations between videos, we consider that each

scene xi of an arbitrary video x has the corresponding attributes: the captured spatio-

temporal span zxi ∈ Z, the viewpoint vxi ∈ V of the camera and the incident hxi ∈ H

that corresponds to the captured spatio-temporal span. By aggregating all attributes

of the scenes of video x, we can derive the attributes for the entire video: the entire

captured spatio-temporal span zx ∈ Z, all viewpoints vx ∈ V of the video scenes and

the different incidents hx ∈ H occurring during the captured spatio-temporal span.

To properly define the relations between videos, we consider three fundamental types
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of association between videos, summarized in Table 3.2. These are defined based on

the relation between the viewpoints and spatio-temporal spans of the compared videos.

We denote as Duplicate Scene Videos (DSVs), two videos that share at least

one scene (as captured by the same camera) regardless of any applied transformation.

The shared scenes must be close to exact duplicates of each other but can be different

in terms of photometric variations, editing operations, length, and other modifica-

tions. More precisely, they have to originate from the same spatio-temporal span and

viewpoint. Videos that contain semantically similar scenes are not considered DSVs.

Definition 1 provides a formal definition of the DSVs. A special case of Definition 1

is when Equation 3.1 is valid for all scenes of the candidate video. Such cases are

denoted as Near-Duplicate Videos (NDVs).

Videos in the second category have to share at least one common segment of the

same incident. These are denoted as Complementary Scene Videos (CSVs). The

term complementary is referred to the different viewpoint, i.e., different angle, of two

videos that captures the same incident from different devices at the same time. In

particular, each of the two videos of a CSV pair needs to contain a spatio-temporal

segment that is temporally overlapping with the spatio-temporal segment of the other.

However, to be included in this category, the two video segments need to be captured

from different cameras, and hence, offer complementary viewpoints of the incident.

Since the identification of temporal overlap is a challenging task, any audio or visual

cue may be taken into consideration to make such an inference. The formal definition

of CSVs is provided in Definition 2.

Videos in the third category depict the same incident but have no temporal overlap.

These are referred to as Incident Scene Videos (ISVs), and they are formalized

in Definition 3. Such videos still need to be spatially and temporally related, i.e.,

their spatio-temporal span should originate from the same incident. Additionally, if

the query depicts a particular incident in a long event or a sequence of incidents,
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Query
Video

Duplicate Complementary Incident
Scene Scene Scene

Figure 3.2: Examples of queries and retrieved associated videos from FIVR-200K.

then only the videos that capture the particular incident are included in this category.

Additionally, the inference that two videos originate from the same incident may derive

from video metadata (e.g., title, description) or audio, i.e., it is not necessary to

associate the two videos with the event solely on the basis of their visual content.

There are some rare cases where ISVs have no obvious visual cues linking them to each

other, and no such inference can be made without outside knowledge. An example is

a case where the query captures an incident from the outside of a building, and there

are ISVs from the inside of the same building captured during the same incident.

Figure 3.1 illustrates selected frames of a query video and one candidate video from

each category (CSV, ISV). The video fragments have been coloured accordingly, with

red indicating the query video, green the CSV, and blue the ISV. Also, a sample

timeline is presented to illustrate the time span where each type of video occurs. The

example video depicts the fire in the American Airlines flight 383 at Chicago O’Hare
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airport2. There are a number of videos in FIVR-200K from that incident, capturing

various viewpoints and different time spans. The query video depicts the passengers

standing outside the plane and the firefighters trying to put out the fire. The CSV

is captured from a slightly different viewpoint. The overlap between the two videos

can be determined by the movement of the firefighter truck passing in front of the

plane and the position of the people. The ISV is in a distinct time span relative to the

query. It is captured before the query video, at the moment when the passengers exit

the plane through the emergency exits. Figure 3.2 illustrates some additional examples

of FIVR associations.

3.2 Dataset generation process

In this section, we describe the pipeline that we developed for the composition of the

FIVR-200K dataset. As explained in Section 1.1.1, the particular use-case that we are

interested in is the retrieval of breaking news videos. We first present the process for

the collection of the dataset (Section 3.2.1). Then, we explain the principled process

for the selection of the query videos based on their suitability (Section 3.2.2). We also

report the protocol that we followed for the annotation of the dataset (Section 3.2.3).

Finally, we provide some basic statistics for the composed dataset (3.2.5).

3.2.1 Video Collection

The FIVR-200K dataset was designed with the following goals in mind: a) the videos

should be associated with a large number of news events, b) the categories of these

news events should be the same, and c) the dataset size needs to be sufficiently large

to make retrieval of relevant results challenging.

Based on the above requirements, we set up the process depicted in Figure 3.3 to

retrieve videos about major news events that took place during recent years. First,

2https://en.wikipedia.org/wiki/American_Airlines_Flight_383_(2016)
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Figure 3.3: Overview of the video collection process.

Table 3.3: Examples of crawled news events.

Headline Date Category Text Source
Syrian civil war 2013-01-01 Conflicts Fierce clashes erupt ... BBC
Greek debt crisis 2015-07-07 Business Eurozone leaders hold ... Reuters
Hurricane Harvey 2017-08-29 Disasters The death toll from ... NY Times
US elections 2016-11-08 Politics Voters in the United ... ABC
Artificial intelligence 2016-01-27 Science A computer program ... MIT Rev.
Boston Mar. Bombing 2014-07-21 Law & Crime Azamat Tazhayakov ... MSN News
2016 Sum. Olympics 2016-08-12 Sports Singaporean swimmer ... NY Times

we crawled Wikipedia’s ‘Current Event’ page3 to build a collection of the major news

events since the beginning of 2013. Each news event is associated with a topic, head-

line, text, date, and hyperlinks. Five examples of collected news events are displayed

in Table 3.3. For the remaining steps of the process, we retained only news events

categorized as ‘Armed conflicts and attacks’ or ‘Disasters and accidents’. We selected

these two categories to find multiple videos on YouTube that report on the same news

event, and ultimately to collect numerous pairs of videos that are associated with each

other through the relations of interest (DSV, CSV, and ISV). The time interval used

for crawling the news events was from January 1st 2013 to December 31st 2017. A

total of 9,431 news events were collected, and 4,687 news events were retained after

filtering.

In the next step, the public YouTube API4 was used to collect videos by providing

event headlines as queries. The results were filtered to contain only videos published at

the corresponding event start date and up to one week after the event. Furthermore,

they were filtered to contain only videos with a duration of up to five minutes, which

resulted in the collection of 225,960 videos (∼48 videos/event). At this point, it is

3https://en.wikipedia.org/wiki/Portal:Current_events
4https://developers.google.com/youtube/
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worth noting that several of the news event headlines in Wikipedia describe long-

running news events (e.g., Syrian civil war). However, we are interested in collecting

specific/particular news events within longer-term ones. Yet, this is not an issue for

our data collection process since the combination of the general event headline with the

date of the particular news event is often sufficient to retrieve a variety of videos that

depict the incidents of interest that are alluded by the respective Wikipedia entries.

3.2.2 Query Selection

Selecting “appropriate” queries is important for ensuring that the dataset annotations

and evaluation protocol are representative of the challenges arising in real-world search

tasks. To this end, the query selection process was designed with two goals in mind:

a) to generate challenging queries, i.e., queries that will lead to many distractor videos

and challenge content-based retrieval systems, and b) to find queries that will lead to

the retrieval of videos with various modifications that will be not only trivial NDV cases

but also contain interesting variations (e.g., different viewpoints of the same scene),

i.e., CSV and ISV. To achieve those two goals, we implemented a largely automatic

process that is described below.

First, the visual similarity between videos was computed as the cosine similarity

between the term frequency-inverse document frequency (tf-idf) representations de-

rived from visual words extracted from their visual content. The visual words are

extracted based on the NDVR method described in [66] and aggregated based on a

Bag-of-Word (BoW) scheme. We sample one frame per second and extract the em-

bedding vectors using a trained Deep Metric Learning (DML) network, which are then

mapped and aggregated to the three closest visual words from a codebook of size 10k.

The DML network was trained on the VCDB dataset [51], and the visual codebook

was built by sampling one frame per video in the dataset and extracting the corres-

ponding embedding vector. Next, the textual similarity between videos was computed

as the cosine similarity between the tf-idf representations of their titles. To perform
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the similarity calculation, we first pre-processed video titles with the NLTK toolkit

[15], applying part-of-speech (PoS) tagging, removing all verbs (which we found to

introduce unnecessary noise) and providing the results to the NLTK WordNet-based

lemmatizer to extract the lemmas, which constitute the word-based representation

of the titles. The overall video similarity derives from the average of the visual and

textual similarity. We expect that the visual similarity will opt for DSV cases, while

textual for CSV and ISV. BoW representation was selected for both visual and text

words because of its sparsity, which was practical for fast similarity calculation and

efficient dataset annotation.

In the next step, we computed all non-zero similarities between video pairs. Only

video pairs that share at least one visual or text word were considered, which resulted

in complexity much lower than O(n2). Afterwards, we created a video graph G by

connecting with an edge video pairs with similarity greater than a certain threshold

ts (empirically set to 0.7). To identify meaningful video groups, we extracted the

connected components C of the video graph G with more than two videos. Then, we

defined the uploader ratio rc of each component c ∈ C using Equation 3.4.

rc =
|{uv|v ∈ c, uv ∈ U}|

Nc
(3.4)

where the numerator is the number of unique uploaders in the component, v is a

video in the component, uv is the uploader of video v, U is the set of uploaders

in the dataset, and Nc is the number of videos in the component. We empirically

found that components with a low uploader ratio usually contain videos from a single

specific channel (e.g., news channel) with titles that are very similar (e.g., exactly the

same title with a different date) or with content that is visually highly similar (e.g.,

the same presenter reporting news in the same background). However, based on our

definition, such videos are neither considered DSV nor CSV or ISV. For that reason,

we discard components with an uploader ratio of less than a threshold tr (empirically

set to 0.75). Additionally, since we need components consisting of videos that refer
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to the same incident, we applied another criterion on the component set based on the

publication date of their videos and retained only components consisting of videos that

were published within a time window of two weeks.

Our goal was to find queries that lead to result sets with many DSV, CSV, and

ISV. Intuitively, large components with many (visually and textually) similar videos

have a better chance of containing such videos. For that reason, we ranked connected

components based on their size and selected one query video per component. Keep

in mind that the components have been formed based on visual-textual similarity,

i.e., the visual similarity will derive DSV cases, while textual for CSV and ISV. Also,

we considered that short videos with few shots were the most suitable candidates for

having been modified and reposted several times (both as single videos or as part of

mash-ups). Therefore, we selected videos with a duration of less than a threshold td

(empirically set to 90 seconds). Attempting to find the original version of videos in

each cluster, we chose the video that was published earliest as the query video.

The total number of queries using the above process was 635. Since it would be

overly time-consuming to annotate all of them, we selected the top 100 as the final

query set (ranked based on the size of the corresponding graph component).

3.2.3 Annotation Process

Figure 3.4 depicts the annotation process for one query, carried out in three stages.

Given the query, two video groups are retrieved, one based on visual similarity and

one based on textual similarity. All videos are annotated based on their relation to

the query according to our definitions. In the first stage, we annotate the videos in the

“visual” group, ranked based on their visual similarity to the query. The end of the first

stage occurs when a total number of 100 irrelevant videos have been annotated after the

last relevant result (i.e., annotated as NDV, DSV, CSV, or ISV) or after the annotators

have gone through the first 1000 videos (whichever of the two criteria applies first).
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Figure 3.4: Overview of the annotation process. Two groups of videos are created
based on their visual and textual similarity to the query. Three annotation phases
take place, and two filtering steps are applied. ãv stands for the average of visual and
textual similarity between videos.

In the second stage, we remove all videos from the “textual” group that have already

been annotated. The annotation process continues with the remaining videos in the

textual group, ranked based on their textual similarity to the query. Similarly, this

stage ends when a total number of 100 irrelevant videos have been annotated after

the last relevant one or after the annotators have gone through 1000 videos. In the

third and final stage, the remaining videos of the two groups are merged and filtered

based on their publication date to minimize the possibility of having missed relevant

videos. We retained those published within a time window of a week before and after

the query’s publication date. These were ranked based on the average visual-textual

similarity, and the annotation proceeded until either 100 irrelevant videos were found

after the last relevant video or no videos left in the merged group. The entire process

is repeated for each one of the 100 selected queries.

The annotations are in video-level, i.e., we do not annotate the particular segments

that the two videos are related. Also, he annotation labels used by the annotators,

along with the corresponding definitions, are as follows:

49



3.2. Dataset generation process

• Near-Duplicate (ND): These are a special case of DSVs, as specified in the

Definition 1 in Table 3.2. Videos annotated with this label share all scenes

(captured by the same camera) regardless of any applied transformation.

• Duplicate Scene (DS): DSVs are annotated with this label based on Definition

1 in Table 3.2. Videos annotated with this label share at least one scene (captured

by the same camera) regardless of any applied transformation.

• Complementary Scene (CS): CSVs are annotated with this label based on

Definition 2 in Table 3.2. Videos annotated with this label contain part of the

same spatio-temporal segment but captured from different viewpoints.

• Incident Scene (IS): ISVs are annotated with this label based on Definition

3 in Table 3.2. Videos annotated with this label capture the same incident, i.e.,

they are spatially and temporally close, but have no overlap.

• Distractors (DI): Videos that do not fall in any of the above cases are annotated

as distractors.

For the annotation of the dataset, the extracted queries were split into two parts,

each assigned to two different annotators with expertise in multimedia-related fields.

After the end of the annotation process, all annotated videos (excluding those labelled

as DI) were revisited and tested for their consistency to the definitions by the au-

thor. For all 100 queries, the total number of unique videos annotated (including DIs)

was approximately 140 thousand, i.e., the annotators went through approximately 1.4

thousand videos per query. Some videos were annotated multiple times because they

had different labels for different queries. The entire annotation process needed approx-

imately two months for its completion, with both annotators working full-time on this

task.
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3.2.4 Annotation Tool

To alleviate the annotation effort and facilitate annotators, we have developed an

annotation tool that covers annotators’ needs and equip them with several useful

features and functionalities. The tool can be unveiled into two distinct modules: i)

the back-end service and ii) the front-end user interface. The former is responsible for

executing the video indexing and the retrieval of the provided query videos. The back-

end service has been implemented with Spring [2] framework in Java, and Tensorflow

[2] library in Python. The latter is responsible for the display of the results of the

retrieval process and provides all the required options to the annotators to manage the

results (e.g., submit/delete an annotation, delete video). The user interface has been

implemented with the jQuery [56] library in JavaScript.

Figure 3.5 illustrates a screenshot of the annotation tool. Initially, the users provide

the URL of the query video at the top of the screen and a similarity threshold to limit

the results. After submitting the URL, the retrieved videos are displayed in separate

windows, ranked based on their similarity to the query in descending order. Each

window contains the actual video, which can be watched directly in the user interface

from Youtube. Alongside the Youtube video, several useful information about the

video is provided, i.e., the similarity to the query, the rank in the results, the title,

the views, the publication date, the upload channel, the duration, and the category.

A visual example of the result window is video #1 in the screenshot. The annotator

can select the appropriate annotation for the retrieved video and submit it to the

system. After submission, the corresponding label appears in the down left corner of

the window under the Youtube video. In case that the annotator wants to delete its

submission, there is a dedicated button under the label. Whether a video has been

removed from Youtube, the annotators have to delete it from the database using the

corresponding button on the right of the Youtube video. A handy feature of the user

interface is the comparison button on the right side of the window. By pressing it, a
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Figure 3.5: Screenshot of the annotation tool. From top to bottom, the following are
displayed: the query field where the video URL is provided, several options for the
search process, the query video with its information, and the retrieved videos with
their information, started from video #1.

small window pops-up that illustrates the similarity matrix (i.e., contains the frame-

to-frame similarity) between the query and the candidate video, as in video #2 in the

screenshot. The similarity matrix is coloured appropriately so as the video segments

with high similarity to easily distinguishable. Additionally, there are several options
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to perform a query search. First, the similarity type (i.e., Visual, Textual, Fusion)

used for retrieval can be selected. The Visual similarity is selected by default. Also,

there are the Date and Annotated filters, whose functionality is as described in the

previous section. Finally, the annotators can select a specific label to retrieve only the

videos that have been annotated with that particular label.

3.2.5 Dataset Statistics

In total, the dataset comprises 225,960 videos associated with 4,687 Wikipedia news

events and 100 selected video queries. Figure 3.6 illustrates the monthly distribution

of the collected news events, videos, and queries. There is a noteworthy peak of news

events during the last quarter of 2015. During that period, major wars (e.g., the

Syrian civil war, the war in Afghanistan, the Yemeni civil war), and a number of

devastating natural disasters (e.g., hurricane Joaquin, Hindu Kush earthquake and

an intense Pacific typhoon season) took place leading to daily newsworthy incidents.

From the temporal video distribution, one may notice an increase in video sharing in

the last two years, which does not correspond to the trend in the timeline of major

news events. A possible explanation may be the increasing trend in video capturing

and sharing on YouTube. Finally, it is noteworthy that the temporal distribution

of queries approximately follows the one of videos over time with more query videos

published during the last two years of the dataset. This confirms that the employed

query selection process does not introduce temporal bias.

Table 3.4 presents the top news events based on their duration and number of

collected videos. The duration of a news event is computed as the total number of

days when it occurred in the collection. As expected, the longest news events, are

wars or war-related events that usually last several years. The longest news event

was the Syrian Civil War, which covered almost 500 days. However, news events with

the most collected videos are breaking news events with large media coverage and live

footage from multiple sources. The news event with the most collected videos was the
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Figure 3.6: Monthly distribution of a) news events, b) videos and c) queries.
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Table 3.4: (left) the top 10 longest news events (right) the top 10 news events with
the most videos.

Long-running news events days

Syrian civil war 499
War in Afghanistan 250
Iraqi insurgency 137
War in NW Pakistan 118
Iraqi civil war 116
War in Somalia 101
Yemeni civil war 89
Israel-Palestine conflict 64
War in Donbass 62
Libyan civil war 61

Breaking news events videos

November 2015 Paris attacks 651
2017 Atlantic hurricane season 572
Charlottesville riots 569
Charlie Hebdo shooting 546
2017 Las Vegas shooting 542
Umpqua College shooting 486
Assassination of Andrei Karlov 476
2016 central Italy earthquake 475
2014 Peshawar school massacre 459
2017 Manchester arena bombing 457

terrorist attack in Paris, France, on 13 November 2015, where multiple suicide bombers

struck, followed by several mass shootings. Figure 3.7 illustrates the distributions

of video categories and duration. From the first, it is evident that the majority of

collected videos are news-related, which was expected due to the nature of the searched

events. Additionally, the ‘People’ category has a sizable portion of the collected videos.

Regarding video duration, the majority of videos have a length between 30 to 120

seconds.

To further delve into the dataset content, we processed the video titles and extracted

summary statistics. Initially, the language of the titles was detected using the detection

approach by [108]. As expected, the predominant language was English, with 81.16%,

followed by German with 2.58%. It is noteworthy that Indonesian ranked third with

1.74%, possibly due to several terrorist attacks that occurred in the region during the

period of interest. Additionally, the most used nouns and locations are reported in

Table 3.5. We extracted the nouns using the NLTK toolkit [15] and the mentioned

countries using the method described in [61]. Unsurprisingly, the most used nouns were

the ones related to wars and natural disasters, as well as the general words ‘news’ and

‘video’. The most frequently mentioned countries were the ones related to long-lasting

wars or major incidents with considerable media coverage.

