
 

 

Effect of the pyrolysis atmosphere on the mechanical 

properties of polymer-derived SiOC and SiCN 

Gian Domenico Sorarù1   |   Consuelo Tavonatti1  |   Lakshminath Kundanati2  |   

Nicola Pugno2,3  |   Mattia Biesuz1  

1Glass & Ceramics Laboratory, Department of Industrial Engineering, University of Trento, Trento, Italy 
2Laboratory of Bio-inspired, Bionic, Nano, Meta Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of 

Trento, Trento, Italy 
3School of Engineering and Materials  

Science, Queen Mary University of  
London, London, United Kingdom 

Correspondence 
Gian Domenico Sorarù, Glass & Ceramics  
Laboratory, Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy. 
Email: giandomenico.soraru@unitn.it 

Funding information 
Italian Ministry of Education, University and Research (MIUR), Grant/Award Number: PRIN-20177TTP3S and  
PRIN2017 - 2017PMR932; Fondazione  
Cassa Di Risparmio Di Trento E Rovereto;  

1 |  INTRODUCTION 

Polymer pyrolysis is a well-established soft chemistry route for the synthesis of advanced ceramics in the Si–C–N–O system.1,2 

These materials, known as polymer-derived ceramics (PDCs), have shown unique mechanical and functional properties and 

have been proposed for different application in many fields.3-9 The vast range of processing techniques which can be applied 

to this family of ceramics has led to the fabrication of a multitude of shapes such as fibers, thin films, porous components 

(foams wiopen/closed cell, aerogels), 3D printed lattices and objects, microelectromechanical systems (MEMS), etc.10-19 

Among the most striking features of this process is the possibility to fabricate, at a relatively low temperature (1000°C-

1400°C), silicon oxycarbides (SiOC), and silicon carbonitrides (SiCN) ceramics which display elastic modulus, hardness, and 

creep resistance similar or even better than the corresponding materials sintered (such as Si3N4 or SiC) or melted (vitreous 

silica) at much higher temperature.20,21 Accordingly, silicon oxycarbide glasses pyrolyzed at 1000°C display elastic modulus, 
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hardness, and viscosity which are well above those reported in the literature for silica glass, and amorphous silicon carbonitride 

has shown the highest viscosity reported for an amorphous ceramic so far.22,23 

Researchers have tried to correlate the exceptional mechanical properties of amorphous SiOC and SiCN to their 

nanostructure and to their chemical composition. Typically SiOC and SiCN PDCs consist of an amorphous phase in which Si–

O/Si–C and Si–N/ Si–C bonds exist together with a free carbon phase.24-27 Incorporation of tetravalent C sites into SiO2 

increases the network connectivity and accordingly silicon oxycarbide glasses have shown improved hardness (H), Young's 

modulus (E), and viscosity (η). Moreover, it has been shown that the H, E, and η increase with Si–C bond density, whereas 

hardness and Young's modulus decrease by increasing the volume fraction of free carbon.3,28-30 As for the SiCN system, studies 

in the literature report the hardness, elastic modulus, and viscosity for few selected compositions and no papers have been found 

dealing with the role of chemical composition or amount of free carbon phase.20,31 

So far, the properties of PDCs have been studied on materials obtained through pyrolysis in inert atmosphere. Recently, a 

work from Narisawa's group32 showed that one of the most studied precursor, polymethylsilsesquioxane (CH3SiO1.5), leads to 

silicon oxycarbide glass upon pyrolysis in inert atmosphere (Ar), whereas it converts into a SiOC glass with no Si–C bonds 

when pyrolyzed in reactive CO2. Essentially, pyrolysis in Ar leads to a nanocomposite consisting of SiOC/ Cfree phases, whereas 

in CO2 the final material is a SiO2/Cfree nanocomposites (because the Si–C bonds are converted into Si–O bonds). Interestingly, 

the nanostructural features of the two SiOC glasses, Ar vs CO2, seems quite similar in terms of size, distribution, and amount 

of the free carbon, being the composition of the amorphous network which is, in one case (Ar atmosphere) built up by Si–O 

and Si–C bonds and in the other (CO2 atmosphere) only by Si–O bonds.32,33 

We decided to build on these results and measure mechanical properties of SiOC glasses obtained in Ar and CO2 atmosphere. 

Similarly, we also prepared and studied, after the same pyrolysis processes, SiCN PDCs. In this case, the reactive pyrolysis in 

CO2 was never reported before and the measurement of the mechanical properties could offer a first clue on the reactivity of 

carbon dioxide during pyrolysis of polysilazanes. 

2 |  EXPERIMENTAL DETAILS 

2.1 |  Synthesis 

Commercially available liquid polysiloxane (SPR-036, Starfire System®) and polysilazane (Durazane 1800; CAS#: 503590-

70-3; Merck Performance Materials GmbH, Wiesbaden, Germany) were used as received and crosslinked with divynilbenzene 

(DVB, CAS: 1321-74-0, SigmaAldrich) via a Pt-catalized hydrosilylation reaction between the Si–H groups of the Si-polymers 

and the C=C groups present on both the cross-linker and the preceramic polymers.34,35 Platinum–divinyltetramethyldisiloxane 

complex in xylene, with Pt content of ∼2 wt% (Karstedt's catalyst, CAS: 68478-92-2, Sigma–Aldrich) was further diluted to 

obtain a solution containing 0.1 wt% of catalyst. Acetone was used as solvent (CAS#: 67-64-1; >99% pure, Sigma–Aldrich). 

The reagents were always mixed using the following recipe: 1.5 g of the liquid silicon polymer (SPR-036 or Durazane), 1 g 

of acetone, 0.23 g of DVB were added in this order into a beaker and homogenized for 5 minutes by magnetic stirring. Then 

150 µL of Pt-catalyst was added and the solution stirred for additional 2 minutes before pouring into the molds to obtain the 

thin films. To fabricate the molds, a Mylard film was glued on a rectangular (6 × 6 cm2) and plane block of plexiglass. Then, 

the edges of the Mylard film were folded up to form the mold walls. The amount of solution prepared and the area of the mold 

were optimized to get a thickness of the liquid film of about 200-400 µm. After casting, the molds were kept open at room 

temperature under a fume hood for drying and cross-linking. Typically, SPR-036- and the Durazane-based samples were ready 

to be handled for the subsequent operations after 1-2 days and 4-5 days, respectively. Disks samples were finally cut with a 

punch die of 22, 12, and 10 mm in diameter. 

2.2 |  Pyrolysis process 

Pyrolysis was performed using an alumina tubular furnace (Lindberg Blu). The preceramic disks were placed into an alumina 

crucible. The gas flow (Ar or CO2) was set at 200 mL min−1. The CO2 pyrolysis cycle (Figure 1) started with a purging step of 

5 hours at room temperature, then the temperature was increased at 2°C min−1 up to 800°C and hold for 1 hour. Then, the 

temperature was decreased at 5°C min−1 down to 500°C and immediately the gas flow was switched from CO2 to Ar. The 

samples were maintained at 500°C for 4 hours to allow the purging of the furnace from CO2 to Ar. We believe that during the 
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purging step at 500°C the nanostructure formed at 800°C do not change. Then, the temperature was increased, 2°C min−1 up to 

1200°C, 1 hour hold and finally cooled down to RT at 2°C min−1. For the Ar pyrolysis the same cycle was adopted but, of 

course, Ar flow is used through the whole treatment. The rationale for using this pyrolysis cycle, in which the reactive CO2 

atmosphere is maintained only up to 800°C, is the following: from the literature32 is known that the reaction between CO2 and 

the polysiloxane occurs up to ~800°C. Above this temperature, due to the Bouduard equilibrium, CO2 + C = 2CO, CO2 starts 

to consume Cfree present in the SiOC. If the pyrolysis in CO2 atmosphere had been extended up to 1200°C, it would have 

resulted in the formation of silica with a lower, or even negligible, amount of free carbon. In our opinion,  

 

FIGURE 1  (A) Typical disk samples ready to be pyrolyzed, (B)  

SiOC samples after pyrolysis in CO2 flow, and (C) pyrolysis cycle [Color figure can be viewed at wileyonlinelibrary.com] 

the selected pyrolysis cycle (Figure 1) should form, at 800°C the expected SiO2/Cfree network and the further pyrolysis up to 

1200°C in Ar should complete the ceramization process, removing eventually the transient porosity, leading to a dense SiOC 

material and not altering the SiO2/Cfree ratio existing at 800°C. 

2.3 |  Characterization techniques 

The weight loss and the shrinkage occurring during the pyrolythic transformation were measured by weighting the disks with 

an analytical balance (sensitivity ± 0.1 mg) and measuring their diameter with a caliper (sensitivity ± 0.01 mm) before and after 

the heat treatment. The density of the pyrolyzed materials was measured by Archimedes method using an analytical balance 

Gibertini (sensitivity ± 0.1 mg) and following the ASTM C 830 standard. 

The chemical bonds in the ceramic materials were studied by FT-IR using a Varian 4100 FT-IR Excalibur series apparatus 

(Variant Inc, CA, USA) in ATR mode (wave number = 4000-500 cm−1, 64 scan and 2 cm−1 resolution). The spectra were 

collected by placing a flat fragment of the ceramic disks on the diamond face of the ATR apparatus. 

The weight changes during pyrolysis were followed by termogravimetrical analysis, TGA, using a Netzsch STA 409 

analyzer (Netzsch Gmbh) operating under Ar, CO2 flow (50 mL min−1) up to 1200°C with a heating rate of 10°C min−1. The 

polymeric films were first crashed into coarse powders using an agate mortar and then about 50 mg were loaded into the alumina 

crucible of the TGA equipment. The TGA equipment was evacuated and then filled with the specific gas (Ar or CO2) for three 

( A ) ( B ) 

( C ) 
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times before starting the experiments. For comparison purposes TGA of the starting polymeric films was also recorded in 

flowing air using the same experimental conditions as for the Ar and CO2 experiments. 