In terms of the content source, the dataset contains videos from 66,919 unique
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3.2. Dataset generation process
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Figure 3.7: Distribution of videos based on their category and duration.

channels. As expected, the most prolific channels are news-related, including Wochit

News, Ruptly, AP, and Al Jazeera, which regularly upload breaking-news content.

Additionally, we grouped videos based on year of publication and found that the

median of views per video remained approximately the same through the years.

Regarding the annotation labels, we found that the selected queries have, on average,

13 NDV, 57 DSV, 18 CSV, and 35 ISV. Figure 3.8 illustrates the distribution of

annotation labels per query. Queries were ranked by the size of the cluster they were

associated with (cf. Section 3.2.2). As expected, there was a considerable correlation

(Pearson correlation=0.62) between cluster size and the number of videos annotated

with one of the four relevant labels.
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Table 3.5: (left) the top 10 most used nouns (right) the top 10 most refereed countries.

Nouns videos

attack 18192
news 12133
earthquake 8016
fire 7121
hurricane 6447
crash 6304
video 5790
flood 5394
force 4702
army 4464

Locations videos

Syria 13952
Ukraine 4545
Iraq 4545
Russia 3990
Yemen 3988
Turkey 3653
Israel 2776
Afghanistan 2691
China 2604
Egypt 2306
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Figure 3.8: Distribution of annotation labels per query (best viewed in colour).

3.3 Comparative Study

3.3.1 Experimental Setup

In this section, we conduct a comparative study to evaluate the performance of several

state-of-the-art video retrieval systems. We compare five state-of-the-art approaches

based on different feature extraction, aggregation, and similarity calculation schemes.

Additionally, three tasks are defined based on the labels that are considered relevant

per task.
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3.3. Comparative Study

Evaluation Metrics

To evaluate retrieval performance, we build on the evaluation scheme described in

[134]. We first employ the interpolated Precision-Recall (PR) curve. Precision is

determined as the fraction of retrieved videos that are relevant to the query, while

Recall is the fraction of the total relevant videos retrieved (Equation 3.5).

Precision =
TP

TP + FP
Recall =

TP

TP + FN
(3.5)

where TP , FP and FN are the true positives (correctly retrieved), false positives

(incorrectly retrieved) and false negatives (missed matches), respectively. The inter-

polated PR-curve derives from averaging the Precision scores of all queries for given

Recall ranges. The maximum Precision score is selected as the representative value

for each Recall range. We further use mean Average Precision (mAP) as defined in

[134] to evaluate the quality of video rankings. For each query, the Average Precision

(AP) is calculated based on Equation 3.6.

AP =
1

n

n∑
i=0

i

ri
(3.6)

where n is the number of relevant videos to the query video, and ri is the rank of the

i-th retrieved relevant video. The mAP is computed by averaging the AP scores across

all queries.

Benchmarked Approaches

Of the feature aggregation and similarity calculation techniques described in Section

2.2.1, we benchmark the following state-of-the-art approaches:

• Global Vectors: In the approach by [134], the HSV histograms are extracted

for each video frame, and all frame descriptors are averaged to a single vector for

the entire video. Video similarity is calculated based on the dot product between

the respective vectors. This approach is denoted as GV.
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3.3. Comparative Study

• Bag-of-Words: We select two methods using this feature aggregation scheme.

The first [18] is a traditional BoW approach that employs the ACC [41] features

as frame descriptors. Every frame descriptor is mapped to a single visual word

of a visual codebook. The second approach [65] is our variant of the traditional

BoW scheme based on the intermediate CNN features. The feature vectors ex-

tracted from each convolutional layer are mapped to a word of a visual codebook

(i.e., multiple codebooks are used, one codebook per layer). For both methods,

the final video representation is the tf-idf representation of these visual words.

Video ranking is performed based on the cosine similarity between the tf-idf

video representations. The two methods are denoted as BoW and Layer BoW

(LBoW), respectively.

• Deep Metric Learning: Our approach in [66] is selected as representative of

this feature aggregation scheme. The intermediate CNN features [65] are extrac-

ted from the video frames and combined into global video descriptors, similar

to GV. These descriptors are fed to a DML network to calculate video embed-

dings. Video similarity is calculated based on the Euclidean distance between

these embeddings. This approach is denoted as DML.

• Hashing Codes: The approach by [114] is selected as representative of this

feature aggregation scheme. Multiple frame features are extracted, i.e., HSV

and LBP [145], and used to learn a group of hash functions that project frames

into the Hamming space and combine them to a single video representation.

Videos similarity is calculated based on Hamming distance. We use the public

implementation provided by the authors. This approach is denoted as HC.

For all methods, we extract one frame per second to generate the frame descriptors.

For the Bag-of-Words methods, the codebooks are created by sampling one frame

per video in the dataset and extracting their visual descriptors. The selection of

appropriate codebook size is important, so we experimented with 1K and 10K visual
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words per codebook. Only the 10K codebook size results are presented since there

is a large performance gap in favour of 10K words. For the DML and HC, the most

important tuning parameter is the dimensionality of the output vectors. Yet, from our

experiments, we concluded that it does not have a decisive impact on the performance

of the approach. The DML is a supervised approach, so it is trained on the VCDB [51]

dataset. The HC is an unsupervised approach, but a sample of 50K frame descriptors is

still required to learn a set of hash functions. An extensive evaluation of the sensitivity

to the parameters of the benchmarked methods is beyond the scope of this work; hence

we selected those parameter values suggested by the authors or ones that gave better

results in our initial experiments.

We should note that the LBoW and DML methods are part of our work in this

thesis and are presented in further detail regarding their functionality and architecture

choices in Chapter 4.

Visual Descriptors

For a more comprehensive and fair comparison, we also implemented the benchmarked

approaches with the following visual descriptors.

• Handcrafted Features: We perform experiments with four widely used hand-

crafted features in the literature: HSV histograms, LBP [145], ACC [41], and

VLAD-SURF [46].

• Intermediate CNN Features: We employ three popular architectures for the

extraction of intermediate CNN features [65]: VGG-16 (VGG) [110], ResNet-152

(RES) [36] and Inception-V4 (INC) [117]. All of them are trained on ImageNet

[24]. This feature extraction scheme is in detail presented in Section 4.1.

• 3D CNN Features: We employ two popular architectures for the extraction

of 3D CNN features: C3D [125] and I3D [19]. Both are trained on datasets
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3.3. Comparative Study

Table 3.6: Positive labels for each evaluation setup.

Task

DSVR

CSVR

ISVR

Accepted Labels

ND DS CS IS

X X
X X X
X X X X

annotated based on the display actions in the videos, i.e., UCF101 [116] and

Kinetics 400 [19], respectively. To extract one visual descriptor per second,

we feed the network with the corresponding number of frames suggested by

the authors. We extract features with two techniques: (i) from the activations

of the first fully connected layer after the convolutional layers, and (ii) from

the intermediate 3D convolutional layers by applying MAC [124] pooling in the

spatial (similar to the CNN features) and temporal axis.

The ResNet, Inception, and I3D architectures are very deep, which made the util-

ization of all convolutional layers impractical. Hence, we extracted features from the

activations of the convolutions before max-pooling. For the HC method, we set up

three runs based on i) handcrafted features, ii) CNN features extracted from the three

architectures, and iii) 3D CNN features extracted from the two architectures.

Retrieval tasks

We evaluate three retrieval tasks. Table 3.6 indicates the positive labels per task.

• Duplicate Scene Video Retrieval (DSVR): this task represents the NDVR

problem, so it only accepts the videos annotated with ND or DS as relevant.

• Complementary Scene Video Retrieval (CSVR): this scenario is a strict

variation of the FIVR problem where only the ND, DS, and CS are accepted.

• Incident Scene Video Retrieval (ISVR): this represents the general FIVR

problem, and all labels (with the exception of DI) are considered relevant.
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3.3. Comparative Study

Table 3.7: mAP of the benchmarked approaches for the three retrieval tasks and the
CC WEB VIDEO dataset.

Run DSVR CSVR ISVR CC WEB

GV [134] 0.165 0.153 0.118 0.892

BoW [18] 0.240 0.220 0.171 0.944

LBoW [65] 0.710 0.675 0.572 0.976

DML [66] 0.398 0.378 0.309 0.971

HC [114] 0.265 0.247 0.193 0.958

3.3.2 Experiments

Benchmarked approaches

In this paragraph, we evaluate the performance of the five compared approaches. Table

3.7 illustrates the mAP of the benchmarked approaches on the three evaluation tasks

of the FIVR-200K dataset and the CC WEB VIDEO dataset. LBoW outperforms all

other approaches in all cases by a considerable margin. The second-best performance

is achieved by DML, followed by HC and BoW. GV had the worst results in all cases.

In particular, LBoW achieves a mAP score of 0.710 in the DSVR task, followed by

DML and HC with 0.398 and 0.265, respectively. BoW and GV are the two worst-

performing approaches with 0.240 and 0.165 mAP values, respectively. For the CSVR

task, all approaches exhibit a drop in mAP, between 0.018 and 0.04. The performance

is significantly worse in the ISVR task for all benchmarked approaches. The best

method (LBoW) achieves a mAP score of 0.572, whereas the worst (GV) only 0.118.

The DSVR task of the proposed framework is closely related to the NDVR prob-

lem that is simulated by the CC WEB VIDEO dataset. The results make clear that

the performances of all methods on FIVR-200K are significantly lower compared to

CC WEB VIDEO, highlighting that the newly proposed dataset is much more chal-

lenging. All methods report very high mAP scores on CC WEB VIDEO, achieving

values as high as 0.976. Even the GV approach achieves a score close to 0.9. The

main reason for the performance gap is that the vast majority of positive video pairs

in FIVR-200K are partially similar, not in their entirety but in particular segments.
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Additionally, FIVR-200K contains a wide variety of user-generated videos about news

events of similar nature, resulting in many challenging distractors.

Comprehensive experiments

Table 3.8 presents the mAP performance of all possible feature-aggregation combin-

ations. To begin with the DSVR task, similar to the previous section, the LBoW

aggregation scheme combined with the VGG CNN features achieves the best result

(mAP=0.710) at a considerable margin from the second. Notably, VGG performs

consistently better than the other two CNN architectures for all aggregation schemes.

Additionally, LBoW clearly outperforms the regular BoW aggregation irrespective of

CNN or 3D CNN architecture. The same conclusions apply in the case of 3D CNN

features. The intermediate I3D features achieve the best results for all methods, with

performance close to or better than the performance of VGG features. For example,

in the case of DML, the I3Dint achieves 0.425 mAP, while VGG 0.398. Among the

handcrafted features, VLAD-SURF provides the best results (mAP=0.323); however,

the performance gap with deep features is considerable.

Similar conclusions apply in the case of the CSVR task, with the LBoW-VGG com-

bination achieving the best results (mAP=0.675). The performance for all runs de-

creases slightly compared to the DSVR task, indicating that it presents a more chal-

lenging problem.

The performance is notably worse in the case of the ISVR task for every approach-

feature combination, with the decrease ranging from 0.03 to 0.13 in mAP. This reveals

that ISVR is a much more challenging problem, and new systems need to be devised

to address it effectively. Overall, deep network features (either CNN or 3D CNN) out-

perform the handcrafted features by a significant margin. Moreover, DML boosts the

performance of deep features compared to the GV runs. However, this is not the case

for handcrafted features where the performance drops. Moreover, for 3D CNN archi-
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Table 3.8: mAP of the benchmarked approaches and the different visual features for
three retrieval tasks. N/A stands for Not Applicable and means that the aggregation
scheme can not be applied to the corresponding feature descriptors.

DSVR

Run GV BoW LBoW DML HC

HSV 0.165 0.202 N/A 0.163

0.360
LBP 0.112 0.158 N/A 0.097
ACC 0.196 0.240 N/A 0.182

VLAD 0.294 0.323 N/A 0.285

VGG 0.366 0.575 0.710 0.398
0.470RES 0.350 0.523 0.596 0.374

INC 0.333 0.500 0.608 0.367

C3Dfc 0.244 0.341 N/A 0.266

0.434
C3Dint 0.355 0.541 0.658 0.387
I3Dfc 0.321 0.464 N/A 0.336
I3Dint 0.366 0.574 0.665 0.425

CSVR

Run GV BoW LBoW DML HC

HSV 0.153 0.189 N/A 0.150

0.339
LBP 0.106 0.146 N/A 0.091
ACC 0.183 0.220 N/A 0.169

VLAD 0.275 0.311 N/A 0.265

VGG 0.347 0.543 0.675 0.378
0.454RES 0.333 0.499 0.572 0.358

INC 0.313 0.473 0.571 0.348

C3Dfc 0.231 0.314 N/A 0.252

0.415
C3Dint 0.336 0.502 0.628 0.374
I3Dfc 0.312 0.444 N/A 0.325
I3Dint 0.345 0.544 0.634 0.405

ISVR

Run GV BoW LBoW DML HC

HSV 0.118 0.143 N/A 0.116

0.262
LBP 0.087 0.113 N/A 0.074
ACC 0.142 0.171 N/A 0.128

VLAD 0.214 0.236 N/A 0.206

VGG 0.281 0.450 0.572 0.309
0.382RES 0.274 0.414 0.488 0.296

INC 0.257 0.406 0.488 0.290

C3Dfc 0.176 0.242 N/A 0.194

0.334
C3Dint 0.261 0.398 0.510 0.295
I3Dfc 0.253 0.364 N/A 0.265
I3Dint 0.280 0.450 0.527 0.332
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Figure 3.9: mAP of the queries in the dataset based on LBoW with VGG features run
for the three retrieval tasks. The queries are ranked in descending order.

tectures, the runs with intermediate features consistently report better performance

compared to the runs with features from the fully connected layers. HC combined with

CNN features achieves the best performance compared to the other feature bundles,

for all evaluation tasks. Additionally, GV performs poorly for all features compared

to the other three schemes. For the rest of this chapter, we are going to refer to each

method in relation to its combination with the best-performing features, i.e., VGG

features for GV, BoW, and LBoW, I3Dint features for DML, and the CNN features

for HC.

Figure 3.9 illustrates the mAP per query of the best-performing run (LBoW with

VGG features) for the three different tasks. The queries are ranked in descending order

based on their mAP. For the DSVR task, 50% of the queries achieve higher than a 0.8

mAP, while the performance is significantly lower for the remaining queries. There

is a notable drop in performance in the CSVR task, with 80% of the queries having

higher than 0.5 mAP. Finally, it is evident that ISVR is a much harder task than the

other two, with the majority of queries having lower than 0.6 mAP.

Figure 3.10 illustrates the interpolated PR-curves of the best-performing runs for
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(a) DSVR

(b) CSVR

(c) ISVR

Figure 3.10: Interpolated PR-curves of the best-performing features for each approach
in the three retrieval tasks.
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Table 3.9: Storage and computation requirements per video for the best-performing
run for each approach. The storage requirements are measured in bytes (B) and the
retrieval time in milliseconds (ms).

Method GV BoW LBoW DML HC

Storage space 16,384 209 3,050 2,048 512

Retrieval time 499 152 1,155 333 51

each method and for each evaluation task. Similar conclusions apply as in the case

of their mAP comparison. LBoW outperforms other runs consistently for all three

tasks by a significant margin. However, there is a large gap between the BoW and

the other three runs. A reasonable explanation is that the BoW representation retains

local information from the video frames, in contrast to the other aggregation methods

that average frame descriptors in a global video representation. This is of critical

importance for all three tasks since only a minority of similar videos share their entire

content to the queries. Similar to the mAP evaluation, GV performs poorly for all

retrieval tasks compared to the other schemes.

Retrieval time and memory requirements

Table 3.9 presents the requirements in terms of storage space and computation time

for the best-performing run of each method. The results of all methods have been

measured using the open-source library Scikit-learn [126] in Python on a Linux PC

with a 4-core i7-4770K and 32GB of RAM. It is noteworthy that LBoW’s superior

performance comes at a high computational and storage cost. In particular, it needs

approximately 1.2s per query to perform retrieval (being the slowest among the five

approaches) and 3KB per video to store the video representations. The fastest method

is the HC with 51ms per query, followed by BoW with three times slower retrieval time.

The method that requires the least memory space in RAM is BoW reserving only 209B

per video. DML is in the middle of the rank for both measures. The most demanding

method in terms of storage space is GV requiring approximately 16KB for each video

descriptor. Note that these figures are derived from computing video similarities for
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Table 3.10: mAP of the benchmarked approaches built based on the FIVR-200K
training set and evaluated on the FIVR-200K test set for the three retrieval tasks.

Run DSVR CSVR ISVR

GV 0.389 0.370 0.301

BoW 0.302 0.287 0.237

LBoW 0.362 0.344 0.280

DML 0.465 0.443 0.381

HC 0.468 0.444 0.382

one query at a time, without vectorizing all query descriptors in a single matrix. This

practice would significantly decrease retrieval time for all methods.

Within-dataset retrieval

Our initial goal for the construction of the FIVR-200K is to be used for evaluation

purposes in its entirety. However, it is not always possible to have access to a separate

dataset that simulates the same or a similar retrieval problem. To overcome this issue,

we have also devised a within-dataset experimental setup, where we split the dataset

into two separate video sets, one for the development/training of the methods and one

for evaluation5. To do so, we order the videos based on their publication time and

then split them in half, resulting in two sets of videos from different time periods. We

select the early period video set for training and the late period video set for testing.

The total number of queries in the training and test set are 31 and 69, respectively.

Table 3.10 presents the performance of the benchmarked approaches in the three

evaluation tasks. There is a considerable decrease in terms of mAP for BoW and

LBoW runs, reaching approximately half their performance compared to the previous

runs for all three tasks (≈46-51%). We observed similar decreases in performance

when using VCDB for development (i.e., generation of visual codebooks) and the

whole FIVR-200K for testing. This makes clear that BoW-based schemes are quite

sensitive to the dataset that is used for generating the underlying visual codebooks.

There is also a negligible drop in performance for the HC scheme (less than 0.01 in

5The dataset split is only applied in this subsection.
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terms of mAP); hence, in this setting, HC achieves the best results among all methods

for all three tasks. As expected, DML is boosted when using part of the FIVR-200K for

training. The improvement for DML in all tasks ranges between 0.03 and 0.05. Finally,

the GV approach also sees a small improvement in all evaluation tasks compared to

the initial results.

Dataset availability

Finally, we have noticed that there is a significant amount of videos that are no longer

available on YouTube since the dataset collection [92]. Unfortunately, this is an on-

going trend, and it will only get worse in the following years. As of May 2020, from

the 225,960 YouTube videos of the FIVR-200K dataset, only 187,311 are still available

on YouTube, meaning that almost 40,000 videos of the dataset have been removed or

restricted. This corresponds to a reduction of 17,1% in the total amount of videos.

Various reasons account for video unavailability, e.g., deletions by the uploader, viola-

tion of their terms of service, copyright infringement, geographical restrictions. Video

unavailability has a considerable impact on the reproducibility of the experiments and

the fair comparisons between proposed approaches. Thus, we provide the extracted

features publicly available6 to facilitate future research on the FIVR problem.