Scanning electron microscopy, SEM, micrographs were obtained both on the surface of the ceramic disks in contact with 

the pyrolysis gas and on the fracture surface. A JEOL JSM-5500 SEM equipment (Jeol Corp) was employed and the samples 

were previously coated with a thin Pt-Pd metallic layer. 

Energy-dispersive X-ray spectroscopy, EDXS, was employed to study the composition profile beneath the pyrolysis surface. 

For this purpose, a Jeol IT300 (with tungsten filament) SEM instrument (Jeol Corp.), equipped with the EDXS detector (X-

Flash® SSD 30 mm2), was used and the data were analyzed with the Brucker software. The investigated samples were embedded 

in an epoxy resin and polished down to 1 µm diamond paste to show their section. In order to have a better spatial resolution, 

the polished cross section was tilted of ca. 60° with respect to direction normal to samples external surface. Before EDXS the 

samples were coated with a thin Au film. 

Vickers hardness, HV, tests were performed on the pristine pyrolysis surface of the glass disks using a FM-310 

microhardness tester (Future Tech). For each sample, that is, SiOC–Ar, SiOC–CO2, SiCN–Ar and SiCN–CO2, 5 different disks 

were tested, on each disk the hardness was measures using five loads (0.981, 1.962, 2.943, 4.910, 9.81 N) and for each load the 

measurement was repeated 10 times. Accordingly, for each samples and indentation load, the HV was the average on 50 

measurements. The indentation tests were performed with a loading time of 15 seconds and keeping the maximum load for 10 

seconds. 

Nanoindentation tests were used to examine the hardness and Young's modulus variation from the surface to the bulk of the 

samples. The tests were performed on the SiOC polished samples (prepared in the same fashion as for the EDXS analysis). 

Tests were performed using a iNano instrument (Nanomechanics, Inc) equipped with a Berkovich indenter and following 

NanoBlitz 3D Release method (which allows to map the property variation in the selected area). The 10 x 10 indentation 

matrices were defined in a region of 72 × 72 μm, with 8 μm spacing between each indentation in each direction. The indentation 

matrices were performed starting from the edge of the specimen in the thickness direction (corresponding to the pyrolysis 

surface of the disk), with a load of 45 mN. Three matrices were examined on each specimen. A Poisson's ratio of 0.13 was used 

for obtaining the elastic modulus.29 

The elastic modulus of the samples was also measured by three-point bending experiments. In this case, rectangular 

specimens 4-4.5 mm wide, 15 mm long, and 0.2-0.25 mm thick where obtained from the pyrolyzed disks by polishing them 

with SiC paper (Figure S1). 

Load displacement curves were obtained with an Instron 5969 testing machine (Instron) using 1 kN load cell, threepoint 

configuration with 10 mm span length and displacement rate of 10 mm min−1. The compliance of the Instron equipment was 

assessed using thin (150 µm) soda-lime glass samples with E = 72 GPa. The results suggested that, in the experimental 

conditions used for measuring the elastic modulus of the SiOC glasses, the maximum deformation of the measuring equipment 

was less than 1% and was therefore neglected in the elaboration of the data. 

3 |  RESULTS 

The mass and length changes of the polymeric preceramic disks during pyrolysis were measured and the results are reported in 

Table 1 together with the bulk density values. 

For both systems the ceramic yield in CO2 flow is extremely high, above ~90-95 wt%, and approaches the highest ceramic 

yield (~97 wt%) reported for a PDC.36 Density values are in line with those reported for SiOC and SiCN PDCs.1 The pyrolythic 

transformation was further studied by TGA analysis (Figure 2). The TGA curves were also recorded in air for comparison. 

Figure 2 confirms that pyrolysis in CO2 leads to higher ceramic yields than pyrolysis in Ar atmosphere, as already observed on 

the disk samples (Table 1). The mass change obtained from the TGA curves at 1200°C in Ar is rather similar to the one 

measured on the disk samples. On the other hand, the ceramic yield obtained by TGA in CO2 does not exactly match with the 

disks one: the weight change measured on the disks was slightly negative (~ −5% and ~ −10% for SiOC and SiCN, respectively), 

whereas the TGA shows a small increase (~3% for SiOC and ~1% for SiCN). This discrepancy can be reasonably attributed to 

the slightly different thermal cycle used in the two experiments. In particular, TGA analysis was carried out in CO2 up to 

1200°C, whereas disk samples were treated in CO2 only up to 800°C (and then the atmosphere was switched to Ar). Moreover, 

the TGA samples were crashed into powders, thus exposing to the reactive atmosphere a larger surface area per unit of mass. 