3.4 Conclusion

In this chapter, we introduced the problem of Fine-grained Incident Video Retrieval

(FIVR). First, we provided definitions for the various types of video associations arising

in the more general problem setting of FIVR. Next, we built a large-scale dataset,

FIVR-200K, with the aim of addressing the benchmarking needs of the problem. The

dataset comprises of 225,960 YouTube videos, collected based on approximately 5,000

global news events crawled from Wikipedia over five years (2013-2017). Then, we

selected 100 queries based on a principled approach that automatically assessed the

6http://ndd.iti.gr/features/
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suitability of a query video for performing evaluations for the current problem. We also

devised a protocol for annotating the dataset according to four labels for video pairs.

Finally, we conducted a thorough experimental study on the dataset comparing five

state-of-the-art methods, six feature extraction methods, five CNN/3D CNN archi-

tectures, and four video descriptor aggregation schemes. For the benchmark, we con-

sidered three retrieval tasks that represented different instances of the problem and ac-

cepted different labels as relevant, i.e., DSVR, CSVR, and ISVR. The best-performing

methods achieved mAP scores of 0.710, 0.675, and 0.572, respectively. In general, re-

trieval performance across all experiments was not very high compared to performance

values that have been reported for related datasets, such as CC WEB VIDEO. This

demonstrates that the proposed problem and associated dataset offer a challenging

setting with considerable room for improvement, especially in the case of the ISVR

task.
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Chapter 4

Video similarity calculation on

video-level representations
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In this chapter, we propose two video-level methods based on deep learning features.

They have been initially designed for the problem of NDVR, which is closely related

to our FIVR problem. Nevertheless, they can be directly applied for FIVR with slight

modifications as presented in the previous chapter (Chapter 3). The first is an unsu-

pervised scheme that relies on a modified Bag-of-Word (BoW) video representation.

The second is a supervised method based on Deep Metric Learning (DML). For the

development of both methods, features are extracted from the intermediate layers of

Convolutional Neural Networks (CNN) and leveraged as frame descriptors since they

offer a compact and informative image representation and lead to increased system

performance. Extensive evaluation has been conducted on publicly available bench-
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mark datasets, and the presented methods are compared with state-of-art approaches,

achieving the best results in all evaluation setups. The implementations of the feature

extraction and the DML scheme are publicly available1,2.

Motivated by the excellent performance of deep learning in a wide variety of multi-

media problems, we have developed two video-level approaches that incorporate deep

learning and can be used in different application scenarios. The main contributions of

this chapter are:

• A feature extraction process based on the activations of intermediate convolu-

tional layers [105, 146] of pre-trained Convolutional Neural Networks (CNNs).

Given an input frame to the CNN network, we apply the Maximum Activa-

tions of Convolutions (MAC) function on the activations of each convolutional

layer. This process generates compact frame representations that are translation

invariant and encodes information from several granularity levels.

• An unsupervised approach that is a variation of the traditional Bag-of-Words

scheme. We propose a layer aggregation technique, with tf-idf weighting and

organisation in an inverted file structure for fast retrieval. This method does not

need labelled data, and as a result it can be applied on any video corpus.

• A supervised solution leveraging Deep Metric Learning (DML) that overcomes

several limitations of the BoW approach (i.e., volatile performance on unseen

data, computationally expensive retraining). We set up a DML framework based

on a triplet-wise scheme to learn a compact and efficient embedding function. A

significant benefit of the learning scheme is that it allows being trained in various

scenarios; thus, it provides flexibility with respect to the FIVR definition.

The remainder of the chapter is organized as follows: In Section 4.1, we describe the

1https://github.com/MKLab-ITI/intermediate-cnn-features
2https://github.com/MKLab-ITI/ndvr-dml
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4.1. CNN-based feature extraction

feature extraction process employed to generate frame-level descriptors. In Sections 4.2

and 4.3, we present the two proposed approaches, i.e., the BoW and DML approach,

respectively. In Section 4.4, we report on the results of a comprehensive experimental

study, including a comparison with several state-of-the-art methods. In Section 4.5,

we summarize the findings of our work.

4.1 CNN-based feature extraction

In recent research [142, 146, 124], pre-trained CNN models are used to extract visual

features from intermediate convolutional layers. These features are computed through

the forward propagation of an image over the CNN network and the use of an aggreg-

ation function (e.g. VLAD encoding [46, 8, 87], max/average pooling [9, 124, 97]) on

the convolutional layer.

We adopt a compact representation for frame descriptors, derived from activations

of all intermediate convolutional layers of a pre-trained CNN by applying the function

called Maximum Activation of Convolutions (MAC) [124, 146, 97]. A pre-trained CNN

network Θ is considered, with a total number of L convolutional layers, denoted as

L1,L2, ...,LL. Forward propagating a frame through network Θ generates a total of

L feature maps, denoted as Ml ∈ Rwl×hl×cl(l = 1, ..., L), where wl × hl is the spatial

dimensions of every channel for convolutional layer Ll (which depends on the size of

the input frame) and cl is the total number of channels. An aggregation function is

applied on the above feature maps to extract a single descriptor vector from every

layer. In particular, we apply max pooling on every channel of feature map Ml to

extract a single value. The extraction process is formulated in:

vl(i) = max Ml(·, ·, i), i = {1, 2, ..., cl} (4.1)

where layer vector vl is a cl-dimensional vector derived from max pooling on every

channel of feature map Ml. The layer vectors are then `2-normalized. This process

encodes the maximum activation of each of the convolutional filters; hence the ex-
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4.2. Video representation based on Bag-of-Words

tracted features are translation invariant. Also, since multiple convolutional layers

are employed that process frames at different scales, the generated descriptors capture

information at various granularity levels.

We extract and concatenate frame descriptors only from activations in intermediate

layers since we aim to construct a visual representation that preserves local structure

at different scales. Activations from fully-connected layers are not used since they are

considered to offer global representation of the input. A positive side-effect of this

decision is that the resulting descriptor is compact, reducing the total processing time

and storage requirements. For very deep architectures (e.g., VGGNet, GoogLeNet),

we do not extract features from the initial layer activations, since those layers are

expected to capture very primitive frame features (e.g., edges and corners) that could

lead to false matches.

Uniform sampling is applied to select one frame per second for every video and ex-

tract the respective features. Hence, given an arbitrary video with a total duration ofN

seconds and an equal number of selected frames {F1, F2, ..., FN}, the video representa-

tion is a set that contains all feature vectors of the video frames v = {vF1 , vF2 , ..., vFN
},

where vFi contains all layer vectors of frame Fi. Although vFi stands for a set of vectors,

we opted to use this notation for convenience.

4.2 Video representation based on Bag-of-Words

In this section, an unsupervised NDVR approach is presented that relies on the Bag-of-

Word (BoW) scheme. In particular, two aggregation variations are proposed: a vector

aggregation where a single codebook of visual words is used, and a layer aggregation

where multiple codebooks of visual words are used. The video representations are

organised in an inverted file structure for fast indexing and retrieval. The video sim-

ilarity is computed based on the cosine similarity of the tf-idf weighted vectors of the

extracted BoW representations.
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4.2. Video representation based on Bag-of-Words

Feature aggregation

We follow two alternative feature aggregation schemes (i.e., ways of aggregating fea-

tures from layers into a single descriptor for the whole frame): a) vector aggregation

and b) layer aggregation. The outcome of both schemes is a frame-level histogram,

HF , which is considered the frame representation. Next, a video-level histogram HV

is derived from the frame representations by aggregating frame-level histograms to a

single video representation. Figure 4.1 illustrates the two schemes.

Vector aggregation: A bag-of-words scheme is applied on the vector vc resulting

from the concatenation of individual layer features to generate a single codebook of

K visual words, denoted as CK = {t1, t2, ..., tK}. The selection of K, a system para-

meter, has a critical impact on the performance of the approach, further explored in

section 4.4.2. Having generated the visual codebook, every video frame is assigned

to the nearest visual word. Accordingly, every frame Fi with feature descriptor vcFi
is

aggregated to the nearest visual word tFi = NNCK
(vcFi

), hence its HFi contains only

a single visual word.

Layer aggregation: To preserve the structural information captured by interme-

diate layers L of the CNN network Θ, we generate L layer-specific codebooks of K

words (denoted as C lK = {tl1, tl2, ..., tlK}, l = 1, ..., L), which we then use to extract sep-

arate bag-of-words representations (one per layer). The layer vectors vlFi
of frame Fi

are mapped to the nearest layer words tlFi
= NNCl

K
(vlFi

), (l = 1, 2, ..., L). In contrast

to the previous scheme, every frame Fi is represented by a frame-level histogram HFi

that results from the concatenation of the individual layer-specific histograms, thus

comprising L words instead of a single one.

The final video representation is generated based on the BoW representations of

its frames. In particular, given an arbitrary video with N frames {F1, F2, ..., FN}, its

video-level histogram HV is derived by summing the histogram vectors corresponding
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Figure 4.1: Overview of the two proposed aggregation schemes and the final video
representation. Vector aggregation (top): the layer vectors extracted from the inter-
mediate layers are concatenated to a single frame-level representation, then mapped to
a visual word and aggregated to a video representation. Layer aggregation (bottom):
the layer vectors are mapped to multiple visual words independently, and then are
aggregated to a video representation
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4.2. Video representation based on Bag-of-Words

to its frames, i.e. HV =
∑

i∈[1,N ]HFi . Note that for the two aggregation schemes,

histograms of different sizes are generated. In the first case, the total number of visual

words equals K, whereas in the second case, it equals K · L.

Video Indexing and Querying

In the proposed approach, we use tf-idf weighting to calculate the similarity between

two video histograms. The tf-idf weights are computed for every visual word in every

video in a video collection Cb:

wtd = ntd · log |Cb|/nt (4.2)

where wtd is the weight of word t in video d, ntd and nt are the number of occurrences

of word t in video d and the entire collection respectively, while |Cb| is the number

of videos in the collection. The former factor of the equation is called term frequency

(tf) and the latter is called inverted document frequency (idf).

Video querying is the online part of the approach. Let q denote a query video. Once

the final histogram Hq
v is extracted from the query video, an inverted file indexing

scheme [111] is employed for fast and efficient retrieval of videos that have at least

a common visual word with the query video. For all these videos (i.e. videos with

non-zero similarity), the cosine similarity between the respective tf-idf representations

is computed:

Sbow(q, p) =
wq ·wp

‖wq‖ ‖wp‖
=

K∑
i=0

wiqwip√
K∑
i=0

w2
iq

√
K∑
i=0

w2
ip

(4.3)

where Sbow(·, ·) is the similarity function based on the BoW scheme which calculates

the similarity between two given videos, wq and wp are the weight vectors of videos q

and p, respectively, and ‖w‖ is the norm of vector w. The database videos are ranked

in descending order based on their similarity to the query.
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4.3. Learn video embeddings with Deep Metric Learning

In the inverted file structure, each entry corresponds to a visual word and contains

its ID, the idf value, and all the video IDs in which the visual word occurs. The video

IDs map to videos in the collection Cb, where the occurrences (tf ) of the visual words

are stored. With this inverted file structure, all the needed values for the calculation

of the similarity between a query and a dataset video can be retrieved.

4.3 Learn video embeddings with Deep Metric Learning

The unsupervised approach has several limitations. The most important is that it

offers a dataset-specific solution, i.e., the extracted knowledge is not transferable, and

re-building the model is computationally expensive. A sufficiently large and diverse

dataset to create vocabularies is required to observe no performance loss, which needs

significant effort to be collected or sometimes is not even possible. We have experi-

mentally validated that even external large-scale datasets (such as ImageNet [24]) are

not adequate to build robust models. Also, the retraining of the BoW method with

new samples from previously unseen data is inefficient due to the significant amount

of time needed for codebook learning and video indexing. For codebook training and

video indexing of large-scale datasets, several processing days are required, e.g., for

two hundred thousand videos. Hence, we have also developed a Deep Metric Learning

(DML) approach to overcome these limitations. This involves training a Deep Neural

Network (DNN) to approximate an embedding function for the accurate computation

of similarity between two candidate videos. For training, we devised a novel triplet

generation process.

For feature extraction, we build upon the same process as the one presented in

Section 4.1. Hence, given an arbitrary video with N frames {F1, F2, ..., FN}, we extract

one feature descriptor for each video frame by concatenating the layer vector to a single

vector. Global video representations v are then derived by averaging and normalizing

(zero-mean and `2-normalization) these frame descriptors.
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4.3. Learn video embeddings with Deep Metric Learning

Moreover, we should also note that feature extraction is not part of the training

(deep metric learning) process, i.e., the training of the network is not end-to-end, and

as a result, the weights of the pre-trained network used for feature extraction are not

updated. We have empirically validated such settings, and the network’s performance

significantly drops when trained end-to-end. A possible explanation for this could

be attributed to the different domains represented by the training and evaluation

dataset, considering that each dataset represents a domain. The network is trained on

VCDB; hence, it learns the limited domain represented by this dataset. As a result,

the feature extraction CNN fails to transfer knowledge and generalize to the domains

of the evaluation dataset, and therefore the performance drops. However, when the

feature extraction network remains fixed, with weights trained on ImageNet [24], the

extracted representations encode video content in a much broader and more diverse

domain, leading to better generalization across different datasets and ultimately to

better retrieval performance.

4.3.1 Problem Setting

We address the problem of learning a pairwise similarity function for NDVR from the

relative information of pairwise/triplet-wise video relations. For a given query video

and a set of candidate videos, the goal is to quantify the similarity between the query

and every candidate video and use it for the ranking of the entire set of candidates in

the hope that the NDVs are retrieved at the top ranks. To formulate this process, we

define the similarity between two arbitrary videos q and p as the squared Euclidean

distance in the video embedding space (Equation 4.4).

D(fθ(q), fθ(p)) = ‖fθ(q)− fθ(p)‖22 (4.4)

where fθ(·) is the embedding function that maps a video to a point in the Euclidean

space, θ are the system parameters and D(·, ·) is the squared Euclidean distance in

this space. Additionally, we define a pairwise indicator function I(·, ·) that specifies
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4.3. Learn video embeddings with Deep Metric Learning

whether a pair of videos are near-duplicate.

I(q, p) =


1 if q, p are NDVs

0 otherwise

(4.5)

Our objective is to learn an embedding function fθ(·) that assigns smaller distances

to NDV pairs than others. Given a video v, a NDV v+ and a dissimilar video v−,

the embedding function fθ(·) should map videos to a common space Rd, where d is

the dimension of the feature embedding, in which the distance between query v and

positive v+ is always smaller than the distance between query v and negative v−

(Equation 4.6).

D(fθ(v), fθ(v
+)) < D(fθ(v), fθ(v

−)),

∀v, v+, v− such that I(v, v+) = 1, I(v, v−) = 0

(4.6)

4.3.2 Triplet loss

To implement the learning process, we create a collection of N training instances

organized in the forms of triplets T = {(vi, v+i , v−i ), i = 1, ..., N}, where vi, v
+
i , v

−
i are

the feature vectors of the query, positive (NDV), and negative (dissimilar) videos. A

triplet expresses a relative similarity order among three videos, i.e., vi is more similar

to v+i in contrast to v−i . We define the following hinge loss function for a given triplet

called ‘triplet loss’ (Equation 4.7).

Lθ(vi, v+i , v−i ) = max{0,D(fθ(vi), fθ(v
+
i ))−D(fθ(vi), fθ(v

−
i )) + γ} (4.7)

where γ is a margin parameter to ensure a sufficiently large difference between the

positive-query distance and negative-query distance. If the video distances are calcu-

lated correctly within margin γ, then this triplet will not be penalised. Otherwise the

loss is a convex approximation of the loss that measures the degree of violation of the

desired distance between the video pairs specified by the triplet. To this end, we use
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4.3. Learn video embeddings with Deep Metric Learning

batch gradient descent to optimize the objective function described in Equation 4.8.

min
θ

m∑
i=1

Lθ(vi, v+i , v−i ) + λ ‖θ‖22 (4.8)

where λ is a regularization parameter to prevent overfitting of the model, and m is the

total size of a triplet mini-batch. Minimising this loss will narrow the query-positive

distance while widening the query-negative distance, and thus lead to a representation

satisfying the desirable ranking order. With an appropriate triplet generation strategy

in place, the model will eventually learn a video representation that improves the

effectiveness of the NDVR solution.

Although the current method has been proposed for NDVR, its adaptation for the

FIVR problem is simple and straightforward. To train the network for FIVR, we form

triplets using any video pair labeled as DSV, CSV, or ISV as the positive pairs. In

that way, we generate triplets for all video associations related to FIVR.

4.3.3 DML network architecture

For training the DML model, a triplet-based network architecture is proposed (Figure

4.2) that optimizes the triplet loss function of Equation 4.7. The network is provided

with a set of triplets T created by the triplet generation process of section 4.3.5.

Each triplet contains a query, a positive and a negative video with vi, v
+
i , and v−i

feature vectors, respectively, which are fed independently into three siamese DNNs

with identical architecture and parameters. The DNNs compute the embeddings of

v : fθ(v) ∈ Rd. The architecture of the deployed DNNs is based on three dense fully-

connected layers and a normalization layer at the end leading to vectors that lie on

a d-dimensional unit length hypersphere, i.e. ‖fθ(v)‖2 = 1. The size of each hidden

layer (number of neurons) and the d-dimension of the output vector fθ(v) depends on

the dimensionality of input vectors, which is in turn dictated by the employed CNN

architecture. The video embeddings computed from a batch of triplets are then given

to a triplet loss layer to calculate the accumulated cost based on Equation 4.7.
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4.3. Learn video embeddings with Deep Metric Learning

Figure 4.2: Overview of the DML network architecture for the training of the DNN
network. A triplet generator organizes the training samples in triplets of a query, a
positive (NDV), and a negative video. The video vectors of the triplets are fed to the
DNN to generate the video embeddings. The network is trained by minimizing the
triplet loss function.

4.3.4 Video-level similarity computation

The learned embedding function fθ(·) is used for computing similarities between videos

in a target video corpus. Given an arbitrary video with v = {vF1 , vF2 , ..., vFN
}, two

variants are proposed for fusing similarity computation across video frames: early and

late fusion (Figure 4.3).

Early fusion: Frame descriptors are averaged and normalized into a global video

descriptor before they are forward propagated to the network. The global video sig-

nature is the output of the embedding function fθ(·):

fθ(v) = fθ(
1

N

N∑
i=1

vFi) (4.9)

Late fusion: Each extracted frame descriptor of the input video is fed to the

network, and the set of their embedding transformations is averaged and normalized:

fθ(v) =
1

N

N∑
i=1

fθ(vFi) (4.10)
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(a) early fusion (b) late fusion

Figure 4.3: Illustration of early and late fusion schemes.

Even though the network has been trained using the early fusion scheme, both

schemes are directly applicable to extract video embedding. Their main difference is

that the early fusion operates on video-level, mapping the video as a whole into the

embedding space. Whereas the late fusion encodes the information in frame-level,

mapping each video into the embedding space independently and then generating the

video representations.

There are several pros and cons to each scheme. The former is computationally

lighter and more intuitive; however, it is slightly less effective. Late fusion leads to

better performance and is amenable to possible extensions of the base approach (i.e.,

frame-level approaches). Nonetheless, it is slower since the features extracted from all

selected video frames are fed to the DNN.