It is therefore very reasonable to assume that the TGA conditions were more favorable for facilitating a good gas-solid contact 

than the ones obtained for the disks pyrolysis, thus leading to a more complete conversion of the Si–C, Si–N bonds into Si–O. 
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As oxidation of Si3N4 and SiC is coupled with a weight gain, this can explain why the TGA analysis measured a higher ceramic 

yield. 

Pyrolysis of the SPR-036 samples (SiOC) in Ar flow results into a typical decomposition curve37 showing good weight 

stability up to ~400°C and then a major weight loss step ending at ~800°C with a loss of ~14 wt%. When the CO2 flow is used, 

TGA shows a weight increase starting a ~300°C with a maximum at ~350°C and then a weight loss up to ~600°C. Above this 

temperature the mass of the sample is rather stable with a small weight increase/decrease centered at ~800°C. Interestingly, 

pyrolysis in air results into a TGA curve similar to the one in CO2 but shifted to lower temperature. The weight increase step 

starts at ~200°C and reaches the maximum ~300°C. The weight loss step ends at ~800°C and above that temperature the weight 

is stable. 

Thermogravimetrical analysis of the Durazane-based precursor (SiCN) shows similar results. TGA plot in Ar flow reveals 

that the decomposition starts at lower temperature, compared to the siloxane system, due to a lower cross-linking degree of this 

precursor. In this case, the first weight loss step between 200°C and 300°C is most probably due to the evaporation of low 

molecular weight fragments of the preceramic polymer. The weight loss continues up to 800°C when the mass of the samples 

become stable. TGA curve in CO2 flow starts with the same weight loss step observed in Ar atmosphere (confirming that it is 

related to an evaporation process) but then, around 350°C, the mass increases and the mass gain persists up to ~550°C. In air 

atmosphere the shape of the TGA plot is similar but shifted to lower temperatures and the onset of the oxidation appears well-

before the first weight loss step. 

FT-IR spectra were recorded in ATR mode on the surface of the pyrolyzed disks exposed to the gas flow during pyrolysis 

(Figure S2). The penetration depth of the infrared  

TABLE 1  Ceramic yield, shrinkage, and bulk density of the SiOC and SiCN glasses after pyrolysis at 1200°C according to the thermal 

cycle shown in Figure 1 

Sample Ceramic Yield (wt%) 

 

Shrinkage (%) 

 

Density (g cm−3) 

 

 Ar CO2 Ar CO2 Ar CO2 

SiOC 88.8 ± 0.8 95.4 ± 1.4 24.3 ± 0.8 19.9 ± 1.8 2.14 ± 0.28 2.14 ± 0.02 

SiCN 77.2 ± 1.7 89.5 ± 3.1 26.5 ± 0.6 22.4 ± 1.9 2.08 ± 0.12 2.03 ± 0.08 

FIGURE 2  TGA curves recorded  

on SiOC and SiCN preceramic samples under 

different atmospheres. Experimental 

conditions: 10°C min−1, gas flow 50 mL min−1. 

In all the curves the weight increase observed 

between RT and 200°C is an instrumental 

artifact due to the buoyancy effect [Color 

figure can be viewed at 

wileyonlinelibrary.com] 

http://www.wileyonlinelibrary.com/


 

 

FIGURE 3  Vickers hardness, HV, values measured for the SiOC and SiCN glasses pyrolyzed in Ar and CO2 atmosphere at 1200°C  

(according to the thermal cycle shown in Figure 1), as a function of the indentation load. The values are the average of 50 indentations. The bar at 

each point is the standard deviation. The values in brackets represent the penetration depth of the plastic zone beneath the indenter considered to 

be hemispherical with a radius equal to the half diagonal of the indentation impression [Color figure can be viewed at wileyonlinelibrary.com] 

light is of the order of few micrometers; therefore, ATR FT-IR samples only the surface properties. IR spectrum of SiCN 

pyrolyzed in Ar shows a broad absorption in the range 1100-800 cm−1 which probably encompasses the contribution of Si–C 

(~800 cm−1), Si–N (~960 cm−1), and Si–O (1000-1100 cm−1 and 780-800 cm−1) bonds vibrations.38,39 On the other hand, the 

three IR spectra recorded on the SiOC system in Ar and CO2 and on the SiCN-CO2 are very similar to each other. They show 

two peaks, the main one in the range 1100-1000 cm−1 and a second, smaller one, at 800-790 cm−1, both of them related to Si–

O vibrations of the silica-based network. 

The Vickers hardness values measured on the SiOC and SiCN glasses pyrolyzed at 1200°C in Ar and CO2 atmosphere are 

shown in Figure 3 and the values are also reported in Table S1. 