Finally, the similarity between two videos derives from the distance of their rep-

resentations. For a given query q and a set of M candidate videos {pi}Mi=1 ∈ P , the

similarity within each candidate pair is determined by normalizing the distance with

respect to the maximum value and then subtracting the result from the unit to map

the similarity scores to the range [0, 1]. This process is formulated in:

Sdml(q, p) = 1− D(fθ(q), fθ(p))

max
pi∈P

(D(fθ(q), fθ(pi)))
(4.11)

where Sdml(·, ·) is the similarity function based on the DML scheme which calculates

the similarity between two given videos, and max(·) is the maximum function.
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4.3.5 Triplet Generation

Generation process

A crucial part of the proposed approach is the generation of video triplets. It is

important to provide a considerable amount of videos for constructing a representative

triplet training set. However, the total number of triplets that can be generated equals

the total number of 3-combinations over the size of N of the video corpus, i.e.:(
N

3

)
=
N · (N − 1) · (N − 2)

6
(4.12)

We have empirically determined that only a tiny portion of videos in a corpus could

be considered near-duplicates for a given video query. Thus, it would be inefficient to

randomly select video triplets from this vast set (for example, for N = 1, 000, the total

number of triplets would exceed 160M). Instead, a sampling strategy is employed as a

key element of the triplet generation process, which is focused on selecting hard can-

didates to create triplets, i.e., triplets that will generate non-zero loss during training.

The proposed sampling strategy is applied on a development dataset. Such a dataset

needs to contain two sets of videos: P, a set of near-duplicate video pairs that are used

as query-positive pairs, and N , a set of dissimilar videos that are used as negatives.

We aim at generating hard triplets, i.e., negative videos (hard negatives) with distance

to the query that is smaller than the distance between the query and positive videos

(hard positives). The aforementioned condition is expressed in Equation 4.13.

T = {(q, p, n)|(q, p) ∈ P, n ∈ N ,D(q, p) > D(q, n)} (4.13)

where T is the resulting set of triplets. The global video features are first extracted

following the process of section 4.1. Then, the distance between every query in P and

every dissimilar video in N is calculated. If the query-positive distance is greater than

a query-negative distance, then a hard triplet is formed composed of the three videos.

The distance is calculated based on the Euclidean distance of the initial global video

descriptors.
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(a) Before training (b) After training

Figure 4.4: Examples of video representations in feature space before and after train-
ing. Colours: (white) query video (blue) NDV (red) distractor videos.

Figure 4.4 visualizes the training and triplet generation process. Figure 4.4(a) de-

picts the videos in feature space before training. The white and blue colour circles

represent the query and near-duplicate videos, respectively, whereas the dissimilar

videos are painted in red colour. In particular, va is the query, and vb is a NDV.

However, before training, it is clear that their distance Dab is greater than distances

Dac and Dad; therefore, vc and vd (deep red) are hard negatives and two triplets will

be created {va, vb, vc} and {va, vb, vd}. The video ve (light red) does not generate any

triplet because its distance from the two NDVs is greater than the distance between

them. After training, the distance between the query and the NDV must be smaller

than their distance to any other dissimilar video, as illustrated in Figure 4.4(b).

Development dataset

For generating triplets to train the supervised DML approach, we leverage the VCDB

dataset [51]. This dataset is composed of videos from popular video platforms (You-

Tube and Metacafe) and has been compiled and annotated as a benchmark for the

partial copy detection task, which is highly related to the NDVR problem setting.

VCDB contains two subsets, the core Cc and the distractor subset Cd. Subset Cc con-

tains discrete sets of videos composed of 528 query videos and over 9,000 pairs of
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partial copies. Each video set has been annotated, and the chunks of the video copies

extracted. Subset Cd is a corpus of approximately 100,000 distractor videos, which is

used to make the video copy detection problem more challenging.

For the triplet generation, we retrieve all video pairs annotated as partial copies. We

define an overlap criterion to decide whether to use a pair for the triplet generation: if

the duration of the overlapping content is greater than a certain threshold t compared

to the total duration of each video, then the pair is retained, otherwise discarded. Each

video of a given pair can be used once as query and once as positive video. Therefore,

the set of query-positive pairs P is generated based on:

P = {(q, p) ∪ (p, q)|q, p ∈ Cc, o(q, p) > t} (4.14)

where o(·, ·) determines the video overlap. Subset Cd is used as the set N of negatives.

To generate hard triplets, the negative videos are selected based on Equation 4.13.

4.4 Experimental study

In this section, the two developed approaches are evaluated. The experimental setup

is described in Section 4.4.1, where we present the evaluation datasets used, several

implementation details, and a number of competing approaches from the state-of-

the-art. Extensive experimental evaluation is conducted and reported under various

evaluation settings for BoW and DML approaches in Section 4.4.2 and Section 4.4.3,

respectively. We use mAP and PR-curve as evaluation metrics for all the experiments,

as defined in 3.3.1.

4.4.1 Experimental setup

Evaluation datasets

Experiments were performed on the CC WEB VIDEO dataset [134], which is publicly

available. The collection consists of a sample of videos retrieved by submitting 24
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popular text queries to popular video sharing websites (i.e., YouTube, Google Video,

and Yahoo! Video). For every query, a set of video clips were collected and annotated

based on their near-duplicate relation to the query video. The dataset contains a total

of 12,790 videos and 24 queries, one for each set. Table 4.1 depicts the types of near-

duplicate types and their annotation. In the present work, all videos annotated with

any symbol but X are considered near-duplicates.

In addition, we use the FIVR-200K [63] dataset (Chapter 3) for validating the results

on the FIVR problem. It consists of 225,960 videos collected based on the 4,687

events and contains 100 video queries. Table 4.1 depicts the annotation labels used

in the dataset and their definitions. FIVR-200K includes three different tasks: a) the

Duplicate Scene Video Retrieval (DSVR) task where only videos annotated with ND

and DS are considered relevant, b) the Complementary Scene Video Retrieval (CSVR)

task which accepts only the videos annotated with ND, DS or CS as relevant, and c)

Incident Scene Video Retrieval (ISVR) task where all labels (with the exception of DI)

are considered relevant.

Table 4.1: Annotation labels of CC WEB VIDEO and FIVR-200K datasets.

(a) CC WEB VIDEO

Label Transformation

E Exactly duplicate

S Similar video

V Different version

M Major change

L Long version

X Dissimilar video

(b) FIVR-200K

Label Definition

ND Near-duplicate

DS Duplicate scene

CS Complementary scene

IS Incident scene

DI Distractor

Implementation details

We experiment with three deep network architectures: AlexNet [68], VGGNet [110]

and GoogLeNet [118]. The AlexNet is an 8-layer network that consists of five con-

volutional/pooling layers, two fully-connected layers and one softmax layer. VGGNet

has the same number of fully-connected layers, although the number of convolutional
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Table 4.2: Deep CNN architectures and total number of channels per layer used in the
proposed approach.

(a) AlexNet
Layer Ll cl-dim

conv1 96

conv2 256

conv3 384

conv4 384

conv5 256

total 1376

(b) VGGNet
Layer Ll cl-dim

conv2 1 128
conv2 2 128

conv3 1 256
conv3 2 256
conv3 3 256

conv4 1 512
conv4 2 512
conv4 3 512

conv5 1 512
conv5 2 512
conv5 3 512

total 4096

(c) GoogLeNet
Layer Ll cl-dim

inception 3a 256
inception 3b 480

inception 4a 512
inception 4b 512
inception 4c 512
inception 4d 528
inception 4e 832

inception 5a 832
inception 5b 1024

total 5488

layers may vary. In this paper, the version with 16-layers is employed as it gives similar

performance to the 19-layer version. Finally, GoogLeNet is composed of 22 layers in

total. In this architecture, multiple convolutions are combined in an intersection mod-

ule called “inception”. There are nine inception modules in total that are sequentially

connected, followed by an average pooling and a softmax layer at the end. All three

architectures receive as input images of size 224 × 224. For all the experiments, the

input frames are resized to fit these dimensions, even though this step is not mandat-

ory. Table 4.2 depicts the employed CNN architectures and the number of channels in

the respective convolutional layers.

For feature extraction, we use the Caffe framework [47], which provides pre-trained

models on ImageNet [24] for all employed CNN networks3. Regarding the unsupervised

BoW approach, the visual codebooks are generated based on scalable K-Means++

[10] – the Apache Spark4 implementation of the algorithm is used for efficiency and

scalability – in both aggregation schemes, a sample of 100K randomly selected video

frames are used for training.

3https://github.com/BVLC/caffe/wiki/Model-Zoo
4http://spark.apache.org
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The implementation of the supervised DML model is built on Theano [7]. We use

[800, 400, 250], [2000, 1000, 500] and [2500, 1000, 500] neurons for the three hidden

layers for AlexNet, VGGNet and GoogLeNet respectively. Adam optimization [60] is

employed with learning rate 10−5. For the triplet generation, we set t = 0.8, which

generates approximately 2k pairs in P and 7M, 4M, and 5M triplets in T , for AlexNet,

VGGNet, and GoogLeNet, respectively. Other parameters are set to γ = 1, λ = 10−5

and m = 1000.

State-of-the-art approaches

We compare the proposed approach with five widely used content-based NDVR ap-

proaches. Three of those were developed based on frames of videos sampled from the

evaluation set. These are the following:

Auto Color Correlograms (ACC) - Cai et al. [18] use uniform sampling to

extract one frame per second for the input video. The auto-color correlograms [41] of

each frame are computed and aggregated based on a visual codebook generated from

a training set of video frames. The retrieval of related videos is performed using tf-idf

weighted cosine similarity over the visual word histograms of a query and a dataset

video.

Pattern-based approach (PPT) - Chou et al. [22] build a pattern-based indexing

tree (PI-tree) based on a sequence of symbols encoded from keyframes, which facilitates

the fast filtering of candidate videos. They use m-pattern-based dynamic programming

(mPDP) and time-shift m-pattern similarity (TPS) to determine video similarity.

Stochastic Multi-view Hashing (SMVH) - Hao et al. [35] combine multiple

keyframe features to learn a group of mapping functions that project video keyframes

into the Hamming space using Kullback-Leibler (KL) divergence. The combination

of keyframe hash codes generates a video signature that constitutes the final video

representation. The Hamming distance is used to rank videos.
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The remaining two, which are based on the work of Wu et al. [134], are not built

based on any development dataset:

Color Histograms (CH) - This is a global video representation based on the

color histograms of keyframes. The color histogram is a concatenation of 18 bins for

Hue, 3 bins for Saturation, and 3 bins for Value, resulting in a 24-dimensional vector

representation for every keyframe. The global video signature is the normalized color

histogram over all keyframes in the video.

Local Structure (LS) - Global signatures and local features are combined using

a hierarchical approach. Color signatures are employed to detect relevant videos with

high confidence and to filter out very dissimilar videos. For the reduced set of candidate

videos, a local feature based method is employed, which compares the keyframes in a

sliding window using their local features (PCA-SIFT [57]).

4.4.2 Evaluation of BoW approach

Comparison of global feature descriptors

In this section, we benchmark the proposed intermediate CNN features with a num-

ber of global frame descriptors used in the literature. The compared descriptors are

divided in two groups: handcrafted and learned features5. The handcrafted features

include RGB histograms, HSV histograms, Local Binary Patterns (LBP), Auto Colour

Correlograms (ACC) and Histogram of Oriented Gradients (HOG). For the learned

features, we extract the intermediate CNN features, as described in Section 4.1, and

concatenate the layer vectors to generate a single descriptor. Additionally, we experi-

ment with the global features derived from the activations of the first fully connected

layer after the convolutional layers, for each architecture. To compare the retrieval

performance, a standard bag-of-word scheme with vector aggregation (Section 4.2) is

5The features have been learned on the ImageNet [24] dataset, since pre-trained networks are
utilized. However, ImageNet is a comprehensive dataset, so the learned features can be used in other
computer vision tasks (e.g., image/video retrieval) without the need of retraining.
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Table 4.3: mAP and dimensionality of eleven global frame descriptors.

Descriptor/
layers dimensions

K
Network 1000 10,000

RGB - 64 0.857 0.813

HSV - 162 0.902 0.792

LBP - 256 0.803 0.683

ACC - 256 0.936 0.826

HOG - 1764 0.940 0.831

AlexNet
int 1376 0.951 0.879
fc 4096 0.953 0.875

VGGNet
int 4096 0.937 0.886
fc 4096 0.936 0.854

GoogLeNet
int 5488 0.958 0.857
fc 1000 0.941 0.849

built based on each global feature descriptor. Table 4.3 presents the mAP of each

model built on a different global descriptor for two different values of K. The inter-

mediate features of GoogLeNet and VGGNet achieved the best results with 0.958 and

0.886 for K = 1, 000 and K = 10, 000, respectively. In general, learned features lead to

considerably better performance than handcrafted ones in both setups. Furthermore,

intermediate CNN features outperformed the ones derived from the fully connected

layers in almost all cases. One may notice that there is a correlation between the

dimensions of the descriptors and the performance of the model. Hence, due to the

considerable performance difference, we focused our research on the exploration of the

potential of intermediate CNN features.

Impact of feature aggregation scheme

We study the performance of the proposed approach in the CC WEB VIDEO dataset

in relation to the underlying CNN architecture and the size of the visual vocabulary.

Regarding the first aspect, three CNN architectures are tested: AlexNet, VGGNet,

and GoogLeNet, with both aggregation schemes implemented using K = 1000 words.

Figure 4.5 illustrates the PR curves of the different CNN architectures with the two

aggregation schemes. Layer-based aggregation runs outperform vector-based ones for
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Table 4.4: mAP per CNN architecture and aggregation scheme.

Method K AlexNet VGGNet GoogLeNet

Vector Aggregation
1000 0.951 0.937 0.958

10,000 0.879 0.886 0.857

Layer Aggregation
1000 0.969 0.976 0.974

10,000 0.948 0.959 0.958

(a) Vector Aggregation (b) Layer Aggregation

Figure 4.5: PR curve of the proposed approach based on three CNN architectures and
for the two aggregation schemes.

every architecture. GoogLeNet achieves the best results for the vector-based aggreg-

ation experiments with a precision close to 1.0 up to a 0.7 recall. For recall values

in the range 0.8-1.0, all three architectures have similar results. For the layer-based

aggregation scheme, all three architectures exhibit near-perfect performance up to 0.75

recall.

Similar conclusions are obtained from the analysis of mAP achieved using differ-

ent CNN architectures, as depicted in Table 4.4. For the vector-based aggregation

experiments, GoogLeNet achieved the best performance with a mAP of 0.958, and

VGGNet the worst (mAP=0.937). On the other hand, when using the layer-based ag-

gregation scheme, the best mAP score (0.976) was based on VGGNet. The lowest, yet

competitive, results in the case of layer-based aggregation, are obtained for AlexNet

(mAP=0.969).
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(a) AlexNet (b) VGGNet (c) GoogLeNet

Figure 4.6: mAP of every layer for the three architectures.

To study the impact of vocabulary size, we compare the two schemes when used with

K = 1000 and K = 10, 000 (Table 4.4). Results reveal that the performance of vector-

based aggregation forK = 10, 000 is significantly lower compared to the case whenK =

1000 words are used. It appears that the vector-based aggregation suffers considerably

more from the increase of K compared to the layer-based aggregation, which appears

to be less sensitive to this parameter. Due to this, we did not consider using the same

amount of visual words for the vector-based and the layer-based aggregation, since the

performance gap between the two types of aggregation with the same number of visual

words would be much more pronounced.

Performance using individual layers

We also assessed the retrieval capability of every layer for the three tested CNN archi-

tectures. Figure 4.6 depicts the mAP of the approach using only a selected layer vector.

In the AlexNet and VGGNet architectures, the mAP of the first layers is quite low,

and as we are moving to deeper layers, the retrieval performance improves. In both

cases, several layers exceed the performance of the vector-based aggregation scheme.

This indicates that it is better to extract the feature descriptors only from one layer

than concatenating all layers in a single vector, when using the BoW solution. How-

ever, no single layer overpasses the performance of the layer-based aggregation scheme

displayed with a dashed line. In GoogLeNet, the first layer (Inception 3a) is already
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Figure 4.7: Average Precision per query for vector aggregation (GoogLeNet) and layer
aggregation (VGGNet).

deep enough to achieve competitive performance. In this case, the performance for all

layers fluctuates between 0.935 and 0.960.

Performance per query

Here, we analyse the performance of the best vector aggregation instance (GoogLeNet)

with the best layer aggregation instance (VGGNet) on different queries. Figure 4.7

displays the Average Precision per query. Layer aggregation outperforms vector ag-

gregation for every single query. However, both approaches fail in the difficult queries

of the dataset, namely query 18 (Bus uncle) and query 22 (Numa Gary). The major

factor leading to errors is that both videos have relatively low resolution/quality, and

the candidate videos are heavily edited, which leads to a significant number of relev-

ant videos not to be retrieved at all (i.e., many false negatives). Figure 4.8 illustrates

some visual examples of the corresponding queries, their NDVs, and their rankings.

Nevertheless, layer aggregation leads to considerably better results in both queries in

comparison to vector aggregation.
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Figure 4.8: Visual examples of queries and their NDVs from CC WEB VIDEO. Colour
indicates the rank of the NDVs based on LBoW: green corresponds to high ranks,
orange corresponds to low ranks, and red indicates not retrieved at all.

Table 4.5: mAP of the baseline and two DML fusion schemes for the three benchmarked
CNN architectures.

Architecture baseline early fusion late fusion

AlexNet 0.948 0.964 0.964

VGGNet 0.956 0.970 0.971

GoogLeNet 0.952 0.968 0.969

4.4.3 Evaluation of DML approach

Impact of the different fusion schemes

In this section, we study the performance of the supervised DML approach in the

evaluation dataset in relation to the underlying CNN architecture and the different

fusion schemes. The three CNN architectures are benchmarked. For each of them,

three configurations are tested: i) baseline: all frame descriptors are averaged to a

single vector which is used for retrieval without any transformation, ii) early fusion: all

frame descriptors are averaged to a single vector which is then transformed by applying

the learned embedding function to generate the video descriptor, iii) late fusion: all

frame descriptors are transformed by applying the learned embedding function and

the generated embeddings are then averaged.

Figure 4.9 and Table 4.5 presents the PR curves and the mAP, respectively, of the

three CNN architectures with the three fusion setups. Late fusion schemes consistently
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(a) AlexNet (b) VGGNet (c) GoogLeNet

Figure 4.9: Precision-Recall curve of the proposed DML approach based on the two
CNN architectures and for the three fusion setups.

Table 4.6: mAP of three feature extraction methods for the two CNN architectures
based on the proposed DML apporach.

Architecture proposed last conv first fc

AlexNet 0.964 0.957 0.962

VGGNet 0.970 0.965 0.964

GoogLeNet 0.968 0.960 0.961

outperform the other two fusion schemes for all CNN architectures. VGGNet achieves

the best results for all three settings with a small margin compared to the GoogLeNet,

with precision more than 0.97 up to 0.80 recall and mAP scores of 0.970 and 0.971 for

early and late fusion respectively. Performance clearly increases in both trained fusion

schemes compared to the baseline for all three architectures. The early and late fusion

schemes achieve almost identical results, which is an indication that the choice of the

fusion scheme is not critical.

Comparison of different features

To delve deeper into performance, we validate the performance of the DML framework

with early fusion built on features extracted based on three different methods. The

benchmarked methods are: i) proposed: apply max-pooling to all convolution layers

and concatenate the vectors, ii) last conv: apply max-pooling to the activations of

the last convolution layer, iii) first fc: the activations of the first fully-connected layer.

We experiment with the three CNN architectures.
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Table 4.7: mAP comparison between the two proposed approaches against five state-
of-the-art methods. The approaches are divided based on the dataset used for devel-
opment.

Method

mAP

Same Dataset

ACC PPT SMVH LBoW DMLcc
0.944 0.958 0.971 0.976 0.982

No/Other Dataset

CH LS DMLvcdb
0.892 0.954 0.971

Table 4.6 depicts the mAP of the three feature extraction methods for the three

CNN architectures. The proposed feature extraction scheme outperforms the runs of

the compared feature extraction methods, for all architectures. In case of AlexNet,

the proposed method marginally outperforms the first fc method. However, our ap-

proach reports better performance compared to the others when VGGNet or GoogLe-

Net is used. Hence, we may draw the conclusion that the feature extraction using all

convolution layers yields better results, when using the DML solution.

Comparison against state-of-the-art approaches

For comparing the performance of the two approaches with the five approaches from

the literature, we select the setup using VGGNet features with layer aggregation for

the BoW approach, denoted as LBoW, and the setup using VGGNet features with

late fusion for the DML approach, denoted as DMLvcdb since they achieved the best

results in each case. We separate the compared approaches into two groups based on

the developed dataset, i.e., whether the evaluation dataset is used for development or

not. For the sake of comparison and completeness, the results of the DML method

trained on a triplet set derived from both VCDB (similar to DMLvcdb) and a small

sample of 1K triplets from CC WEB VIDEO are denoted as DMLcc. This simulates

the situation where the DML-based approach has access to a portion of the evaluation

corpus, similar to the setting used by the competing approaches.

In Table 4.7, the mAP scores of the competing methods are reported. The DML

approach outperforms all methods in each group with a clear margin. A similar con-

clusion is reached by comparing the PR curves illustrated in Fig. 4.10, with the light
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(a) Evaluation dataset (b) No/Other dataset

Figure 4.10: Precision-Recall curve comparison between the two proposed approaches
against five state-of-the-art methods. The approaches are divided based on the dataset
used for development.

blue line (DML approach) lying upon all others up to 0.90 recall in both cases. The

DML approach trained on the VCDB dataset outperforms four out of five state-of-the-

art methods. It achieves similar results to the SMVH, even though the latter has been

developed with access to the evaluation dataset during training. The LBoW approach

is in the second place consistently outperforming all five competing approaches by a

considerable margin.

4.4.4 In-depth comparison of the two approaches

Experiments on CC WEB VIDEO

In this section, we compare the two implemented approaches in two evaluation set-

tings. In addition to the existing experiments, we implement the BoW approach with

VGGNet features and layer aggregation based on information derived from the VCDB

dataset, i.e., we build the layer codebooks from a set of video frames sampled from

the aforementioned dataset. We then test two variations, the LBoWcc that was de-

veloped on the CC WEB VIDEO dataset (same as Section 4.4.2) and the LBoWvcdb

developed on the VCDB dataset. For each of the 24 queries of CC WEB VIDEO,

only the videos contained in its subset (the dataset is organized in 24 subsets, one per
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Table 4.8: mAP comparison of the two developed approaches on two different dataset
setups.

Run CC WEB VIDEO CC WEB VIDEO*

LBoWvcdb 0.957 0.906

DMLvcdb 0.971 0.941

LBoWcc 0.976 0.960

DMLcc 0.982 0.969

(a) CC WEB VIDEO (b) CC WEB VIDEO*

Figure 4.11: Precision-Recall curve comparison of the two developed approaches on
two dataset setups.

query) are considered as candidates and used for the calculation of retrieval perform-

ance. To emulate a more challenging setting, we created CC WEB VIDEO* in the

following way: for every query in CC WEB VIDEO, the set of candidate videos is the

entire dataset instead of only the query subset.

Figure 4.11 depicts the PR curves of the four runs and the two setups. There is a

clear difference between the performance of the two variants of the LBoW approach,

for both dataset setups. The DML approach outperforms the LBoW approach for

all runs and setups at any recall point by a large margin. Similar conclusions can

be drawn from the mAP scores of Table 4.8. The performance of LBoW drops by

more than 0.02 and 0.062 when the codebook is learned on VCDB for each setup,

respectively. Again, there is a considerable drop in performance in CC WEB VIDEO*

setup for both approaches, with the DML being more resilient to the setup change.
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Table 4.9: mAP of the two developed approaches on the FIVR-200K dataset.

Task DSVR CSVR ISVR

LBoW 0.710 0.675 0.572

DML 0.398 0.378 0.309

As a result, DML has been demonstrated to be highly competitive and possible to

transfer to different datasets with relatively lower performance loss.

Experiments on FIVR-200K

The developed approaches are also benchmarked on our FIVR-200K dataset. To com-

pare the two methods, we implemented them with frame features derived from the

VGGNet. The LBoW was built with samples from the FIVR-200K dataset and DML

with triplets from the VCDB dataset. Table 4.9 present the mAP of the two developed

approaches on the FIVR-200K dataset. The LBoW approach achieves noticeably bet-

ter performance in comparison to the DML. This is expected as LBoW has been

developed with samples from the evaluation dataset. Even though it is an unsuper-

vised method, it greatly benefits from such settings so as to build more representative

codebooks. On the other hand, DML has been trained with the VCDB dataset that

does not adequately simulate the FIVR problem. More precisely, for the DSVR task,

the two methods achieve 0.710 and 0.398 mAP for LBoW and DML, respectively.

The performance of both approaches marginally drops on the CSVR task, compared

to DSVR, with a reduction of more than 0.02 mAP. On the ISVR task, both runs

also have a considerable drop in their performance, with 0.572 and 0.309 mAP for

LBoW and DML, respectively. It is noteworthy that both methods’ performance is

significantly reduced compared to the CC WEB VIDEO dataset, revealing that the

FIVR-200K dataset is much more challenging. The main reason is that the vast ma-

jority of positive video pairs are partially related, i.e., the videos are not related in

their entirety but in particular segments. The competing approaches from the liter-

ature lead to even lower performance since they are based on schemes that employ
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Table 4.10: mAP of the two developed approaches on the within-dataset split of FIVR-
200K dataset.

Task DSVR CSVR ISVR

LBoW 0.362 0.344 0.280

DML 0.443 0.420 0.365

handcrafted frame descriptors with limited representation capability.

Besides, to test the robustness of the proposed methods, we benchmark them in

the scenario where they are developed and evaluated based on different video corpora

derived from the same domain (i.e., FIVR). To do so, we evaluate the two approaches

based on the within-dataset split of FIVR-200K, similar to the last experiment of

Section 3.3.2. For this experiment, the dataset is split into two parts, i.e., training

and test split. Table 4.10 depicts the results of the two approaches developed with

the training split and evaluated on the test split. The results highlight that the DML

approach achieves considerably better performance compared to the LBoW when they

are both developed on a different dataset other than the evaluation. Comparing these

results with the ones presented in Table 4.9, it is evident that the performance of LBoW

drops by half when the codebooks are learned on a video corpus other than the one

used for evaluation. We have also experimented with external resources for building the

codebooks, i.e., VCDB or ImageNet, and with various vocabulary sizes. Nevertheless,

no improvement in terms of retrieval performance was achieved. Furthermore, as

expected, the DML significantly benefits from the training on a dataset from the same

domain, i.e., its performance considerably improves when the network is trained with

triplets from the within-dataset split. The mAP increases in all evaluation tasks by

more than 0.04, with the case of ISVR being the most notable one with an 18% relative

mAP increase. This highlights that DML provides the required flexibility with respect

to the definitions of related videos, which is necessary for the FIVR. In conclusion, the

DML method generalizes better on unseen data than the LBoW.

Both presented approaches are limited in similar ways, which leads to similar errors
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in the retrieval process. The major issue of both approaches is that they do not

function effectively when the related segment between the two videos is small relative

to their total size. As revealed from the evaluation in the FIVR-200K dataset, video-

level solutions suffer in such setups. Even the LBoW approach, where the video-

level representation contains frame-level information, fails to retrieve relevant videos,

especially when built on a different dataset than the evaluation. Another category of

videos that the proposed schemes fail is when heavy transformations have been applied

on the source video. Typically, the extracted frame descriptors are not close enough

for these videos to be retrieved and ranked with a high similarity score. Even the

DML scheme, which should learn to handle such cases, fails to assign high similarity

scores to this kind of duplicate pairs, mainly when heavy edits or overlays have been

applied. A solution to this issue is the use of frame descriptors that better capture local

information within frames. This could perhaps be achieved with the use of another

aggregation function (other than MAC) that better preserves local information or with

the application of augmentation schemes that will result in more robust models.

Computational time

Finally, we compare the two approaches in terms of processing time on the FIVR-200K

dataset. The results have been measured using the open-source library Scikit-learn

[126] in Python on a Linux PC with a 4-core i7-4770K and 32GB of RAM. The DML

approach is significantly faster than the LBoW approach with respect to retrieval

time. It needs 333 ms to perform retrieval for one query on the FIVR-200K dataset,

compared to 1,155 ms needed for the LBoW approach. However, both methods are

significantly faster than common frame-level approaches, which usually need several

minutes to process all videos in the dataset. Moreover, DML needs approximately

four hours for the training of the DNN on VCDB and the extraction of the video

embeddings. However, LBoW needs about two days for the codebook learning with

samples from FIVR-200K and the generation of the inverted file structure. Therefore,
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DML is much more practical, especially in scenarios where the video database is not

static, i.e., new videos are constantly added, and the retraining of the video retrieval

scheme is required.

4.5 Conclusions

In this chapter, we proposed two different video-level approaches (an unsupervised

and a supervised) based on deep neural networks, that were initially introduced for

the problem of NDVR, which is closely related to the FIVR problem. For both meth-

ods, we used CNN features extracted from the intermediate convolutional layers by

applying Maximum Activations of Convolutions (MAC). We found that this setup led

to the best results, among many other features, both handcrafted and learned. The

first approach is an unsupervised scheme that relies on a Bag-of-Word (BoW) video

representation. A layer-based aggregation scheme was introduced in order to generate

the global video representation, and then store it in an inverted file index for fast in-

dexing and retrieval. To quantify video similarity, we calculated the cosine similarity

on tf-idf weighted versions of the extracted vectors and ranked the results in descend-

ing order. However, we found that the BoW approach has several limitations, with the

most important being that it offers a dataset-specific solution, i.e., the extracted know-

ledge is not transferable, and re-building the model is computationally expensive. To

address these issues, we developed a supervised approach based on DML. This method

learns an embedding function that maps the input video descriptors to a feature space

where related videos are closer than the irrelevant ones. The similarity between videos

was assessed by their Euclidian distance in the embedding space. We conducted ex-

tensive evaluations with different experimental setups, testing the performance of the

developed approaches under various settings. The developed approaches exceed the

performance of existing state-of-the-art approaches. Finally, we empirically determ-

ined that the DML approach achieves significantly better performance than the BoW

approach when they are both developed with no access to the evaluation dataset.
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Chapter 5

Video similarity learning based on

frame-level information
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In this chapter, we introduce ViSiL, a Video Similarity Learning architecture that

considers fine-grained spatio-temporal relations between pairs of videos – such rela-

tions are typically lost in previous video retrieval approaches that embed the whole

frame or even the whole video into a vector descriptor before the similarity estimation.

By contrast, our Convolutional Neural Network (CNN)-based approach is trained to

calculate video-to-video similarity from refined frame-to-frame similarity matrices, so

as to consider both intra- and inter-frame relations. In the proposed method, pairwise

frame similarity is estimated by applying Tensor Dot (TD) followed by Chamfer Simil-

arity (CS) on regional CNN frame features – this avoids feature aggregation before the

similarity calculation between frames. Subsequently, the similarity matrix between all

video frames is fed to a four-layer CNN, and then summarized using Chamfer Sim-

ilarity (CS) into a video-to-video similarity score – this avoids feature aggregation
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Figure 5.1: Depiction of the frame-to-frame similarity matrix and the CNN output of
the ViSiL approach for two video pair examples: relevant videos that contain foot-
age from the same incident (top), unrelated videos with spurious visual similarities
(bottom). CS stands for Chamfer Similarity.

before the similarity calculation between videos and captures the temporal similarity

patterns between matching frame sequences. We train the proposed network using a

triplet loss scheme and evaluate it on six public benchmark datasets on four different

video retrieval problems where we demonstrate large improvements in comparison to

the state-of-the-art. The implementation of ViSiL is publicly available1.

Base on our literature review in Section 2.2, a promising direction is exploiting

better the spatial and temporal structure of videos in the similarity calculation [25,

51, 52]. However, recent approaches either focused on the spatial processing of frames

and completely disregarded temporal information [30, 66], or considered global frame

representations (essentially discarding spatial information) and then considered the

temporal alignment among such frame representations [22, 11]. In this chapter, we

propose ViSiL, a video similarity learning network that considers both the spatial

1https://github.com/MKLab-ITI/visil
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(intra-frame) and temporal (inter-frame) structure of the visual similarity. The main

contributions of this chapter are:

• We introduce a frame-to-frame similarity function that employs Tensor Dot (TD)

product and Chamfer Similarity (CS) on region-level frame Convolutional Neural

Network (CNN) features whitened with PCA and weighted with an attention

mechanism. This leads to a frame-to-frame similarity function that takes into

consideration region-to-region pairwise similarities, instead of calculating the

similarity of frame-level embeddings where the regional details are lost.

• We propose a novel video similarity learning architecture for fine-grained video-

to-video similarity calculation. We calculate the matrix with the similarity scores

between each pair of frames between the two videos and use it as input to a four-

layer CNN, which is followed by a Chamfer Similarity (i.e., a mean-max filter)

at its final layer. By doing so, we learn the temporal structure of the frame-level

similarity of relevant videos, such as the presence of diagonal structures in Figure

5.1, and suppress spurious pairwise frame similarities that might occur.

• We develop a pipeline to train the proposed network, which generates triplets of

videos from two pools of selected and artificially-generated duplicate video pairs.

Our goal is the network to assign higher similarity scores for relevant videos

and lower for irrelevant ones; hence, it is trained to optimize the triplet loss

scheme. In addition, we introduce a similarity regularization loss that penalizes

the saturated values generated by the network, which demonstrates a significant

performance boost.

We evaluate our method on several video retrieval problems using public benchmark

datasets. We benchmark ViSiL for FIVR, the thesis’s main problem, and two other

content-based problems, i.e., NDVR, EVR. Besides, we test ViSiL’s performance on

Action Video Retrieval (AVR), whose objective is the retrieval of videos that depicts
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the same action. Even though it belongs to a different line of research, our method

can successfully tackle this problem with the proper modifications in the network’s

architecture. In all cases, the proposed method outperforms the state-of-the-art and

often by a large margin.

The remainder of the chapter is organized as follows: Section 5.1 introduces the

proposed ViSiL approach by presenting the features extraction process, the proposed

frame-to-frame and video-to-video similarity calculation functions, and the pipeline

for the training of the network. Section 5.2 reports our experiments, results, and

comparisons, and finally, Section 5.3 summarizes our main conclusions.

5.1 Fine-grained spatio-temporal video similarity

learning

In this section, we first provide a brief presentation of two underlying functions used for

the similarity calculation of two compared videos (Section 5.1.1). Then, we describe

in detail the ViSiL method and all of the individual components used to build the

proposed method (Section 5.1.2). We conclude this section with the presentation of

the training process followed to train the proposed network (Section 5.1.3).

5.1.1 Preliminaries

Tensor Dot (TD): Having two tensors A ∈ RN1×N2×K and B ∈ RK×M1×M2 , their TD

(also known as tensor contraction) is given by summing the two tensors over specific

axes. Following the notation in [137], TD of two tensors is

C = A ·(i,j) B (5.1)

where C ∈ RN1×N2×M1×M2 is the TD of the tensors, and i and j indicate the axes over

which the tensors are summed. In the given example i and j can only be 3 and 1

respectively, since they are the only ones of the same size (K).
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Figure 5.2: Overview of the training scheme of the proposed architecture. A triplet
of an anchor, positive and negative videos, is provided to a CNN to extract regional
features that are PCA-whitened and weighted based on an attention mechanism. Then
the Tensor Dot product is calculated for the anchor-positive and anchor-negative pairs
followed by Chamfer Similarity to generate frame-to-frame similarity matrices. The
output matrices are passed to a CNN to capture temporal relations between videos and
calculate video-to-video similarity by applying Chamfer Similarity on the output. The
network is trained with the triplet loss function. The double arrows indicate shared
weights.

Chamfer Similarity (CS): This is the similarity counterpart of Chamfer Distance

[12]. Considering two sets of items x and y with total number of N and M items

respectively and their similarity matrix S ∈ RN×M , CS is calculated as the average

similarity of the most similar item in set y for each item in set x. This is formulated

in Equation 5.2.

CS(x, y) =
1

N

N∑
i=1

max
j∈[1,M ]

S(i, j) (5.2)

Note that CS is not symmetric, i.e. CS(x, y) 6= CS(y, x), however, a symmetric variant

Symmetric Chamfer Similarity (SCS) can be defined as,

SCS(x, y) = (CS(x, y) + CS(y, x))/2 (5.3)

5.1.2 ViSiL description

Figure 5.2 illustrates the proposed approach. We first extract features from the in-

termediate convolution layers of a CNN architecture by applying region pooling on
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the feature maps. These are further PCA-whitened and weighted based on an atten-

tion mechanism. Additionally, a similarity function based on TD and CS is devised

to accurately compute the similarity between frames. A similarity matrix comprising

all pairwise frame similarities is then fed to a CNN to train a video-level similarity

model. This is trained with a triplet loss scheme based on selected and automatically

generated triplets from a training dataset.

Feature extraction

Given an input video frame, we apply Regional Maximum Activation of Convolu-

tion (R-MAC) [124] on the activations of the intermediate convolutional layers [65]

given a specific granularity level LN , N ∈ {1, 2, 3, ...}. Given a CNN architecture

with a total number of K convolutional layers, this process generates K feature maps

Mk ∈ RN×N×Ck(k = 1, ...,K), where Ck is the number of channels of the kth convo-

lution layer. All extracted feature maps have the same resolution (N × N) and are

concatenated into a frame representation M ∈ RN×N×C , where C = C1 + ... + CK .

We also apply `2-normalization on the channel axis of the feature maps, before and

after concatenation. This feature extraction process is denoted as LN -iMAC. The

extracted frame features retain the spatial information of frames at different granular-

ities. We then employ Principal Components Analysis (PCA) on the extracted frame

descriptors to perform whitening and/or dimensionality reduction as in [44]. This

process consists of a vector shifting and projection, which can be implemented with a

fully-connected layer, namely whitening layer. By the end of this process, each video

frame is represented by a tensor M with region vector rij : M(i, j, ·) ∈ RC , where

i ∈ [1, N ], j ∈ [1, N ].