For both systems and in both pyrolysis atmospheres the hardness does not change with the indentation load. HV of the SiOC 

and SiCN pyrolyzed in Ar atmosphere is ~10.4 and ~12.6 GPa, respectively, in agreement with the literature.20,29,40 Pyrolysis 

in CO2 results into a strong decrease in the hardness which drops down to ~7.8 GPa for SiOC–CO2 and to ~7.4 GPa for SiCN–

CO2 with a decrease in ~25% and ~40%, respectively. Vickers hardness of samples pyrolyzed in CO2 flow approaches the value 

reported in the literature (6 GPa) for fused silica41 and also measured in this study on a commercial silica glass (Heraeus-

HSQ300, Kleinostheim). These results suggest that CO2 treatment produces SiOC and SiCN materials in which the disordered 

network (embedding the Cfree phase) is closer to amorphous silica than to amorphous silicon oxycarbide or silicon carbonitrides, 

respectively. Such result was expected for the SPR-036 siloxane precursor but it is quite surprising for the Durazane-based 

system. Indeed, for the polysilazane precursor the CO2 reactive atmosphere must have oxidized not only the Si–C bonds but 

also the Si–N bonds present in the polymeric backbone. The formation of a silica-like structure at the surface of the SiOC and 

SiCN samples pyrolyzed in CO2 flow is also confirmed by analyzing the indentation fracture patterns (Figure 4). They clearly 

show that Vickers indentations in SiOC–CO2 and SiCN–CO2 result in the formation of Hertzian cone cracks, which are typical 

of anomalous glasses such as fused silica.42-44 The indentations performed on the SiOC–Ar and SiCN–Ar do not show the 

formation of any radial cracks up to 9.8 N load suggesting a high resistance toward crack initiation, as already reported for 

SiOC PDCs.45 

As said, HV of the samples pyrolyzed in CO2 is close to the one measured on pure SiO2 glass; however, the measured values, 

for both samples treated in CO2, are still above 6 GPa. We could explain this result either assuming that not all the Si–C and 

Si–N bonds were transformed into Si–O bonds or that the presence of free C nanodomains in the silica network by itself can 

increase the hardness. The latter hypothesis seems less likely as our previous work showed that H and E decreases with 

increasing the volume fraction of free C in silicon oxycarbide glasses.29 

http://www.wileyonlinelibrary.com/
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There is another interesting result that emerges from the hardness study: HV is independent from the indentation load which 

implies that the hardness is independent from the indentation depth for the investigated loads. The values in brackets in Figure 

3 report the size of the plastic zone beneath the indenter. The plastic zone is considered to be hemispherical with a radius equal 

to the half diagonal of the indentation impression. Accordingly, we can estimate that the depth of the plastic zone reaches 

thicknesses as high as 25 µm for a load of 9.81 N and being the hardness constant in all this range, the compositional and 

structural modification induced by the reactive CO2 atmosphere have at least reached this depth. This is not a trivial result since 

it is quite difficult to predict at which maximum depth the CO2 gas could diffuse and react upon PDCs pyrolysis. 

To get more insights into the evolution of the composition and of the mechanical properties beneath the surface of the 

samples, EDXS analysis, and nanoindentation tests were performed on the SiOC samples. Corresponding investigation on SiCN 

system were not performed at this time since a detail study for the Durazane-derived ceramics will be the subject of the next 

work. 

Figure 5 shows Si, C, and O profile 

measured for the Ar and CO2 treated 

SiOC samples. Since EDXS is not 

strictly quantitative (especially when 

dealing with light elements as C), we 

prefer to report only how the EDXS 

counts for each element changes as 

moving from the surface to the core. 

Such measurement, albeit not giving the 

exact composition of the material, 

allows to follow-up the qualitative 

composition evolution along the profile. 

In other words, Figure 5 allows only to 

identify trends in the elemental 

composition moving from the surface to 

the core, but the measure remains not 

quantitative. 

SiOC–Ar shows flat profiles for all 

the three elements up to a depth of ~15 

µm. On the other hand, the SiOC–CO2 

clearly shows an evolution of the O and 

C profiles, in particular O counts decrease for the first 25-30 µm and C counts correspondingly increases. Si concentration is 

constant through the studied depth length. These results indicate that: (a) carbon dioxide is a source of oxygen and, at the same 

time, removes C from the  



 
 FIGURE 4  Vickers indentations  

obtained on the SiOC and SiCN glasses after pyrolysis at 1200°C according to the thermal cycle shown in Figure 1. All the indentations were 

obtained with a load of 2.94 N. Typical Hertzian cracks are clearly visible fir the CO2 treated samples 

FIGURE 5  EDXS counts of Si, C,  

and O elements collected on the SiOC–Ar and 

SiOC–CO2 samples as a function of the 

distance from the surface. Note that the 

analysis is not quantitative but provides a 

qualitative information on the elemental 

composition evolution of the samples beneath 

their external surface [Color figure can be 

viewed at wileyonlinelibrary.com] 

 

FIGURE 6  Nanoindentation gradient maps, hardness and elastic modulus, of SiOC samples pyrolyzed at 1200°C [Color figure can be 

viewed at wileyonlinelibrary.com] 

http://www.wileyonlinelibrary.com/
http://www.wileyonlinelibrary.com/
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surface of the sample and (b) the penetration of CO2 into the evolution beneath the surface (see the nanoindentation 

matritransforming siloxane reaches, at least, 25 µm. ces in Figure S3). The average values of H and E are shown  

Nanoindentation maps for the SiOC sample are reported in Figure 7 as a function of the distance from the surface (raw in 

Figure 6 showing the hardness and elastic modulus data available in Table S2). 