`2-normalization on the extracted frame descriptors result in all region vectors being

equally considered in the similarity calculation. For example, this would mean that

a completely dark region would have the same impact on similarity with a region

depicting a subject of interest. To avoid this, we weight the frame regions based on
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Figure 5.3: Examples of the attention weighting on arbitrary video frames: sampled
video frames from the same video (top), attention maps of the corresponding frames
(bottom). Red colour indicates high attention weights, whereas blue indicates low
ones.

their saliency via a visual attention mechanism over region vectors inspired by methods

from different research fields, i.e. document classification [139]. To successfully adapt

it to the needs of video retrieval, we build the following attention mechanism: given

a frame with region vector rij ∈ RC , we introduce a visual context unit vector u and

use it to measure the importance of each region vector. We calculate the dot product

between every region vector rij with the context vector u to derive the weight scores

αij . Since all vectors are unit norm, αij will be in the range [−1, 1]. To retain region

vectors’ direction and change their norm, we divide the weight scores αij by 2 and add

0.5 in order to be in range [0, 1]. Equation 5.4 formulates the weighting process.

αij = u>rij , s.t. ‖u‖ = 1

r′ij = (αij/2 + 0.5)rij

(5.4)

All functions in the weighting process are differentiable; therefore, u is learned

through the training process. Unlike the common practice in the literature, we do not

apply any normalization function on the calculated weights (e.g., softmax or division

by sum) because we want to weight each vector independently. Also, we empirically

found that, unlike other works, using a hidden layer in the attention module has a

negative effect on the system’s performance.
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Figure 5.4: Illustration of frame-level similarity calculation between two video frames.
Having extracted the region-level frame descriptor based on a CNN network, the re-
gional feature maps are decomposed into their individual region vectors. Then, the
dot product between every pair of region vectors is calculated to generate a region-
to-region similarity matrix. To compute the frame-to-frame similarity, we apply the
CS function on the generated similarity matrix. In this example, the frames are near
duplicates.

Figure 5.3 illustrates three visual examples of video frames coloured based on the

attention weights of their region vectors. Apparently, the proposed attention mechan-

ism weights the frame regions independently based on their saliency, i.e., the amount

of information depicted in corresponding areas of the video frames. It assigns high

weight values on the information-rich regions (e.g., the concert stage, the Mandalay

Bay building); whereas, it assigns low values on regions that contain no meaningful

object (e.g., solid dark regions).

Frame-to-frame similarity

Figure 5.4 illustrates the similarity calculation process between two near-duplicate

frames. Given two video frames d, b, we apply CS on their region feature maps to

calculate their similarity. First, the regional feature maps Md,Mb ∈ RN×N×C are

decomposed into their region vectors dij ,bkl ∈ RC . Then, the dot product between

every pair of region vectors is calculated, creating the similarity matrix of the two

frames, and CS is applied on the similarity matrix to compute the final frame-to-frame
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Table 5.1: Architecture of the proposed network for video similarity learning. For the
calculation of the output size, we assume that two videos with total number of X and
Y frames are provided.

Type
Kernel size

Output size Activ.
/ stride

Conv 3×3 / 1 X × Y× 32 ReLU

M-Pool 2×2 / 2 X/2 ×Y /2 × 32 —

Conv 3×3 / 1 X/2 ×Y /2 × 64 ReLU

M-Pool 2×2 / 2 X/4 ×Y /4 × 64 —

Conv 3×3 / 1 X/4 ×Y /4 × 128 ReLU

Conv 1×1 / 1 X/4 ×Y /4 × 1 —

similarity of the frame pair.

CSf (d, b) =
1

N2

N∑
i,j=1

max
k,l∈[1,N ]

d>ijbkl (5.5)

This process leverages the geometric information captured by region vectors and

provides some degree of spatial invariance. More specifically, the CNN extracts features

that correspond to mid-level visual structures, such as object parts, and combined

with CS, that by design disregards the global structure of the region-to-region matrix,

constitutes a robust similarity calculation process against spatial transformations, e.g.,

spatial shift. This presents a trade-off between the preservation of the frame structure

and invariance to spatial transformations.

Video-to-video similarity

To apply frame-to-frame similarity on two videos q, p withX and Y frames respectively,

we apply TD combined with CS on the corresponding video tensorsQ and P and derive

the frame-to-frame similarity matrix Sqpf ∈ RX×Y . This is formulated in Equation 5.6.

Sqpf =
1

N2

N2∑
i=1

max
j∈[1,N2]

Q ·(3,1) P>(·, i, j, ·) (5.6)

where the TD axes indicate the channel dimension of the corresponding video tensors.

In that way, we apply Equation 5.5 on every frame pair.
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To calculate the similarity between two videos, the generated similarity matrix Sqpf
derived from the previous process is provided to a CNN network. The network is cap-

able of learning robust patterns of within-video similarities at segment level. Table 5.1

displays the architecture of the CNN architecture of the proposed ViSiL framework. It

consists of four convolutional layers and two max-pooling layers. The first three convo-

lutional layers have the same kernel size (3×3), with a gradually incremented number

of filters (32, 64, and 128, respectively). The ReLU activation function is applied to

the output of the first three convolutional layers. After the first two convolutional

layers, we apply max-pooling with kernel size (2×2) and stride 2; hence, the similarity

matrix is analysed in coarser granularity. The final convolutional layer aggregates the

activations of the third one to generate the output of the network.

To calculate the final video similarity, we apply the hard tanh activation function

on the values of the network output, which clips values within range [−1, 1]. We use

this activation function so as to bound the similarity in a specific range. Without the

application of hard tanh, the network converges to a similarity space with arbitrary

boundaries, which is impractical for ranking videos. Then, we apply CS to derive a

single value as in Equation 5.7.

CSv(q, p) =
1

X ′

X′∑
i=1

max
j∈[1,Y ′]

Htanh(Sqpv (i, j)) (5.7)

where Sqpv ∈ RX′×Y ′
is the output of the CNN network, and Htanh indicates the

element-wise hard tanh function. The output of the network has to be bounded in

order to accordingly set the margin in Equation 5.8.

Similar to the frame-to-frame similarity calculation, this process is a trade-off between

respecting video-level structure and being invariant to some temporal differences. As a

result, different temporal similarity structures in the frame-to-frame similarity matrix

can be captured, e.g., strong diagonals or diagonal parts (i.e., contained sequences).

Also, the network learns to filter the noise introduced in the frame-to-frame similarity

calculation, i.e., a pair of frames has high similarity value but no temporal pattern can
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Figure 5.5: Visual examples of the input and output of ViSiL for three different video
relation types. Two sampled frames of the compared videos are depicted on top, then
the input frame-to-frame similarity matrix and the ViSiL output are displayed, and
the final video-to-video similarity is reported. In the similarity matrices, red colour
indicates a high similarity score, whereas blue indicates low similarity.

be captured. Hence, this process leads to the precise calculation of video similarity by

considering the temporal alignment of the videos.

Figure 5.5 illustrates examples of the input frame-to-frame similarity matrix, the

network output, and the calculated video similarity of two compared videos for three

video categories. The network can extract temporal patterns from the input frame-to-

frame similarity matrices (e.g., strong diagonals, consistent parts with high similarity)

and suppress the noisy (i.e., small inconsistent parts with high similarity values) to

calculate the final video-to-video similarity precisely. It also provides invariance to the
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video starting points, assigning high similarity scores to videos that are not perfectly

aligned (as in the near-duplicate example). Sampled frames from the compared videos

are depicted for a better understanding of the different video relation types.

5.1.3 Training ViSiL

Loss function

The target video similarity score CSv(q, p) should be higher for relevant videos and

lower for irrelevant ones. To train our network we organize our video collection in video

triplets (v, v+, v−), where v, v+, v− stand for an anchor, a positive (i.e. relevant), and

a negative (i.e. irrelevant) video respectively. To force the network to assign higher

similarity scores to positive video pairs and lower to negative ones, we use the ‘triplet

loss’, that is

Ltr = max{0,CSv(v, v
−)− CSv(v, v

+) + γ} (5.8)

where γ is a margin parameter.

In addition, we define a similarity regularization function that penalizes high values

in the input of hard tanh that would lead to saturated outputs. This is an effective

mechanism to drive the network to generate output matrices Sv with values in the

range [−1, 1], which is the clipping range of hard tanh. To calculate the regularization

loss, we simply sum all values in the output similarity matrices that fall outside the

clipping range (Equation 5.9).

Lreg =
X′∑
i=1

Y ′∑
j=1

|max{0,Sqpv (i, j)− 1}|+ |min{0,Sqpv (i, j) + 1}| (5.9)

Finally, the total loss function is given in Equation 5.10.

L = Ltr + r ∗ Lreg (5.10)

where r is a regularization hyperparameter that tunes the contribution of the similarity

regularization to the total loss.
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Training process

Training the ViSiL architecture requires a labeled training dataset. According to

the ground truth annotations, we first extract video pairs with related visual content

to serve as anchor-positive pairs during training. We also generate artificial anchor-

positive video pairs by applying a number of transformations on arbitrary videos. We

use the original video as the anchor and the generated as the positive. We consider

three categories of transformation: (i) colour, including conversion to grayscale, bright-

ness, contrast, hue, and saturation adjustment, (ii) geometric, including horizontal or

vertical flip, crop, rotation, resize and rescale, and (iii) temporal, including slow motion,

fast forward, frame insertion, video pause, random time shifts, or reversion. During

training, one transformation from each category is randomly selected and applied on

the selected video.

We construct two video pools that consist of anchor-positive pairs. For each pair,

we aim to generate hard triplets, i.e., mine for negative videos (hard negatives) with

similarity to the anchor that is greater than the one between the anchor and positive

videos. In what follows, we use the LBoW approach presented in Section 4.2 to

calculate similarities between videos.

The first pool derives from the annotated videos in the training dataset. Two videos

with at least five-second overlap constitute an anchor-positive pair. Let s be the

similarity of the corresponding videos. Videos with a similarity larger than s (measured

with LBoW) with either of the videos in the anchor-positive pair are considered hard

negatives. The second pool derives from arbitrary videos from the training dataset

used to artificially generate positive pairs. Videos that are similar to the initial videos

(similarity > 0.1) are considered hard negatives. To avoid potential near-duplicates,

we exclude videos with similarity > 0.5 from the hard negative sets.

At each training epoch, we sample T triplets from each video pool. Due to GPU
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memory limitations, we do not feed the entire videos to the network. Instead, we

select a random video snippet with a total size of W frames from each video in the

triplet. To ensure that there are at least five seconds overlap between the anchor and

the positive videos, we use a training dataset that contains segment-level annotations.

Also, it is noteworthy that we only train our networks once and then apply it on each

content-based video retrieval problem, i.e., FIVR, NDVR, EVR.

5.2 Experimental study

In this section, we first present the evaluation setup by introducing the benchmark

datasets and the implementation setting for four retrieval problems (Section 5.2.1).

Then, we compare the proposed frame-to-frame similarity calculation scheme with

several global features with dot product as similarity measure (Section 5.2.2). We also

provide an ablation study to evaluate the proposed approach under different configur-

ations (Section 5.2.3). Finally, we compare the “full” proposed approach (denoted as

ViSiLv) with the best-performing methods in the state-of-the-art (to the best of our

knowledge) in each problem (Section 5.2.4).

5.2.1 Evaluation setup

The proposed approach is evaluated on four retrieval tasks, namely Near-Duplicate

Video Retrieval (NDVR), Fine-grained Incident Video Retrieval (FIVR), Event-based

Video Retrieval (EVR), and Action Video Retrieval (AVR). We assess its performance

on six evaluation datasets and compare against several state-of-the-art methods. In

all cases, we report the mean Average Precision (mAP).

Datasets

The VCDB [51] is used as the training dataset to generate triplets for training our

models. The CC WEB VIDEO [134] and SVD [50] simulate the problem of NDVR.

Regarding the former dataset, we found several quality issues with the annotations,
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e.g., numerous positives mislabelled as negatives. Hence, we provide results on a

‘cleaned’ version of the annotations. We also use two evaluation settings, one meas-

uring performance only on the query sets, and a second on the entire dataset. The

latter dataset consists of 1,206 queries split into two sets, i.e., training and test set

with 1,000 and 206 queries, respectively. We use the test set provided by the authors

to benchmark the performance of the retrieval systems. Our FIVR-200K [63] is used

for the simulation of the FIVR problem (Chapter 3). For quick comparisons of the

different variants, we use FIVR-5K, a subset of FIVR-200K by selecting the 50 most

difficult queries in the DSVR task (using [65] to measure difficulty), and for each one

randomly picking the 30% of annotated videos per label category. To add distractors

in the subset, we randomly select videos from the FIVR-200K dataset, until the pop-

ulation of FIVR-5K reaches 5K videos. The EVVE [99] was designed for the EVR

problem. It consists of 620 queries and 2,375 videos collected based on 13 events; yet,

we managed to download and process only 503 queries and 1,897 videos (≈80% of the

initial dataset) due to the unavailability of the remaining ones. Finally, the Activ-

ityNet [17], reorganised based on [28], is used for the AVR task. It consists of 3,791

training, 444 validation, and 494 test videos. The annotations contain the exact video

segments that correspond to specific actions. For evaluation, we consider any pair of

videos with at least one common label as related.

Implementation details

We extract one frame per second for each video. For all retrieval problems except for

AVR, we are using the feature extraction scheme of Section 5.1.2 based on ResNet-50

[36], but for efficiency purposes only extract intermediate features from the output

maps of the four residual blocks. Additionally, the PCA for the whitening layer is

learned from 1M region vectors sampled from videos in VCDB. Since AVR is not

directly related to content-based problems, we run a separate training session using

the training set from ActivityNet dataset. We extract features from the last 3D con-
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volutional layer of the I3D architecture [19] by applying max-pooling on the spatial

dimensions. We also tested I3D features for the other retrieval problems, but without

any significant improvements.

For training, we feed the network with only one video triplet at a time due to GPU

memory limitations. We employ Adam optimization [60] with learning rate 10−5. For

each epoch, T=1000 triplets are selected per pool. The model is trained for 100 epochs,

i.e., 200K iterations, and the best network is selected based on mean Average Precision

(mAP) on a validation set. Other parameters are set to γ = 0.5, r = 0.1 and W = 64.

The weights of the feature extraction CNN and whitening layer remain fixed. Training

end-to-end results in a significant performance drop, which we attribute to the domain

shift between the training and evaluation sets, as explained in Section 4.3.

5.2.2 Frame-to-frame similarity comparison

This section presents a comparison on FIVR-5K of the proposed feature extraction

scheme against several global pooling schemes proposed in the literature. Dot product

is used for frame-to-frame similarity calculation. Video-level similarity for all runs is

calculated with the application of the raw CS on the generated similarity matrices.

The benchmarked feature extraction methods include the Maximum Activations of

Convolutions (MAC) [124], Sum-Pooled Convolutional features (SPoC) [9], Regional

Maximum Activation of Convolutions (R-MAC) [124], Generalized Mean (GeM) pool-

ing [96] (with initial p = 3 (cf. Table 1 in [96]) and intermediate Maximum Activation

of Convolutions (iMAC) [65], which is equivalent to the proposed feature extraction for

N = 1. Additionally, we evaluate the proposed scheme with region levels LN , N = 2, 3,

and with two different region vector sizes for each region level. We use PCA to reduce

region vectors’ size, without applying whitening.

Table 5.2 presents the results of the comparison on FIVR-5K. The proposed scheme

with N = 3 (L3-iMAC) achieves the best results on all evaluation tasks by a large
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Table 5.2: mAP comparison of proposed feature extraction and similarity calculation
against state-of-the-art feature descriptors with dot product for similarity calculation
on FIVR-5K. Video similarity is computed based on CS on the derived similarity
matrices.

Features

MAC [124]

SPoC [9]

R-MAC [124]

GeM [96]

iMAC [65]

L2-iMAC

L2-iMAC

L3-iMAC

L3-iMAC

Dims.

2048

2048

2048

2048

3840

4x3840

4x512

9x3840

9x256

DSVR CSVR ISVR

0.747 0.730 0.684

0.735 0.722 0.669

0.777 0.764 0.707

0.776 0.768 0.711

0.755 0.749 0.689

0.814 0.810 0.738

0.804 0.802 0.727

0.838 0.832 0.739

0.823 0.818 0.738

margin. Furthermore, it is noteworthy that the reduced features achieve competitive

performance, especially compared with the global descriptors of similar dimensionality.

Hence, in settings where there is insufficient storage space, the reduced ViSiL features

offer an excellent trade-off between retrieval performance and storage cost. We also

tried to combine the proposed scheme with other pooling schemes, e.g., GeM pooling,

but this had no noteworthy impact on the system’s performance. Next, we will con-

sider the best performing scheme (L3-iMAC without dimensionality reduction) as the

baseline frame-to-frame similarity scheme ViSiLf .

5.2.3 Ablation study

This section provides an in-depth analysis of the retrieval performance of the pro-

posed method under different settings and hyperparameter values. We first assess the

impact of each network component on the system’s performance. Also, we evaluate

ViSiL implemented with different similarity calculation functions for frame-to-frame

and video-to-video calculation. We validate the influence of the γ, r, and W hyper-

parameters on the retrieval performance. Finally, we provide a discussion regarding

the computational complexity of the proposed method. All comparisons are carried

out on FIVR-5K.
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Table 5.3: Ablation studies on FIVR-5K. W and A stand for whitening and attention
mechanism respectively.

Task DSVR CSVR ISVR

ViSiLf 0.838 0.832 0.739

ViSiLf+W 0.844 0.837 0.750

ViSiLf+W+A 0.856 0.848 0.768

ViSiLsym 0.830 0.823 0.731

ViSiLv 0.880 0.869 0.777

Table 5.4: Impact of similarity regularization on the performance of the proposed
method on FIVR-5K.

Lreg DSVR CSVR ISVR

7 0.859 0.842 0.756

X 0.880 0.869 0.777

Impact of network components

We first evaluate the impact of each individual module of the architecture on the

retrieval performance of ViSiL. Table 5.3 presents the results of four runs with differ-

ent configuration settings on FIVR-5K. The attention mechanism in the third run is

trained using the main training process. The addition of each component offers addi-

tional boost to the performance of the system. The biggest improvement for the DSVR

and CSVR tasks, 0.024 and 0.021 of mAP, respectively, is due to employing the CNN

model for refined video-level similarity calculation in ViSiLv. Also, considerable gains

on the ISVR task (0.018 mAP) are due to the application of the attention mechanism.

We also report results when the Symmetric Chamfer Distance (SCS) is used for both

frame-to-frame and video-to-video similarity calculation (ViSiLsym). Apparently, the

non-symmetric version of the CS works significantly better in this problem. Addition-

ally, we evaluate the impact of the similarity regularization loss Lreg of Equation 5.9

in Table 5.4. This appears to have a notable impact on the retrieval performance of

the system. The mAP increases for all three tasks reaching an improvement of more

than 0.021 mAP on DSVR and ISVR tasks.
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Table 5.5: mAP comparison of four pooling combinations for frame-to-frame and video-
to-video similarity calculation on FIVR-5K. MP stands for Max-Pooling and AP for
Average-Pooling.

F2F V2V DSVR CSVR ISVR

MP-AP MP-AP 0.880 0.869 0.777

AP-AP MP-AP 0.769 0.748 0.682

MP-AP AP-AP 0.640 0.652 0.623

AP-AP AP-AP 0.439 0.436 0.341

Table 5.6: mAP comparison of four setups for frame-to-frame and video-to-video sim-
ilarity calculation on FIVR-5K.

F2F V2V DSVR CSVR ISVR

CS CS 0.880 0.869 0.777

SCS CS 0.863 0.854 0.763

CS SCS 0.836 0.831 0.740

SCS SCS 0.830 0.823 0.731

Different similarity calculation functions

In this section, we compare the impact of different functions, other than CS, on the

frame-to-frame (F2F) and video-to-video (V2V) similarity calculation. In general, CS

can be considered equivalent to a Max-Pooling (MP) function followed by Average-

Pooling (AP). A different combination could be, e.g., the application of two AP func-

tions. Table 5.5 illustrates the results for different combinations of the core similarity

functions of the proposed system on FIVR-5K. It is evident that the use of two AP

functions for V2V does not work at all. The run with the two AP for F2F and CS for

V2V achieves competitive mAP, but still lower than the run with CS in both functions

as proposed. Also, we evaluate different combinations of the CS and SCS similarity

functions, for F2F and V2V similarity calculation. Table 5.6 illustrates the results for

four different combinations on FIVR-5K. Apparently, the use of two CS works the best

on this dataset/problem, whereas the use of two SCS works the worst.
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Figure 5.6: Impact of the margin hyperparameter γ, the regularization parameter r
and video snippet size W on the performance of the proposed method on FIVR-5K.

Impact of hyperparameter values

In this section, we compare the impact of different values of hyperparameter γ, r, and

W , on the performance of the proposed system. As default values, we use the values

reported in implementation settings, i.e. γ = 0.5, r = 0.1 and W = 64, and change

one at a time.

We first assess the impact of the margin parameter γ on the retrieval performance

of the proposed approach. Figure 5.6(a) illustrates the performance of the method

trained with different margins on the three tasks of FIVR-5K. Regarding the DSVR

task, one may notice that that the performance of the model improves as the margin

parameter increases. However, this is not the case for the ISVR task. The approach

reports high performance (mAP greater than 0.775) for small values of γ, i.e., within

the range [0.25, 0.5], but performance drops as γ increases.

Additionally, we assess the impact of the regularization parameter r on the retrieval

performance of the proposed approach. Figure 5.6(b) illustrates the performance of the

method trained with different regularization parameters on the three tasks of FIVR-

5K. On DSVR and CSVR tasks, the proposed approach achieves the best results for

r = 1.0 with a considerable margin from the second best, approximately 0.003 mAP.
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However, on the ISVR task, the performance significantly dropped in comparison to

the default value (r = 0.1). For values lower than the default, the proposed approach

does not report competitive results on any evaluation task.

Finally, we assess the impact of the size of video snippet W on the retrieval per-

formance of the proposed approach. Figure 5.6(c) depicts the mAP of the method

with different values of W on the three tasks of the FIVR-5K dataset. Regarding the

DSVR and CSVR tasks, it is evident that the larger the size of video snippets W , the

better the performance of the proposed methods. The run with W = 96 yields the

best results on both tasks with 0.880 and 0.870 mAP, respectively. However, the sys-

tem’s performance on the ISVR task is independent of the size of video snippets used

for training since all runs report approximately the same mAP, which is intuitively

expected and is a validation that our holistic approach with a single training session

can be applied for all content-based problems.

Computational complexity

In this section, we compare the computational complexity of different setups of the

proposed approach. The proposed method can be split into two distinct processes,

an offline and an online. The offline process comprises of the feature extraction from

video frames, whereas the online one the similarity calculation between two videos.

In Table 5.7, we compare the MAC and iMAC runs (cf. Table 5.2) with the ViSiLf

and ViSiLv in terms of execution time and performance. In that way, we assess the

trade-off between the performance gain from the introduction of each component of

the method and the associated computational cost. The average length of videos in

FIVR-5K is 103 seconds. All the experiments were executed on a machine with an

Intel i7-4770K CPU and a GTX1070 GPU.

For the offline process, all runs need approximately the same time to extract frame

features. The use of intermediate convolutional layers does not slow down the feature
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Table 5.7: mAP and execution time (ms) comparison of four versions of the proposed
approach on FIVR-5K. The execution time of the offline process refers to the average
feature extraction time per video. The execution time of the online process refers to
the average time for the calculation of video similarity of video pairs.

Run

MAC

iMAC

ViSiLf
ViSiLv

LBoW

DML

Comp. Time (ms)

Offline Online

950 2.0

950 2.3

960 6.0

1,040 9.5

920 5 ∗ 10−3

900 10−3

FIVR-5K

DSVR CSVR ISVR

0.747 0.730 0.684

0.755 0.749 0.689

0.838 0.832 0.739

0.880 0.869 0.777

0.704 0.698 0.657

0.418 0.423 0.389

extraction process since both MAC and iMAC needs 950 ms for feature extraction.

The extraction of regional vectors (ViSiLf ) has a minor impact on the speed, approx-

imately 1% increase of the total extraction time. Also, the application of whitening and

attention-based weighting does not significantly increase the extraction time. ViSiLv

needs 80 ms more than ViSiLf per video.

Additionally, we compare the proposed method with the two video-level methods

presented in Chapter 4 in terms of computation time and performance. The offline

process of all methods fluctuates about one second per video. The required time for

the online process of the video-level methods is many times lower than the one required

by the proposed approach. Nevertheless, this comes with very significant compromises

in terms of performance, which significantly drops, especially in the case of DML, and

with all limitations discussed in the Chapter 4, i.e., dataset-specific solutions that do

not generalize well. Yet, our primary research objective is the maximization of the

retrieval performance instead of computational efficiency, and our proposed solution

proves its robustness on several retrieval problems.

Regarding the online process, the complexity of calculating the frame-to-frame sim-

ilarity matrix between videos of M frames each is O(M2N2), where N is the number of

regions per frame. This is to be compared to O(M2) of frame-to-frame methods such
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Table 5.8: mAP comparison of three ViSiL setups and state-of-the-art methods on the
three tasks of FIVR-200K.

Method DSVR CSVR ISVR

LBoW 0.710 0.675 0.572

LAMV [11] 0.515 0.483 0.391

DP [22] 0.775 0.740 0.632

TN [119] 0.724 0.699 0.589

ViSiLf 0.843 0.797 0.660

ViSiLsym 0.833 0.792 0.654

ViSiLv 0.899 0.842 0.720

as iMAC (where N = 1). Based on our experiments, the MAC and iMAC runs need

less than 2.5 ms to calculate video similarity. The computation of the proposed frame-

to-frame similarity matrix increases the execution time by 3.7 ms, which is more than

a 150% increase (comparing iMAC and ViSiLf ). In ViSiLv, the second-stage CNN

on the frame-to-frame similarity matrix takes 40% of the execution time, and further

increasing it approximately by 3.5 ms but for a significant performance gain.

5.2.4 Comparison against state-of-the-art

We have re-implemented two popular approaches that employ similarity calculation

on frame-level representations, i.e., Dynamic Programming (DP) [22] and Temporal

Networks (TN) [119]. However, both of them were originally proposed in combina-

tion with handcrafted features, which is an outdated practice. Hence, we combine

them with the proposed feature extraction scheme and our frame-to-frame similarity

calculation. We also implemented a naive adaptation of the publicly available Video

re-localization (VReL) method [28] to a retrieval setting, where we rank videos based

on the probability of the predicted segment (Equation 12 in the original paper).

Fine-grained incident video retrieval

Here, we evaluate the performance of ViSiL against the state-of-the-art approaches

on on our FIVR-200K. We compare with the best performing run reported in Section

3.3, i.e., our LBoW [66] approach implemented with features from VGG [110], the
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(a) (b) (c)

Figure 5.7: PR-curves of the proposed ViSiL approach and state-of-the-art methods
on the three tasks of FIVR-200K.

Figure 5.8: Examples of challenging cases of related videos that were mistakenly not
labelled as positives in FIVR-200K.

publicly available LAMV [11], and our two re-implementations of DP [22] and TN [119].

Furthermore, we tested our adaptation of VReL [28], but with no success (neither when

training on VCDB nor on ActivityNet). As shown in Table 5.8, ViSiLv outperforms

all competing systems, including DP and TN. Its performance is considerably higher

on the DSVR task achieving almost 0.9 mAP. Similar conclusions apply for the PR-

curves of Figure 5.7. The proposed approach remains on top of all others with a

significant margin for almost all precision levels. When conducting a manual inspection

of the erroneous results, we came across some interesting cases (among the top-ranked

irrelevant videos), which should actually be considered as positive results but were not

labelled as such. Figure 5.8 illustrates three such cases, where the query videos are
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Table 5.9: mAP of three ViSiL setups and state-of-the-art methods on four different
versions of CC WEB VIDEO and the SVD dataset. (∗) denotes evaluation on the
entire dataset, and subscript c that the cleaned version of the annotations was used.

Method CC WEB CC WEB∗ CC WEBc CC WEB∗c SVD

LBoW 0.976 0.960 0.984 0.975 0.756

DML 0.971 0.941 0.979 0.959 0.785

LAMV [11] 0.971 0.950 0.982 0.969 0.781

DP [22] 0.975 0.958 0.990 0.982 0.861

TN [119] 0.978 0.965 0.991 0.987 0.873

ViSiLf 0.984 0.969 0.993 0.987 0.869

ViSiLsym 0.982 0.969 0.991 0.988 0.882

ViSiLv 0.985 0.971 0.996 0.993 0.887

displayed within the retrieved videos. We should note that the annotators did not miss

these cases during the annotation, but they were not presented with them whatsoever,

meaning that the calculated visual and textual similarity (Section 3.2.3) was too low.

This demonstrates the effectiveness of ViSiL to assign high similarity scores, even when

heavy spatial transformations have been applied on the query videos.

Near-duplicate video retrieval

For NDVR, we evaluate the performance of ViSiL against the state-of-the-art ap-

proaches on several versions of CC WEB VIDEO [134] and on the SVD [50] dataset.

The proposed approach is compared with our two video-level methods (Chapter 4), i.e.,

LBoW [65] and DML [66] implemented with VGG [110] features, the publicly available

implementation of Learning to Align and Match Videos (LAMV) [11], and our two re-

implementations based on DP [22] and TN [119]. As shown in Table 5.9, The ViSiLv

approach achieves the best performance compared to all competing systems in all cases

and on both datasets. When tested on the ‘cleaned’ version of the CC WEB VIDEO,

ViSiL achieves almost perfect results in both evaluation settings with 0.996 and 0.993

mAP. It is noteworthy that our re-implementations of the state-of-the-art methods lead

to considerably better results on this dataset than the ones reported in the original

papers, meaning that direct comparison with the originally reported results would be

much more favorable for ViSiL. This is the case because the proposed frame-to-frame
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Table 5.10: mAP comparison of three ViSiL setups with the LAMV [11] on EVVE.
The ordering of events is the same as in [99]. Our results are reported on a subset
of the videos (≈80% of the original dataset) due to unavailability of the full original
dataset.

Event

#1

#2

#3

#4

#5

#6

#7

#8

#9

#10

#11

#12

#13

mAP

LAMV†[11] LAMV†qe[11] LAMV[11] ViSiLf ViSiLsym ViSiLv

0.715 0.837 0.605 0.889 0.864 0.918

0.383 0.500 0.364 0.570 0.704 0.724

0.158 0.126 0.197 0.169 0.357 0.227

0.461 0.588 0.273 0.432 0.440 0.446

0.387 0.455 0.361 0.345 0.363 0.390

0.277 0.343 0.297 0.393 0.295 0.405

0.247 0.267 0.257 0.297 0.370 0.308

0.138 0.142 0.153 0.181 0.214 0.223

0.222 0.230 0.381 0.479 0.577 0.604

0.273 0.293 0.271 0.564 0.389 0.578

0.273 0.216 0.188 0.369 0.266 0.399

0.908 0.950 0.877 0.885 0.943 0.916

0.691 0.776 0.675 0.799 0.702 0.855

0.536 0.587 0.533 0.589 0.610 0.631

similarity calculation scheme is used in combinations with the re-implemented solu-

tions, which also validates the superiority of the proposed video-to-video calculation

scheme. Similar conclusions can be drawn from the comparison in the SVD dataset.

The proposed approach also achieves state-of-the-art performance with 0.887 mAP,

followed by the symmetric variant ViSiLsym with a margin of about 0.005 mAP. Also,

the baseline ViSiLf outperforms the majority of the competing methods.

Event video retrieval

For EVR, we compare ViSiL with the state-of-the-art approach Learning to Align and

Match Videos (LAMV) [11]. However, due to the fact that some of the videos are no

longer available, we report the results reported in the original paper of LAMV [11], but

also the results on the currently available ones that account for ≈80% of the original

EVVE dataset for the proposed and competing method. ViSiL performs well on the

EVR problem, even without applying any query expansion technique, i.e., Average

Query Expansion [26]. As shown in Table 5.10, ViSiLv achieves the best results on

the majority of the events in the dataset. It is outperformed only in four out of the
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Table 5.11: mAP comparison of three ViSiL setups and state-of-the-art methods on
ActivityNet based on the reorganization from [28].

Method mAP

DML 0.705

VReL [28] 0.209

LAMV [11] 0.516

DP [22] 0.621

TN [119] 0.648

Method mAP

ViSiLf 0.652

ViSiLsym 0.745

ViSiLv 0.710

thirteen events, i.e., in three events from the competing approach with query expansion

and one event from the symmetric variant ViSiLsym. Additionally, the performance

of LAMV in the original and the subset of EVVE is close in the majority of events,

indicating that the available subset is suitable for the simulation of the EVR problem.

Action video retrieval

We also assess the performance of the proposed approach on ActivityNet [17] reorgan-

ized based on [28]. We compare with our DML [66] approach, the publicly available

LAMV [11] approaches, our re-implementations of DP [22] and TN [119], and the ad-

apted version of VReL [28]. For all runs, we extracted features from the I3D network

[19]. As shown in Table 5.11, the proposed approach with the symmetric similarity

calculation ViSiLsym outperforms all other approaches by a considerable margin (0.035

mAP) to the second best. Moreover, it is noteworthy that the application of the pro-

posed video-to-video similarity calculation scheme significantly improves the system

performance, since both ViSiLsym and ViSiLv outperform the baseline ViSiLf with a

significant margin. Additionally, the baseline of the proposed method outperforms five

out of six of the competing methods.

5.3 Conclusions

In this chapter, we proposed a network that learns to compute the similarity between

pairs of videos by considering their inter- and intra-frame relations. The key contri-
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butions of ViSiL are a) a frame-to-frame similarity computation scheme that captures

similarities at the regional level and b) a supervised video-to-video similarity com-

putation scheme that analyses the frame-to-frame similarity matrix through a CNN

network which robustly establishes high similarities between video segments of the

compared videos. Combined, they lead to a video similarity computation method that

is accounting for both the fine-grained spatial and temporal aspects of video similarity.

For the training of the proposed approach, a triplet-based pipeline was established for

the optimization of the triplet loss function. We conducted extensive evaluations with

different experimental setups, testing the performance of the developed approaches

under various settings. The proposed method has been applied to a number of content-

based video retrieval problems, where it improved the state-of-art consistently and, in

several cases, by a large margin.
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Chapter 6

Conclusions and Future Work
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6.1 Discussion and conclusions

In this work, we studied the problem of Fine-grained Incident Video Retrieval (FIVR);

our overall aim was the proper formulation of the FIVR problem, and the development

and evaluation of video retrieval approaches that solve it. While significant progress

has been made during the last years in the field of video retrieval, we found that FIVR

is a challenging task that can not be solved with the methods existing in the literature.

Several definitions related to our problem had been proposed in the literature. Yet,

they were either too narrow, considering only the close to identical videos, or too broad,

considering videos that depict the same event or concept, and none of the existing

ones addresses the case of the same incident videos. Additionally, many approaches

had been proposed that tackle similar retrieval problems. Nevertheless, we noticed

several limitations of the proposed systems considering solutions to the FIVR problem.

Most approaches usually disregarded the spatio-temporal structure of the similarity

that can significantly improve performance. Also, supervised training had not been
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sufficiently explored for video retrieval problems. Hence, most of the proposed methods

do not provide flexibility with respect to the definition of which videos are related, a

property that is necessary for FIVR. In this thesis, we introduced the FIVR problem

by providing formal definitions for the association types that determine the relations

between video pairs, and also with the composition of the FIVR-200K, a large-scale

video dataset that simulates the problem at hand. Moreover, we developed approaches

that: i) provide flexibility with respect to FIVR definitions, ii) consider the fine-grained

sptatio-temporal relation between videos for similarity calculation, and iii) achieve

competitive retrieval performance on FIVR-200K and other large-scale datasets.

We started with the introduction of the FIVR problem. First, we provided defini-

tions for the various types of video associations arising in the more general problem

setting of FIVR. We focused on two fundamental associations between similar videos,

i.e., duplicate videos and videos of the same incident. Duplicate videos were considered

the videos that have been captured by the same camera and depict exactly the same

scene regardless of any visual transformations applied. In the second category, we

considered videos that capture the same incident. We further slit them to comple-

mentary viewpoint videos, i.e., videos that capture the same spatio-temporal span but

from a different viewpoint, and same incident video, i.e., videos that capture the same

incident at different time intervals.

To address the benchmarking needs of FIVR, we built a large-scale dataset, which

we call FIVR-200K. Our goal was to gather a challenging large-scale dataset that ulti-

mately consists of numerous pairs of videos that are associated with each other through

the relations of interest. We started by crawling the major global news events that oc-

curred over five years (2013-2017) from Wikipedia and were related to armed conflicts

and natural disasters. To collect videos based on the news events, we queried the You-

Tube API with their headlines. Then, we developed a principled approach based on

a video clustering scheme that automatically assessed the suitability of a query video
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for performing evaluations for the current problem. For the last step of the dataset

composition, we devised a protocol for annotating the dataset according to four labels

for video pairs. This pipeline resulted in the collection of 225,960 videos associated

with 4,687 Wikipedia news events and 100 selected video queries based on the largest

video clusters. The FIVR-200K consisted of 7,100 hours of video with 113s average

video length, making it a large-scale dataset. The selected queries have, on average,

123 related videos with multiple types of associations, fulfilling our requirements for

the queries to be associated with numerous related videos.

Next, we conducted a thorough experimental study on the dataset comparing five

state-of-the-art methods, six feature extraction methods based on deep and handcraf-

ted features, and four video aggregation schemes. For the benchmark, we considered

three retrieval tasks that represented different instances of the problem and accepted

different labels as relevant, i.e., DSVR, CSVR, and ISVR. The best-performing meth-

ods achieved mAP scores of 0.710, 0.675, and 0.572, respectively. In general, we found

that the benchmarked approaches exhibited low retrieval performance, even though

their results in other related datasets are close to perfect. The main reason for the

performance gap is that the vast majority of positive video pairs in FIVR-200K are

partially similar, not in their entirety but in small segments. Additionally, FIVR-200K

contains a wide variety of user-generated videos about news events of similar nature,

resulting in many challenging distractors. This highlights the challenging aspect of the

FIVR problem, especially in the case of retrieval of the same incident videos.

Additionally, we proposed two video-level approaches that have been initially de-

signed to tackle the problem of NDVR, which is closely related to the FIVR problem.