 FIGURE 7  Nanoindentation hardness  

and elastic modulus profile curves along the 

thickness of SiOC samples pyrolyzed at 

1200°C [Color figure can be viewed at 

wileyonlinelibrary.com] 

Figures 6 and 7 clearly show that 

hardness and elastic modulus values of 

SiOC-Ar are higher near the surface of 

the sample and decrease toward the bulk. 

On the contrary, the H and E for SiOC-

CO2 samples are lower close to the edge. 

The H and E profiles in Figure 7 reveal 

that the properties gradient reaches a 

depth of ~30 µm in good agreement with 

the EDXS results. It is worth of note that the measured gradient of the nanohardness values was different when compared to 

Vickers hardness data which suggested independence of the HV from the indentation load, that is, from the depth of penetration 

of the plastic deformation zone beneath the indenter (approximately 25 µm). However, nanoindentation samples a much smaller 

volume (less than a few µm3) compared to the Vickers microindentation which involves a volume ranging from hundred to 

several thousand of µm3. Using, a simple geometrical consideration we can calculate that 70% of the volume of the plastic 

deformation beneath the indenter is located in the first half of the maximum penetration depth. It means that, even if the 

maximum penetration depth in the Vickers tests is around 25 µm, 70% of the plastic deformation occurs in the first 12.5 µm 

suggesting that the resulting hardness is more related to the properties of the first layers rather than being an average value over 

the first 25-30 µm. 

The elastic modulus of the SiOC and SiCN glasses after pyrolysis in Ar and CO2 atmosphere was also measured by three-

point bending test (Figure S1) and the results are reported in Table 2. 

The rather low values of bending strength is related to the high defective state of the edges of the samples obtained from the 

pyrolyzed disks by polishing with SiC paper, whereas the large variation in the elastic modulus is most probably due to the not 

perfect geometrical feature of the investigated samples in terms of planarity and parallelism of the surfaces. Nevertheless, the 

elastic modulus values are in line with the previous results revealing a decrease in elastic modulus from the Ar-treated samples 

to the CO2-treated ones. Interestingly even the lower E values, that is, those measured on the CO2treated samples are above the 

value reported for fused silica  

TABLE 2  Elastic modulus and bending strength measured by three-point bending tests on SiOC and SiCN samples 

Sample 

Elastic modulus 

(GPa) 
Bending 

strength (MPa) 

SiOC–Ar 168 ± 10 70 ± 18 

SiOC–CO2 102 ± 12 84 ± 10 

SiCN–Ar 189 ± 16 70 ± 15 

SiCN–CO2 127 ± 12 102 ± 15 

(ESiO2 = 70 GPa), 46 pointing out only a partial conversion of the Si–C and SiN bonds into Si–O ones. 

4 |  DISCUSSION 

Data reported in Table 1 show that pyrolysis in reactive CO2 leads, for both SiOC and SiCN, to higher ceramic yields and lower 

linear shrinkages, compared to inert atmosphere. These results are in agreement with those reported by Narisawa et al obtained 

for a methyl-silsequioxane preceramic polymer.32 On the other hand, there are no data available in the literature for 

http://www.wileyonlinelibrary.com/


 

polysilazanes pyrolyzed in CO2 flow and, therefore, these are the first results suggesting that polysilazanes seem to behave, 

during pyrolysis, similarly to the siloxane precursors. 

TGA analysis performed on SPR-036-based samples  

(Figure 2) reveal that, compared to the inert gas (Ar), the reactivity of CO2 starts at rather low temperature (300°C) resulting 

into a weight increase which seems to be related to an oxidation of the precursor. Indeed, the pyrolysis in air, which is a stronger 

oxidizing agent compared to CO2, leads to similar results, with a TGA curve just shifted to lower temperature. The chemical 

reaction involved in the weight increase step recorded for the SPR-036 samples between 300 and 350°C is not known in detail 

at this moment (a more careful study of the pyrolysis process of these precursors in different atmospheres using complementary 

spectroscopic techniques will be reported in the near future). However, based on the data published by Belot et al47 and by some 

of us,48 we can postulate that it could be related to the transformation of the Si–H and/or Si–CH3 moieties present in the 

precursor with the formation of Si–O bonds and a corresponding weight gain. Thus, TGA reveals that at least a very relevant 

part of the oxidation reaction takes place well-before the complete ceramization of the network, and could substantially 

eliminate the groups that, upon pyrolysis, leads to the formation of the Si–C bonds (ie, Si–H and Si–CH3 convert into Si–C 

carbidic bonds at high temperature releasing low molecular weight hydrocarbons and molecular hydrogen). Thus, the reaction 

between the preceramic resin and CO2 leads to a substantial reduction in the Si–C bonds in the SiOC matrix, whereas it does 

not reduce the free carbon phase. Further investigations would be needed to unravel the reactions between the preceramic resins 

and CO2 and could be part of a new work in the next future. 

Thermogravimetrical analysis of the Durazane-based precursor shows similar results. The weight increase step, probably 

related to the transformation of Si–H, Si–CH3, and eventually Si–N bonds starts around 350°C for the CO2 gas and is shifted 

to lower temperature for pyrolysis in air atmosphere.49 

It is worth noting that, for both precursors, the ceramic yield in CO2 is higher than in air. We can tentatively explain this 

result by assuming that, air being a stronger oxidizing agent than CO2, the free C phase which forms during pyrolysis can be 

oxidized more easily by O2 than CO2. Since oxidation of Cfree leads to a net mass loss this could explain the observed results. 

FT-IR results (Figure S2) show the main IR absorption for the SiOC–Ar, SiOC–CO2, and SiCN–CO2 at 1028, 1046, and 

1036 cm−1, respectively. They indicate that the samples treated in CO2 show a blue shift of ~8-18 cm−1 compared to the SiOC 

pyrolyzed in Ar. A similar blue shift value of ~10-20 cm−1 was observed between SiOC pyrolyzed in Ar and CO2 and it was 

assumed as an indication that carbon dioxide converts the Si–C bonds into Si–O bonds leading to the formation of a SiO2/Cfree 

silicon oxycarbide glass.32,33 Accordingly, the present results suggest that, for both systems, pyrolysis in CO2 leads to the 

formation, at the surface of the samples, of a SiO2/Cfree ceramic independently from the starting preceramic polymer. 

Pyrolysis of siloxane preceramic polymers in reactive CO2 atmosphere was reported in the literature only in two studies. 

Narisawa group32 suggested, based on FT-IR, chemical analysis, and density data, the formation of a SiO2/Cfree SiOC which 

was confirmed by some of us with a 29Si MAS NMR investigation study, performed on a siloxane aerogel.33 The precise reaction 

path occurring during CO2 pyrolysis is not known yet. It is conceivable to assume that, being a reaction between a gas and a 

solid phase, it could occur preferentially at the surface of the sample and that a gradient of composition/structure could exist in 

the sample. For this reason, in the present investigation, we choose to measure the Vickers microhardness and to collect FT-IR 

spectra in ATR mode to reveal the surface properties of the samples. The results obtained both on SiOC and SiCN (see Figures 

3-4 and Figure S2) indicate that shifting the pyrolysis atmosphere from inert (Ar) to reactive (CO2) leads to: (a) a surface 

bonding state which is close to that of silica, (b) HV approaches that of fused silica, although the hardness values are slightly 

higher (HVSiCN-CO2 ~ 7.4, HVSiOC-CO2 ~ 7.8 GPa vs HVSiO2 = 6 GPa), and (c) the indentation fracture pattern of the SiOC and 

SiCN samples pyrolyzed in CO2 flow are characterized by Hertzian cone cracks typical of anomalous glasses such as fused 

silica. The presence of a compositional and structural gradient beneath the samples surface cannot be proposed analyzing the 

evolution of HV with the indentation loads. Indeed, the flat HV vs indentation load profile shown in Figure 2 would suggest a 

homogeneous composition and structure up to ~25 µm beneath the surface. At first glance this could seem a rather high 

penetration depth for the diffusing CO2 gas, however, the TGA analysis (Figure 1) helps us in rationalize this result. The weight 

gain step, which is an indication of the CO2 reactivity toward the preceramic polymers, starts, for both systems, at quite low 

temperature (around 300°C), that is, when the material is just beginning the organic-to-inorganic transformation and well before 

the formation of a tight inorganic network which could slow down the diffusion of CO2. Moreover, it is well-known that during 

pyrolysis the preceramic polymer develops a transient porosity in the range 500°C-900°C, which could also contribute to the 

CO2 diffusion toward the bulk of the transforming disks.44,50 An additional indication that the effect of the CO2 treatment is not 

limited to the region near the surface comes from the results of the three-point bending tests (Figure S1 and Table 2). We 

choose, for these experiments, the thinnest samples of our study with a thickness of approximately 150200 µm. The reason for 
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this choice was to increase, as much as possible, the relative content of the surface modified structure versus the potentially un-

modified bulk of the sample. The results (Table 2) revealed that the thickness of the surface modified region is high enough to 

have a macroscopic impact on the elastic modulus of the samples and the variation follows the expected trend with a decrease 

in elastic modulus in the CO2-treated samples. The E values for the SiOC-Ar appears slightly higher compared to known 

literature values, whereas those for SiCN-Ar are in excellent agreement.28,31,51 

Nanoindentation and EDXS studies performed on the sectioned pyrolyzed SiOC disks allowed to investigate the mechanical 

properties and elemental composition gradients. EDXS results (Figure 4) clearly show that the chemical composition for the 