Such approaches offer high-speed retrieval and scalability; hence, they can be applied

on massive datasets. Due to the lack of approaches in the literature that employ deep

learning and motivated by its outstanding performance in a wide variety of multimedia

problems, we use CNN features extracted from the intermediate convolutional layers.
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Global frame descriptors were generated by applying the Maximum Activations of

Convolutions (MAC) function on the activations of each convolutional layer. Then,

for the first approach, we built an unsupervised scheme that relies on a Bag-of-Word

(BoW) representation. Two aggregation schemes were introduced for the generation

of video representations: i) a vector aggregation that uses a single codebook to map

each frame descriptor to a single visual word, and ii) a layer aggregation that uses

multiple codebooks that map the frame descriptors to several visual words. Then,

the video representations were stored in an inverted file index for the fast indexing

and retrieval, while video similarity was carried out based on the cosine similarity

of the tf-idf weighted video representations. Since this method was unsupervised in

principle, it can be developed with any video corpus without the need for annotated

data. However, its main limitation was that it does not generalize well on new unseen

data, and it was inefficient to be retrained from scratch with the new video corpus. To

tackle these issues, we developed a second supervised approach based on Deep Metric

Learning (DML), which learns an embedding function for video representations. The

method was built based on a triplet-wise DML scheme that learned a compact and

efficient embedding function that maps videos in a feature space where related videos

are closer than the irrelevant ones. The similarity between videos was assessed by their

Euclidian distance in the embedding space. Also, we experimented with two fusion

schemes: i) an early fusion, where the frame descriptors were first averaged to a global

vector and then mapped in the embedding space, and ii) a late fusion, where the frame

descriptors were independently mapped in the embedding space and then average to

a global video representation.

We conducted extensive evaluations with different experimental setups, testing the

performance of the developed approaches under various settings. First, we compared

the employed CNN features against several others deep and handcrafted features, and

we validated its robust performance. Regarding the BoW approach, we experimented

with various sizes for the two proposed aggregations, where the layer aggregation
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achieved better retrieval performance. Regarding the DML approach, the late fusion

achieved marginally better results compared to the early. Three CNN architectures

were benchmarked AlexNet, VGGNet, and GoogleNet, with the second one reporting

the best performance in almost all comparisons. Moreover, the evaluation process made

it evident that the developed approaches exceed the performance of several state-of-

the-art video retrieval approaches. Also, we empirically determined that the DML

approach overcomes the limitations imposed by the BoW approach, i.e., it achieves

competitive performance even without being trained on part of the evaluation dataset

(even though further improvements are possible if such access is possible). Finally,

DML performance was improved when trained with a video corpus that simulates

the same retrieval scenario. This provides flexibility with respect to the definition of

related videos required by the FIVR problem.

Finally, we presented a frame-level approach based on video similarity learning.

From our review of the related work, we noticed that a promising direction is exploit-

ing better the spatial and temporal structure of videos in the similarity calculation.

However, recent approaches either focused on the spatial processing of frames and com-

pletely disregarded temporal information, or considered global frame representations

(essentially discarding spatial information) and then considered the temporal align-

ment among such frame representations. To overcome this limitation, we proposed

ViSiL, a video similarity learning method that considers fine-grained spatio-temporal

relations between videos to assess their similarity. The main novelties of the proposed

approach were: i) A frame-to-frame similarity computation scheme that captured sim-

ilarities at the regional level. We devised a process based on Tensor Dot product, and

Chamfer Similarity applied on PCA-whitened and attention weighted CNN features.

With this function, we model the spatial structure in the similarity calculation. ii) A

supervised video-to-video similarity computation scheme that analyzed the temporal

structure of frame-to-frame similarity in order to calculate video similarity. We built

a four-layer CNN that was fed with the similarity matrices generated by the previous
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process, and robustly establishes high similarities between video segments of the com-

pared videos. With this function, we model the temporal structure in the similarity

calculation. Combined, they lead to a video similarity computation method that is

accounting for both the fine-grained spatial and temporal aspects of video similarity.

Finally, a triplet-based pipeline was established for the training of the proposed ap-

proach. We drew triplets of an anchor, a positive and a negative video from two pools

of selected and artificially-generated duplicate video pairs. We optimized our network

based on the triplet loss and a proposed similarity regularization loss that penalizes

the saturated values in the similarity matrix generated by the CNN network.

We evaluated ViSiL on several video retrieval problems, namely our FIVR prob-

lem, Near-Duplicate Video Retrieval (NDVR), Event-based Video Retrieval (EVR),

and Action Video Retrieval (AVR) using six public benchmark datasets. In all cases,

the proposed method outperformed the state-of-the-art and often by a large margin.

We also tested the proposed approach implemented with the symmetric equivalent of

Chamfer Similarity, i.e., Symmetric Chamfer Similarity. The proposed version per-

formed better on the problems of NDVR, FIVR, and EVR; whereas, the symmetric

version achieved the best results on the AVR problem. In addition, we compared the

proposed frame-to-frame similarity function against the common practice, which is

the combination of global frame representation with dot product for similarity calcu-

lation. Our solutions outperformed the compared feature extraction schemes, even in

settings where the dimensionality of the descriptors was almost the same. This high-

lights the value of modeling the spatial structure in the similarity calculation. Also,

the contribution of each system component was validated. We found that the video-

to-video similarity calculation component had a major impact on the performance of

the systems, which confirms that the modeling of the temporal structure can improve

the retrieval results. Finally, we validated the impact of the similarity regularization

function, which demonstrated considerable performance improvement.
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6.2 Future extensions

Although the research community has invested considerable effort in video retrieval

problems, there is plenty of room for improvements, and no retrieval problem can

be considered solved. An auspicious direction for future work is the exploitation of

different aggregation methods that generate more comprehensive frame and video rep-

resentations. Trainable pooling layers, such as NetVLAD [8], or Transformers [127]

have been successfully employed for the generation of global video representations in

other video problems, i.e., video classification [87], offering significant performance

improvement. Hence, their applicability in the case of video retrieval worth to be val-

idated. Another very promising direction is building training schemes that do not rely

on supervised training and can be applied to any video corpus. Knowledge distillation

via a Teacher-Student (TS) network setup [38] is an emerging topic with lots of ap-

plications in several computer vision problems. A TS framework can be established,

where the student network is a compact video-level architecture that tries to mimic the

similarity scores calculated from a teacher frame-level architecture so as to improve its

retrieval performance.

Furthermore, regarding our ViSiL approach, a direction of future work could be the

investigation of ways to reduce the computational complexity of the approach without

significant compromises in retrieval accuracy. This could be achieved with a network

component that binarizes the region-level features and is trained through the deployed

learning scheme. Also, the proposed scheme could be exploited for the corresponding

detection problems (e.g., video copy detection, re-localization). A possible solution

could be the use of a Region of Interest (RoI) pooling layer on the network’s output,

which can localize the particular video segments with high similarity scores. Beyond

the visual analysis aspect of the problems, the proposed method can be extended for

cross-domain retrieval, i.e., by utilizing audio information that can be processed in the

same manner.
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Additionally, a possible direction for future work could be the combination of the

proposed methods in a filter-and-refine scheme. Reinforcement Learning (RL) has

been successfully applied on many decision-making problems; hence, a possible solution

could be the build of methods based on popular Temporal Difference algorithms, such

as Q-learning [131] or its deep learning equivalent with Deep Q networks [89]. Given

a video pair for comparison, the RL system receives as input the calculated similarity

from a fast video-level approach (e.g., DML) along with other measures for the two

compared videos (e.g., video duration, self-similarity, number of segments), and decides

whether the calculation with a computationally expensive approach (e.g., ViSiL) have

to be performed.

Finally, due to its large size and the wide variety of user-generated videos and

news events, FIVR-200K could also facilitate many similar research problems, such as

audio-based video retrieval, event reconstruction, and synchronization. In the future,

the extension of the dataset annotation should be considered to cover the needs of

such problems. In that way, a better understanding of the enclosed news events and

the different relations between video pairs would be gained, which will help with the

exploration of different use cases and opportunities for the dataset.
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[96] F. Radenović, G. Tolias, and O. Chum, “Fine-tuning CNN image retrieval with

no human annotation,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2018. 119, 120

[97] A. S. Razavian, J. Sullivan, S. Carlsson, and A. Maki, “Visual instance retrieval

with deep convolutional networks,” ITE Transactions on Media Technology and

Applications, vol. 4, no. 3, pp. 251–258, 2016. 73

[98] J. Ren, F. Chang, T. Wood, and J. R. Zhang, “Efficient video copy detection

via aligning video signature time series,” in Proceedings of the 2nd ACM Inter-

national Conference on Multimedia Retrieval. ACM, 2012, p. 14. 25

[99] J. Revaud, M. Douze, C. Schmid, and H. Jégou, “Event retrieval in large video

collections with circulant temporal encoding,” in Proceedings of the IEEE confer-

ence on Computer Vision and Pattern Recognition. IEEE, 2013, pp. 2459–2466.

xv, 6, 7, 16, 25, 29, 33, 35, 118, 129

[100] Z. Sabeur, N. Doulamis, L. Middleton, B. Arbab-Zavar, G. Correndo, and A. Am-

ditis, “Multi-modal computer vision for the detection of multi-scale crowd phys-

ical motions and behavior in confined spaces,” in International Symposium on

Visual Computing. Springer, 2015, pp. 162–173. 3

[101] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding

for face recognition and clustering,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2015, pp. 815–823. 22

[102] M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi, “Bidirectional attention

flow for machine comprehension,” arXiv preprint arXiv:1611.01603, 2016. 26

[103] L. Shang, L. Yang, F. Wang, K.-P. Chan, and X.-S. Hua, “Real-time large scale

near-duplicate web video retrieval,” in Proceedings of the 18th ACM international

conference on Multimedia. ACM, 2010, pp. 531–540. 18, 19, 30

152



Bibliography

[104] J. Shao, X. Wen, B. Zhao, and X. Xue, “Temporal context aggregation for video

retrieval with contrastive learning.” 21, 22, 23, 24, 34, 35

[105] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn features off-

the-shelf: an astounding baseline for recognition,” in Proceedings of the IEEE

conference on Computer Vision and Pattern Recognition Workshops, 2014, pp.

806–813. 72

[106] H. T. Shen, X. Zhou, Z. Huang, J. Shao, and X. Zhou, “UQLIPS: a real-time

near-duplicate video clip detection system,” in Proceedings of the 33rd inter-

national conference on Very large data bases. VLDB Endowment, 2007, pp.

1374–1377. 15, 16, 18, 35

[107] L. Shen, R. Hong, and Y. Hao, “Advance on large scale near-duplicate video

retrieval,” Frontiers of Computer Science, vol. 14, no. 5, p. 145702, 2020. 15

[108] N. Shuyo, “Language detection library for java,” 2010. [Online]. Available:

http://code.google.com/p/language-detection/ 55

[109] C. Silverman, “Verification handbook,” 2013. 2

[110] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” Proceedings of International Conference on Learning

Representations, 2015. 60, 87, 126, 128

[111] J. Sivic and A. Zisserman, “Video Google: A text retrieval approach to ob-

ject matching in videos,” in Proceedings of the IEEE International Conference

Computer Vision. IEEE, 2003, pp. 1470–1477. 19, 22, 23, 28, 35, 77

[112] J. Song, L. Gao, L. Liu, X. Zhu, and N. Sebe, “Quantization-based hashing: a

general framework for scalable image and video retrieval,” Pattern Recognition,

vol. 75, pp. 175–187, 2018. 20

153



Bibliography

[113] J. Song, Y. Yang, Z. Huang, H. T. Shen, and R. Hong, “Multiple feature hashing

for real-time large scale near-duplicate video retrieval,” in Proceedings of the 19th

ACM international conference on Multimedia. ACM, 2011, pp. 423–432. 7, 20,

29, 30

[114] J. Song, Y. Yang, Z. Huang, H. T. Shen, and J. Luo, “Effective multiple feature

hashing for large-scale near-duplicate video retrieval,” IEEE Transactions on

Multimedia, vol. 15, no. 8, pp. 1997–2008, 2013. 20, 59, 62

[115] J. Song, H. Zhang, X. Li, L. Gao, M. Wang, and R. Hong, “Self-supervised

video hashing with hierarchical binary auto-encoder,” IEEE Transactions on

Image Processing, vol. 27, no. 7, pp. 3210–3221, 2018. 7, 20, 34

[116] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A dataset of 101 human

actions classes from videos in the wild,” arXiv preprint arXiv:1212.0402, 2012.

61

[117] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-

resnet and the impact of residual connections on learning.” in AAAI, vol. 4,

2017, p. 12. 60

[118] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Pro-

ceedings of the IEEE conference on Computer Vision and Pattern Recognition,

2015, pp. 1–9. 87

[119] H.-K. Tan, C.-W. Ngo, R. Hong, and T.-S. Chua, “Scalable detection of partial

near-duplicate videos by visual-temporal consistency,” in Proceedings of the 17th

ACM international conference on Multimedia. ACM, 2009, pp. 145–154. 7, 23,

126, 127, 128, 130

154



Bibliography

[120] B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland,

D. Borth, and L.-J. Li, “Yfcc100m: The new data in multimedia research,”

Communications of the ACM, vol. 59, no. 2, pp. 64–73, 2016. 33

[121] Y. Tian, T. Huang, M. Jiang, and W. Gao, “Video copy-detection and localiza-

tion with a scalable cascading framework,” IEEE MultiMedia, vol. 20, no. 3, pp.

72–86, 2013. 27

[122] Y. Tian, M. Qian, and T. Huang, “TASC: A transformation-aware soft cas-

cading approach for multimodal video copy detection,” ACM Transactions on

Information Systems (TOIS), vol. 33, no. 2, p. 7, 2015. 8, 27, 28

[123] Y. Tian, M. Jiang, L. Mou, X. Rang, and T. Huang, “A multimodal video

copy detection approach with sequential pyramid matching,” in 2011 18th IEEE

International Conference on Image Processing. IEEE, 2011, pp. 3629–3632. 27

[124] G. Tolias, R. Sicre, and H. Jégou, “Particular object retrieval with integral max-

pooling of cnn activations,” in Proceedings of the International Conference on

Learning Representations, 2016. 22, 35, 61, 73, 109, 119, 120

[125] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning spati-

otemporal features with 3d convolutional networks,” in Proceedings of the IEEE

International Conference on Computer Vision, 2015, pp. 4489–4497. 25, 60

[126] S. Van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner,

N. Yager, E. Gouillart, and T. Yu, “scikit-image: image processing in python,”

PeerJ, vol. 2, p. e453, 2014. 67, 102

[127] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

 L. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural

information processing systems, vol. 30, pp. 5998–6008, 2017. 24, 138

[128] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin, B. Chen, and

Y. Wu, “Learning fine-grained image similarity with deep ranking,” in Proceed-

155



Bibliography

ings of the IEEE conference on Computer Vision and Pattern Recognition, 2014,

pp. 1386–1393. 22

[129] L. Wang, Y. Bao, H. Li, X. Fan, and Z. Luo, “Compact cnn based video repres-

entation for efficient video copy detection,” in Proceedings of the international

conference on Multimedia Modeling. Springer, 2017, pp. 576–587. 23, 24

[130] A. Wary and A. Neelima, “A review on robust video copy detection,” Inter-

national Journal of Multimedia Information Retrieval, vol. 8, no. 2, pp. 61–78,

2019. 16

[131] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp.

279–292, 1992. 24, 139

[132] S. Wei, Y. Zhao, C. Zhu, C. Xu, and Z. Zhu, “Frame fusion for video copy

detection,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 21, no. 1, pp. 15–28, 2011. 23

[133] I. H. Witten and E. Frank, “Data mining: practical machine learning tools and

techniques with java implementations,” Acm Sigmod Record, vol. 31, no. 1, pp.

76–77, 2002. 18

[134] X. Wu, A. G. Hauptmann, and C.-W. Ngo, “Practical elimination of near-

duplicates from web video search,” in Proceedings of the 15th ACM international

conference on Multimedia. ACM, 2007, pp. 218–227. 6, 7, 8, 15, 16, 18, 21, 27,

29, 30, 35, 58, 62, 86, 90, 117, 128

[135] Z. Wu and K. Aizawa, “Self-similarity-based partial near-duplicate video re-

trieval and alignment,” International Journal of Multimedia Information Re-

trieval, vol. 3, no. 1, pp. 1–14, 2014. 25

[136] F. Yang and S. Satoh, “Burst-survive temporal matching kernel with fibonacci

periods,” in ICASSP 2019-2019 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP). IEEE, 2019, pp. 2062–2066. 25

156



Bibliography

[137] Y. Yang and T. Hospedales, “Deep multi-task representation learning: A tensor

factorisation approach,” in International Conference on Learning Representa-

tions, 2017. 107

[138] Y. Yang, Y. Tian, and T. Huang, “Multiscale video sequence matching for near-

duplicate detection and retrieval,” Multimedia Tools and Applications, pp. 1–26,

2018. 8, 28

[139] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, “Hierarchical attention

networks for document classification,” in Proceedings of the 2016 Conference of

the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, 2016, pp. 1480–1489. 110

[140] M.-C. Yeh and K.-T. Cheng, “Video copy detection by fast sequence match-

ing,” in Proceedings of the ACM International Conference on Image and Video

Retrieval. ACM, 2009, p. 45. 23

[141] L. Yuan, T. Wang, X. Zhang, F. E. Tay, Z. Jie, W. Liu, and J. Feng, “Central

similarity quantization for efficient image and video retrieval,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, 2020, pp.

3083–3092. 20, 21, 22, 34

[142] J. Yue-Hei Ng, F. Yang, and L. S. Davis, “Exploiting local features from deep

networks for image retrieval,” in Proceedings of the IEEE conference on Com-

puter Vision and Pattern Recognition Workshops, 2015, pp. 53–61. 73

[143] C. Zhang, Y. Lin, L. Zhu, A. Liu, Z. Zhang, and F. Huang, “CNN-VWII: An

efficient approach for large-scale video retrieval by image queries,” Pattern Re-

cognition Letters, vol. 123, pp. 82–88, 2019. 18

[144] J. R. Zhang, J. Y. Ren, F. Chang, T. L. Wood, and J. R. Kender, “Fast near-

duplicate video retrieval via motion time series matching,” in 2012 IEEE In-

157



Bibliography

ternational Conference on Multimedia and Expo. IEEE, 2012, pp. 842–847.

25

[145] G. Zhao and M. Pietikainen, “Dynamic texture recognition using local binary

patterns with an application to facial expressions,” IEEE transactions on pattern

analysis and machine intelligence, vol. 29, no. 6, pp. 915–928, 2007. 19, 59, 60

[146] L. Zheng, Y. Zhao, S. Wang, J. Wang, and Q. Tian, “Good practice in cnn

feature transfer,” arXiv preprint arXiv:1604.00133, 2016. 22, 35, 72, 73

[147] X. Zhou, L. Chen, and X. Zhou, “Structure tensor series-based large scale near-

duplicate video retrieval,” IEEE Transactions on multimedia, vol. 14, no. 4, pp.

1220–1233, 2012. 27

[148] Z. Zhou, J. Chen, C.-N. Yang, and X. Sun, “Video copy detection using spatio-

temporal cnn features,” IEEE Access, vol. 7, pp. 100 658–100 665, 2019. 28,

34

[149] Y. Zhu, X. Huang, Q. Huang, and Q. Tian, “Large-scale video copy retrieval

with temporal-concentration sift,” Neurocomputing, vol. 187, pp. 83–91, 2016.

25

158