SiOC-Ar sample is homogeneous in the depth beneath the surface, whereas for the SiOC-CO2 a gradient for the O and C content 

exists. In particular, O content is higher at the surface and decreases toward the bulk, whereas the opposite is observed for the 

C content. Interestingly, the extension of the gradient is ~25 µm and then the O and C counts flatten to a value that is slightly 

lower than that recorded for the Ar-pyrolyzed samples. It seems to suggests that, even in the bulk of the disk sample, in the 

region where the concentration of the elements is constant, the amount of oxygen is higher and the carbon is lower compared 

to the Ar-treated disk. 

Analysis of the H and E profiles reported in Figure 7 reveal the presence of mechanical properties gradient. In the Ar-treated 

samples, H and E are higher at the surface when compared to the bulk. Since the EDXS show that no composition gradient 

exists, then this evidence can be explained assuming that the surface is more “transformed” into the final ceramic compared to 

the bulk of the samples. It is known that PDCs continue to densify even above 900°C (ie, above the temperature at which the 

samples substantially stop losing weight in the TGA trace) due to the release of molecular H2.52 As hydrogen in the amorphous 

PDCs network acts as a “chain breaker,” its release leads to a more interconnected structure thus increasing E and H (the release 

of hydrogen is accompanied by formation of Si–C, Si–O, and Si–N bonds). But on the other hand, since H2 has to diffuse out 

of the sample this could lead to a properties gradient, the regions closer to the outer surface containing less hydrogen compared 

to the inner parts.53 

EDXS profiles of the SiOC–CO2 sample show that the surface is oxygen-rich and carbon-deficient compared to the bulk. 

These results agree with the H and E profiles of the same samples showing that the hardness and elastic modulus are lower at 

the surface. Moreover, the thickness of the H and E gradients agree well with those observed by EDXS, that is, ~30 µm. The 

hardness measured by nanoindentation is slightly larger than the one measured by Vicker's microhardness experiments. This 

can be attributed to various factors including scaling effects and also to increased cracking and chipping at higher loads.54 

Finally, it is worth noting that H and E values measured at the core of the CO2-treated samples are always smaller than the 

corresponding values of the Ar pyrolyzed samples (the difference is about 10%). This result suggests that the effect of CO2 

atmosphere was able to reach the core (at least a depth ≥ 30 μm) of the samples. This result could be rationalized thinking that, 

when the transient porosity is open the CO2 can easily diffuse towards the centre of the specimen and then, after the porosity 

closes-up, still CO2 could react with the part of the sample closer to the surface finally setting the concentration (and properties) 

profiles that we demonstrated. This small but significant mechanical properties difference (~ 10%) in the core of SiOC samples 

pyrolyzed in Ar and CO2 appears in agreement with the EDXS results which pointed out that the oxygen load in the CO2-treated 

sample is slightly larger even in the bulk of the material. 

5 |  CONCLUSION 

This study reports the hardness and elastic modulus of thin, dense, polymer-derived SiOC and SiCN ceramics pyrolyzed in 

inert (Ar) and reactive (CO2) atmosphere. Vickers hardness, HV, was measured on the as-pyrolyzed surface of the samples, 

whereas the elastic modulus was estimated by threepoint bending tests. The elemental composition, hardness, and elastic 

modulus evolution beneath the surface was also investigated for the silicon oxycarbide system via EDXS and nanoindentation. 

The main results can be summarized as follows: 

1. For both compositions, changing the pyrolysis atmosphere from Ar to CO2 leads to a strong drop of HV, from ~10.4 to ~7.8 

GPa for SiOC and from ~12.6 to ~7.4 GPa for SiCN. Moreover, the indentation fracture pattern for the CO2-treated samples 

shows Hertzian cone cracks. At the same time FT-IR spectra after pyrolysis in CO2 resemble that of fused silica. Taken all 

together, these evidences suggest that pyrolysis in CO2 flow promotes a consumption of Si–C and Si–N bonds with the 

formation of an amorphous network (embedding the free carbon phase) close to that of fused silica. 



 

2. For both compositions, the Young's modulus measured by three-point bending is lower for the CO2 treated samples 

compared to the Ar-treated ones. This result indicates that the effect of the reactive CO2 pyrolysis process is not limited to 

the vicinity of the surface as it could have been imagined. 

3. EDXS and nanoindentation profiles showed that the modification of the elemental composition and of the H and E induced 

by the CO2 extends beneath the surface of the samples for 25-30 µm. 
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